WO2011099164A1 - 内燃機関の触媒劣化診断装置 - Google Patents

内燃機関の触媒劣化診断装置 Download PDF

Info

Publication number
WO2011099164A1
WO2011099164A1 PCT/JP2010/052225 JP2010052225W WO2011099164A1 WO 2011099164 A1 WO2011099164 A1 WO 2011099164A1 JP 2010052225 W JP2010052225 W JP 2010052225W WO 2011099164 A1 WO2011099164 A1 WO 2011099164A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
catalyst
air
egr
exhaust
Prior art date
Application number
PCT/JP2010/052225
Other languages
English (en)
French (fr)
Inventor
井上 政広
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/052225 priority Critical patent/WO2011099164A1/ja
Priority to JP2010540963A priority patent/JP5071557B2/ja
Priority to CN2010800019050A priority patent/CN102224329B/zh
Priority to EP10781400.6A priority patent/EP2538047B1/en
Priority to US12/999,880 priority patent/US8627646B2/en
Publication of WO2011099164A1 publication Critical patent/WO2011099164A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an apparatus for diagnosing deterioration of a catalyst disposed in an exhaust pipe of an internal combustion engine.
  • Automotive internal combustion engines are equipped with a catalyst as a means for purifying exhaust gas.
  • an internal combustion engine for example, a gasoline engine
  • a catalyst having an oxygen storage capacity such as a three-way catalyst.
  • a so-called Cmax method is known as a method for diagnosing the deterioration state of such an oxygen storage ability catalyst.
  • the Cmax method is a method of measuring the oxygen storage capacity (Cmax) of the catalyst and diagnosing deterioration of the catalyst from the measurement result.
  • FIG. 4 shows the time variation of the actual air-fuel ratio (actual A / F) upstream of the catalyst when the target air-fuel ratio is changed between 14.1 and 15.1 by the active air-fuel ratio control, and is arranged downstream of the catalyst. The change with time of the output value of the sub O 2 sensor is also shown.
  • the output value of the sub-O 2 sensor downstream of the catalyst changes from exceeding the threshold value (0.5 V) until the next time. Integration of the oxygen storage amount or oxygen desorption amount of the catalyst calculated by the following equation is performed.
  • Oxygen storage amount or desorption amount coefficient ⁇ (current air-fuel ratio ⁇ stoichiometric) ⁇ fuel amount injection amount
  • the oxygen storage amount and the oxygen desorption amount are calculated a plurality of times by the above-described method, and the average of these values is taken as Cmax.
  • the time change of the oxygen storage amount with respect to Cmax is shown together with other graphs along the time axis.
  • an exhaust system structure of an internal combustion engine for example, as disclosed in JP-A-2006-112251, a plurality of cylinders are grouped into two cylinder groups, and an exhaust system is provided for each cylinder group.
  • a system in which two exhaust systems are assembled into one exhaust collecting pipe is known.
  • a catalyst is disposed in an exhaust collecting pipe, and exhaust gas discharged from each cylinder is collectively processed by the exhaust collecting pipe catalyst.
  • an EGR device is provided in one exhaust system so that EGR gas taken out from the exhaust system is recirculated to the intake system of each cylinder.
  • the problem here is when the EGR device is provided with a catalyst.
  • the catalyst disposed in the exhaust collecting pipe is referred to as a main catalyst
  • the catalyst provided in the EGR device is referred to as an EGR catalyst.
  • the main catalyst is responsible for purifying the exhaust gas discharged from each cylinder, and the main catalyst is also subject to deterioration diagnosis by the Cmax method.
  • the environment where the deterioration diagnosis of the main catalyst is performed may be both the situation where the EGR device is stopped and the situation where the EGR device is operating, but the presence of the EGR catalyst is the situation where the EGR device is stopped. This affects the result of the diagnosis, more specifically, the calculation result of Cmax.
  • FIG. 5 shows how the turbine inflow gas amount (total exhaust gas amount) and the EGR catalyst gas amount (gas amount flowing into and out of the EGR catalyst) when the EGR valve is fully closed vary depending on the crank angle. Results are shown. From this figure, it is understood that the exhaust gas flowing into and out of the EGR catalyst is a phenomenon that occurs constantly when the EGR valve is fully closed.
  • FIG. 6 the flow of the exhaust gas when the EGR valve is fully closed is shown in FIG. 6 as a block diagram.
  • ⁇ in the figure is a rate of gas breathing into the EGR pipe, that is, a ratio of exhaust gas flowing in and out between the exhaust system and the EGR pipe.
  • the 1- ⁇ exhaust gas directly flows into the main catalyst (S / C catalyst in the figure).
  • the ⁇ exhaust gas once enters the EGR catalyst from the exhaust system and then exhausts again. It goes out to the system and flows into the main catalyst.
  • the exhaust gas that has entered the EGR catalyst is purified to near the stoichiometric range according to the oxygen storage amount of the EGR catalyst. Therefore, the purified ⁇ exhaust gas and the unpurified 1- ⁇ exhaust gas are mixed and flow into the main catalyst.
  • the flow of exhaust gas when the EGR device is operated and EGR is performed is shown in FIG.
  • the EGR rate is ⁇
  • the exhaust gas of 1 ⁇ out of the total exhaust gas flows into the main catalyst.
  • the remaining ⁇ exhaust gas flows into the EGR catalyst, passes through the EGR catalyst, and then returns to the intake system. Therefore, in this case, the exhaust gas purified by the EGR catalyst does not enter the exhaust gas flowing into the main catalyst.
  • the problem shown in FIG. 6 is a problem in diagnosing deterioration of the main catalyst.
  • the air-fuel ratio of the exhaust gas flowing into the main catalyst is not affected by the EGR catalyst, the air-fuel ratio of the exhaust gas flowing into the main catalyst by active air-fuel ratio control is set as intended. Can be controlled.
  • the EGR catalyst functions as a low-pass filter. For this reason, it is difficult to control the air-fuel ratio of the exhaust gas flowing into the main catalyst as intended.
  • FIG. 8 shows changes in the target air-fuel ratio (target A / F) and time changes in the actual air-fuel ratio upstream of the main catalyst (actual A / F) when active air-fuel ratio control is performed in the case shown in FIG. And the time change of the output value of the sub O 2 sensor arranged downstream of the main catalyst is shown together with the time change of the virtual real A / F when it is assumed that there is no EGR catalyst. Further, FIG. 8 shows the time change of the oxygen storage amount with respect to Cmax along with the other graphs and the time axis for each of the main catalyst and the EGR catalyst. From this figure, it can be seen that the actual A / F value upstream of the main catalyst varies depending on the oxygen storage amount of the EGR catalyst.
  • the EGR catalyst generally has a strong oxidation reaction due to its role, the lean gas is quickly purified compared to the rich gas. For this reason, the time constants at the time of rich-lean reversal of the air-fuel ratio of the exhaust gas flowing into the catalyst are different, and time variations of oxygen desorption and storage are likely to occur. Therefore, in the case shown in FIG. 6, it can be seen that there is a large variation in the integrated values of the oxygen storage amount and the oxygen desorption amount, and it is difficult to ensure the Cmax estimation accuracy.
  • the air-fuel ratio of the exhaust gas flowing into the EGR catalyst changes in an oscillating manner, the oxidation reaction on the catalyst is promoted.
  • the temperature of the EGR catalyst may exceed the upper limit temperature depending on the degree of oxidation reaction. For this reason, the amplitude and frequency in the active air-fuel ratio control are restricted from the viewpoint of the upper limit temperature of the EGR catalyst, and it may happen that the deterioration diagnosis cannot be performed reliably due to the restriction.
  • the present invention has been made to solve the above-described problems, and in an internal combustion engine having an EGR device with an EGR catalyst in a part of the exhaust system, the oxygen storage capacity of the catalyst disposed in the exhaust collecting pipe is provided. It is an object of the present invention to accurately determine the deterioration of the catalyst based on the result.
  • the present invention provides the following catalyst deterioration diagnosis device for an internal combustion engine.
  • the internal combustion engine to which the catalyst deterioration diagnosis device of the present invention is applied is a multi-cylinder internal combustion engine having a plurality of cylinders.
  • a plurality of cylinders are grouped into at least two cylinder groups, and an exhaust system is provided for each cylinder group.
  • the exhaust system of each cylinder group is collected in one exhaust collecting pipe.
  • a main catalyst having an oxygen storage capacity is disposed in the exhaust collecting pipe, and air-fuel ratio sensors are respectively attached to the upstream side and the downstream side of the main catalyst.
  • the internal combustion engine includes an EGR device with an EGR catalyst in a part of the exhaust system.
  • the catalyst deterioration diagnosis device of the present invention performs active air-fuel ratio control for forcibly changing the air-fuel ratio of the exhaust gas flowing into the main catalyst between the lean side and the rich side with a stoichiometric center. Then, when the active air-fuel ratio control is performed, the oxygen storage capacity of the main catalyst is measured using signals output from the air-fuel ratio sensor and the oxygen sensor, and the deterioration of the main catalyst is determined from the measurement result of the oxygen storage capacity. Diagnose.
  • One feature of the catalyst deterioration diagnosis device of the present invention is a specific operation in the active air-fuel ratio control.
  • the target air-fuel ratio of the cylinder group in which the EGR device is not provided in the exhaust system is set to the lean side and rich with respect to the stoichiometry. Changing between the sides is done. By performing such an operation, the influence of the EGR catalyst on the air-fuel ratio of the exhaust gas flowing into the main catalyst can be reduced.
  • the EGR device when the EGR device is stopped, the EGR device holds the target air-fuel ratio of the cylinder group provided in the exhaust system at stoichiometry. By performing such an operation, the influence of the EGR catalyst on the air-fuel ratio of the exhaust gas flowing into the main catalyst can be further reduced.
  • the EGR device when the EGR device is stopped, the EGR device exhausts with a larger amplitude than the active air-fuel ratio control performed when the EGR device is operating. A target air-fuel ratio of a cylinder group not provided in the system is changed. By performing such an operation, the influence of the EGR catalyst on the air-fuel ratio of the exhaust gas flowing into the main catalyst can be further reduced.
  • FIG. 1 is a system diagram of an internal combustion engine to which a catalyst deterioration diagnosis device of the present invention is applied. It is a flowchart which shows the routine of the air fuel ratio control for the deterioration determination performed in embodiment of this invention.
  • FIG. 3 is a diagram showing an execution result of an air-fuel ratio control routine for deterioration determination shown in FIG. 2. It is a figure which shows the change of the output value of each sensor at the time of implementing active air fuel ratio control, and the oxygen storage amount of a catalyst. It is a figure which shows the change by the crank angle of each gas flow rate of an exhaust system in case an EGR valve is fully closed.
  • FIG. 1 is a diagram showing a system configuration of an internal combustion engine to which a catalyst deterioration diagnosis apparatus according to an embodiment of the present invention is applied.
  • the internal combustion engine 2 according to the present embodiment is a spark ignition type four-stroke reciprocating engine (hereinafter simply referred to as an engine). Although only one cylinder 4 is shown in FIG. 1, the engine 2 of the present embodiment is also an in-line four-cylinder engine that includes four cylinders 4 in series. Further, it is a direct injection engine in which fuel is directly injected into the cylinder by the in-cylinder injector 18 and a turbo engine provided with a turbocharger 14 that compresses fresh air using the energy of exhaust gas.
  • a direct injection engine in which fuel is directly injected into the cylinder by the in-cylinder injector 18 and a turbo engine provided with a turbocharger 14 that compresses fresh air using the energy of exhaust gas.
  • the four cylinders 4 of the engine 2 are grouped into two cylinder groups each having two cylinders.
  • the engine 2 includes exhaust systems 8 and 10 for each of these cylinder groups.
  • Each of the exhaust systems 8 and 10 includes exhaust manifolds 8a and 10a that collect exhaust gases of two cylinders, and exhaust pipes 8b and 10b connected to the outlets of the exhaust manifold.
  • the exhaust pipes 8 b and 10 b of the exhaust systems 8 and 10 are connected to one exhaust collecting pipe 12 in the turbine section of the turbocharger 14.
  • the upstream three-way catalyst 20 is a main catalyst to be diagnosed by the catalyst deterioration diagnosis device of the present embodiment.
  • a wide area air-fuel ratio sensor (hereinafter, A / F sensor) 40 is attached upstream of the main catalyst 20.
  • a zirconia oxygen sensor (hereinafter referred to as sub O 2 sensor) 42 is attached to the downstream side of the main catalyst 20.
  • an air fuel ratio sensor in this invention not only a wide area air fuel ratio sensor but a zirconia oxygen sensor can also be used.
  • the oxygen sensor in the present invention not only a zirconia oxygen sensor but also a wide-range air-fuel ratio sensor can be used.
  • the engine 2 of the present embodiment includes an EGR device 30 that recirculates exhaust gas from the exhaust system to the intake pipe 6.
  • the EGR device 30 is provided only in the exhaust system 8 of the two exhaust systems 8 and 10.
  • the EGR device 30 connects the exhaust pipe 8 b and the intake pipe 6 by an EGR pipe 32.
  • An EGR valve 34 is provided in the EGR pipe 32.
  • an EGR cooler 36 is provided on the exhaust side of the EGR valve 34, and an EGR catalyst 38 is provided on the exhaust side thereof.
  • ECU 100 is provided in the control system of engine 2 of the present embodiment.
  • the ECU 100 is a control device that comprehensively controls the entire system of the engine 2.
  • the output side of the ECU 100 is connected to actuators such as the in-cylinder injector 18 and the EGR valve 34 described above.
  • the input side of the ECU 100 is connected to sensors such as the A / F sensor 40 and the sub O 2 sensor 42 described above. ing.
  • ECU 100 receives signals from each sensor and operates each actuator in accordance with a predetermined control program. There are many other actuators and sensors connected to the ECU 100 as shown in the figure, but the description thereof is omitted in this specification.
  • the catalyst deterioration diagnosis device of the present embodiment is realized as one function of the ECU 100.
  • the ECU 100 functions as a catalyst deterioration diagnosis device, the ECU 100 is expressed by a combination of three signal processing units, that is, an active air-fuel ratio control unit 102, a Cmax measurement unit 104, and a diagnosis unit 106.
  • Each of these signal processing units may be configured by dedicated hardware, or the hardware may be shared and virtually configured by software.
  • the active air-fuel ratio control unit 102 performs active air-fuel ratio control that forcibly changes the air-fuel ratio of the exhaust gas flowing into the main catalyst 20 between the lean side and the rich side centered on the stoichiometry.
  • the active air-fuel ratio control is open loop control, in which the fuel injection amount is determined from the in-cylinder intake air amount and the target air-fuel ratio, and the fuel injection time by the in-cylinder injector 18 is controlled.
  • the Cmax measurement unit 104 measures the oxygen storage capacity of the main catalyst 20, that is, Cmax as the active air-fuel ratio control is performed. Specifically, the deviation of the current air-fuel ratio from the stoichiometric value and the current time until the output value of the sub O 2 sensor 42 changes beyond the threshold value (0.5 V) after the output value of the A / F sensor 40 changes.
  • the oxygen storage amount (or oxygen desorption amount) per unit time is calculated from the fuel injection amount and integrated. Then, the integrated value is calculated a plurality of times, and an average of those values is calculated as Cmax.
  • Diagnostic unit 106 compares the measured value of Cmax with a predetermined deterioration reference value. If Cmax is larger than the deterioration reference value, it is determined that the main catalyst 20 has not deteriorated. If Cmax is equal to or lower than the deterioration reference value, it is determined that the main catalyst 20 has deteriorated.
  • FIG. 2 is a flowchart showing an air-fuel ratio control routine for deterioration determination performed by the active air-fuel ratio control unit 102.
  • the active air-fuel ratio control is performed according to this air-fuel ratio control routine.
  • the catalyst deterioration determination control refers to air-fuel ratio control for measuring Cmax, that is, active air-fuel ratio control.
  • the execution request is a request issued when the deterioration of the main catalyst 20 is diagnosed. If there is no such request, the process proceeds to step S20.
  • step S20 normal air-fuel ratio control, that is, air-fuel ratio feedback control based on signals from the A / F sensor 40 and the sub O 2 sensor 42 is performed.
  • the predetermined flag xafscyl is turned off. The meaning of this flag xafscyl will be described later.
  • step S4 it is determined from the operating state and operating conditions of the engine 2 whether or not the execution conditions for the active air-fuel ratio control are satisfied. If the execution condition has not yet been established, normal air-fuel ratio control is continued in step S20. In step S22, the flag xafscyl is left off.
  • step S6 it is determined whether or not the EGR is stopped, that is, whether or not the EGR valve 34 is fully closed. If the EGR is not stopped, the determination in step S14 is further performed. In step S14, it is determined whether the flag xafscyl is off. This flag xafscyl is a flag that is turned on when active air-fuel ratio control is performed in a state where the EGR is stopped.
  • step S16 the target air-fuel ratio is changed for deterioration determination in all cylinders.
  • the target air-fuel ratio for deterioration determination is a rectangular wave signal that vibrates at a predetermined cycle between the lean side and the rich side with the stoichiometric center. Regardless of whether or not the EGR device 30 is provided in the exhaust system, the amplitudes of the vibrations of the target air-fuel ratio are the same in all the cylinders.
  • step S22 the flag xafscyl is left off.
  • step S14 if the flag xafscyl is on in step S14, the process of step S20 is performed. After normal air-fuel ratio control is once performed in step S20, the flag xafscyl is changed from on to off in subsequent step S22. When the flag xafscyl is changed to OFF, the result of the next determination in step S14 becomes affirmative. Therefore, in this case, the active air-fuel ratio control in step S16 is performed in the next control cycle.
  • step S8 active air-fuel ratio control is performed in step S8 and step 16.
  • step S8 the target air-fuel ratio of the cylinder group connected to the exhaust system 10 not provided with the EGR device 30 is changed for deterioration determination.
  • the target air-fuel ratio set here is a rectangular wave signal that vibrates at a predetermined cycle between the lean side and the rich side with the stoichiometric center as in the case of step S16. However, the amplitude of vibration is made larger than the target air-fuel ratio set in step S16.
  • step S10 the target air-fuel ratio of the cylinder group connected to the exhaust system 8 provided with the EGR device 30 is changed.
  • the target air-fuel ratio set here is stoichiometric, and unlike the case of steps S16 and S8, the target air-fuel ratio is not oscillated. This is to prevent the air-fuel ratio from changing before and after entering and leaving the EGR catalyst 38 by maintaining the air-fuel ratio of the exhaust gas flowing into the EGR catalyst 38 in a stoichiometric manner. That is, this is to eliminate the influence of the EGR catalyst 38 on the air-fuel ratio.
  • FIG. 3 shows the result of the air-fuel ratio control described above, in particular, the result of the active air-fuel ratio control performed when the determination condition in step S6 is satisfied.
  • the target air-fuel ratio (target A / F) of the cylinder group (cylinder group not taking out EGR) connected to the exhaust system 10 not provided with the EGR device 30 is set, and the exhaust generated thereby.
  • the time change of the actual air fuel ratio (actual A / F) in the pipe 10b is shown.
  • the second stage from the top shows the time variation of the actual A / F of the cylinder group (EGR take-out cylinder group) connected to the exhaust system 8 in which the EGR device 30 is provided.
  • the third stage from the top shows the time variation of the actual A / F of the exhaust gas (catalyst input gas) flowing into the main catalyst 20.
  • the actual A / F of the exhaust gas flowing into the main catalyst 20 is an average of the actual A / F of the exhaust gas from the exhaust system 10 and the actual A / F of the exhaust gas from the exhaust system 8. .
  • the time change of the output value of the sub O 2 sensor 42 is shown.
  • the time change of the oxygen storage amount with respect to Cmax is shown.
  • the active air-fuel ratio control in steps S8 and S10 eliminates the influence of the EGR catalyst 38 on the air-fuel ratio of the exhaust gas flowing into the main catalyst 20.
  • the air-fuel ratio of the exhaust gas flowing into the main catalyst 20 can be controlled as intended. For this reason, there is no difference in the time constant at the time of rich-lean reversal of the air-fuel ratio of the exhaust gas flowing into the main catalyst 20, and there is no time variation of oxygen desorption and storage. Therefore, according to the catalyst deterioration diagnosis device of the present embodiment, it is possible to ensure the estimation accuracy of Cmax, and it is possible to accurately diagnose the deterioration of the main catalyst 20 based on Cmax obtained with high accuracy. .
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
  • the engine 2 of the above-described embodiment is an in-line engine, but the present invention can also be applied to a V-type engine.
  • each of the left and right banks can be regarded as a cylinder group.
  • an EGR device with EGR may be provided in either the left bank exhaust system or the right bank exhaust system.
  • the engine 2 of the above-described embodiment is a direct-injection turbo engine, but being a direct-injection engine or being a turbo engine is not an essential matter in applying the catalyst deterioration diagnosis device of the present invention. .
  • the oxygen storage amount of the EGR catalyst 38 is made lean before the active air-fuel ratio control is performed.
  • the lean operation may be performed while performing the EGR by operating the EGR device. This is because it is possible to prevent the purification rate of the EGR catalyst 38 from changing significantly during the execution of the active air-fuel ratio control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 一部の排気系にEGR触媒付きEGR装置を備えた内燃機関において、その排気集合管に配置された触媒の酸素吸蔵容量を精度良く求めて、その結果に基づいて触媒の劣化を正確に診断できるようにする。 本発明の内燃機関の触媒劣化診断装置は、主触媒に流入する排気ガスの空燃比をストイキを中心にリーン側とリッチ側との間で強制的に変化させるアクティブ空燃比制御を実施する。そして、アクティブ空燃比制御の実施時に、主触媒の上流の空燃比センサ及び下流の酸素センサから出力される信号を用いて主触媒の酸素吸蔵容量を計測し、酸素吸蔵容量の計測結果から主触媒の劣化を診断する。本発明の触媒劣化診断装置によるアクティブ空燃比制御では、EGR触媒付きEGR装置が停止している場合、EGR装置が排気系に設けられていない気筒群の目標空燃比はストイキを中心にリーン側とリッチ側との間で大きい振幅で変化させ、EGR装置が排気系に設けられている気筒群の目標空燃比はストイキに保持する。

Description

内燃機関の触媒劣化診断装置
 本発明は、内燃機関の排気管に配置された触媒の劣化を診断する装置に関する。
 自動車用の内燃機関は、排気ガスを浄化するための手段として触媒を備えている。特に、ストイキ運転を行う内燃機関(例えばガソリンエンジン)では、酸素吸蔵能を有する触媒、例えば三元触媒が用いられている。このような酸素吸蔵能を有する触媒の劣化状態を診断する方法としては、いわゆるCmax法が知られている。Cmax法は触媒の酸素吸蔵容量(Cmax)を計測し、その計測結果から触媒の劣化を診断する方法である。
 Cmax法では、目標空燃比をストイキを中心に振動させ、それにより触媒に流入する排気ガスの空燃比をリーン側とリッチ側との間で強制的に変化させるアクティブ空燃比制御が行われる。図4には、アクティブ空燃比制御によって目標空燃比を14.1と15.1との間で変化させたときの、触媒上流の実空燃比(実A/F)の時間変化と、触媒下流に配置されたサブOセンサの出力値の時間変化とを併せて示している。Cmax法では、アクティブ空燃比制御の実施に伴って触媒上流の空燃比が変化してから、触媒下流のサブOセンサの出力値が閾値(0.5V)を超えて変化するまでの間、次の式によって計算される触媒の酸素吸蔵量或いは酸素脱離量の積算が行われる。
 酸素吸蔵量or脱離量=係数×(現在の空燃比-ストイキ)×燃料量噴射量
 上述の方法で酸素吸蔵量と酸素脱離量とをそれぞれ複数回計算し、それらの平均をとったものがCmaxとされる。図4には、Cmaxに対する酸素吸蔵量の時間変化を他のグラフと時間軸を合わせて示している。
 ところで、内燃機関の排気系の構造として、例えば特開2006-112251号公報に開示されているように、複数ある気筒を2つの気筒群にグループ分けして気筒群ごとに排気系を設け、その2系統の排気系を1つの排気集合管に集合させたものが知られている。また、そのような排気系の構造において、触媒を排気集合管に配置し、各気筒から排出される排気ガスを排気集合管の触媒でまとめて処理するようにしたものが知られている。さらに、そのような排気系の構造において、一方の排気系にEGR装置を設け、その排気系から取り出したEGRガスを各気筒の吸気系に還流させるようにしたものが知られている。
 ここで問題となるのが、EGR装置に触媒が設けられている場合である。以下、上述の排気系の構造において排気集合管に配置される触媒は主触媒と呼び、EGR装置に設けられる触媒はEGR触媒と呼ぶものとする。各気筒から排出される排気ガスの浄化を担うのは主触媒であり、Cmax法による劣化診断の対象となるのも主触媒である。主触媒の劣化診断が行われる環境としては、EGR装置が停止している状況と、EGR装置が作動している状況の双方が考えられるが、EGR触媒の存在はEGR装置が停止している状況での診断結果、より詳しくはCmaxの計算結果に影響を及ぼす。
 EGR装置が停止している場合、つまり、EGRバルブが全閉にされているときには、排気系から吸気系へのEGRガスの還流はない。しかし、EGRバルブが全閉であっても排気圧の変動に伴って排気系とEGR管との間では排気ガスの流出入が起こり、それによりEGR触媒への排気ガスの流出入も起きる。図5は、EGRバルブが全閉の場合のタービン流入ガス量(総排気ガス量)とEGR触媒ガス量(EGR触媒に流出入するガス量)がクランク角度によってどのように変化するかを調べた結果を示している。この図からは、EGR触媒への排気ガスの流出入はEGRバルブの全閉時に絶えず起きている現象であることが分かる。
 したがって、EGRバルブが全閉にされているときの排気ガスの流れをブロック線図で示すと図6のようになる。図中のαはEGR管へのガス呼吸の割合、すなわち、排気系とEGR管との間で流出入する排気ガスの割合である。全排気ガスのうち、主触媒(図中のS/C触媒)に直接流入するのは1-αの排気ガスであり、αの排気ガスは一度排気系からEGR触媒に入った後、再び排気系に出て主触媒に流入することになる。EGR触媒に入った排気ガスは、EGR触媒の酸素吸蔵量に応じてストイキ近傍まで浄化される。このため、主触媒には浄化されたαの排気ガスと、未浄化の1-αの排気ガスとが混合して流入することになる。
 一方、EGR装置が作動してEGRが行われているときの排気ガスの流れは図7に示される。この場合は、EGR率をβとすると、全排気ガスのうち1-βの排気ガスが主触媒に流入する。残りのβの排気ガスはEGR触媒に流入し、EGR触媒を通過した後に吸気系に還流される。したがって、この場合はEGR触媒によって浄化された排気ガスが主触媒に流入する排気ガスに混入することはない。
 図6と図7に示す2つのケースのうち、主触媒の劣化を診断する上で問題が生じるのは図6に示すケースである。図7に示すケースであれば、主触媒に流入する排気ガスの空燃比がEGR触媒の影響を受けることがないため、アクティブ空燃比制御により主触媒に流入する排気ガスの空燃比を狙い通りに制御することができる。しかし、図6に示すケースでは、アクティブ空燃比制御によって高い周波数で目標空燃比を振動させた場合、EGR触媒がローパスフィルタとして機能することになる。このため、主触媒に流入する排気ガスの空燃比を狙い通りに制御することは難しい。
 図8には、図6に示すケースにおいてアクティブ空燃比制御を行ったときの、目標空燃比(目標A/F)の変化と、主触媒上流の実空燃比(実A/F)の時間変化と、主触媒の下流に配置されたサブOセンサの出力値の時間変化とをEGR触媒がないと仮定した場合の仮想の実A/Fの時間変化と併せて示している。また、図8には、Cmaxに対する酸素吸蔵量の時間変化を主触媒とEGR触媒のそれぞれについて他のグラフと時間軸を合わせて示している。この図からは、EGR触媒の酸素吸蔵量によって主触媒上流の実A/Fの値が変化していることが読み取れる。さらに、EGR触媒は概ねその役割から酸化反応を強くされているため、リーンガスはリッチガスと比較して浄化されるのが早い。このため、触媒に流入する排気ガスの空燃比のリッチ-リーン反転時の時定数は異なったものになり、酸素の脱離と吸蔵の時間的なばらつきが生じやすい。したがって、図6に示すケースでは、酸素吸蔵量や酸素脱離量の各積算値のばらつきが大きく、Cmaxの推定精度を担保することが難しいことが分かる。
 また、EGR触媒に流入する排気ガスの空燃比が振動的に変化すると、触媒上での酸化反応は促進されることになる。一般にEGRは排気ガス温度の高い場(例えば、タービン上流)から取り出されている場合が多いので、酸化反応の程度によってはEGR触媒の温度がその上限温度を超えてしまうおそれがある。このため、アクティブ空燃比制御における振幅や周波数にはEGR触媒の上限温度の観点からの制約があり、その制約のために劣化診断を確実に実施できないことも起こりうる。
 本発明は、上述のような課題を解決するためになされたもので、一部の排気系にEGR触媒付きEGR装置を備えた内燃機関において、その排気集合管に配置された触媒の酸素吸蔵容量を精度良く求めて、その結果に基づいて触媒の劣化を正確に診断できるようにすることを目的とする。
 このため、本発明は次のような内燃機関の触媒劣化診断装置を提供する。
 本発明の触媒劣化診断装置が適用される内燃機関は、複数の気筒を備える多気筒内燃機関である。前記内燃機関は、複数の気筒が少なくとも2つの気筒群にグループ分けされ、気筒群ごとに排気系が設けられている。各気筒群の排気系は1つの排気集合管に集合されている。前記排気集合管には酸素吸蔵能を有する主触媒が配置され、前記主触媒の上流側と下流側にそれぞれ空燃比センサが取り付けられている。また、前記内燃機関は、一部の排気系にEGR触媒付きのEGR装置を備えている。
 本発明の触媒劣化診断装置は、前記主触媒に流入する排気ガスの空燃比をストイキを中心にリーン側とリッチ側との間で強制的に変化させるアクティブ空燃比制御を実施する。そして、前記アクティブ空燃比制御の実施時に、前記空燃比センサ及び酸素センサから出力される信号を用いて前記主触媒の酸素吸蔵容量を計測し、前記酸素吸蔵容量の計測結果から前記主触媒の劣化を診断する。
 本発明の触媒劣化診断装置の1つの特徴は、前記アクティブ空燃比制御における具体的な操作にある。本発明の触媒劣化診断装置によるアクティブ空燃比制御では、前記EGR装置が停止している場合、前記EGR装置が排気系に設けられていない気筒群の目標空燃比をストイキを中心にリーン側とリッチ側との間で変化させることが行われる。このような操作が行われることで、前記主触媒に流入する排気ガスの空燃比に前記EGR触媒が与える影響を小さくすることができる。
 より好ましい態様では、前記アクティブ空燃比制御において、前記EGR装置が停止している場合、前記EGR装置が排気系に設けられている気筒群の目標空燃比をストイキに保持することが行われる。このような操作が行われることで、前記主触媒に流入する排気ガスの空燃比に前記EGR触媒が与える影響をより小さくすることができる。
 別のより好ましい態様では、前記アクティブ空燃比制御において、前記EGR装置が停止している場合、前記EGR装置が作動している場合に行うアクティブ空燃比制御よりも大きな振幅をもって、前記EGR装置が排気系に設けられていない気筒群の目標空燃比を変化させることが行われる。このような操作が行われることで、前記主触媒に流入する排気ガスの空燃比に前記EGR触媒が与える影響をより小さくすることができる。
本発明の触媒劣化診断装置が適用された内燃機関のシステム図である。 本発明の実施の形態において行われる劣化判定のための空燃比制御のルーチンを示すフローチャートである。 図2に示す劣化判定のための空燃比制御ルーチンの実施結果を示す図である。 アクティブ空燃比制御を実施した場合の各センサの出力値と触媒の酸素吸蔵量の変化を示す図である。 EGRバルブが全閉の場合の排気系の各ガス流量のクランク角度による変化を示す図である。 EGR触媒付きのEGR装置が設けられた排気系における、EGRバルブが全閉にされているときの排気ガスの流れを示すブロック線図である。 EGR触媒付きのEGR装置が設けられた排気系における、EGR装置が作動してEGRが行われているときの排気ガスの流れを示すブロック線図である。 EGR触媒付きのEGR装置が設けられた排気系において、EGRバルブを全閉にしてアクティブ空燃比制御を実施した場合の各センサの出力値と触媒の酸素吸蔵量の変化を示す図である。
 以下、本発明の実施の形態について図1乃至図3の各図を参照して説明する。
 図1は、本発明の実施の形態の触媒劣化診断装置が適用される内燃機関のシステム構成を示す図である。本実施の形態にかかる内燃機関2は、火花点火式の4ストロークレシプロエンジン(以下、単にエンジンという)である。また、図1には1つの気筒4しか示されていないが、本実施の形態のエンジン2は、4つの気筒4を直列に備える直列4気筒エンジンでもある。また、筒内インジェクタ18によって燃料を筒内に直接噴射する直噴エンジンでもあり、排気ガスのエネルギを利用して新気を圧縮するターボ過給機14を備えたターボエンジンでもある。
 本実施の形態では、エンジン2が有する4つの気筒4は2気筒ずつ2つの気筒群にグループ分けされている。爆発が連続しない第1気筒と第4気筒が1つの気筒群とされ、同じく爆発が連続しない第2気筒と第3気筒が1つの気筒群とされている。エンジン2はこれら気筒群ごとに排気系8,10を備えている。各排気系8,10は、2つの気筒の排気ガスを集合させる排気マニホールド8a,10aと、排気マニホールドの出口に接続される排気管8b,10bとによって構成されている。各排気系8,10の排気管8b,10bは、ターボ過給機14のタービン部において1つの排気集合管12に接続されている。
 排気集合管12には2つの三元触媒20,22が直列に配置されている。上流側の三元触媒20が、本実施の形態の触媒劣化診断装置による診断対象である主触媒である。主触媒20の上流側には広域空燃比センサ(以下、A/Fセンサ)40が取り付けられている。主触媒20の下流側にはジルコニア酸素センサ(以下、サブOセンサ)42が取り付けられている。なお、本発明における空燃比センサとしては、広域空燃比センサだけでなくジルコニア酸素センサを用いることもできる。逆に本発明における酸素センサとしては、ジルコニア酸素センサだけでなく広域空燃比センサを用いることもできる。
 本実施の形態のエンジン2は、排気系から吸気管6へ排気ガスを還流させるEGR装置30を備えている。EGR装置30は、前記の2系統の排気系8,10のうち排気系8にのみ設けられている。EGR装置30は、EGR管32によって排気管8bと吸気管6とを接続している。EGR管32にはEGRバルブ34が設けられている。EGR管32においてEGRバルブ34の排気側にはEGRクーラ36が設けられ、さらにその排気側にはEGR触媒38が設けられている。
 本実施の形態のエンジン2の制御系には、ECU100が備えられる。ECU100は、エンジン2のシステム全体を総合制御する制御装置である。ECU100の出力側には、前述の筒内インジェクタ18やEGRバルブ34等のアクチュエータが接続され、ECU100の入力側には、前述のA/Fセンサ40やサブOセンサ42等のセンサが接続されている。ECU100は、各センサからの信号を受けて所定の制御プログラムにしたがって各アクチュエータを操作する。なお、ECU100に接続されるアクチュエータやセンサは図中に示すように他にも多数存在するが、本明細書においてはその説明は省略する。
 本実施の形態の触媒劣化診断装置は、ECU100の1つの機能として実現されている。ECU100が触媒劣化診断装置として機能する場合、ECU100は、3つの信号処理ユニット、すなわち、アクティブ空燃比制御ユニット102、Cmax計測ユニット104及び診断ユニット106の組み合わせで表現される。これら信号処理ユニットは、それぞれが専用のハードウェアで構成されていてもよいし、ハードウェアは共有してソフトウェアによって仮想的に構成されるものでもよい。
 アクティブ空燃比制御ユニット102は、主触媒20に流入する排気ガスの空燃比をストイキを中心にリーン側とリッチ側との間で強制的に変化させるアクティブ空燃比制御を実施する。アクティブ空燃比制御はオープンループ制御であり、筒内吸入空気量と目標空燃比とから燃料噴射量を決定し、筒内インジェクタ18による燃料噴射時間を制御する。
 Cmax計測ユニット104は、アクティブ空燃比制御の実施に伴って主触媒20の酸素吸蔵容量、すなわち、Cmaxの計測を行う。詳しくは、A/Fセンサ40の出力値が変化してからサブOセンサ42の出力値が閾値(0.5V)を超えて変化するまでの間、現在の空燃比のストイキに対する偏差と現在の燃料噴射量とから単位時間当たりの酸素吸蔵量(或いは酸素脱離量)を計算し、それを積算していく。そして、その積算値の計算を複数回行い、それらの平均をとったものをCmaxとして算出する。
 診断ユニット106は、Cmaxの計測値を所定の劣化基準値と比較する。Cmaxが劣化基準値よりも大きければ主触媒20は劣化していないと判断され、Cmaxが劣化基準値以下になっていれば主触媒20は劣化していると判断される。
 本実施の形態の触媒劣化診断装置の1つの特徴は、前記アクティブ空燃比制御における具体的な操作の内容にある。図2は、アクティブ空燃比制御ユニット102により行われる劣化判定のための空燃比制御のルーチンを示すフローチャートである。前記のアクティブ空燃比制御はこの空燃比制御ルーチンに従って実施される。
 図2のフローチャートによれば、最初のステップS2において、触媒劣化判定制御の実施要求の有無が判定される。触媒劣化判定制御とは、Cmaxの計測のための空燃比制御、すなわち、アクティブ空燃比制御を指す。前記の実施要求は、主触媒20の劣化を診断する状況になった場合に発せられる要求である。そのような要求が無い場合には、ステップS20に進む。ステップS20では、通常の空燃比制御、すなわち、A/Fセンサ40とサブOセンサ42の信号に基づいた空燃比フィードバック制御が行われる。次のステップS22では、所定のフラグxafscylがオフにされる。このフラグxafscylの意味については後述する。
 ステップS2において前記の実施要求が検出された場合は、ステップS4の判定が行われる。ステップS4では、アクティブ空燃比制御の実行条件が成立しているかどうかがエンジン2の運転状態や運転条件から判定される。未だ実行条件が成立していないのであれば、ステップS20において通常の空燃比制御が続けられる。そして、ステップS22においてフラグxafscylはオフのままにされる。
 ステップS4においてアクティブ空燃比制御の実行条件が成立した場合は、次にステップS6の判定が行われる。ステップS6では、EGRが停止中かどうか、すなわち、EGRバルブ34が全閉になっているかどうか判定される。EGRが停止中でない場合は、さらにステップS14の判定が行なわれる。ステップS14では、フラグxafscylがオフかどうかが判定される。このフラグxafscylはEGRが停止中している状態でアクティブ空燃比制御が行われる場合にオンにされるフラグである。
 ステップS14においてフラグxafscylがオフであった場合には、ステップS16の処理が行われる。ステップS16では、全気筒において目標空燃比が劣化判定用に変更される。劣化判定用の目標空燃比は、ストイキを中心にリーン側とリッチ側との間で所定の周期で振動する矩形波信号とされる。排気系にEGR装置30が設けられているかどうかに関係なく、全ての気筒において目標空燃比の振動の振幅は同一とされる。そして、ステップS22においてフラグxafscylはオフのままにされる。
 一方、ステップS14においてフラグxafscylがオンであった場合には、ステップS20の処理が行われる。ステップS20において一旦、通常の空燃比制御が行われた後、続くステップS22においてフラグxafscylはオンからオフに変更される。フラグxafscylがオフに変更されることで、次回のステップS14の判定の結果は肯定になる。したがって、この場合は次回の制御周期においてステップS16のアクティブ空燃比制御が行われることになる。
 ステップS6においてEGRが停止中であった場合には、ステップS8及びステップ16においてアクティブ空燃比制御が行われる。まず、ステップS8では、EGR装置30が設けられていない排気系10に接続された気筒群の目標空燃比が劣化判定用に変更される。ここで設定される目標空燃比は、ステップS16の場合と同様、ストイキを中心にリーン側とリッチ側との間で所定の周期で振動する矩形波信号である。ただし、ステップS16で設定される目標空燃比よりも振動の振幅を大きくされている。これは、排気系10の排気ガスはEGR触媒38の影響を受けないので、その空燃比の振幅を大きくすることで、主触媒20に流入する排気ガスの空燃比信号のSN比を高めることができるからである。
 ステップS10では、EGR装置30が設けられている排気系8に接続された気筒群の目標空燃比が変更される。ここで設定される目標空燃比はストイキであり、ステップS16やステップS8の場合と異なり目標空燃比を振動させることは行なわれない。これは、EGR触媒38に流入する排気ガスの空燃比をストイキに保持することによって、EGR触媒38への流出入の前後で空燃比に変化が生じるのを防ぐためである。つまり、EGR触媒38の空燃比への影響を排除するためである。また、EGR触媒38に流入する排気ガスの空燃比の振動を抑えることで、触媒上での酸化反応を緩和して触媒温度の上昇を防止するという狙いもある。次のステップS12では、フラグxafscylがオンに変更される。
 以上説明した空燃比制御の結果、特に、ステップS6の判定条件が成立した場合に実施されるアクティブ空燃比制御の結果を図3に示す。図3の最上段には、EGR装置30が設けられていない排気系10に接続された気筒群(EGR取り出しでない気筒群)の目標空燃比(目標A/F)の設定と、それによって生じる排気管10b内の実空燃比(実A/F)の時間変化が示されている。上から2段目には、EGR装置30が設けられている排気系8に接続された気筒群(EGR取り出し気筒群)の実A/Fの時間変化が示されている。そして、上から3段目には、主触媒20に流入する排気ガス(触媒入ガス)の実A/Fの時間変化が示されている。主触媒20に流入する排気ガスの実A/Fは、排気系10からの排気ガスの実A/Fと、排気系8からの排気ガスの実A/Fとを平均したものになっている。上から4段目には、サブOセンサ42の出力値の時間変化が示されている。そして、最下段には、Cmaxに対する酸素吸蔵量の時間変化が示されている。
 図8の3段目のチャートから分かるように、ステップS8及びS10のアクティブ空燃比制御によれば、主触媒20に流入する排気ガスの空燃比がEGR触媒38の影響を受けることを排除して、主触媒20に流入する排気ガスの空燃比を狙い通りに制御することができる。このため、主触媒20に流入する排気ガスの空燃比のリッチ-リーン反転時の時定数に差異は生じず、酸素の脱離と吸蔵の時間的なばらつきが生じることはない。したがって、本実施の形態の触媒劣化診断装置によれば、Cmaxの推定精度を担保することが可能であり、高い精度で求めたCmaxに基づいて主触媒20の劣化を正確に診断することができる。
 以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上述の実施の形態のエンジン2は直列エンジンであるが、本発明はV型エンジンにも適用可能である。V型エンジンであれば、左右のバンクのそれぞれを気筒群とみなすことができる。この場合、左バンクの排気系と右バンクの排気系の何れか一方にEGR付きのEGR装置が設けられていればよい。
 また、上述の実施の形態のエンジン2は直噴のターボエンジンであるが、直噴エンジンであることやターボエンジンであることは本発明の触媒劣化診断装置を適用する上で必須の事項ではない。
 また、EGRバルブ34が全閉の状況で劣化診断が行われる場合、より好ましくは、アクティブ空燃比制御の実施に先立ってEGR触媒38の酸素吸蔵量をリーンにしておくようにする。その方法としては、例えば、EGR装置を作動させてEGRを行いながらリーン運転を行えばよい。そうすることで、アクティブ空燃比制御の実施中にEGR触媒38の浄化率が大幅に変化するのを防止することができるからである。
2 エンジン
4 気筒
6 吸気管
8,10 排気系
8a,10a 排気マニホールド
8b,10b 排気管
12 排気集合管
20 主触媒(三元触媒)
30 EGR装置
32 EGR管
34 EGRバルブ
38 EGR触媒
40 A/Fセンサ
42 サブOセンサ
100 ECU

Claims (3)

  1.  少なくとも2つの気筒群にグループ分けされた複数の気筒と、
     気筒群ごとに設けられた排気系と、
     各気筒群の排気系を1つに集合させてなる排気集合管と、
     前記排気集合管に配置された酸素吸蔵能を有する主触媒と、
     前記排気集合管において前記主触媒の上流側に取り付けられた空燃比センサと、
     前記排気集合管において前記主触媒の下流側に取り付けられた酸素センサと、
     一部の排気系に設けられたEGR触媒付きのEGR装置と、
    を備える内燃機関の触媒劣化診断装置であって、
     前記主触媒に流入する排気ガスの空燃比をストイキを中心にリーン側とリッチ側との間で強制的に変化させるアクティブ空燃比制御を実施するアクティブ空燃比制御手段と、
     前記アクティブ空燃比制御の実施時に前記空燃比センサ及び酸素センサから出力される信号を用いて前記主触媒の酸素吸蔵容量を計測する計測手段と、
     前記酸素吸蔵容量の計測結果から前記主触媒の劣化を診断する診断手段と、
    を備え、
     前記アクティブ空燃比制御手段は、前記EGR装置が停止している場合、前記EGR装置が排気系に設けられていない気筒群の目標空燃比をストイキを中心にリーン側とリッチ側との間で変化させるように構成されている
    ことを特徴とする内燃機関の触媒劣化診断装置。
  2.  前記アクティブ空燃比制御手段は、前記EGR装置が停止している場合、前記EGR装置が排気系に設けられている気筒群の目標空燃比をストイキに保持するように構成されている
    ことを特徴とする請求項1記載の内燃機関の触媒劣化診断装置。
  3.  前記アクティブ空燃比制御手段は、前記EGR装置が停止している場合、前記EGR装置が作動している場合に行うアクティブ空燃比制御よりも大きな振幅をもって、前記EGR装置が排気系に設けられていない気筒群の目標空燃比を変化させるように構成されている
    ことを特徴とする請求項1又は2記載の内燃機関の触媒劣化診断装置。
PCT/JP2010/052225 2010-02-15 2010-02-15 内燃機関の触媒劣化診断装置 WO2011099164A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/052225 WO2011099164A1 (ja) 2010-02-15 2010-02-15 内燃機関の触媒劣化診断装置
JP2010540963A JP5071557B2 (ja) 2010-02-15 2010-02-15 内燃機関の触媒劣化診断装置
CN2010800019050A CN102224329B (zh) 2010-02-15 2010-02-15 内燃机的催化剂劣化诊断装置
EP10781400.6A EP2538047B1 (en) 2010-02-15 2010-02-15 Catalyst deterioration diagnosis device for internal combustion engine
US12/999,880 US8627646B2 (en) 2010-02-15 2010-02-15 Catalyst deterioration diagnostic device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052225 WO2011099164A1 (ja) 2010-02-15 2010-02-15 内燃機関の触媒劣化診断装置

Publications (1)

Publication Number Publication Date
WO2011099164A1 true WO2011099164A1 (ja) 2011-08-18

Family

ID=44367463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052225 WO2011099164A1 (ja) 2010-02-15 2010-02-15 内燃機関の触媒劣化診断装置

Country Status (5)

Country Link
US (1) US8627646B2 (ja)
EP (1) EP2538047B1 (ja)
JP (1) JP5071557B2 (ja)
CN (1) CN102224329B (ja)
WO (1) WO2011099164A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113213A (ja) * 2011-11-29 2013-06-10 Suzuki Motor Corp 排気ガス還流量調整装置
JP2015098845A (ja) * 2013-11-20 2015-05-28 ダイハツ工業株式会社 内燃機関の制御装置
CN110821692A (zh) * 2018-08-07 2020-02-21 通用汽车环球科技运作有限责任公司 氧传感器诊断
US11286839B2 (en) 2020-03-11 2022-03-29 Toyota Jidosha Kabushiki Kaisha Method for reusing vehicular catalyst
US11384674B2 (en) 2020-03-25 2022-07-12 Toyota Jidosha Kabushiki Kaisha Reuse evaluation system for catalyst

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206774B2 (ja) * 2010-11-25 2013-06-12 トヨタ自動車株式会社 触媒劣化の診断装置
DE102012025002A1 (de) * 2012-12-20 2014-06-26 Volkswagen Aktiengesellschaft Verfahren zur Diagnose eines Abgaskatalysators, Diagnoseeinrichtung sowie Kraftfahrzeug mit einer solchen
CN108884774B (zh) * 2016-03-29 2021-07-23 本田技研工业株式会社 催化剂诊断装置
JP6477612B2 (ja) * 2016-06-27 2019-03-06 トヨタ自動車株式会社 内燃機関の排気浄化システム
US10001045B2 (en) * 2016-11-18 2018-06-19 Ford Global Technologies, Llc Non-intrusive air/fuel sensor diagnostics
JP6637481B2 (ja) * 2017-12-26 2020-01-29 株式会社Subaru 車両用制御装置
WO2019214821A1 (en) * 2018-05-09 2019-11-14 Toyota Motor Europe An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine
JP7360339B2 (ja) * 2020-02-14 2023-10-12 株式会社Subaru 排気ガス浄化装置
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
CN112177737B (zh) * 2020-09-17 2021-12-17 安徽江淮汽车集团股份有限公司 三元催化器性能的测试方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214261A (ja) * 2002-01-28 2003-07-30 Mitsubishi Motors Corp エンジンのegr装置
JP2006112251A (ja) 2004-10-12 2006-04-27 Toyota Motor Corp 内燃機関の排気装置
JP2007023888A (ja) * 2005-07-15 2007-02-01 Mitsubishi Motors Corp 内燃機関の制御装置
JP2009150367A (ja) * 2007-12-21 2009-07-09 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2009264203A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp 内燃機関の排気装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409636B2 (ja) 1997-05-16 2003-05-26 トヨタ自動車株式会社 内燃機関の触媒劣化判定装置
JP4320979B2 (ja) * 2001-06-12 2009-08-26 トヨタ自動車株式会社 内燃機関
JP4016905B2 (ja) * 2003-08-08 2007-12-05 トヨタ自動車株式会社 内燃機関の制御装置
JP4218465B2 (ja) * 2003-08-22 2009-02-04 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
US6848418B1 (en) * 2003-11-10 2005-02-01 Ford Global Technologies, Llc External exhaust gas recirculation on board diagnostic using EGR effect on a combination of engine operating parameters
JP2005256666A (ja) 2004-03-10 2005-09-22 Toyota Motor Corp 可変気筒内燃機関
JP2007002388A (ja) * 2005-05-24 2007-01-11 Nof Corp 紙用柔軟剤およびそれを用いた柔軟紙の製造方法
JP3941828B2 (ja) * 2005-09-15 2007-07-04 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4679335B2 (ja) * 2005-11-01 2011-04-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP4742837B2 (ja) * 2005-12-07 2011-08-10 日産自動車株式会社 内燃機関の触媒劣化診断装置および診断方法
JP4198718B2 (ja) * 2006-04-03 2008-12-17 本田技研工業株式会社 内燃機関の空燃比制御装置
DE112007001285B4 (de) * 2006-05-25 2013-02-07 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Vorrichtung zur Steuerung des Betriebs eines Motors mit homogener Kompressionszündung
JP4844257B2 (ja) * 2006-06-27 2011-12-28 トヨタ自動車株式会社 触媒劣化検出装置
JP4832209B2 (ja) * 2006-08-14 2011-12-07 トヨタ自動車株式会社 触媒劣化診断装置
JP4915256B2 (ja) * 2007-03-06 2012-04-11 トヨタ自動車株式会社 触媒の劣化診断装置及び劣化診断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214261A (ja) * 2002-01-28 2003-07-30 Mitsubishi Motors Corp エンジンのegr装置
JP2006112251A (ja) 2004-10-12 2006-04-27 Toyota Motor Corp 内燃機関の排気装置
JP2007023888A (ja) * 2005-07-15 2007-02-01 Mitsubishi Motors Corp 内燃機関の制御装置
JP2009150367A (ja) * 2007-12-21 2009-07-09 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2009264203A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp 内燃機関の排気装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113213A (ja) * 2011-11-29 2013-06-10 Suzuki Motor Corp 排気ガス還流量調整装置
JP2015098845A (ja) * 2013-11-20 2015-05-28 ダイハツ工業株式会社 内燃機関の制御装置
CN110821692A (zh) * 2018-08-07 2020-02-21 通用汽车环球科技运作有限责任公司 氧传感器诊断
US11286839B2 (en) 2020-03-11 2022-03-29 Toyota Jidosha Kabushiki Kaisha Method for reusing vehicular catalyst
US11384674B2 (en) 2020-03-25 2022-07-12 Toyota Jidosha Kabushiki Kaisha Reuse evaluation system for catalyst

Also Published As

Publication number Publication date
US8627646B2 (en) 2014-01-14
EP2538047A8 (en) 2013-05-22
US20110232269A1 (en) 2011-09-29
CN102224329B (zh) 2013-07-03
EP2538047A4 (en) 2014-12-24
CN102224329A (zh) 2011-10-19
JPWO2011099164A1 (ja) 2013-06-13
EP2538047A1 (en) 2012-12-26
EP2538047B1 (en) 2017-12-20
JP5071557B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5071557B2 (ja) 内燃機関の触媒劣化診断装置
JP4935933B2 (ja) 内燃機関の制御装置、及びブローバイガスとともに吸気通路に還流されるNOxの質量流量の計測装置
JP4700079B2 (ja) 気筒間の空燃比の不均衡を判断するための装置
US8812220B2 (en) Diagnostic apparatus for internal combustion engine
JP2010190089A (ja) 多気筒内燃機関の異常診断装置
JP2005194891A (ja) エンジンの制御装置
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
WO2018102583A1 (en) Internal combustion engine cylinder air-fuel ratio imbalance detection and controls
JP4065784B2 (ja) 内燃機関の制御装置
JP2008261289A (ja) 空燃比センサの異常診断装置
US8573042B2 (en) Method and device for measuring output characteristic of air fuel ratio detecting module
CN116457637A (zh) 电子控制装置以及流量测定系统
JP2008038737A (ja) 触媒劣化検出装置
JP6222138B2 (ja) 内燃機関のエミッション推定装置
JP2008180225A (ja) エンジンの制御装置
US20180209367A1 (en) Misfire determination device for internal combustion engine
JP2010261846A (ja) ガスセンサの信号処理装置
JP6658594B2 (ja) 内燃機関の制御装置
JP5733013B2 (ja) 内燃機関制御装置
US9057337B2 (en) Air-fuel ratio control system for internal combustion engine
JP2014214673A (ja) 内燃機関の制御装置
JP4836000B2 (ja) 排気系センサ出力の定常判定装置
JP2009127595A (ja) 空燃比センサの異常診断装置
JP2008291811A (ja) セタン価推定装置及び方法
JP2023139445A (ja) エンジンの空燃比制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001905.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010540963

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010781400

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12999880

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10781400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE