WO2011099149A1 - 風力発電装置用の増速機および風力発電装置 - Google Patents

風力発電装置用の増速機および風力発電装置 Download PDF

Info

Publication number
WO2011099149A1
WO2011099149A1 PCT/JP2010/052101 JP2010052101W WO2011099149A1 WO 2011099149 A1 WO2011099149 A1 WO 2011099149A1 JP 2010052101 W JP2010052101 W JP 2010052101W WO 2011099149 A1 WO2011099149 A1 WO 2011099149A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary
bearing
gear
outer ring
pin
Prior art date
Application number
PCT/JP2010/052101
Other languages
English (en)
French (fr)
Inventor
圭太 中島
薫 岩崎
吉田 孝文
博晃 竹内
功彦 正田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020107008806A priority Critical patent/KR101161484B1/ko
Priority to CA2694130A priority patent/CA2694130C/en
Priority to US12/674,687 priority patent/US8657578B2/en
Priority to CN201080000721.2A priority patent/CN102792018B/zh
Priority to EP10703610A priority patent/EP2426355A1/en
Priority to PCT/JP2010/052101 priority patent/WO2011099149A1/ja
Priority to JP2010506740A priority patent/JP5031091B2/ja
Priority to BRPI1000011A priority patent/BRPI1000011A2/pt
Priority to AU2010201623A priority patent/AU2010201623B2/en
Publication of WO2011099149A1 publication Critical patent/WO2011099149A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/041Combinations of toothed gearings only for conveying rotary motion with constant gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a step-up gear for a wind power generator and a wind power generator, and more particularly, a step-up gear for increasing the speed of rotation input from a rotor blade via a main shaft and outputting the speed to the generator side.
  • a step-up gear for increasing the speed of rotation input from a rotor blade via a main shaft and outputting the speed to the generator side is related to wind power generators.
  • a wind turbine generator generally includes a rotor head to which a rotor blade is attached, a nacelle that houses a drive train and a generator, and a support column that supports the nacelle.
  • the drive train is for transmitting torque from the rotor head side to the generator side.
  • a speed increaser is incorporated, so that the rotation of the rotor head is increased and input to the generator. It has become.
  • a wind speed generator having a planetary planetary gear mechanism As described in Japanese Patent Application Laid-Open No. 2004-228561, a wind speed generator having a planetary planetary gear mechanism is known.
  • a planetary planetary gear mechanism a plurality of planetary pins are provided on a carrier that rotates together with the main shaft on the rotor head side, and planetary gears are attached to the planetary pins via planetary bearings. The sun gear is engaged.
  • the planetary gear revolves while rotating with the rotation of the main shaft on the rotor head side, and the increased rotation is output to the sun gear side.
  • the speed increaser of Patent Document 1 is provided with an oil bath for storing lubricating oil at the lower portion of the housing, and the planetary bearing passes through the lubricating oil in the oil bath when the planetary gear rotates, and is lubricated. It has become so. Further, a lubricating oil supply passage is formed inside the planetary pin, and the lubricating oil injected from the nozzle is supplied to the planetary bearing through this lubricating oil supply passage.
  • the life of the planetary bearing may not be sufficient.
  • the viscosity of the lubricating oil increases, and the planetary bearing may not be sufficiently lubricated.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a speed increaser for a wind power generator and a wind power generator that further improve the life of a planetary bearing.
  • a speed increaser for a wind power generator according to the present invention is a speed increaser that is connected to a rotor head to which a rotor blade is attached and is used in a wind power generator having a main shaft that rotates together with the rotor head.
  • a carrier having a plurality of planetary pins, rotating with the main shaft of the wind power generator to revolve the planetary pins, and attached to the planetary pins of the carrier, and a roller is incorporated between the inner ring and the outer ring
  • an oil bath for storing lubricating oil in which the planetary bearing is immersed is provided, and the carrier is provided on an outer periphery and both axial ends of the planetary pin, and has an outer cylinder portion that holds the planetary pin,
  • the outer cylinder portion of the carrier is inclined such that a surface facing the planetary bearing is separated from the planetary bearing as the distance from the axial center of the planetary pin increases
  • the surface of the outer cylinder portion of the carrier provided on the outer periphery of the planetary pin and at both ends in the axial direction is opposed to the planetary bearing, as the planetary pin becomes farther from the center of the planetary pin. Since it is tilted away from the bearing, the lubricating oil easily passes between the outer cylindrical portion of the carrier and the planetary bearing or planetary gear. Therefore, the planetary bearing can be more reliably lubricated, and the life of the planetary bearing can be further improved. For example, the cooling oil viscosity is likely to increase due to a very low outside air temperature.
  • the speed increaser of the present invention can also be suitably used for a land-specific wind power generator.
  • the planetary gears are supported by the planetary pins by a pair of planetary bearings spaced from each other, and the planetary pins include the pair of planetary bearings. It is preferable that an oil supply port for introducing lubricating oil is provided at a position between the pair of planetary bearings.
  • the load applied to each bearing can be dispersed and the life of the bearing can be further improved.
  • the lubrication state of a pair of planetary bearings can be maintained by providing an oil filler port at a position between the pair of planetary bearings.
  • the inclination angle ⁇ of the surface of the outer cylinder portion facing the planetary bearing with respect to the radial direction of the planetary pin is within a range of 0 ° ⁇ ⁇ 40 °. preferable.
  • the inclination angle ⁇ is more preferably in the range of 20 ° ⁇ ⁇ ⁇ 30 °.
  • the inclination angle ⁇ of the surface of the outer cylinder portion of the carrier facing the planetary bearing the more easily the lubricating oil passes between the outer cylinder portion of the carrier and the planetary bearing or planetary gear, and the life of the planetary bearing Can be further improved.
  • the inclination angle ⁇ is too large, it is difficult to manufacture the carrier. Therefore, as described above, by setting the inclination angle ⁇ within the range of 0 ° ⁇ ⁇ 40 ° (more preferably, 20 ° ⁇ ⁇ ⁇ 30 °), the life of the planetary bearing can be improved and the carrier can be manufactured. And both.
  • the planetary bearing has a concave outer ring raceway formed on the inner circumference of the outer ring, a convex inner ring raceway formed on the outer circumference of the inner ring, and the outer ring raceway and the inner ring raceway.
  • a self-aligning roller bearing in which a plurality of rows of rollers are provided between the planetary gear and the planetary gear so that an end surface of the outer ring of the planetary bearing is located inside an end surface of the planetary gear. It is preferable that the outer ring of the bearing is fixed with an interference fit.
  • the self-aligning roller bearing having alignment is used as the planetary bearing, the durability of the planetary bearing can be maintained even if vibration or impact load is applied to the planetary bearing due to fluctuations in wind force.
  • the present inventors have come to recognize that the use of a self-aligning roller bearing as a planetary bearing may reduce the durability time of the planetary bearing due to flaking.
  • the reduction in the durability time of the planetary bearing is due to fluctuations in the load and moment transmitted to the planetary bearing (self-aligning roller bearing) through the rotor blades, the rotor head and the main shaft as a result of intensive studies by the present inventors. It became clear that the outer ring slips outward in the axial direction and the load applied to each roller row becomes uneven.
  • the spherical roller is fixed to the outer ring of the planetary bearing with an interference fit so that the end surface of the outer ring of the planetary bearing is located inside the end surface of the planetary gear. Flaking that occurs when the bearing is used as a planetary bearing can be prevented. It is considered that this is because the end of the planetary gear is deformed by an interference fit to serve as a lid, the outer ring of the planetary bearing is prevented from coming out, and the load applied to each roller train can be maintained in a uniform state.
  • the surface of the outer cylindrical portion of the carrier provided on the outer periphery of the planetary pin and at both ends in the axial direction is opposed to the planetary bearing. Since it is inclined away from the planetary bearing as it gets farther from the center, even if the end surface of the outer ring of the planetary bearing is moved inward from the end surface of the planetary gear, the space between the outer cylindrical portion and the planetary bearing or planetary gear Lubricating oil can pass through reliably.
  • the planetary gear is preferably fixed to the outer ring of the planetary bearing by a shrink fit or a cooling fit.
  • a flange portion that restricts the outer ring of the planetary bearing from slipping out is provided at a position between the end surface of the outer ring of the planetary bearing and the end surface of the planetary gear on the inner periphery of the planetary gear. It may be.
  • the collar portion may be a C-shaped retaining ring fitted in a groove provided on the inner periphery of the planetary gear, or may be screwed onto a female screw provided on the inner periphery of the planetary gear. It may be a ring member.
  • a wind turbine generator includes a rotor blade, a rotor head to which the rotor blade is attached, a main shaft connected to the rotor head and rotating together with the rotor head, and speedup of rotation input from the main shaft. And the above-described speed increaser that is transmitted to the output shaft, and a generator connected to the output shaft of the speed increaser.
  • the surface facing the planetary bearing of the outer cylindrical portion of the carrier provided on the outer periphery and both axial ends of the planetary pin is further away from the planetary bearing as the distance from the axial center of the planetary pin increases. Since it is inclined so as to be separated, the lubricating oil easily passes between the outer cylinder portion of the carrier and the planetary bearing or planetary gear. Therefore, the planetary bearing can be more reliably lubricated and the life of the planetary bearing can be further improved.
  • the surface of the outer cylindrical portion of the carrier that is provided on the outer periphery of the planetary pin and at both ends in the axial direction is opposed to the planetary bearing. As it becomes so, it is made to incline so that it may leave
  • FIG. 4 is a sectional view taken along the line II in FIG. 3. It is an enlarged view which shows the periphery of a planetary bearing in FIG. It is sectional drawing which shows the outer ring
  • (A) is sectional drawing which shows the example which provided the collar part in the edge part of a planetary gear
  • (b) And (c) is an enlarged view which shows the structural example of a collar part.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the wind turbine generator according to the first embodiment.
  • the wind turbine generator 1 is mainly composed of a support column 2 erected on the foundation B, a nacelle 4 installed at the upper end of the support column 2, a rotor head 6 attached to the nacelle 4, A plurality of rotating blades 8 attached to the rotor head 6 are used.
  • the column 2 has a column shape extending upward from the base B (upward in FIG. 1).
  • the column 2 may be constituted by a single column member, or a plurality of units are connected in the vertical direction. And you may comprise in column shape.
  • the support column 2 is composed of a plurality of units, the nacelle 4 is installed on the unit provided at the top.
  • the nacelle 4 supports the rotor head 6 and houses the drive train 10 and the generator 18 therein.
  • FIG. 2 is a diagram showing details of the drive train 10 and the generator 18 inside the nacelle 4.
  • the drive train 10 includes a main shaft 12 connected to the rotor hub 6A of the rotor head 6, a speed increaser 14 connected to the main shaft 12, and a cup connecting the speed increaser 14 to the generator 18. Ring 16.
  • the main shaft 12 is coupled to the rotor head 6 ⁇ / b> A so as to rotate together with the rotor blades 8 and the rotor head 6, and is rotatably fixed to the casing side by the main bearing 11.
  • a grease replenishing port (not shown) for supplying grease is provided on the upper portion of the main bearing 11.
  • the speed increaser 14 is arranged between the main shaft 12 and the coupling 16, and increases the rotation input from the rotor head 6 side via the main shaft 12 and outputs it to the coupling 16. .
  • the speed increaser 14 increases the rotation of about 20 rpm input from the rotor head 6 side via the main shaft 12 to about 1800 rpm, and then transmits the rotation to the generator 18 via the coupling 16.
  • the specific configuration of the speed increaser 14 will be described in detail later.
  • the coupling 16 is a shaft coupling that connects the final output shaft of the speed increaser 14 and the input shaft of the generator 18.
  • a flexible shaft coupling that absorbs misalignment between the final output shaft of the speed increaser 14 and the input shaft of the generator 18 can be used.
  • a brake device 19 including a brake disk 19A and a brake pad 19B is attached to the coupling 16.
  • the brake device 19 brakes the coupling 16 by pressing and holding the brake pad 19B against the front and back surfaces of the brake disc 19A.
  • the brake pad 19 ⁇ / b> B is always urged toward the brake disk 19 ⁇ / b> A by a spring (not shown), and the brake pad 19 ⁇ / b> B is resisted against the urging force of the spring by hydraulic force during normal operation. You may comprise so that it may keep away from 19A.
  • the braking operation of the wind power generator 1 is usually mainly braking by pitch control described later, and the brake device 19 is auxiliary.
  • the rotor blade 8 is shifted to the feathering state by pitch control, and the rotation of the rotating shaft is suppressed. It comes to stop.
  • the rotor head 6 is fixed to the nacelle 4 so as to be rotatable about a substantially horizontal axis, and a rotor hub 6A to which the rotor blades 8 are attached, and a head capsule covering the rotor hub 6A. 6B.
  • the rotor hub 6A is provided with a pitch driving device 30 that changes the pitch angle of the rotary blade 8 by rotating the rotary blade 8 around the axis (in the direction of the arrow in FIG. 2).
  • the pitch driving device 30 includes a cylinder 32 and a shaft portion 34 connected to the rotary blade 8.
  • the rotary blade 8 is supported by a bearing 36 so as to be rotatable in the pitch direction. For this reason, the rotating blade 8 rotates in the pitch direction together with the shaft portion 34 when the shaft portion 34 rotates by the cylinder 32 of the pitch driving device 30.
  • the pitch driving device 30 provided for each rotor blade 8 may be connected to each other by a link mechanism (not shown), and the pitch angle control of each rotor blade 8 may be performed in conjunction with each other.
  • FIG. 3 is a cross-sectional view illustrating a configuration example of the speed increaser 14.
  • FIG. 4 is a cross-sectional view taken along the line II in FIG.
  • FIG. 5 is an enlarged view showing the periphery of the planetary bearing of the speed increaser 14 shown in FIG.
  • the speed increaser 14 includes a planetary speed increasing mechanism 50 and a spur gear speed increasing mechanism 70 housed in the casing body 40.
  • the speed increaser 14 accelerates the rotation input from the main shaft 12 on the rotor hub side and transmits it to the final output shaft 13 on the generator side.
  • the final output shaft 13 of the speed increaser 14 is connected to the generator 18 side by a coupling 16 shown in FIG.
  • the planetary speed increasing mechanism 50 of the speed increaser 14 includes a carrier 52, a planet pin 54 held by the carrier 52, a planetary bearing 56 attached to the planetary pin 54, and a planetary bearing 56.
  • the planetary gear 58 is supported by the planetary pin 54 via the ring, and the ring gear 60 and the sun gear 62 that mesh with the planetary gear 58 are included.
  • the carrier 52 is a holding plate for holding a plurality of (three in this example) planetary pins 54. As shown in FIG. 5, the carrier 52 is formed by outer cylindrical portions 53 provided on the outer periphery and both axial ends of the planetary pins 54. The planetary pin 54 is held. As a result, the carrier 52 rotates integrally with the main shaft 12 on the rotor head side and revolves the planetary pin 54 held by the outer cylinder portion 53. The main shaft 12 and the carrier 52 are rotatably supported by a bearing 42.
  • the outer cylindrical portion 53 of the carrier 52 has a surface 53A facing the planetary bearing 56.
  • the surface 53A of the outer cylindrical portion 53 is separated from the planetary bearing 56 as the distance from the axial center of the planetary pin 54 increases. Inclined to leave.
  • the surface 53A of the outer cylindrical portion 53 of the carrier 52 is inclined away from the planetary bearing 56 as the distance from the axial center of the planetary pin 54 increases, so that lubricating oil from an oil bath, which will be described later, can be removed. It becomes easy to pass between the surface 53A of 53 and the planetary bearing 56 or the planetary gear 58.
  • the surface 53A of the outer cylindrical portion 53 facing the planetary bearing 56 preferably has an inclination angle ⁇ with respect to the radial direction of the planetary pin 54 within a range of 0 ° ⁇ ⁇ 40 °, and 20 ° ⁇ ⁇ ⁇ 30 °. It is more preferable to be within the range.
  • the lubricating oil further passes between the outer cylindrical portion 53 of the carrier 52 and the planetary bearing 56 or the planetary gear 58. Therefore, the life of the planetary bearing 56 can be further improved.
  • the inclination angle ⁇ of the surface 53A facing the planetary bearing 56 of the outer cylindrical portion 53 is too large, it is difficult to manufacture the carrier 52.
  • the life of the planetary bearing 56 is improved by setting the inclination angle ⁇ of the surface 53A within the range of 0 ° ⁇ ⁇ 40 ° (more preferably, 20 ° ⁇ ⁇ ⁇ 30 °). Both the manufacturability of the carrier 52 can be achieved.
  • the planetary bearing 56 is a roller bearing that supports the planetary gear 58 on the planetary pin 54 so as to be capable of rotating, and has a configuration in which a roller 56C is incorporated between an inner ring 56A and an outer ring 56B as shown in FIG.
  • FIG. 5 shows an example of the planetary bearing 56 having two rows of rollers 56C, the rollers 56C of the planetary bearing 56 may be one row or three or more rows.
  • the planetary bearing 56 it is preferable to use a self-aligning roller bearing having a centering property from the viewpoint of ensuring durability against vibration and impact load caused by fluctuations in wind power.
  • the self-aligning roller bearing for example, as shown in FIG. 5, the outer ring 56B has a concave outer ring raceway on its inner periphery, and the inner ring 56A has a convex inner ring raceway on its outer periphery.
  • a configuration in which a plurality of rows of rollers 56C are provided between the inner ring raceways can be used.
  • the planetary bearing (self-aligning roller bearing) 56 having such a configuration has alignment because the center of the outer ring raceway of the outer ring 56B coincides with the center of the bearing.
  • a plurality of planetary bearings 56 may be arranged in parallel as shown in FIGS.
  • a plurality of planetary bearings 56 are arranged with a space therebetween, and the planetary pin 54 is provided with an oil supply port 54 ⁇ / b> A for introducing lubricating oil to the planetary bearings 56. It is preferable to provide in the position between. Thereby, the lubrication state of the planetary bearing 56 can be maintained.
  • the ring gear 60 is provided on the casing body 40 and has internal teeth that mesh with the planetary gear 58.
  • the sun gear 62 is disposed so as to be surrounded by a plurality of planetary gears 58 as shown in FIG.
  • a planetary output shaft 64 is fitted in the sun gear 62.
  • the spur gear speed increasing mechanism 70 shown in FIG. 3 is an optional speed increasing mechanism in addition to the planetary speed increasing mechanism 50, and further increases the rotation of the planet output shaft 64 and outputs it to the final output shaft 13. It has become.
  • the spur gear speed increasing mechanism 70 includes two sets of a first spur gear 72 and a second spur gear 74 that mesh with each other, and a third spur gear 76 and a fourth spur gear 78 that mesh with each other.
  • the first spur gear 72 is fixed to the first rotating shaft 80 connected to the planetary output shaft 64
  • the second spur gear 74 and the third spur gear 76 are fixed to the second rotating shaft 82.
  • the fourth spur gear 78 is fixed to the final output shaft 13.
  • the first rotating shaft 80, the second rotating shaft 82, and the final output shaft 13 are rotatably supported by a first bearing 44, a second bearing 46, and a third bearing 48, respectively.
  • the number of teeth of the first spur gear 72 is larger than that of the second spur gear 74, so the first rotating shaft 80 connected to the planetary output shaft 64 on the planetary speed increasing mechanism 50 side. Is rotated and transmitted to the second rotating shaft 82. Further, since the number of teeth of the third spur gear 76 is larger than that of the fourth spur gear 78, the rotation of the second rotation shaft 82 is accelerated and transmitted to the final output shaft 13.
  • the planetary speed increasing mechanism 50 and the spur gear speed increasing mechanism 70 increase the rotation input from the main shaft 12 on the rotor hub side to the final output shaft 13 on the generator side. I can tell you.
  • the carrier 52 of the speed-up gear 14 has the planetary pin 53 whose surface 53A facing the planetary bearing 56 of the outer cylindrical portion 53 provided at the outer periphery of the planetary pin 54 and at both axial ends.
  • the lubricant is inclined away from the planetary bearing 56, so that the lubricating oil easily passes between the outer cylindrical portion 53 of the carrier 52 and the planetary bearing 56 or the planetary gear 58. Accordingly, it is possible to more reliably lubricate the planetary bearing 56 and further improve the life of the planetary bearing 56.
  • the viscosity of the lubricating oil may increase due to a very low outside air temperature.
  • the speed increaser 14 of the present embodiment can also be suitably used for the wind power generation apparatus 1 having a cold district specification.
  • the planetary gear 58 of the speed increaser 14 is supported on the planetary pin 54 by a pair of planetary bearings 56 that are spaced apart from each other.
  • An oil supply port 54 ⁇ / b> A for guiding lubricating oil to the planetary bearing 56 is provided at a position between the planetary bearings 56.
  • the carrier 52 of the speed-up gear 14 has an inclination angle ⁇ of the surface 53A of the outer cylinder portion 53 facing the planetary bearing 56 with respect to the radial direction of the planetary pin 54 0 ° ⁇ ⁇ 40.
  • FIG. 6 is an enlarged view showing the periphery of the planetary bearing when a self-aligning roller bearing is used as the planetary bearing 56.
  • FIG. 7 is an enlarged view showing the periphery of the planetary bearing of the speed increaser in the wind turbine generator according to the present embodiment. As shown in FIG.
  • the present inventors have an outer ring 56B as a planetary bearing 56 having a concave outer ring raceway on its inner periphery, and an inner ring 56A having a convex inner ring raceway on its outer periphery.
  • a self-aligning roller bearing having a configuration in which a plurality of rows of rollers 56C are provided between the raceway and the inner ring raceway, it has been recognized that the durability time of the planetary bearing 56 is shortened by flaking.
  • the reduction in the durability time of the planetary bearing 56 is due to the load transmitted to the planetary bearing (self-aligning roller bearing) 56 via the rotor blade 8, the rotor head 6 and the main shaft 12.
  • the bearing outer ring 56B slips out in the axial direction (in the direction of the arrow in FIG. 6) due to the variation in the moment, and the load applied to each roller array 56C becomes non-uniform.
  • the planetary bearing 56 tends to slip out in the axial direction due to the load and moment transmitted from the rotor blade 8.
  • the inner ring 56A of the planetary bearing 56 is restricted from moving outward in the axial direction by the outer cylindrical portion 53 of the carrier 52, while the outer ring 56B of the planetary bearing 56 is not restricted in such a manner. Only the outer ring 56B comes out to the outside in the axial direction. For this reason, the load concentrates on the inner roller train 56C (the roller train on the right side in FIG.
  • the end surface of the outer ring 56B of the planetary bearing (self-aligning roller bearing) 56 is positioned inside the end surface of the planetary gear 58 (that is, shown in FIG. 7).
  • the planetary gear 58 is fixed to the outer ring 56B of the planetary bearing 56 with an interference fit so that the distance d between the end face of the outer ring 56B and the end face of the planetary bearing 56 satisfies the inequality d> 0.
  • the end of the planetary gear 58 (the portion indicated by A in the figure) is deformed by an interference fit to serve as a lid, preventing the outer ring 56B of the planetary bearing 56 from slipping out, and the load applied to each roller array 56C. Can be maintained in a uniform state, and the reduction in the durability time of the planetary bearing 56 can be reduced.
  • the distance d between the end surface of the outer ring 56B and the end surface of the planetary gear 58 is preferably as large as possible from the viewpoint of reliably preventing a decrease in the durability time of the planetary bearing (self-aligning roller bearing) 56.
  • the distance d is preferably 0 mm ⁇ d ⁇ 10 mm.
  • FIG. 8 is a graph showing a measurement result of the amount of slipping out of the outer ring 56B of the planetary bearing 56 in the present embodiment.
  • the planetary gear 58 is positioned with respect to the outer ring 56B of the planetary bearing 56 so that the end surface of the outer ring 56B of the planetary bearing 56 is positioned on the inner side of the end surface of the planetary gear 58 as in the gearbox 14 of the present embodiment. It has been found that by fixing with an interference fit, the outer ring 56B of the planetary bearing 56 can be prevented from coming out, and the decrease in the durability time of the planetary bearing 56 due to flaking can be suppressed.
  • the surface 53A of the outer cylindrical portion 53 of the carrier 52 facing the planetary bearing 56 is separated from the planetary bearing 56 as the distance from the axial center of the planetary pin 54 increases. It is inclined to. Therefore, as described above, even if the end surface of the outer ring 56B of the planetary bearing 56 is brought closer to the inner side than the end surface of the planetary gear 58, the space between the surface 53A of the outer cylindrical portion 53 and the planetary bearing 56 or the planetary gear 58 is lubricated. Oil can pass through reliably. In the example shown in FIG.
  • FIG. 9A is a cross-sectional view showing a flange portion provided on the inner periphery of the end of the planetary gear 58
  • FIGS. 9B and 9C are enlarged views showing a configuration example of the flange portion.
  • symbol is attached
  • a collar portion 90 that restricts the outer ring 56 ⁇ / b> B of the planetary bearing 56 from slipping out is provided at a position between the end surface of the outer ring 56 ⁇ / b> B of the planetary bearing 56 and the end surface of the planetary gear 58. .
  • the collar 90 is provided on the inner periphery of the planetary gear 58, thereby reliably preventing the outer ring 56B of the planetary bearing 56 from slipping out.
  • the decrease in the durability time of the bearing 56 can be further reduced.
  • the collar portion 90 may be a C-shaped retaining ring fitted in a groove 92 provided on the inner periphery of the planetary gear 58 as shown in FIG.
  • the ring member may be a screw member screwed into a female screw 94 provided on the inner periphery of the planetary gear 58.

Abstract

遊星軸受の寿命をより一層向上させた風力発電装置用の増速機および風力発電装置を提供する。増速機14は、ケーシング本体40と、キャリヤ52と、キャリヤ52に保持される遊星ピン54と、遊星ピン54に取り付けられる遊星軸受56と、遊星軸受56を介して遊星ピン54に支持される遊星歯車58と、遊星歯車58と噛み合うリング歯車60及び太陽歯車62とを含んで構成されている。ここで、増速機14のキャリヤ52は、遊星ピン54の外周かつ軸方向両端に設けられた外筒部53の遊星軸受56に対向する面53Aが、遊星ピン54の軸中心から遠くなるにつれ、遊星軸受56から離れるように傾斜している。

Description

風力発電装置用の増速機および風力発電装置
 本発明は、風力発電装置用の増速機および風力発電装置に係り、特に、回転翼から主軸を介して入力される回転を増速して発電機側に出力する増速機およびこれを用いた風力発電装置に関する。
 近年、地球環境の保全の観点から、再生可能エネルギーの一つである風力を利用した風力発電装置の普及が進んでいる。
 風力発電装置は、一般的に、回転翼が取り付けられたロータヘッドと、ドライブトレイン及び発電機を収納するナセルと、ナセルを支持する支柱とで構成されている。ここでドライブトレインは、ロータヘッド側から発電機側にトルクを伝達するためのものであり、通常は増速機が組み込まれており、ロータヘッドの回転を増速して発電機に入力するようになっている。
 風力発電装置の増速機としては、特許文献1に記載されているように、プラネタリ型の遊星歯車機構を備えるものが知られている。プラネタリ型の遊星歯車機構では、ロータヘッド側の主軸とともに回転するキャリヤに遊星ピンが複数設けられており、この遊星ピンに遊星軸受を介して遊星歯車が取り付けられ、さらにこの遊星歯車にリング歯車及び太陽歯車が噛み合っている。これにより、ロータヘッド側の主軸の回転に伴って、遊星歯車が自転しながら公転し、増速された回転を太陽歯車側に出力するようになっている。
 ここで、増速機の遊星軸受には、軸受寿命を向上させる観点から、潤滑油を確実に供給しなければならない。
 この点、特許文献1の増速機では、ハウジングの下部に潤滑油を貯留するオイルバスが設けられており、遊星軸受は、遊星歯車の公転時にオイルバス内の潤滑油を通過し、潤滑されるようになっている。さらに、遊星ピンの内部には潤滑油供給路が形成されており、この潤滑油供給路を介して、ノズルから噴射された潤滑油が遊星軸受に供給される。
特開2009-144533号公報
 しかしながら、近年、発電量の向上を目的として風力発電装置の大型化が進むにつれ、より大きな荷重に長期間耐えられる遊星軸受を備えた増速機の開発が望まれている。
 このため、特許文献1に記載された風力発電装置の増速機では、遊星軸受の寿命が十分とはいえない場合がある。特に、寒冷地仕様の風力発電装置では、外気が非常に低温であることから、潤滑油の粘度が上昇してしまい、遊星軸受の十分な潤滑を行うことができないことがある。
 本発明は、上述の事情に鑑みてなされたものであり、遊星軸受の寿命をより一層向上させた風力発電装置用の増速機および風力発電装置を提供することを目的とする。
 本発明に係る風力発電装置用の増速機は、回転翼が取り付けられたロータヘッドに連結され、前記ロータヘッドとともに回転する主軸を有する風力発電装置に用いられる増速機であって、ケーシング本体と、複数の遊星ピンを有し、前記風力発電装置の前記主軸とともに回転して前記遊星ピンを公転させるキャリヤと、前記キャリヤの前記遊星ピンに取り付けられ、内輪と外輪との間にころが組み込まれた遊星軸受と、前記遊星軸受を介して前記複数の遊星ピンに自転可能に支持される複数の遊星歯車と、前記ケーシング本体に設けられ、前記遊星歯車と噛み合う内歯を有するリング歯車と、前記複数の遊星歯車に囲まれるように配置され、前記遊星歯車と噛み合う太陽歯車と、前記ケーシング本体の下部に設けられ、前記遊星ピンの公転によって前記遊星軸受が浸漬される潤滑油を貯留するオイルバスとを備え、前記キャリヤは、前記遊星ピンの外周かつ軸方向両端に設けられ、前記遊星ピンを保持する外筒部を有し、前記キャリヤの前記外筒部は、前記遊星軸受に対向する面が、前記遊星ピンの軸中心から遠くなるにつれ、前記遊星軸受から離れるように傾斜していることを特徴とする。
 この風力発電装置用の増速機によれば、遊星ピンの外周かつ軸方向両端に設けられたキャリヤの外筒部の遊星軸受に対向する面を、遊星ピンの軸中心から遠くなるにつれ、遊星軸受から離れるように傾斜させたので、キャリヤの外筒部と遊星軸受あるいは遊星歯車との間を潤滑油が通過しやすくなる。したがって、遊星軸受の潤滑をより確実に行って、遊星軸受の寿命をより一層向上させることが可能であり、例えば、非常に低い外気温のために潤滑油の粘度が上昇してしまいがちな寒冷地仕様の風力発電装置にも本発明の増速機を好適に使用することができる。
 上記風力発電装置用の増速機において、前記遊星歯車は、互いに間隔を空けて配置された一対の前記遊星軸受によって前記遊星ピンに支持されており、前記遊星ピンには、前記一対の遊星軸受に潤滑油を導く給油口が、前記一対の遊星軸受の間の位置に設けられていることが好ましい。
 このように一対の遊星軸受を介して遊星ピンを遊星歯車に支持することで、各軸受にかかる荷重を分散させて、軸受の寿命をさらに向上させることができる。また一対の遊星軸受の間の位置に給油口を設けることによって、一対の遊星軸受の潤滑状態を維持することができる。
 上記風力発電装置用の増速機において、前記外筒部の前記遊星軸受に対向する面は、前記遊星ピンの半径方向に対する傾斜角αは0°<α≦40°の範囲内であることが好ましい。また、傾斜角αは、20°≦α≦30°の範囲内であることがさらに好ましい。
 キャリヤの外筒部の遊星軸受に対向する面の傾斜角αを大きくするほど、キャリヤの外筒部と遊星軸受あるいは遊星歯車との間を潤滑油がより一層通過しやすくなり、遊星軸受の寿命をさらに向上させることができる。一方で、傾斜角αが大きすぎると、キャリヤを製作することが困難になる。そこで、上述のように、傾斜角αを0°<α≦40°(より好ましくは、20°≦α≦30°)の範囲内とすることで、遊星軸受の寿命の改善とキャリヤの製作性とを両立することができる。
 上記風力発電装置用の増速機において、前記遊星軸受は、前記外輪の内周に凹面の外輪軌道が形成され、前記内輪の外周に凸面の内輪軌道が形成され、前記外輪軌道および前記内輪軌道の間に複数列の前記ころが設けられた自動調心ころ軸受であり、前記遊星歯車は、前記遊星軸受の前記外輪の端面が前記遊星歯車の端面よりも内側に位置するように、前記遊星軸受の前記外輪に対して締りばめで固定されていることが好ましい。
 このように遊星軸受として調心性を有する自動調心ころ軸受を用いれば、風力の変動によって振動や衝撃荷重が遊星軸受に加わっても、遊星軸受の耐久性を維持することができる。
 一方で、本発明者らは、自動調心ころ軸受を遊星軸受として用いると、フレーキングによって遊星軸受の耐久時間が減少してしまう場合があることを認識するに至った。そして、この遊星軸受の耐久時間の減少は、本発明者らによる鋭意検討の結果、回転翼、ロータヘッドおよび主軸を介して遊星軸受(自動調心ころ軸受)に伝わる荷重およびモーメントの変動によって軸受外輪が軸方向外側に抜け出し、各ころ列にかかる荷重が不均一になってしまうことに起因することが明らかになった。
 この点、上述のように、遊星軸受の外輪の端面が遊星歯車の端面よりも内側に位置するように、遊星歯車を遊星軸受の外輪に対して締りばめで固定することによって、自動調心ころ軸受を遊星軸受として用いた場合に発生するフレーキングを防止することができる。これは、遊星歯車の端部が締りばめで変形して蓋の役割を果たし、遊星軸受の外輪の抜け出しを抑制し、各ころ列にかかる荷重が均一な状態を維持できることによると考えられる。
 また、本発明の風力発電装置用の増速機では、上述のように、遊星ピンの外周かつ軸方向両端に設けられたキャリヤの外筒部の遊星軸受に対向する面を、遊星ピンの軸中心から遠くなるにつれ、遊星軸受から離れるように傾斜させているので、遊星軸受の外輪の端面を遊星歯車の端面よりも内側に寄せても、外筒部と遊星軸受あるいは遊星歯車との間を潤滑油が確実に通過可能である。
 上述のように前記遊星軸受の前記外輪に対して締りばめで固定する場合、前記遊星歯車は、前記遊星軸受の前記外輪に対して焼ばめ又は冷却ばめにより固定されていることが好ましい。
 これにより、遊星歯車の端部をより大きく変形させて、遊星軸受の外輪の抜け出しを確実に抑制し、遊星軸受の耐久時間の減少をより一層低減することができる。
 また、前記遊星歯車の内周には、前記遊星軸受の前記外輪の抜け出しを規制するつば部が、前記遊星軸受の前記外輪の前記端面と前記遊星歯車の前記端面との間の位置に設けられていてもよい。
 このように、遊星歯車の端部を締りばめで変形させるだけでなく、遊星歯車の内周につば部を設けることによって、遊星軸受の外輪の抜け出しを確実に抑制し、遊星軸受の耐久時間の減少をより一層低減することができる。
 この場合、前記つば部は、前記遊星歯車の内周に設けられた溝に嵌めこまれたC形止め輪であってもよいし、前記遊星歯車の内周に設けられた雌ねじに螺着されたリング部材であってもよい。
 本発明に係る風力発電装置は、回転翼と、前記回転翼が取り付けられたロータヘッドと、前記ロータヘッドに連結され、前記ロータヘッドとともに回転する主軸と、前記主軸から入力された回転を増速して出力軸に伝える上述の増速機と、前記増速機の前記出力軸に連結された発電機とを備えることを特徴とする。
 この風力発電装置では、上述のように、遊星ピンの外周かつ軸方向両端に設けられたキャリヤの外筒部の遊星軸受に対向する面を、遊星ピンの軸中心から遠くなるにつれ、遊星軸受から離れるように傾斜させたので、キャリヤの外筒部と遊星軸受あるいは遊星歯車との間を潤滑油が通過しやすくなる。したがって、遊星軸受の潤滑をより確実に行って、遊星軸受の寿命をより一層向上させることができる。
 本発明では、この風力発電装置用の増速機によれば、遊星ピンの外周かつ軸方向両端に設けられたキャリヤの外筒部の遊星軸受に対向する面を、遊星ピンの軸中心から遠くなるにつれ、遊星軸受から離れるように傾斜させたので、キャリヤの外筒部と遊星軸受あるいは遊星歯車との間を潤滑油が通過しやすくなる。したがって、遊星軸受の潤滑をより確実に行って、遊星軸受の寿命をより一層向上させることができる。
風力発電装置の全体構成例を示す図である。 ナセル内のドライブトレインおよび発電機を示す横面図である。 第1実施形態に係る増速機の構成例を示す断面図である。 図3のI-I断面図である。 図3における、遊星軸受の周辺を示す拡大図である。 自動調心ころ軸受の外輪の抜け出しを示す断面図である。 第2実施形態に係る増速機の遊星軸受の周辺を示す拡大図である。 遊星軸受の外輪の抜け出し量の測定結果を示すグラフである。 (a)は遊星歯車の端部につば部を設けた例を示す断面図であり、(b)及び(c)はつば部の構成例を示す拡大図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 まず、第1実施形態に係る風力発電装置について説明する。
 図1は、第1実施形態に係る風力発電装置の全体構成例を示す図である。同図に示すように、風力発電装置1は、主として、基礎B上に立設された支柱2と、支柱2の上端に設置されたナセル4と、ナセル4に取り付けられたロータヘッド6と、ロータヘッド6に取り付けられた複数枚の回転翼8とで構成されている。
 支柱2は、図1に示すように、基礎Bから上方(図1の上方)に延びる柱状であり、例えば、一本の柱状部材で構成してもよいし、複数のユニットを上下方向に連結して柱状に構成してもよい。支柱2が複数のユニットから構成されている場合には、最上部に設けられたユニットの上にナセル4が設置される。
 ナセル4は、ロータヘッド6を支持するとともに、その内部にドライブトレイン10や発電機18を収納している。
 図2はナセル4の内部のドライブトレイン10及び発電機18の詳細を示す図である。同図に示すように、ドライブトレイン10は、ロータヘッド6のロータハブ6Aに連結された主軸12と、主軸12に連結された増速機14と、増速機14を発電機18に連結するカップリング16とを有する。
 主軸12は、回転翼8およびロータヘッド6とともに回転するように、ロータヘッド6Aに連結されるとともに、主軸受11によって回転可能にケーシング側に固定されている。なお、主軸受11の上部には、グリースを給脂するためのグリース補給口(不図示)が設けられている。
 増速機14は、主軸12とカップリング16との間に配置され、主軸12を介してロータヘッド6側から入力された回転を増速して、カップリング16に出力するようになっている。この増速機14によって、例えば、主軸12を介してロータヘッド6側から入力された20rpm程度の回転が1800rpm程度まで増速された後、カップリング16を介して発電機18に伝えられる。なお、増速機14の具体的な構成については、後で詳述する。
 カップリング16は、増速機14の最終出力軸と発電機18の入力軸とを連結する軸継手である。例えば、増速機14の最終出力軸と発電機18の入力軸とのミスアライメントを吸収するたわみ軸継手を用いることができる。
 またカップリング16には、ブレーキディスク19A及びブレーキパッド19Bからなるブレーキ装置19が取り付けられている。このブレーキ装置19は、ブレーキディスク19Aの表裏面にブレーキパッド19Bを押し付けて挟持することで、カップリング16を制動する。ブレーキ装置19は、例えば、ブレーキパッド19Bが不図示のスプリングによってブレーキディスク19A側に常に付勢されるとともに、通常運転時において油圧の力でブレーキパッド19Bをスプリングの付勢力に抗してブレーキディスク19Aから離すように構成してもよい。
 なお、風力発電装置1のブレーキ動作は、通常、後述するピッチ制御による制動がメインであり、ブレーキ装置19は補助的なものである。つまり、強風時の安全対策やメンテナンス時に回転軸を停止させる場合、まずはピッチ制御により回転翼8をフェザリング状態に移行し、回転軸の回転を抑制した後、ブレーキ装置19によって回転軸を完全に停止するようになっている。
 図1及び2に示すように、ロータヘッド6は、略水平な軸線周りに回転可能にナセル4に固定されるとともに、回転翼8が取り付けられたロータハブ6Aと、このロータハブ6Aを覆う頭部カプセル6Bとを含んで構成される。
 またロータハブ6Aには、図2に示すように、回転翼8を軸線周り(図2の矢印方向)に回転させて回転翼8のピッチ角を変更するピッチ駆動装置30が設けられている。
 ピッチ駆動装置30は、図2に示すように、シリンダ32と、回転翼8に連結された軸部34とで構成される。なお回転翼8は、軸受36によりピッチ方向に回転可能に支持されている。このため回転翼8は、ピッチ駆動装置30のシリンダ32によって軸部34が回転すると、軸部34とともにピッチ方向に回転するようになっている。なお、各回転翼8ごとに設けられるピッチ駆動装置30は、不図示のリンク機構で互いに連結されており、各回転翼8のピッチ角制御を連動して行うようになっていてもよい。
 次に、風力発電装置1の増速機14の具体的な構成について説明する。図3は、増速機14の構成例を示す断面図である。図4は、図3におけるI-I線に沿った断面図である。図5は、図3に示す増速機14の遊星軸受の周辺を示す拡大図である。
 図3に示すように、増速機14は、ケーシング本体40内に収納された遊星増速機構50及び平歯車増速機構70で構成されている。この増速機14によって、ロータハブ側の主軸12から入力された回転が増速されて、発電機側の最終出力軸13に伝えられるようになっている。なお、増速機14の最終出力軸13は、図2に示すカップリング16によって発電機18側に連結されている。
 増速機14の遊星増速機構50は、図3及び5に示すように、キャリヤ52と、キャリヤ52に保持される遊星ピン54と、遊星ピン54に取り付けられる遊星軸受56と、遊星軸受56を介して遊星ピン54に支持される遊星歯車58と、遊星歯車58と噛み合うリング歯車60及び太陽歯車62とを含んで構成されている。
 キャリヤ52は、複数(本例においては3個)の遊星ピン54を保持する保持板であり、図5に示すように、遊星ピン54の外周かつ軸方向両端に設けられた外筒部53によって遊星ピン54を保持している。これにより、キャリヤ52は、ロータヘッド側の主軸12と一体的に回転して、外筒部53に保持された遊星ピン54を公転させるようになっている。なお主軸12及びキャリヤ52は、軸受42によって回転可能に支持されている。
 キャリヤ52の外筒部53は、遊星軸受56に対向する面53Aを有し、本実施形態では、この外筒部53の面53Aは遊星ピン54の軸中心から遠くなるにつれ、遊星軸受56から離れるように傾斜している。このようにキャリヤ52の外筒部53の面53Aを、遊星ピン54の軸中心から遠くなるにつれ、遊星軸受56から離れるように傾斜させることによって、後述するオイルバスからの潤滑油が外筒部53の面53Aと遊星軸受56あるいは遊星歯車58との間を通過しやすくなる。
 また外筒部53の遊星軸受56に対向する面53Aは、遊星ピン54の半径方向に対する傾斜角αは0°<α≦40°の範囲内であることが好ましく、20°≦α≦30°の範囲内であることがより好ましい。
 キャリヤ52の外筒部53の遊星軸受56に対向する面53Aの傾斜角αを大きくするほど、キャリヤ52の外筒部53と遊星軸受56あるいは遊星歯車58との間を潤滑油がより一層通過しやすくなり、遊星軸受56の寿命をさらに向上させることができる。一方で、外筒部53の遊星軸受56に対向する面53Aの傾斜角αが大きすぎると、キャリヤ52を製作することが困難になる。
 そこで、上述のように、面53Aの傾斜角αを0°<α≦40°(より好ましくは、20°≦α≦30°)の範囲内とすることで、遊星軸受56の寿命の改善とキャリヤ52の製作性とを両立することができる。
 遊星軸受56は、遊星歯車58を自転可能に遊星ピン54に支持するころ軸受であり、図5に示すように、内輪56Aと外輪56Bとの間にころ56Cが組み込まれた構成を有する。なお、図5には2列のころ56Cを有する遊星軸受56の例を示したが、遊星軸受56のころ56Cは1列であっても、3列以上を並べたものであってもよい。
 遊星軸受56は、風力の変動によって生じる振動や衝撃荷重に対する耐久性を確保する観点から、調心性を有する自動調心ころ軸受を用いることが好ましい。自動調心ころ軸受としては、例えば、図5に示すように、外輪56Bがその内周に凹面の外輪軌道を有し、内輪56Aがその外周に凸面の内輪軌道を有し、これらの外輪軌道及び内輪軌道の間に複数列のころ56Cが設けられた構成のものを用いることができる。このような構成の遊星軸受(自動調心ころ軸受)56では、外輪56Bの外輪軌道の中心が軸受中心と一致しているため、調心性を有する。
 また遊星軸受56は、例えば、大荷重及び大トルクが発生する大型の風力発電装置に適用する場合には、図3及び6に示すように、複数を並列に配置して使用してもよい。このとき、図5に示すように、複数の遊星軸受56を互いに間隔を空けて配置するとともに、遊星ピン54には、遊星軸受56に潤滑油を導く給油口54Aを、隣接する遊星軸受56の間の位置に設けることが好ましい。これにより、遊星軸受56の潤滑状態を維持することができる。
 図3及び5に示す遊星歯車58は、遊星軸受56を介して遊星ピン54に支持されており、リング歯車60及び太陽歯車62と噛み合っている。
 リング歯車60は、図3に示すように、ケーシング本体40に設けられており、遊星歯車58と噛み合う内歯を有している。一方、太陽歯車62は、図4に示すように、複数の遊星歯車58に囲まれるように配置されている。また、太陽歯車62には、遊星出力軸64が嵌め込まれている。
 このような遊星増速機構50では、キャリヤ52が主軸12とともに回転すると、遊星ピン54及び遊星ピン54に支持された遊星歯車58が太陽歯車62を中心として公転する。同時に、遊星歯車58は、遊星軸受56の働きにより、遊星ピン54を中心として自転する。これにより、入力軸としての主軸12からの回転が増速され、遊星出力軸64に出力される。なお遊星増速機構50による増速比は、遊星歯車58、リング歯車60及び太陽歯車62の歯数によって定まる。
 また図3に示すケーシング本体40には、遊星増速機構50の下方にオイルバス41が設けられており、このオイルバス41内には潤滑油が貯留されている。このため、遊星軸受56を介して遊星ピン54に支持された遊星歯車58は、公転によって下方に移動した際に、オイルバス41内の潤滑油に浸漬されるようになっている。これにより、遊星軸受56や遊星歯車58の潤滑状態を維持することができる。
 図3に示す平歯車増速機構70は、遊星増速機構50に加えて任意的に設けられる増速機構あり、遊星出力軸64の回転をさらに増速して最終出力軸13に出力するようになっている。
 平歯車増速機構70は、例えば、図3に示すように、互いに噛み合う第1平歯車72および第2平歯車74と、互いに噛み合う第3平歯車76および第4平歯車78との2組のギヤセットで構成してもよい。ここで、第1平歯車72は、遊星出力軸64に連結された第1回転軸80に固定されており、第2平歯車74及び第3平歯車76は第2回転軸82に固定されており、第4平歯車78は最終出力軸13に固定されている。また第1回転軸80、第2回転軸82および最終出力軸13は、それぞれ、第1軸受44、第2軸受46および第3軸受48によって回転可能に支持されている。
 このような平歯車増速機構70では、第1平歯車72の歯数は第2平歯車74よりも多いので、遊星増速機構50側の遊星出力軸64に連結された第1回転軸80の回転が増速され、第2回転軸82に伝えられる。さらに、第3平歯車76の歯数は第4平歯車78よりも多いので、第2回転軸82の回転が増速されて、最終出力軸13に伝えられる。
 上記構成の増速機14によれば、遊星増速機構50及び平歯車増速機構70によって、ロータハブ側の主軸12から入力された回転を増速して、発電機側の最終出力軸13に伝えることができる。
 以上説明したように、本実施形態では、増速機14のキャリヤ52は、遊星ピン54の外周かつ軸方向両端に設けられた外筒部53の遊星軸受56に対向する面53Aが、遊星ピン54の軸中心から遠くなるにつれ、遊星軸受56から離れるように傾斜しているので、キャリヤ52の外筒部53と遊星軸受56あるいは遊星歯車58との間を潤滑油が通過しやすくなる。したがって、遊星軸受56の潤滑をより確実に行って、遊星軸受56の寿命をより一層向上させることが可能であり、例えば、非常に低い外気温のために潤滑油の粘度が上昇してしまいがちな寒冷地仕様の風力発電装置1にも本実施形態の増速機14を好適に使用することができる。
 また本実施形態では、好ましくは、増速機14の遊星歯車58は、互いに間隔を空けて配置された一対の遊星軸受56によって遊星ピン54に支持されており、遊星ピン54には、一対の遊星軸受56に潤滑油を導く給油口54Aが、遊星軸受56の間の位置に設けられる。このように一対の遊星軸受56を介して遊星ピン54を遊星歯車58に支持することで、各遊星軸受56にかかる荷重を分散させて、遊星軸受56の寿命をさらに向上させることができる。また一対の遊星軸受56の間の位置に給油口54Aを設けることによって、遊星軸受56の潤滑状態を維持することができる。
 さらに本実施形態では、好ましくは、増速機14のキャリヤ52は、外筒部53の遊星軸受56に対向する面53Aの、遊星ピン54の半径方向に対する傾斜角αを0°<α≦40°(より好ましくは、20°≦α≦30°)の範囲内とすることで、遊星軸受56の寿命の改善とキャリヤ52の製作性とを両立することができる。
[第2実施形態]
 次に、第2実施形態にかかる風力発電装置について説明する。第2実施形態の風力発電装置は、増速機14における遊星軸受56及び遊星歯車58の端面の位置関係を除けば、第1実施形態と同一である。以下では、第1実施形態と同一の構成要素には、共通の符号を付し、その説明を省略する。
 図6は、遊星軸受56として自動調心ころ軸受を用いた場合における遊星軸受周辺を示す拡大図である。図7は、本実施形態に係る風力発電装置における増速機の遊星軸受周辺を示す拡大図である。
 本発明者らは、図6に示すように、遊星軸受56として、外輪56Bがその内周に凹面の外輪軌道を有し、内輪56Aがその外周に凸面の内輪軌道を有し、これらの外輪軌道及び内輪軌道の間に複数列のころ56Cが設けられた構成の自動調心ころ軸受を用いると、フレーキングによって遊星軸受56の耐久時間が短くなってしまうことを認識するに至った。そして、この遊星軸受56の耐久時間の減少は、本発明者らによる鋭意検討の結果、回転翼8、ロータヘッド6および主軸12を介して遊星軸受(自動調心ころ軸受)56に伝わる荷重およびモーメントの変動によって軸受外輪56Bが軸方向外側(図6の矢印方向)に抜け出し、各ころ列56Cにかかる荷重が不均一になってしまうことに起因することが明らかになった。
 具体的には、遊星軸受56は、回転翼8から伝わる荷重およびモーメントによって、軸方向外側に抜け出そうとする。ここで、遊星軸受56の内輪56Aは、キャリヤ52の外筒部53によって軸方向外側への移動が規制されている一方、遊星軸受56の外輪56Bにはそのような規制はなされておらず、外輪56Bのみ軸方向外側に抜け出してしまう。このため、内側のころ列56C(図6の右側のころ列)に荷重が集中してしまい、遊星軸受56のフレーキングが発生してしまう。
 そこで、本実施形態では、図7に示すように、遊星軸受(自動調心ころ軸受)56の外輪56Bの端面が遊星歯車58の端面よりも内側に位置するように(すなわち、図7に示す外輪56Bの端面と遊星軸受56の端面との距離dが、不等式d>0を満たすように)、遊星歯車58を遊星軸受56の外輪56Bに対して締りばめで固定している。これにより、遊星歯車58の端部(図中、Aで示す部位)が締りばめで変形して蓋の役割を果たし、遊星軸受56の外輪56Bの抜け出しを抑制し、各ころ列56Cにかかる荷重が均一な状態を維持して、遊星軸受56の耐久時間の減少を低減することができる。
 なお、外輪56Bの端面と遊星歯車58の端面との距離dは、遊星軸受(自動調心ころ軸受)56の耐久時間の減少を確実に防止する観点からできる限り大きいことが好ましい。ただし、外輪56Bの端面を遊星歯車58の端面よりも内側に寄せすぎると、自動調心ころ軸受56に潤滑油を導く給油口54A(図5参照)を塞いでしまうという構造上の制約がある。したがって、上記距離dは、0mm<d≦10mmであることが好ましい。
 図8は、本実施形態における遊星軸受56の外輪56Bの抜け出し量の測定結果を示すグラフである。同図には、本実施形態の一例として、遊星軸受56の外輪56Bの端面が遊星歯車58の端面よりも10mm内側に位置する場合(d=10mm)を示すとともに、その比較対照例として、遊星軸受56の外輪56Bの端面が遊星歯車58の端面との位置を揃えた場合(d=0)を示した。
 なお、d=10mmの場合およびd=0の場合のいずれも、遊星歯車58の外輪56Bに対する締りばめは、締めしろがP6(0.012~0.079mm)となるように行った。また遊星軸受56には、1.18kNmの平均トルクに相当する負荷を入力した。
 図8から、外輪56Bの抜け出し量が400μmに達するまでの時間を見積もると、d=10mmの場合(T)は、d=0の場合(T)の約109倍であった。
 ここで、本発明者らによって、外輪56Bの抜け出し量が400μm程度になると、遊星軸受56のフレーキングが発生してしまうことが分かっている。このため、T及びTは、それぞれ、d=10mmおよびd=0の場合における遊星軸受56の耐久時間の指標である。このようにして見積もられた遊星軸受の耐久時間T及びTは、d=10mmの場合には、一般的な実製品における合格基準である1.3×10(hr)を超えているのに対し、d=0の場合にはこの基準を満たしていない。
 以上から、本実施形態の増速機14のように、遊星軸受56の外輪56Bの端面が遊星歯車58の端面よりも内側に位置するように、遊星歯車58を遊星軸受56の外輪56Bに対して締りばめで固定することによって、遊星軸受56の外輪56Bの抜け出しを抑制し、フレーキングによる遊星軸受56の耐久時間の減少を抑制しうることが分かった。
 また、本実施形態でも、第1実施形態と同様に、キャリヤ52の外筒部53の遊星軸受56と対向する面53Aを、遊星ピン54の軸中心から遠くなるにつれ、遊星軸受56から離れるように傾斜させている。このため、上述のように、遊星軸受56の外輪56Bの端面を遊星歯車58の端面よりも内側に寄せても、外筒部53の面53Aと遊星軸受56あるいは遊星歯車58との間を潤滑油が確実に通過可能である。
 なお図7に示す例では、遊星歯車58の端部を締りばめで変形させることによって、遊星軸受56の外輪56Bの抜け出しを抑制する例について説明したが、より確実に外輪56Bの抜け出しを抑制する観点から、遊星歯車58の端部につば部に設けてもよい。
 図9(a)は遊星歯車58端部の内周に設けられたつば部を示す断面図であり、図9(b)及び(c)はつば部の構成例を示す拡大図である。なお、上述の実施形態と同一の構成要素については共通の符号を付し、ここではその説明を省略する。
 図9(a)に示すように、遊星軸受56の外輪56Bの抜け出しを規制するつば部90が、遊星軸受56の外輪56Bの端面と遊星歯車58の端面との間の位置に設けられている。このように、遊星歯車58の端部を締りばめで変形させるだけでなく、遊星歯車58の内周につば部90を設けることによって、遊星軸受56の外輪56Bの抜け出しを確実に抑制し、遊星軸受56の耐久時間の減少をより一層低減することができる。
 例えば、つば部90は、図9(b)に示すように、遊星歯車58の内周に設けられた溝92に嵌めこまれたC形止め輪であってもよいし、図9(c)に示すように、遊星歯車58の内周に設けられた雌ねじ94に螺着されたリング部材であってもよい。

Claims (9)

  1.  回転翼が取り付けられたロータヘッドに連結され、前記ロータヘッドとともに回転する主軸を有する風力発電装置に用いられる増速機であって、
     ケーシング本体と、
     複数の遊星ピンを有し、前記風力発電装置の前記主軸とともに回転して前記遊星ピンを公転させるキャリヤと、
     前記キャリヤの前記遊星ピンに取り付けられ、内輪と外輪との間にころが組み込まれた遊星軸受と、
     前記遊星軸受を介して前記複数の遊星ピンに自転可能に支持される複数の遊星歯車と、
     前記ケーシング本体に設けられ、前記遊星歯車と噛み合う内歯を有するリング歯車と、
     前記複数の遊星歯車に囲まれるように配置され、前記遊星歯車と噛み合う太陽歯車と、
     前記ケーシング本体の下部に設けられ、前記遊星ピンの公転によって前記遊星軸受が浸漬される潤滑油を貯留するオイルバスとを備え、
     前記キャリヤは、前記遊星ピンの外周かつ軸方向両端に設けられ、前記遊星ピンを保持する外筒部を有し、
     前記キャリヤの前記外筒部は、前記遊星軸受に対向する面が、前記遊星ピンの軸中心から遠くなるにつれ、前記遊星軸受から離れるように傾斜していることを特徴とする風力発電装置用の増速機。
  2.  前記遊星歯車は、互いに間隔を空けて配置された一対の前記遊星軸受によって前記遊星ピンに支持されており、
     前記遊星ピンには、前記一対の遊星軸受に潤滑油を導く給油口が、前記一対の遊星軸受の間の位置に設けられていることを特徴とする請求項1に記載の風力発電装置用の増速機。
  3.  前記外筒部の前記遊星軸受に対向する面は、前記遊星ピンの半径方向に対する傾斜角αは0°<α≦40°の範囲内であることを特徴とする請求項1又は2に記載の風力発電装置用の増速機。
  4.  前記遊星軸受は、前記外輪の内周に凹面の外輪軌道が形成され、前記内輪の外周に凸面の内輪軌道が形成され、前記外輪軌道および前記内輪軌道の間に複数列の前記ころが設けられた自動調心ころ軸受であり、
     前記遊星歯車は、前記遊星軸受の前記外輪の端面が前記遊星歯車の端面よりも内側に位置するように、前記遊星軸受の前記外輪に対して締りばめで固定されていることを特徴とする請求項1に記載の風力発電装置用の増速機。
  5.  前記遊星歯車は、前記遊星軸受の前記外輪に対して焼ばめ又は冷却ばめにより固定されていることを特徴とする請求項4に記載の風力発電装置用の増速機。
  6.  前記遊星歯車の内周には、前記遊星軸受の前記外輪の抜け出しを規制するつば部が、前記遊星軸受の前記外輪の前記端面と前記遊星歯車の前記端面との間の位置に設けられていることを特徴とする請求項4に記載の風力発電装置用の増速機。
  7.  前記つば部は、前記遊星歯車の内周に設けられた溝に嵌めこまれたC形止め輪であることを特徴とする請求項6に記載の風力発電装置用の増速機。
  8.  前記つば部は、前記遊星歯車の内周に設けられた雌ねじに螺着されたリング部材であることを特徴とする請求項6に記載の風力発電装置用の増速機。
  9.  回転翼と、
     前記回転翼が取り付けられたロータヘッドと、
     前記ロータヘッドに連結され、前記ロータヘッドとともに回転する主軸と、
     前記主軸から入力された回転を増速して出力軸に伝える、請求項1に記載の増速機と、
     前記増速機の前記出力軸に連結された発電機とを備えることを特徴とする風力発電装置。
PCT/JP2010/052101 2010-02-12 2010-02-12 風力発電装置用の増速機および風力発電装置 WO2011099149A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020107008806A KR101161484B1 (ko) 2010-02-12 2010-02-12 풍력 발전 장치용의 증속기 및 풍력 발전 장치
CA2694130A CA2694130C (en) 2010-02-12 2010-02-12 Gear box for wind turbine generator and wind turbine generator
US12/674,687 US8657578B2 (en) 2010-02-12 2010-02-12 Gear box for wind turbine generator and wind turbine generator
CN201080000721.2A CN102792018B (zh) 2010-02-12 2010-02-12 用于的风力涡轮发电机齿轮箱和风力涡轮发电机
EP10703610A EP2426355A1 (en) 2010-02-12 2010-02-12 Step-up gear for a wind-powered electrical generator, and wind-powered electrical generator
PCT/JP2010/052101 WO2011099149A1 (ja) 2010-02-12 2010-02-12 風力発電装置用の増速機および風力発電装置
JP2010506740A JP5031091B2 (ja) 2010-02-12 2010-02-12 風力発電装置用の増速機および風力発電装置
BRPI1000011A BRPI1000011A2 (pt) 2010-02-12 2010-02-12 caixa de engrenagens para gerador de turbina eólica, e, gerador de turbina eólica
AU2010201623A AU2010201623B2 (en) 2010-02-12 2010-02-12 Gear box for wind turbine generator and wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052101 WO2011099149A1 (ja) 2010-02-12 2010-02-12 風力発電装置用の増速機および風力発電装置

Publications (1)

Publication Number Publication Date
WO2011099149A1 true WO2011099149A1 (ja) 2011-08-18

Family

ID=44366929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052101 WO2011099149A1 (ja) 2010-02-12 2010-02-12 風力発電装置用の増速機および風力発電装置

Country Status (9)

Country Link
US (1) US8657578B2 (ja)
EP (1) EP2426355A1 (ja)
JP (1) JP5031091B2 (ja)
KR (1) KR101161484B1 (ja)
CN (1) CN102792018B (ja)
AU (1) AU2010201623B2 (ja)
BR (1) BRPI1000011A2 (ja)
CA (1) CA2694130C (ja)
WO (1) WO2011099149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496256A (en) * 2011-11-07 2013-05-08 Romax Technology Ltd Planetary gearing system for a wind turbine
CN116181565A (zh) * 2023-02-23 2023-05-30 云南鲁电新能源有限公司 一种保护叶片的风力发电机

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530313A1 (en) * 2010-02-12 2012-12-05 Mitsubishi Heavy Industries, Ltd. Step-up gear device for wind-driven electricity generation device, and wind-driven electricity generation device
US8657578B2 (en) * 2010-02-12 2014-02-25 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
WO2013042251A1 (ja) 2011-09-22 2013-03-28 三菱重工業株式会社 再生エネルギー型発電装置及びその回転翼着脱方法
DE102011005240A1 (de) * 2011-03-08 2012-09-13 Aktiebolaget Skf Wälzlageranordnung einer Windkraftanlage
KR20130110266A (ko) * 2012-03-29 2013-10-10 삼성중공업 주식회사 풍력발전기 및 풍력발전기용 피치 베어링
DE102012012106A1 (de) * 2012-06-18 2013-12-19 Robert Bosch Gmbh Windkraftanlage mit einem zwischen Planetengetriebeund Generator angeordneten Kupplungsmittel zumAusgleich von Axial-, Radial- und Winkelversatz
KR101939403B1 (ko) * 2012-09-19 2019-01-16 두산중공업 주식회사 유성기어장치 및 이를 포함하는 풍력 발전기
US9046128B2 (en) 2012-10-18 2015-06-02 Schaeffler Technologies AG & Co. KG Roller bearing for wind turbines
DE102013226520A1 (de) * 2013-12-18 2015-06-18 Zf Friedrichshafen Ag Axiale Fixierung einer Planetenlagerung
CN103711875B (zh) * 2014-01-06 2016-04-13 国电联合动力技术有限公司 一种风力发电机组行星齿轮偏载的监测系统及方法
FR3058771B1 (fr) * 2016-11-14 2020-02-28 Safran Electronics & Defense Dispositif de transmission mecanique
DE102016224515A1 (de) * 2016-12-08 2018-06-14 Zf Friedrichshafen Ag Hochübersetzendes Umlaufrädergetriebe
CN106838279B (zh) * 2017-04-13 2019-01-29 南京高传机电自动控制设备有限公司 半直驱风力发电机
EP3406941B1 (de) * 2017-05-24 2020-07-15 Flender GmbH Stirnradanordnung, getriebe und windenergieanlage
US10941849B2 (en) * 2017-08-03 2021-03-09 General Electric Company Gear assembly damper arrangement
CN108223699A (zh) * 2018-01-31 2018-06-29 上齿集团有限公司 新能源电动物流车后桥驱动主减速器
JP6948974B2 (ja) * 2018-03-23 2021-10-13 本田技研工業株式会社 遊星ギヤ機構の潤滑構造
IT201900018104A1 (it) * 2019-10-07 2021-04-07 Ge Avio Srl Trasmissione ad ingranaggi con perni flessibili
CN111610415B (zh) * 2020-05-25 2022-05-20 国网河北省电力有限公司电力科学研究院 数字式变压器绝缘故障模拟发生器及方法
CN116113782A (zh) * 2020-09-25 2023-05-12 舍弗勒技术股份两合公司 动压滑动轴承组件和动压滑动轴承单元
CN112879535B (zh) * 2021-01-13 2022-11-11 广东韶钢松山股份有限公司 一种烧结机驱动机构排障方法及烧结机驱动机构排障装置
CN113236504B (zh) * 2021-05-28 2022-02-15 远景能源有限公司 风力发电机齿轮箱
CN113374625B (zh) * 2021-06-08 2022-07-05 东莞市德玛电子有限公司 一种海上风电机组
CN116753298B (zh) * 2023-08-14 2023-11-14 江苏速豹动力科技有限公司 一种行星排限位装置及使用行星排限位装置的设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124124A (en) * 1981-01-21 1982-08-02 Nissan Motor Co Ltd Needle bearing lubricating device for carrier assembly body
JPH0564560U (ja) * 1992-02-05 1993-08-27 ジャトコ株式会社 遊星歯車装置のキャリア組立体
JP2006009575A (ja) * 2004-06-22 2006-01-12 Ntn Corp 遊星歯車装置
JP2007071273A (ja) * 2005-09-06 2007-03-22 Nabtesco Corp 減速機

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2089048A (en) * 1931-02-02 1937-08-03 American Steel Foundries Roller bearing
US4030785A (en) * 1976-06-21 1977-06-21 Borg-Warner Corporation Bearing cartridge
DE2658157A1 (de) * 1976-12-22 1978-06-29 Zahnradfabrik Friedrichshafen Axiale fixierung fuer waelzlager
US4158972A (en) 1978-02-21 1979-06-26 Caterpillar Tractor Co. Ring gear positioner
JPS60126746U (ja) 1984-02-01 1985-08-26 川崎重工業株式会社 遊星歯車装置
JPH02105633U (ja) 1989-02-08 1990-08-22
US5002406A (en) 1990-02-20 1991-03-26 Emerson Electric Co. Sealing structure for a spherical bearing assembly
JP2757606B2 (ja) 1991-07-26 1998-05-25 日産自動車株式会社 自動変速機の歯車潤滑機構
JPH07239004A (ja) 1994-02-28 1995-09-12 Unisia Jecs Corp 動力伝達装置
JPH08326762A (ja) 1995-05-29 1996-12-10 Ntn Corp ころ軸受用保持器
JPH09317760A (ja) 1996-05-30 1997-12-09 Ntn Corp 自動調心ころ軸受
HU223644B1 (hu) * 1998-07-15 2004-11-29 RÁBA Futóműgyártó és Kereskedelmi Kft Fokozatnélküli, hidraulikusan menetközben kapcsolható és vezérelhető differenciálzár-szerkezet járműfutóművek számára
JP2000257675A (ja) 1999-03-08 2000-09-19 Kadowaki:Kk 遊星歯車減速機およびその製造装置
JP2001227597A (ja) 2000-02-15 2001-08-24 Oriental Motor Co Ltd 多段型遊星歯車減速機
GB0107923D0 (en) * 2001-03-30 2001-05-23 Hansen Transmissions Int Method for forming a taper roller bearing assembly
JP2004011737A (ja) * 2002-06-06 2004-01-15 Nsk Ltd 自動調心ころ軸受
US20030236148A1 (en) * 2002-06-21 2003-12-25 The Timken Company Epicyclic drive with unified planet assemblies
US7686727B2 (en) 2002-11-19 2010-03-30 Gm Global Technology Operations, Inc. Lubrication system for high speed planet gears
DE10260132A1 (de) * 2002-12-19 2004-07-01 Winergy Ag Planetengetriebe für eine Windkraftanlage
JP2004245356A (ja) 2003-02-14 2004-09-02 Hitachi Constr Mach Co Ltd 遊星歯車減速装置
WO2005005866A1 (en) 2003-07-02 2005-01-20 The Timken Company Transmission containing helical gearing and bearing arrangement therefor
JP2005036880A (ja) 2003-07-14 2005-02-10 Ntn Corp 遊星歯車装置およびその転がり軸受
WO2005050038A1 (ja) * 2003-11-18 2005-06-02 Ntn Corporation 複列自動調心ころ軸受および風力発電機主軸支持装置
GB0326933D0 (en) * 2003-11-19 2003-12-24 Hansen Transmissions Int Gear transmission unit with planet carrier
DE102005029075B4 (de) * 2005-06-23 2007-04-12 Ab Skf Anordnung zur Lagerung eines Planetenrades eines Planetengetriebes
JP2007024086A (ja) * 2005-07-12 2007-02-01 Nsk Ltd 軸受装置
JP2008031941A (ja) 2006-07-31 2008-02-14 Ntn Corp 風力発電機の回転軸支持構造
CN200996467Y (zh) * 2006-12-07 2007-12-26 南京高速齿轮制造有限公司 一种风力发电机齿轮箱中行星齿轮的润滑机构
BE1017854A3 (nl) * 2007-11-21 2009-09-01 Hansen Transmissions Int Planetendrager van het kooivormig type.
BE1017866A3 (nl) * 2007-12-06 2009-09-01 Hansen Transmissions Int Windturbineaandrijving.
JP2009144533A (ja) 2007-12-11 2009-07-02 Mitsubishi Heavy Ind Ltd 風力発電装置
WO2009080031A2 (en) * 2007-12-20 2009-07-02 Vestas Wind System A/S Epicyclic gear stage for a wind turbine gearbox, a wind turbine gearbox and a wind turbine
JP5148346B2 (ja) 2008-04-10 2013-02-20 三菱重工業株式会社 風力発電装置
CN201277153Y (zh) * 2008-10-27 2009-07-22 重庆齿轮箱有限责任公司 风电齿轮箱行星润滑供油装置
CN201367991Y (zh) * 2009-02-13 2009-12-23 南京高速齿轮制造有限公司 上风向型风力发电机增速齿轮箱
CN201381953Y (zh) * 2009-04-30 2010-01-13 哈尔滨哈飞工业有限责任公司 一种半直驱风力发电机组增速箱
ATE554314T1 (de) * 2009-08-10 2012-05-15 Zf Wind Power Antwerpen Nv Paralleler getriebeblock für ein getriebe für ein windrad
GB2473875A (en) * 2009-09-28 2011-03-30 Hansen Transmissions Int Wind turbine gearbox with planetary gear unit having sliding bearings
EP2530313A1 (en) * 2010-02-12 2012-12-05 Mitsubishi Heavy Industries, Ltd. Step-up gear device for wind-driven electricity generation device, and wind-driven electricity generation device
US8657578B2 (en) * 2010-02-12 2014-02-25 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124124A (en) * 1981-01-21 1982-08-02 Nissan Motor Co Ltd Needle bearing lubricating device for carrier assembly body
JPH0564560U (ja) * 1992-02-05 1993-08-27 ジャトコ株式会社 遊星歯車装置のキャリア組立体
JP2006009575A (ja) * 2004-06-22 2006-01-12 Ntn Corp 遊星歯車装置
JP2007071273A (ja) * 2005-09-06 2007-03-22 Nabtesco Corp 減速機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496256A (en) * 2011-11-07 2013-05-08 Romax Technology Ltd Planetary gearing system for a wind turbine
GB2496256B (en) * 2011-11-07 2013-10-09 Romax Technology Ltd Planetary gearing system for a wind turbine
CN116181565A (zh) * 2023-02-23 2023-05-30 云南鲁电新能源有限公司 一种保护叶片的风力发电机
CN116181565B (zh) * 2023-02-23 2024-02-23 河北利风新能源技术有限公司 一种保护叶片的风力发电机

Also Published As

Publication number Publication date
KR101161484B1 (ko) 2012-07-02
KR20110120200A (ko) 2011-11-03
AU2010201623A1 (en) 2011-09-01
AU2010201623B2 (en) 2011-09-08
EP2426355A1 (en) 2012-03-07
CN102792018A (zh) 2012-11-21
BRPI1000011A2 (pt) 2018-02-14
US8657578B2 (en) 2014-02-25
JPWO2011099149A1 (ja) 2013-06-13
JP5031091B2 (ja) 2012-09-19
CA2694130A1 (en) 2011-08-12
CN102792018B (zh) 2015-04-01
US20120003096A1 (en) 2012-01-05
CA2694130C (en) 2013-04-16

Similar Documents

Publication Publication Date Title
JP5031091B2 (ja) 風力発電装置用の増速機および風力発電装置
JP5161958B2 (ja) 風力発電装置用の増速機および風力発電装置
US8021101B2 (en) Wind turbine and method of assembling the same
JP5345048B2 (ja) 風力発電設備用変速機および風力発電装置
JP6018203B2 (ja) 周転円運動型変速機において使用するためのジャーナル軸受およびジャーナル軸受における流体力学的油流を促進する方法
CN101646863A (zh) 具有传动系的风轮机
JP2009144533A (ja) 風力発電装置
US20130186223A1 (en) Stationary gear unit
ES2906786T3 (es) Disposición de rodamiento principal compuesto para una turbina eólica
JP2009144532A (ja) 風力発電装置
JP2006009575A (ja) 遊星歯車装置
Yagi et al. Technical trends in wind turbine bearings
CN114658831A (zh) 行星齿轮箱和风电设备
US11598317B2 (en) Yaw bearings for a wind turbine
WO2024016324A1 (zh) 行星齿轮箱和风电设备
CN112303115A (zh) 滚子变桨轴承

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080000721.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010506740

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2694130

Country of ref document: CA

Ref document number: 2010201623

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010703610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2649/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107008806

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12674687

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI1000011

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100422