WO2011096695A2 - 검사 프로그램의 생성 방법 - Google Patents

검사 프로그램의 생성 방법 Download PDF

Info

Publication number
WO2011096695A2
WO2011096695A2 PCT/KR2011/000683 KR2011000683W WO2011096695A2 WO 2011096695 A2 WO2011096695 A2 WO 2011096695A2 KR 2011000683 W KR2011000683 W KR 2011000683W WO 2011096695 A2 WO2011096695 A2 WO 2011096695A2
Authority
WO
WIPO (PCT)
Prior art keywords
image information
difference
lead
substrate
dimensional
Prior art date
Application number
PCT/KR2011/000683
Other languages
English (en)
French (fr)
Other versions
WO2011096695A3 (ko
Inventor
한승범
김희태
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to CN2011800081376A priority Critical patent/CN102742380A/zh
Priority to US13/576,829 priority patent/US20130039563A1/en
Publication of WO2011096695A2 publication Critical patent/WO2011096695A2/ko
Publication of WO2011096695A3 publication Critical patent/WO2011096695A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder

Definitions

  • the present invention relates to a method for generating an inspection program, and more particularly, to a method for generating an inspection program by accurately extracting a lead-coated region of an inspection substrate without a gerber file.
  • a mounting board in which electronic components are mounted on a printed circuit board is used in various electronic products.
  • Such a mounting substrate is manufactured by applying lead to a pad region of a bare substrate and then coupling terminals of an electronic component to a lead coating region.
  • a solder paste inspection (SPI) process for checking whether lead is properly applied to a pad area of the printed circuit board may be added before mounting the electronic component on the printed circuit board.
  • SPI inspection is performed by generating an inspection program from a gerber file in which inspection coordinates, such as a pad area of a printed circuit board to be inspected, are stored.
  • the pad region to which lead is applied is extracted from the bare substrate on which lead is not applied, and the test program is generated using the extracted information.
  • the information obtained through the scan of the bare substrate may include information such as holes, silks, etc., similar to the pad, in addition to the pad area, and thus it is difficult to accurately extract only the pad area.
  • the present invention has been made in view of such a problem, and the present invention provides a method for generating an accurate inspection program by extracting an accurate position and size of a lead-coated region of an inspection substrate without a gerber file.
  • a method of generating an inspection program scanning a bare substrate to obtain first image information, and scanning a lead-coated substrate coated with lead to a pad region of the bare substrate to obtain second image information. And generating a test program by analyzing the first image information and the second image information.
  • the first image information and the second image information each include at least one of two-dimensional image information and three-dimensional image information.
  • the generating of the inspection program may include calculating a difference between the first image information and the second image information, extracting a position and a size of a region having a difference, and extracting the inspection program through the extracted information. It may comprise the step of generating.
  • the difference between the 2D image information included in the first image information and the 2D image information included in the second image information may be determined.
  • the difference of the 2D image information may be a relative gray level difference.
  • the difference between the 3D image information included in the first image information and the 3D image information included in the second image information may be determined.
  • the difference of the 3D image information may be a relative height difference.
  • the calculating of the difference between the first image information and the second image information as another example, an image obtained by two-dimensional imaging the height value of the three-dimensional image information included in the first image information and the second image information It is possible to calculate the difference between the two-dimensional image of the height value of the three-dimensional image information included in.
  • a standard deviation or average value of the first image informations is obtained.
  • the inspection program using a standard deviation or an average value of the second image information.
  • the bare substrate and the lead-coated substrate are inspected, respectively, and the difference between the two-dimensional image information or the three-dimensional image information obtained therefrom is analyzed to determine the exact position and size of the lead coated region. This allows you to create accurate inspection programs without gerber files, reducing false negatives, increasing productivity and reducing inspection program creation time.
  • FIG. 1 is a flowchart illustrating a method of generating a test program according to an exemplary embodiment of the present invention.
  • FIG. 2 is a view schematically showing an inspection apparatus according to an embodiment of the present invention.
  • 3 is a plan view showing a bare substrate.
  • FIG. 4 is a plan view showing a lead-coated substrate.
  • FIG. 5 is a flowchart illustrating a process of generating a test program using first image information and second image information.
  • FIG. 6 is a diagram illustrating an example of calculating a difference between first image information of a bare substrate and second image information of a lead coated substrate.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a flowchart illustrating a method of generating an inspection program according to an embodiment of the present invention
  • FIG. 2 is a view schematically showing an inspection apparatus according to an embodiment of the present invention
  • the SPI inspection apparatus 300 uses the two-dimensional illumination 310 and / or the three-dimensional illumination 320 to perform the bare substrate 100.
  • the first image information including two-dimensional image information and / or three-dimensional image information for the) is obtained through the camera 330.
  • the bare substrate 100 is a substrate before lead is applied, as shown in FIG. 3, and is formed with a pad region 110 to which lead is actually applied, holes 120 and silk 130 where lead is not applied, and the like.
  • the two-dimensional illumination 310 refers to illumination for acquiring two-dimensional image information such as a planar image for initial alignment of an inspection substrate or inspection region setting.
  • the two-dimensional illumination 310 may be formed in a circular ring shape, and may include a fluorescent lamp or a light emitting diode.
  • the two-dimensional illumination 310 is disposed adjacent to the inspection substrate as shown in Figure 2, apart from, a separate illumination disposed adjacent to the camera 330 may be further formed.
  • the three-dimensional illumination 320 refers to illumination for acquiring three-dimensional image information such as height information and visibility information in order to measure the three-dimensional shape of the test substrate.
  • the three-dimensional illumination 320 includes a light source 322 and a grating element 324 for converting light from the light source 322 into phase shifted light and tilted at an angle with respect to the inspection substrate. Supply light.
  • the grating element 324 may be transferred n times by 2 ⁇ / n through a grating transfer device such as a piezo actuator (PZT) to generate three-dimensional light that is phase shifted.
  • N is a natural number of 2 or more.
  • the three-dimensional illumination 320 may be formed in plurality so as to be spaced apart at a predetermined angle with respect to the camera 330 to increase the inspection accuracy.
  • the SPI inspection apparatus 300 shown in FIG. 2 is merely an example, and various kinds of SPI inspection apparatuses including two-dimensional illumination and three-dimensional illumination may be used.
  • the SPI inspection apparatus 300 obtains second image information about the lead-applied substrate 200 separately from acquiring the first image information about the bare substrate 100.
  • the SPI inspection apparatus 300 uses the two-dimensional illumination 310 and / or the three-dimensional illumination 320.
  • the second image information including the 2D image information and / or the 3D image information of the substrate 200 is obtained through the camera 330.
  • the lead-applied substrate 200 refers to a substrate on which lead 210 is applied to the pad region 110 of the bare substrate 100.
  • the SPI inspection apparatus 300 generates an inspection program using the first image information acquired through the scan of the bare substrate 100 and the second image information obtained through the scan of the lead-applied substrate 200. do.
  • FIG. 5 is a flowchart illustrating a process of generating a test program using first image information and second image information.
  • the SPI inspection apparatus 300 calculates a difference between the first image information and the second image information acquired through the camera 330 (S32), and positions and sizes of regions in which the difference occurs. After extracting (S34), a test program is generated through the extracted information (S36).
  • the method for calculating the difference between the first image information and the second image information may be performed through various methods.
  • the two-dimensional image information of the bare substrate 100 included in the first image information and the two-dimensional image information of the lead-applied substrate 200 included in the second image information are compared with the bare substrate 100.
  • the difference between the lead coated substrates 200 can be calculated.
  • the difference between the two-dimensional image information may be obtained by calculating the relative gray level difference between the bare substrate 100 and the lead-applied substrate 200.
  • the 3D image information of the bare substrate 100 included in the first image information and the 3D image information of the lead-applied substrate 200 included in the second image information may be compared with the bare substrate 100.
  • the difference between the lead coated substrates 200 can be calculated.
  • the difference of the 3D image information may be obtained by calculating a relative height difference between the bare substrate 100 and the lead coated substrate 200.
  • a two-dimensional image of the height value of the three-dimensional image information of the bare substrate 100 included in the first image information and the three-dimensional image of the lead-applied substrate 200 included in the second image information The difference between the bare substrate 100 and the lead-applied substrate 200 may be calculated by comparing the two-dimensional image of the height value of the information.
  • FIG. 6 is a diagram illustrating an example of calculating a difference between first image information of a bare substrate and second image information of a lead coated substrate.
  • first height information of the pad region 110 may be obtained as shown in (a).
  • the SPI inspection apparatus 300 generates an inspection program in which an inspection region of the lead-applied substrate 200 is set by using information such as the position and size of the region where the lead 210 is coated.
  • the position and size information of the lead coating area extracted by the SPI inspection apparatus 300 in the same manner as described above is transmitted to the component mounting apparatus for component mounting, it can also be used as coordinates for component mounting.
  • the lead-coated region by analyzing various data obtained through scanning of bare substrates 100 and lead-applied substrates 200 of various samples, it is possible to verify extraction reliability of the lead-coated region. That is, after obtaining a plurality of first image information from a plurality of bare substrates 100, obtaining a plurality of second image information from a plurality of lead-applied substrates 200, and then standard deviation of the first image information. Alternatively, the average value and the standard deviation or average value of the second image information may be compared and analyzed to generate data of a lead-coated region with improved reliability, thereby generating a reliable inspection program.
  • the bare substrate 100 and the lead-applied substrate 200 are inspected, respectively, and the exact position and size of the lead-coated area are extracted by analyzing the difference between the two-dimensional image information or the three-dimensional image information obtained therefrom. By doing so, it is possible to create an accurate inspection program without a gerber file, and to increase productivity and reduce inspection program creation time by reducing false negatives.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

거버 파일이 없는 검사 기판에 대한 검사 프로그램을 생성하는 방법이 개시되어 있다. 검사 프로그램의 생성을 위해서, 베어 기판을 스캔하여 제1 영상정보를 획득하고, 베어 기판의 패드 영역에 납이 도포된 납도포 기판을 스캔하여 제2 영상정보를 획득한 후, 제1 영상정보와 제2 영상정보를 분석하여 검사 프로그램을 생성한다. 제1 영상정보 및 제2 영상정보는 각각 2차원 영상정보 및 3차원 영상정보 중 적어도 하나를 포함할 수 있다. 검사 프로그램을 생성하는 과정은 제1 영상정보와 제2 영상정보의 차이를 계산하고, 차이가 생긴 영역에 대한 위치 및 크기를 추출한 후, 추출된 정보를 통해 검사 프로그램을 생성할 수 있다. 이와 같이, 베어 기판과 납도포 기판을 각각 검사하고 이를 통해 획득된 2차원 영상정보 또는 3차원 영상정보의 차이를 분석함으로써 납이 도포된 영역에 대한 정확한 위치 및 크기를 추출할 수 있다.

Description

검사 프로그램의 생성 방법
본 발명은 검사 프로그램의 생성 방법에 관한 것으로, 보다 상세하게는 거버 파일이 없는 검사 기판의 납도포 영역을 정확히 추출하여 검사 프로그램을 생성하는 방법에 관한 것이다.
일반적으로, 인쇄회로기판 상에 전자 부품들이 실장된 실장기판은 다양한 전자 제품에 사용되고 있다. 이러한 실장기판은 베어 기판의 패드 영역에 납을 도포한 후, 전자 부품의 단자들을 납 도포 영역에 결합시키는 방식으로 제조된다.
한편, 전자 부품을 인쇄회로기판에 실장하기 전에, 인쇄회로기판의 패드 영역에 납이 제대로 도포되었는지를 검사하는 솔더페이스트 검사(Solder Paste Inspection : SPI) 공정이 추가될 수 있다. 통상적인 SPI 검사는 검사할 인쇄회로기판의 패드 영역 등의 검사 좌표가 저장되어 있는 거버 파일(gerber file)로부터 검사 프로그램을 생성하여 진행된다.
그러나, 경우에 따라서는 검사대상 인쇄회로기판에 대한 거버 파일이 없는 경우가 있다. 이와 같이, 거버 파일이 없는 경우에는, 납이 도포되지 않은 베어 기판을 스캔하여 획득한 영상정보를 통해 납이 도포될 패드 영역을 추출하고, 추출된 정보를 이용하여 검사 프로그램을 생성하였다. 그러나, 베어 기판의 스캔을 통해 획득한 정보에는 패드 영역 이외에 패드와 유사하게 생긴 홀, 실크 등의 정보가 포함될 수 있어, 패드 영역만을 정확히 추출하기에 어려움이 있다.
따라서, 본 발명은 이와 같은 문제점을 감안한 것으로써, 본 발명은 거버 파일이 없는 검사 기판의 납도포 영역에 대한 정확한 위치 및 크기를 추출하여 정확한 검사 프로그램을 생성하는 방법을 제공한다.
본 발명의 일 특징에 따른 검사 프로그램의 생성 방법은 베어 기판을 스캔하여 제1 영상정보를 획득하는 단계, 베어 기판의 패드 영역에 납이 도포된 납도포 기판을 스캔하여 제2 영상정보를 획득하는 단계 및 상기 제1 영상정보와 상기 제2 영상정보를 분석하여 검사 프로그램을 생성하는 단계를 포함한다.
상기 제1 영상정보 및 상기 제2 영상정보는 각각 2차원 영상정보 및 3차원 영상정보 중 적어도 하나를 포함한다.
상기 검사 프로그램을 생성하는 단계는, 상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계, 차이가 생긴 영역에 대한 위치 및 크기를 추출하는 단계, 및 추출된 정보를 통해 검사 프로그램을 생성하는 단계를 포함할 수 있다.
상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계에서는, 일 예로, 상기 제1 영상정보에 포함된 2차원 영상정보와 상기 제2 영상정보에 포함된 2차원 영상정보의 차이를 계산할 수 있다. 이때, 상기 2차원 영상정보의 차이는 상대적 계조 차이일 수 있다.
상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계에서는, 다른 예로, 상기 제1 영상정보에 포함된 3차원 영상정보와 상기 제2 영상정보에 포함된 3차원 영상정보의 차이를 계산할 수 있다. 이때, 상기 3차원 영상정보의 차이는 상대적 높이 차이일 수 있다.
상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계에서는, 또 다른 예로, 상기 제1 영상정보에 포함된 3차원 영상정보의 높이값을 2차원 영상화한 영상과 상기 제2 영상정보에 포함된 3차원 영상정보의 높이값을 2차원 영상화한 영상간의 차이를 계산할 수 있다.
한편, 복수의 상기 베어 기판들로부터 복수의 상기 제1 영상정보들을 획득하고, 복수의 상기 납도포 기판들로부터 복수의 상기 제2 영상정보들을 획득한 후, 상기 제1 영상정보들의 표준편차 또는 평균값과 상기 제2 영상정보들의 표준편차 또는 평균값을 이용하여 상기 검사 프로그램을 생성할 수 있다.
이와 같은 검사 프로그램의 생성 방법에 따르면, 베어 기판과 납도포 기판을 각각 검사하고 이를 통해 획득된 2차원 영상정보 또는 3차원 영상정보의 차이를 분석하여 납이 도포된 영역에 대한 정확한 위치 및 크기를 추출할 수 있으며, 이를 통해 거버 파일 없이도 정확한 검사 프로그램을 작성할 수 있으며, 가성 불량을 줄여서 생산성을 높이고 검사 프로그램 작성 시간을 단축할 수 있다.
도 1은 본 발명의 일 실시예에 따른 검사 프로그램의 생성 방법을 나타낸 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 검사 장치를 개략적으로 나타낸 도면이다.
도 3은 베어 기판을 나타낸 평면도이다.
도 4는 납도포 기판을 나타낸 평면도이다.
도 5는 제1 영상정보와 제2 영상정보를 이용하여 검사 프로그램을 생성하는 과정을 나타낸 흐름도이다.
도 6은 베어 기판에 대한 제1 영상정보와 납도포 기판에 대한 제2 영상정보의 차이를 계산하는 일 예를 나타낸 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 검사 프로그램의 생성 방법을 나타낸 흐름도이며, 도 2는 본 발명의 일 실시예에 따른 검사 장치를 개략적으로 나타낸 도면이며, 도 3은 베어 기판을 나타낸 평면도이며, 도 4는 납도포 기판을 나타낸 평면도이다.
도 1 내지 도 4를 참조하면, 거버 파일이 없는 검사 기판의 검사 프로그램을 생성하기 위하여, 베어 기판(100)을 스캔하여 제1 영상정보를 획득하는 단계(S10), 베어 기판의 패드 영역에 납이 도포된 납도포 기판(200)을 스캔하여 제2 영상정보를 획득하는 단계(S20), 및 상기 제1 영상정보와 상기 제2 영상정보를 분석하여 검사 프로그램을 생성하는 단계(S30)를 수행한다.
SPI(Solder Paste Inspection) 검사장치(300)에 베어 기판(100)이 실장되면, SPI 검사장치(300)는 2차원 조명(310) 및/또는 3차원 조명(320)을 이용하여 베어 기판(100)에 대한 2차원 영상정보 및/또는 3차원 영상정보를 포함하는 상기 제1 영상정보를 카메라(330)를 통해 획득한다. 베어 기판(100)은 도 3에 도시된 바와 같이 납이 도포되기 전의 기판으로, 실제로 납이 도포될 패드 영역(110)과 납이 도포되지 않는 홀(120) 및 실크(130) 등이 형성된 기판을 의미한다. 2차원 조명(310)은 검사 기판의 초기 얼라인 또는 검사 영역 설정 등을 위해 평면 이미지와 같은 2차원 영상정보를 획득하기 위한 조명을 의미한다. 예를 들어, 2차원 조명(310)은 원형 링 형상으로 형성되며, 형광 램프 또는 발광 다이오드 등을 포함할 수 있다. 한편, 2차원 조명(310)은 도 2에 도시된 바와 같이 검사 기판에 인접하게 배치되며, 이와는 별도로, 카메라(330)에 인접하게 배치된 별도의 조명이 더 형성될 수 있다. 3차원 조명(320)은 검사 기판의 3차원 형상을 측정하기 위해 높이 정보, 비저빌러티(visibility) 정보 등의 3차원 영상정보를 획득하기 위한 조명을 의미한다. 예를 들어, 3차원 조명(320)은 광원(322) 및 광원(322)으로부터의 광을 위상변위된 광으로 변환시키기 위한 격자 소자(324)를 포함하며, 검사 기판에 대해 일정한 각도로 기울어지게 광을 공급한다. 격자소자(324)는 위상천이된 3차원 광을 발생시키기 위해 페이조 엑추에이터(piezo actuator : PZT) 등의 격자이송장치를 통해 2π/n 만큼씩 n번 이송될 수 있다. 여기서, n은 2 이상의 자연수이다. 한편, 3차원 조명(320)은 검사 정밀도를 높이기 위하여 카메라(330)를 중심으로 일정한 각도로 이격되도록 복수가 형성될 수 있다. 한편, 도 2에 도시된 SPI 검사장치(300)는 일 예에 지나지 않으며, 2차원 조명과 3차원 조명을 포함하는 다양한 종류의 SPI 검사장치가 사용될 수 있다.
SPI 검사장치(300)는 베어 기판(100)에 대한 제1 영상정보의 획득과는 별도로, 납도포 기판(200)에 대한 제2 영상정보를 획득한다. SPI 검사장치(300)에 베어 기판(100) 대신 납도포 기판(200)이 실장되면, SPI 검사장치(300)는 2차원 조명(310) 및/또는 3차원 조명(320)을 이용하여 납도포 기판(200)에 대한 2차원 영상정보 및/또는 3차원 영상정보를 포함하는 상기 제2 영상정보를 카메라(330)를 통해 획득한다. 납도포 기판(200)은 도 4에 도시된 바와 같이, 베어 기판(100)의 패드 영역(110)에 납(210)이 도포된 기판을 의미한다.
이후, SPI 검사장치(300)는 베어 기판(100)의 스캔을 통해 획득한 상기 제1 영상정보와 납도포 기판(200)의 스캔을 통해 획득한 상기 제2 영상정보를 이용하여 검사 프로그램을 생성한다.
도 5는 제1 영상정보와 제2 영상정보를 이용하여 검사 프로그램을 생성하는 과정을 나타낸 흐름도이다.
도 5를 참조하면, SPI 검사장치(300)는 카메라(330)를 통해 획득된 상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하고(S32), 차이가 생긴 영역에 대한 위치 및 크기를 추출한 후(S34), 추출된 정보를 통해 검사 프로그램을 생성한다(S36).
상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 방법은 다양한 방법을 통해 이루어질 수 있다. 일 예로, 상기 제1 영상정보에 포함된 베어 기판(100)의 2차원 영상정보와 상기 제2 영상정보에 포함된 납도포 기판(200)의 2차원 영상정보를 비교하여 베어 기판(100)과 납도포 기판(200)간의 차이를 계산할 수 있다. 예를 들어, 2차원 영상정보의 차이는 베어 기판(100)과 납도포 기판(200)의 상대적 계조 차이를 계산하여 얻을 수 있다. 다른 예로, 상기 제1 영상정보에 포함된 베어 기판(100)의 3차원 영상정보와 상기 제2 영상정보에 포함된 납도포 기판(200)의 3차원 영상정보를 비교하여 베어 기판(100)과 납도포 기판(200)간의 차이를 계산할 수 있다. 예를 들어, 3차원 영상정보의 차이는 베어 기판(100)과 납도포 기판(200)의 상대적 높이 차이를 계산하여 얻을 수 있다. 또 다른 예로, 상기 제1 영상정보에 포함된 베어 기판(100)의 3차원 영상정보의 높이값을 2차원 영상화한 영상과 상기 제2 영상정보에 포함된 납도포 기판(200)의 3차원 영상정보의 높이값을 2차원 영상화한 영상을 비교하여 베어 기판(100)과 납도포 기판(200)간의 차이를 계산할 수 있다.
도 6은 베어 기판에 대한 제1 영상정보와 납도포 기판에 대한 제2 영상정보의 차이를 계산하는 일 예를 나타낸 도면이다.
도 6을 참조하면, SPI 검사장치(300)를 통해 베어 기판(100)을 스캔하면 (a)에 도시된 것과 같이 패드 영역(110)의 제1 높이 정보를 획득할 수 있다. 이와는 별도로, SPI 검사장치(300)를 통해 납도포 기판(200)을 스캔하면 (b)에 도시된 것과 같이 패드 영역(110)에 납(210)이 도포된 부분의 제2 높이 정보를 획득할 수 있다. 따라서, 납도포 기판(200)에 대한 상기 제2 높이 정보에서 베어 기판(100)에 대한 상기 제1 높이 정보를 빼게 되면, (c)에 도시된 바와 같이 실질적으로 납(210)이 도포되어 있는 영역의 위치 및 크기를 추출할 수 있게 된다.
이후, SPI 검사장치(300)는 납(210)이 도포되어 있는 영역의 위치 및 크기 등의 정보를 이용하여 납도포 기판(200)의 검사 영역 등이 설정된 검사 프로그램을 생성한다. 한편, SPI 검자장치(300)에서 상기와 같은 방법으로 추출된 납도포 영역의 위치 및 크기 정보는 부품 실장을 위한 부품실장장치에 전송되어, 부품 실장을 위한 좌표로도 이용될 수 있다.
한편, 여러 샘플의 베어 기판들(100) 및 납도포 기판들(200)의 스캔을 통해 획득한 여러 데이터를 분석함으로써, 납도포 영역에 대한 추출 신뢰성을 검증할 수 있다. 즉, 복수의 베어 기판들(100)로부터 복수의 제1 영상정보들을 획득하고, 복수의 납도포 기판들(200)로부터 복수의 제2 영상정보들을 획득한 후, 상기 제1 영상정보들의 표준편차 또는 평균값과 상기 제2 영상정보들의 표준편차 또는 평균값을 비교분석하여 신뢰성이 향상된 납도포 영역의 데이터를 생성할 수 있으며, 이를 통해 신뢰성 있는 검사 프로그램을 생성할 수 있다.
이와 같이, 베어 기판(100)과 납도포 기판(200)을 각각 검사하고 이를 통해 획득된 2차원 영상정보 또는 3차원 영상정보의 차이를 분석하여 납이 도포된 영역에 대한 정확한 위치 및 크기를 추출함으로써, 거버 파일 없이도 정확한 검사 프로그램을 작성할 수 있으며, 가성 불량을 줄여서 생산성을 높이고 검사 프로그램 작성 시간을 단축할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다. 따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어져야 한다.

Claims (9)

  1. 베어 기판을 스캔하여 제1 영상정보를 획득하는 단계;
    베어 기판의 패드 영역에 납이 도포된 납도포 기판을 스캔하여 제2 영상정보를 획득하는 단계; 및
    상기 제1 영상정보와 상기 제2 영상정보를 분석하여 검사 프로그램을 생성하는 단계를 포함하는 검사 프로그램의 생성 방법.
  2. 제1항에 있어서,
    상기 제1 영상정보 및 상기 제2 영상정보는 각각 2차원 영상정보 및 3차원 영상정보 중 적어도 하나를 포함하는 것을 특징으로 하는 검사 프로그램의 생성 방법.
  3. 제2항에 있어서, 상기 검사 프로그램을 생성하는 단계는,
    상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계;
    차이가 생긴 영역에 대한 위치 및 크기를 추출하는 단계; 및
    추출된 정보를 통해 검사 프로그램을 생성하는 단계를 포함하는 것을 특징으로 하는 검사 프로그램의 생성 방법.
  4. 제3항에 있어서, 상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계는,
    상기 제1 영상정보에 포함된 2차원 영상정보와 상기 제2 영상정보에 포함된 2차원 영상정보의 차이를 계산하는 것을 특징으로 하는 검사 프로그램의 생성 방법.
  5. 제4항에 있어서,
    상기 2차원 영상정보의 차이는 상대적 계조 차이인 것을 특징으로 하는 검사 프로그램의 생성 방법.
  6. 제3항에 있어서, 상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계는,
    상기 제1 영상정보에 포함된 3차원 영상정보와 상기 제2 영상정보에 포함된 3차원 영상정보의 차이를 계산하는 것을 특징으로 하는 검사 프로그램의 생성 방법.
  7. 제6항에 있어서,
    상기 3차원 영상정보의 차이는 상대적 높이 차이인 것을 특징으로 하는 검사 프로그램의 생성 방법.
  8. 제3항에 있어서, 상기 제1 영상정보와 상기 제2 영상정보의 차이를 계산하는 단계는,
    상기 제1 영상정보에 포함된 3차원 영상정보의 높이값을 2차원 영상화한 영상과 상기 제2 영상정보에 포함된 3차원 영상정보의 높이값을 2차원 영상화한 영상간의 차이를 계산하는 것을 특징으로 하는 검사 프로그램의 생성 방법.
  9. 제1항에 있어서,
    복수의 상기 베어 기판들로부터 복수의 상기 제1 영상정보들을 획득하고, 복수의 상기 납도포 기판들로부터 복수의 상기 제2 영상정보들을 획득한 후, 상기 제1 영상정보들의 표준편차 또는 평균값과 상기 제2 영상정보들의 표준편차 또는 평균값을 이용하여 상기 검사 프로그램을 생성하는 것을 특징으로 하는 검사 프로그램의 생성 방법.
PCT/KR2011/000683 2010-02-02 2011-02-01 검사 프로그램의 생성 방법 WO2011096695A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800081376A CN102742380A (zh) 2010-02-02 2011-02-01 检测程序的生成方法
US13/576,829 US20130039563A1 (en) 2010-02-02 2011-02-01 Method of generating inspection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0009365 2010-02-02
KR1020100009365A KR101121994B1 (ko) 2010-02-02 2010-02-02 검사 프로그램의 생성 방법

Publications (2)

Publication Number Publication Date
WO2011096695A2 true WO2011096695A2 (ko) 2011-08-11
WO2011096695A3 WO2011096695A3 (ko) 2011-12-01

Family

ID=44355940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000683 WO2011096695A2 (ko) 2010-02-02 2011-02-01 검사 프로그램의 생성 방법

Country Status (4)

Country Link
US (1) US20130039563A1 (ko)
KR (1) KR101121994B1 (ko)
CN (1) CN102742380A (ko)
WO (1) WO2011096695A2 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716220B2 (en) 2014-08-04 2020-07-14 Ok International, Inc. Variable temperature controlled soldering iron
US9516762B2 (en) * 2014-08-04 2016-12-06 Ok International Inc. Soldering iron with automatic soldering connection validation
US10688578B2 (en) 2014-08-04 2020-06-23 OK International, Inc Variable temperature controlled soldering iron
KR20160019564A (ko) * 2014-08-11 2016-02-22 주식회사 고영테크놀러지 검사 장치 및 방법과, 이를 포함하는 부품 실장 시스템 및 방법
CA2915654C (en) * 2015-07-08 2018-05-01 Delaware Capital Formation, Inc. An intelligent soldering cartridge for automatic soldering connection validation
CN106546597A (zh) * 2015-09-22 2017-03-29 泰科电子(上海)有限公司 焊接质量检测系统和方法
JP6225222B1 (ja) * 2016-06-14 2017-11-01 Ckd株式会社 半田印刷検査装置
CN113866171B (zh) * 2021-12-02 2022-03-18 武汉飞恩微电子有限公司 电路板点胶检测方法、设备及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317972B1 (en) * 1998-05-19 2001-11-20 Fuji Machine Mfg. Co., Ltd. Method for mounting and inspecting the mounting of electric components
KR20050055883A (ko) * 2003-12-09 2005-06-14 삼성코닝정밀유리 주식회사 유리기판의 검사장치 및 검사방법
KR20070115274A (ko) * 2006-06-01 2007-12-06 삼성전자주식회사 어셈블리 기판의 검사장치 및 표시패널의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229017A (ja) * 1986-03-31 1987-10-07 Toshiba Corp 検査装置
US6298149B1 (en) * 1996-03-21 2001-10-02 Cognex Corporation Semiconductor device image inspection with contrast enhancement
US5912984A (en) * 1996-12-19 1999-06-15 Cognex Corporation Method and apparatus for in-line solder paste inspection
US6721461B1 (en) * 1997-11-24 2004-04-13 Cognex Technology And Investment Corporation Method and apparatus using image subtraction and dynamic thresholding
SG121898A1 (en) * 2004-10-06 2006-05-26 Generic Power Pte Ltd System for 2-D and 3-D vision inspection
JP4563205B2 (ja) * 2005-02-08 2010-10-13 富士機械製造株式会社 実装された電子部品の検査方法及び装置
WO2008124397A1 (en) * 2007-04-03 2008-10-16 David Fishbaine Inspection system and method
KR101525251B1 (ko) * 2008-12-29 2015-06-03 주식회사 동부하이텍 노이즈 필터

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317972B1 (en) * 1998-05-19 2001-11-20 Fuji Machine Mfg. Co., Ltd. Method for mounting and inspecting the mounting of electric components
KR20050055883A (ko) * 2003-12-09 2005-06-14 삼성코닝정밀유리 주식회사 유리기판의 검사장치 및 검사방법
KR20070115274A (ko) * 2006-06-01 2007-12-06 삼성전자주식회사 어셈블리 기판의 검사장치 및 표시패널의 제조방법

Also Published As

Publication number Publication date
KR20110089897A (ko) 2011-08-10
KR101121994B1 (ko) 2012-03-09
CN102742380A (zh) 2012-10-17
US20130039563A1 (en) 2013-02-14
WO2011096695A3 (ko) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011096695A2 (ko) 검사 프로그램의 생성 방법
US10215556B2 (en) Three-dimensional measuring apparatus
TWI706143B (zh) 電路板點膠檢測裝置及檢測方法
JP7122524B2 (ja) 検査プログラム生成システム、検査プログラムの生成方法、及び検査プログラムの生成用プログラム
KR101241175B1 (ko) 실장기판 검사장치 및 검사방법
KR20100041025A (ko) 3차원형상 측정방법
WO2015026211A1 (ko) 기판 검사 장치
JP2012112961A (ja) 検査方法
KR20120054689A (ko) 검사방법
KR20120052087A (ko) 기판 검사방법
JP2016100527A (ja) 基板の識別装置、基板の識別方法、及び基板のトレーサビリティシステム
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
KR101132779B1 (ko) 검사방법
WO2017018788A1 (ko) 기판 검사 장치 및 방법
JP2005128016A (ja) 検査システムおよび方法
WO2016024778A1 (ko) 검사 장치 및 방법과, 이를 포함하는 부품 실장 시스템 및 방법
JP5615076B2 (ja) 部品有無判定装置及び部品有無判定方法
JP5832167B2 (ja) 部品有無判定装置及び部品有無判定方法
KR101642897B1 (ko) 검사방법
KR101056995B1 (ko) 3차원 형상 검사방법
WO2020124460A1 (zh) 图像获取方法及系统
WO2016093597A9 (ko) 기판 상에 형성된 부품의 터미널 검사방법 및 기판 검사장치
KR101132787B1 (ko) 기판 검사 방법
KR101444258B1 (ko) 기판 검사 시의 보상 매트릭스의 유효성 판단 방법
WO2015037918A1 (ko) 기판 검사를 위한 기준 데이터 생성방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008137.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13576829

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11739991

Country of ref document: EP

Kind code of ref document: A2