WO2011096293A1 - Method of manufacturing multi-layered printed circuit board - Google Patents

Method of manufacturing multi-layered printed circuit board Download PDF

Info

Publication number
WO2011096293A1
WO2011096293A1 PCT/JP2011/051255 JP2011051255W WO2011096293A1 WO 2011096293 A1 WO2011096293 A1 WO 2011096293A1 JP 2011051255 W JP2011051255 W JP 2011051255W WO 2011096293 A1 WO2011096293 A1 WO 2011096293A1
Authority
WO
WIPO (PCT)
Prior art keywords
via hole
plated
conductive film
plating
sided
Prior art date
Application number
PCT/JP2011/051255
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 松田
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to JP2011552730A priority Critical patent/JP5485299B2/en
Priority to CN201180000967.4A priority patent/CN102308679B/en
Publication of WO2011096293A1 publication Critical patent/WO2011096293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias

Definitions

  • the present invention relates to a method for manufacturing a multilayer printed wiring board, and more particularly to a method for manufacturing a build-up type multilayer printed wiring board.
  • This build-up type multilayer flexible printed wiring board is obtained by forming a double-sided flexible printed wiring board or a multilayer flexible printed wiring board as a core substrate and forming one or two build-up layers on both sides or one side of the core substrate. .
  • the buildup type multilayer flexible printed wiring board is subjected to interlayer conduction by plating the inner wall of the bottomed via hole (conduction hole). The plated via hole obtained is provided.
  • each component of the printed wiring board is thermally expanded, so that the plated via hole is easily broken.
  • the plating solution tends to stay at the bottom of the via hole, so that a desired plating thickness cannot be obtained. For this reason, the deeper the bottomed via hole is, the more difficult it is to ensure the electrical reliability of the via wiring.
  • the thickness of the plating film formed on the inner wall of the bottomed via hole is increased, the thickness of the conductor layer formed on the buildup layer is inevitably increased accordingly.
  • the circuit pattern of the outer layer is formed by wet etching the conductor layer on the buildup layer according to a desired pattern. For this reason, as the thickness of the conductor layer increases, it becomes difficult to finely process the conductor layer on the build-up layer. As a result, a fine pattern cannot be formed as the circuit pattern of the outer layer, and it is difficult to mount electronic components on the buildup layer at high density.
  • the conventional build-up type multilayer flexible printed wiring board has a problem that it is difficult to satisfy the demand for high-density mounting.
  • the stack via structure refers to a structure in which an interlayer connection portion constituted by a plating via hole of a buildup layer is placed on an interlayer connection portion constituted by a plating via hole of a core substrate.
  • FIG. 3 is a process cross-sectional view for explaining a manufacturing method of a build-up type multilayer printed wiring board having a stacked via structure.
  • a double-sided copper clad laminate 104 having a flexible insulating base material 101 such as polyimide (for example, 25 ⁇ m thick) and a copper foil 102 and a copper foil 103 (both for example 8 ⁇ m thick) on both sides thereof is prepared.
  • a bottomed via hole 105 which is a bottomed via hole is formed on the double-sided copper-clad laminate 104 by a laser processing method.
  • the copper foil 103 is exposed at the bottom of the bottomed via hole 105.
  • a conductive treatment and subsequent electrolytic plating treatment are performed on the copper foils 102 and 103 and the bottomed via hole 105, thereby forming an electrolytic plating film on the copper foils 102 and 103 and on the inner wall of the bottomed via hole 105.
  • the thickness of the electrolytic plating film is set to a value (for example, about 15 ⁇ m) necessary to ensure connection reliability of the via wiring.
  • a circuit pattern (inner layer circuit) is obtained by etching the copper foil 102 and the copper foil 103 of the flexible insulating base material 101 according to a predetermined pattern by a photofabrication method. Pattern). More specifically, circuit patterns are formed on both surfaces of the flexible insulating base material 101 by a series of steps including resist layer formation, exposure, development, copper foil etching, and resist layer peeling.
  • a coverlay 109 having an adhesive layer 108 is prepared on an insulating film 107 (for example, 12 ⁇ m thick) such as a polyimide film.
  • the adhesive layer 108 is made of an adhesive such as acrylic or epoxy.
  • a laminating process is performed in which the cover lay 109 is attached onto the flexible insulating base material 101 on which the circuit pattern is formed.
  • the thickness of the adhesive layer 108 is set to a thickness (for example, 25 ⁇ m) that can completely fill the inside of the plated bottomed via hole 106 with an adhesive.
  • a single-sided copper clad laminate 111 having a copper foil (for example, 12 ⁇ m thick) on one side of a flexible insulating base material (for example, polyimide having a thickness of 25 ⁇ m) is prepared.
  • An opening is formed in a predetermined portion of the copper foil of the single-sided copper clad laminate 111 by the photofabrication method described above.
  • the copper foil having the opening serves as a conformal mask (also referred to as a metal mask) for laser shielding.
  • the opening formed in the copper foil is for removing a resin such as a flexible insulating base material exposed at the bottom of the opening by laser processing to form a via hole.
  • the single-sided copper-clad laminates 111 and 111 having a conformal mask are bonded to the adhesive layers 112 and 112 using an adhesive for building up the double-sided core substrate 110. Are laminated and adhered to the front and back surfaces of the double-sided core substrate 110, respectively.
  • the step via hole 113A and the via holes 113B and 113C are formed by performing laser processing using the conformal mask of the single-sided copper clad laminate 111.
  • the conductive treatment and the subsequent electroplating treatment are performed on the copper foil of the single-sided copper clad laminate 111 on the inner wall of the step via hole 113A and the inner walls of the via holes 113B and 113C.
  • an electrolytic plating film is formed.
  • the thickness of the electrolytic plating film is, for example, about 25 to 30 ⁇ m in order to ensure the reliability of interlayer connection.
  • plating buildup via holes 114A, 114B, and 114C for obtaining interlayer conduction between the core substrate and the buildup layer are formed.
  • the plating buildup via hole 114A is obtained by plating the inner wall of the step via hole 113A
  • the plating buildup via hole 114B is obtained by plating the inner wall of the via hole 113B facing the step via hole 113A
  • the plating buildup via hole 114C is obtained by plating the inner wall of the via hole 113C.
  • the outer layer circuit patterns 115 and 115 are formed by etching the copper foil of the single-sided copper-clad laminates 111 and 111 according to a predetermined pattern using a photofabrication method. To do. After that, if necessary, a photo solder resist layer (not shown) is formed, surface treatments such as solder plating, nickel plating, gold plating are applied to the terminals of the circuit pattern, and outer shape processing is performed by punching with a mold or the like. Do.
  • a build-up type multilayer printed wiring board 116 having a stacked via structure is obtained.
  • the plated buildup via hole 114A is formed immediately above the plated bottomed via hole 106 of the inner-layer double-sided core substrate 110, and the plated bottomed via hole 106 and the plated buildup via hole 114A are stacked.
  • a via structure is formed.
  • the interlayer connection between the front surface and the back surface of the double-sided core substrate 110 is made by the plated bottom via hole 106.
  • the build-up type multilayer printed wiring board 116 includes a component mounting portion 116a in which a build-up layer is laminated on the double-sided core substrate 110, and a flexible extending from the component mounting portion 116b. Cable portion 116b.
  • the flexible cable portion 116b is a part of the double-sided core substrate 110 on which no buildup layer is provided.
  • the inside of the plated bottomed via hole 106 needs to be completely filled with an adhesive.
  • the plated-bottomed via hole 106 is harder to fill the adhesive than the plated through via hole formed by plating the inner wall of the via hole that penetrates the double-sided copper clad laminate 104. This is because a through-plating via hole can be filled from two directions of the front and back surfaces, whereas a bottomed plated via hole can be filled only from one direction. For this reason, the thickness of the adhesive layer 108 is inevitably increased as compared to the case where the interlayer connection of the double-sided core substrate 110 is performed by a plated through via hole. Therefore, the build-up via hole 113 is deepened.
  • the plating thickness for ensuring the reliability of the interlayer connection is increased.
  • the plating thickness for ensuring the reliability of the interlayer connection is increased.
  • the plated build-up via holes 114A, 114B, and 114C are formed as described above, it is necessary to perform electrolytic plating to form a plating film of about 25 to 30 ⁇ m. If this level of electrolytic plating is performed on the copper foil (12 ⁇ m thick) of the single-sided copper-clad laminate 111, the thickness of the conductor layer (copper foil + electrolytic plating film) on the single-sided copper-clad laminate 111 is 37-42 ⁇ m. Since the patterning of the conductor layer is performed by wet etching, it is difficult to form a fine circuit pattern with a circuit pitch of about 100 ⁇ m with a high yield.
  • An object of the present invention is to provide a method for producing a build-up type multilayer printed wiring board having a structure.
  • the first conductive film and the second conductive film are electrically connected to a double-sided conductive film-clad laminate having a first conductive film and a second conductive film on a front surface and a back surface, respectively.
  • a plating buildup via hole that electrically connects the third conductive film and the inner layer circuit pattern is formed by plating the third conductive film and the inner wall of the step via hole.
  • An outer layer circuit pattern is formed by etching the third conductive film that has been plated in accordance with a predetermined pattern, thereby providing a method for manufacturing a multilayer printed wiring board.
  • the present invention has the following effects.
  • the stacked via structure includes a plated bottomed via hole that electrically connects the front surface and the back surface of a double-sided flexible substrate, and this plating. It is comprised from the plating buildup via hole arrange
  • This plated build-up via hole is for electrically connecting the outer layer circuit pattern and the inner layer circuit pattern, and the plating film is formed on the inner wall of the step via hole with the bottomed via hole formed on the double-sided flexible substrate as a small diameter hole. Is formed.
  • a step via structure including a plated bottom via hole and a plated buildup via hole formed thereon is formed.
  • the thickness of the adhesive layer can be made as small as possible within a range in which the adhesive can be filled into the through via hole of the double-sided flexible substrate.
  • the step via hole can be made shallower than in the prior art.
  • the yield can be improved, and the plating thickness required to ensure the connection reliability of the via wiring can be reduced as much as possible. Therefore, according to the present invention, the outer layer circuit pattern formed in the buildup layer can be made finer.
  • an electrolytic plating film is also formed on the plated bottomed via hole of the double-sided flexible substrate. This reinforces the plated bottomed via hole where thermal stress tends to concentrate compared to the plated through via hole due to the asymmetric shape, and can improve the connection reliability.
  • the plating thickness of the plated-bottomed via hole can be reduced to such an extent that the connection reliability of the plated through via hole can be ensured. As a result, the time required for the plating process is shortened, and the cost can be reduced. Further, the inner layer circuit pattern formed on the double-sided flexible substrate can be miniaturized.
  • a method for stably and inexpensively manufacturing a build-up type multilayer printed wiring board having a stack via structure capable of high-density mounting is provided.
  • FIG. 1A to 1C are process cross-sectional views for explaining a manufacturing method of the build-up type multilayer printed wiring board 32.
  • FIG. FIG. 2 is a cross-sectional view of the build-up type multilayer printed wiring board 32 according to the present embodiment.
  • copper foil 2 and copper foil 3 are formed on both sides of a flexible insulating base material 1 (for example, polyimide having a thickness of 25 ⁇ m), respectively. 2 is prepared.
  • the thicknesses of the copper foil 2 and the copper foil 3 are both 5 ⁇ m, for example.
  • the bottomed via hole 6 is a bottomed via hole in which the copper foil 3 is exposed on the bottom surface.
  • Both the through-hole 5 and the bottomed via-hole 6 have a processing diameter of, for example, 70 ⁇ m.
  • the first method is a method called a conformal laser processing method.
  • a conformal laser processing method In this method, an opening having the same diameter as the via hole diameter is provided in the copper foils 2 and 3 to form a conformal mask. Thereafter, the conformal mask is irradiated with laser light to remove the insulating resin exposed in the opening.
  • the second method is a method called a direct laser processing method. In this method, without forming a conformal mask, laser light is directly irradiated on the copper foil to remove the copper foil and the underlying insulating resin.
  • a direct laser processing method using a carbon dioxide gas laser is selected in consideration of productivity, not a conformal laser processing method that requires a copper foil etching process by a photofabrication method.
  • the copper foils 2 and 3 of the double-sided copper clad laminate 4 are subjected to surface treatment. That is, the roughening process which makes the copper foil surface irradiated with a laser beam low roughness is performed. Thereby, when performing laser processing using a carbon dioxide laser (wavelength: about 9.8 ⁇ m), the absorption of laser light of the copper foils 2 and 3 can be stably improved.
  • the multi bond 150 of Nippon McDermitt Co., Ltd. was used for this roughening process. Thereby, the adhesiveness with the electrolytic copper plating film 7 formed in a later step is ensured, and the absorption of the carbon dioxide laser beam on the surface of the copper foil can be improved. Actually, it was confirmed that the absorption rate of the carbon dioxide laser beam was improved from about 20% to about 30% before and after the surface treatment.
  • the through via hole 5 and the bottomed via hole 6 are processed simultaneously. For this reason, processing of the copper foil 2 is facilitated by performing the above-described roughening treatment on the surface of the copper foil 2.
  • the copper foil surface is processed to have a low roughness so as not to penetrate the copper foil 3 when forming the bottomed via hole 6, thereby reducing the absorption of laser light. preferable.
  • the copper foils 2 and 3 of the double-sided copper-clad laminate 4 are thinner, penetration of the copper foils 2 and 3 is more likely to occur during laser processing. Therefore, when the thickness of the copper foil is as thin as 10 ⁇ m or less as in the present embodiment, in order to facilitate the formation of the bottomed via hole 6, the roughening treatment is hardly performed as the back surface treatment, and the low roughness. It is preferable to use a copper foil 3.
  • the laser processing method will be described in detail.
  • the energy of the laser beam per shot is increased (referred to as power P).
  • the processing of the copper foil 2 is completed with one shot.
  • the resin of the flexible insulating base material 1 is processed until the copper foil 3 is exposed, the energy of the laser beam per shot is reduced to (1/2) P to (1/3) P, and 2 Complete resin processing in 3 shots.
  • the case of the through via hole 5 will be described.
  • the copper foil and the resin on both sides are processed using the laser beam having the above-mentioned power P as the energy of the laser beam per shot. 3 to 4 shots are continuously irradiated to complete the processing of the through via hole 5.
  • the back surface (surface in contact with the base material) of the copper foil 3 serving as the bottom of the bottomed via hole 6 is set to a low roughness in order to facilitate the formation of the bottomed via hole 6.
  • a roughening process is performed on the back surface (surface in contact with the base material) of the copper foil 2.
  • the through via hole 5 is formed by processing from the surface of the copper foil 3. According to this method, the through via hole can be efficiently formed while facilitating the formation of the bottomed via hole 6.
  • the through via hole 5 may be formed by performing laser processing from two directions of the surface of the copper foil 2 and the surface of the copper foil 3. In this case, since the surface of the copper foils 2 and 3 is subjected to the roughening treatment, the processing from any direction is easy, and the state of the back surface treatment (roughness level) of the copper foil is considered There is an advantage that it is not necessary.
  • plasma treatment and wet etching are performed to remove smear (resin residue) generated when the through via hole 5 and the bottomed via hole 6 are formed.
  • the optimum conditions for this plasma treatment for the through via hole 5 and the bottomed via hole 6 are almost the same.
  • wet etching using sodium persulfate or the like optimum conditions differ between the two. That is, almost no wet etching is required for the through via hole 5. Rather, the etching may cause the copper foils 2 and 3 to recede and adversely affect the subsequent conductive treatment.
  • the bottomed via hole 6 needs to be etched by 1 to 2 ⁇ m in order to remove dissimilar metals such as nickel and chromium on the back surface of the copper foil 3 by the back surface treatment.
  • electrolysis treatment and subsequent electrolytic copper plating treatment are applied to the inner walls of the through via holes 5 and the bottomed via holes 6 on the copper foils 2 and 3.
  • a copper plating film 7 (about 8 ⁇ m thick) is formed.
  • the copper plating layer 8 on the copper foils 2 and 3, the plating through via hole 9, and the plated bottomed via hole 10 are formed.
  • the plated through via hole 9 is a through type interlayer conductive path
  • the plated bottomed via hole 10 is a bottomed type interlayer conductive path. Both of these plated via holes electrically connect the copper foil 2 on the front surface of the flexible insulating base material 1 and the copper foil 3 on the back surface.
  • the through-hole via 5 and the bottomed via-hole 6 differ in the liquid renewability of the treatment liquid in the above-described conductive treatment process and electrolytic copper plating process. That is, the bottomed via hole 6 is inferior in liquid renewability as compared to the through via hole 5. For this reason, the process flow is basically performed under conditions that allow the bottomed via hole 6 to be processed.
  • the electrolytic copper plating treatment is preferably performed using a plating bath containing a high concentration of copper sulfate.
  • resist layers 11 and 11 are formed on the copper plating layers 8 and 8, respectively.
  • a dry film resist is used for forming the resist layer 11. It is preferable to use a dry film resist having a thickness (for example, 20 ⁇ m) capable of tenting both the plated through via hole 9 and the plated bottomed via hole 10. Thereby, it is possible to prevent the resist from entering the plated through via hole 9 and the plated bottomed via hole 10 and facilitate the subsequent peeling of the resist layer 11.
  • a liquid resist or an electrodeposition resist can be used instead of the dry film resist.
  • the resist layer 11 is etched according to a predetermined pattern by exposure and development of the resist layer 11 by a photofabrication method, and then the patterned resist layer 11 is used as a mask.
  • the copper plating layer 8 and the copper foils 2 and 3 are etched. Thereafter, the resist layer 11 is peeled off. Thereby, inner layer circuit patterns 12A and 12B are formed on the front surface and the back surface of the flexible insulating base material 1, respectively.
  • the double-sided flexible substrate 13 shown in FIG. 1A (4) is obtained through the steps so far.
  • a coverlay 16 having an insulating film 14 (for example, 12 ⁇ m thick) such as a polyimide film and an adhesive layer 15 formed on one surface of the insulating film 14 is prepared.
  • the adhesive layer 15 is made of an adhesive such as acrylic or epoxy.
  • the lamination process which affixes the coverlay 16 on both surfaces of the double-sided flexible substrate 13 using a vacuum laminator etc. is performed.
  • the inner layer circuit patterns 12 ⁇ / b> A and 12 ⁇ / b> B and the plated through via hole 9 are filled with the adhesive layer 15.
  • the adhesive layer 15 in the present embodiment only needs to be able to completely fill the plated through via hole 9, and it is not necessary to consider the filled state inside the plated bottomed via hole 10. Therefore, the adhesive layer 15 is made as thin as possible within a range in which the plated through via hole 9 can be completely filled.
  • the thickness of the adhesive layer 15 is 15 ⁇ m.
  • an air void 15a may be generated inside the plated bottomed via hole 10. However, since all the adhesive in the plated bottomed via hole 10 is removed by laser processing in a later step, the air void 15a is not a problem.
  • the double-sided core substrate 17 that is the core substrate of the multilayer printed wiring board shown in FIG. 1B (5) is obtained.
  • a single-sided copper-clad having, for example, a 12 ⁇ m-thick copper foil 18 (third conductive film) on one side of a flexible insulating base material 19 (for example, 25 ⁇ m-thick polyimide)
  • the laminated board 20 is prepared.
  • the opening part 18a is formed in the copper foil 18 of the single-sided copper clad laminated board 20 by the photofabrication method. More specifically, a resist layer (not shown) is formed on the copper foil 18, and this resist layer is patterned by exposure and development. Then, the copper foil 18 is etched using the patterned resist layer as a mask. Thereby, the conformal mask 21 is formed.
  • the opening 18a is for forming a via hole by removing the resin of the base material by laser processing in a later process.
  • the single-sided copper clad laminates 20 and 20 on which the conformal mask 21 is formed using the adhesive for build-up are interposed through the adhesive layers 22 and 22. Then, the both sides of the double-sided core substrate 17 are laminated and bonded.
  • the adhesive used here is preferably a low-flow type prepreg, a bonding sheet, or the like that does not flow out.
  • the copper foil 18 is etched according to a predetermined pattern to form the conformal mask 21. It may be formed.
  • step via holes 23 and via holes 24A and 24B are exposed at the bottoms.
  • the step via hole 23 penetrates the flexible insulating base material 19, the adhesive layer 22, the insulating film 14, and the adhesive layer 15, and the plated bottomed via hole 10 is exposed at the bottom.
  • all the resin inside the plated bottom via hole 10 is removed, and the air void 15a disappears.
  • the via holes 24A and 24B penetrate the flexible insulating base material 19, the adhesive layer 22, the insulating film 14, and the adhesive layer 15, and the inner layer circuit patterns 12A and 12B are exposed at the bottoms.
  • step via hole 23 it is necessary to remove the resin inside the plated bottom via hole 10 as well. For this reason, the amount of the resin material to be removed is larger in the step via hole 23 than in the via holes 24A and 24B. For this reason, when forming the step via hole 23, it is preferable to increase the number of laser processing shots or to increase the pulse width of the laser beam.
  • a laser used for this laser processing a UV-YAG laser, a carbonic acid laser, an excimer laser, or the like can be selected.
  • the electroplating treatment and the subsequent electrolytic plating treatment are performed on the copper foil 18 on the inner wall of the step via hole 23 and the inner walls of the via holes 24A and 24B.
  • the copper plating layer 26 on the copper foil 18 and the plating buildup via holes 27, 28, and 29 are formed. All of these plated via holes electrically connect the inner layer circuit patterns 12A and 12B to the copper foil 18 and the copper plating layer 26 (the later outer layer circuit pattern 30).
  • the plating buildup via hole 27 is formed by forming a plating layer on the inner wall of the step via hole 23.
  • the plating buildup via hole 28 is formed by forming a plating layer on the inner wall of the via hole 24 ⁇ / b> A facing the step via hole 23.
  • the plating buildup via hole 29 is formed by forming a plating layer on the inner wall of the via hole 24B.
  • the thickness of the electrolytic plating film 25 is a value necessary for ensuring connection reliability.
  • the thickness of the adhesive layer 15 is reduced as compared with the prior art, so that the thickness of the electrolytic plating film 25 can be reduced to, for example, about 15 ⁇ m to 20 ⁇ m, compared to the conventional (for example, about 25 to 30 ⁇ m). it can.
  • the outer layer circuit pattern 30 is formed by etching the copper foil 18 and the electrolytic plating film 25 in accordance with a predetermined pattern using a photofabrication method. After that, if necessary, a photo solder resist layer (not shown) is formed, surface treatments such as solder plating, nickel plating, gold plating are applied to the terminals of the circuit pattern, and outer shape processing is performed by punching with a mold or the like. Do.
  • the build-up type multilayer printed wiring board 32 having the stack via structure according to the present embodiment shown in FIG. 2 is obtained.
  • outer-layer single-sided copper-clad laminates 20 and 20 are laminated on the front and back surfaces of a double-sided core substrate 17 serving as an inner layer via adhesive layers 22 and 22. It is what.
  • the present embodiment is not limited to this, and the single-sided copper-clad laminate of the outer layer is provided via the adhesive layer 22 only on the surface of the double-sided core substrate 17, that is, on the opening side of the plated bottomed via hole 10 of the double-sided core substrate 17.
  • the plate 20 may be laminated. Thereby, the multilayer printed wiring board provided with the buildup layer only on one side can be obtained.
  • the inner layer circuit patterns 12A and 12B are electrically connected to the outer layer circuit pattern 30 through plating buildup via holes 27, 28 and 29.
  • the build-up type multilayer printed wiring board 32 obtained by the manufacturing method according to the present embodiment includes a component mounting portion 32a in which the build-up layer 31 is laminated on the double-sided core substrate 17 that is a flexible printed wiring board,
  • the double-sided core substrate 17 has a flexible cable portion 32b on which no buildup layer is laminated. That is, the flexible cable portion 32b is configured to extend from the component mounting portion 32a.
  • the present embodiment is not limited to this, and a multilayer printed wiring board in which the double-sided core substrate 17 does not constitute the flexible cable 32b may be manufactured.
  • the laser processing method includes forming an opening larger than the diameter of the upper hole of the step via hole 23 in the copper foil 18, and then There is a large window method in which a laser beam having the same beam diameter as the hole diameter is irradiated.
  • the laser processing methods that can be selected are not limited to those used in the description of the above embodiment, and a conformal method, a direct laser method, and a large window method can be arbitrarily selected for each step.
  • the thickness of the copper foil is preferably 15 ⁇ m or less as in the present embodiment.
  • the cover lay 16 is laminated on both sides of the double-sided flexible substrate 13 to produce the double-sided core substrate 17 and then the build-up layer is laminated on the double-sided core substrate 17.
  • a single-sided copper-clad laminate with an adhesive may be used in place of the coverlay 16 to directly provide a buildup layer on the double-sided flexible substrate 13.
  • a multilayer printed wiring board is produced as follows. First, as described above, the double-sided flexible substrate 13 on which the plated through via hole 9, the plated bottomed via hole 10, and the inner layer circuit patterns 12A and 12B are formed.
  • a film-clad laminate is prepared.
  • the lamination process which affixes the single-sided electrically conductive film tension laminated board with an adhesive bond layer on both surfaces of the double-sided flexible substrate 13 is performed.
  • the inside of the plated through via hole 9 is completely filled with the adhesive in which the adhesive layer of the single-sided conductive film-clad laminate with the adhesive layer is melted, and the inside of the plated bottomed via hole 10 is adhesive.
  • the multilayer printed wiring board obtained in this way is subjected to laser processing to remove the adhesive inside the plated bottomed via hole 10 and extinguish the air void, thereby exposing the plated bottomed via hole 10 to the bottom, A step via hole in which the plated bottom via hole 10 is a pilot hole is formed. Thereafter, a plating buildup via hole for electrically connecting the third conductive film and the inner layer circuit pattern 12A is formed by plating the third conductive film and the inner wall of the step via hole. Next, the third conductive film that has been plated is etched according to a predetermined pattern to form an outer layer circuit pattern, thereby obtaining a build-up type multilayer printed wiring board.
  • the double-sided core substrate 17 includes the plated through via hole 9 and the plated bottomed via hole 10 for electrically connecting the inner layer circuit pattern 12A and the inner layer circuit pattern 12B.
  • the stacked via structure includes a plated bottomed via hole 10 and a plated buildup via hole 27 disposed on the plated bottomed via hole 10.
  • the plated build-up via hole 27 is formed by forming an electrolytic plating film on the inner wall of the step via hole 23 in which the plated bottomed via hole 10 formed in the double-sided core substrate 17 is a small diameter hole.
  • the plated through via hole 10 is configured to only perform interlayer conduction between the front surface and the back surface of the double-sided core substrate 17 and does not perform interlayer conduction between the outer layer circuit pattern 30 and the inner layer circuit patterns 12A and 12B.
  • the coverlay 16 When laminating the coverlay 16, it is not necessary to completely fill the inside of the plated bottomed via hole 10 with an adhesive. That is, the inside of the plated bottomed via hole 10 is in an incompletely filled state with the adhesive, and the air void 15a may exist. Therefore, the thickness of the adhesive layer 15 of the cover lay 16 can be made as small as possible within a range in which the adhesive can be completely filled into the plated through via hole 9. As a result, the step via hole 23 can be made as shallow as possible (for example, about 10 ⁇ m), and the ease of electrodeposition when electrolytic plating is performed on the inner wall of the step via hole 23 and the via holes 24A and 24B is improved.
  • the plated build-up via holes 27, 28, and 29 have an advantageous structure such as being hardly affected by the thermal expansion of the constituent members of the printed wiring board.
  • the constituent members particularly the adhesive constituting the adhesive layer 15 has a large coefficient of thermal expansion, so that the effect obtained by making the adhesive layer 15 thinner is great. For this reason, it is possible to reduce the thickness of the electrolytic plating film 25 necessary for improving the yield and ensuring the connection reliability. As a result, according to the present embodiment, a fine outer layer circuit pattern 30 can be formed.
  • the electrolytic plating film 26 is also formed on the plated bottomed via hole 10. This reinforces the plated bottomed via hole 10 where thermal stress is more likely to concentrate than the plated through via hole 9 due to the asymmetric shape, thereby improving the connection reliability.
  • the plating thickness of the plated bottomed via hole 10 (thickness of the electrolytic copper plating film 7) can be set to the connection reliability of the plated through via hole 9. It can be made as thin as possible. As a result, the time required for the plating process is shortened, and the cost can be reduced.
  • the copper plating layer 8 becomes thinner in accordance with the plating thickness of the plated bottomed via hole 10, the inner layer circuit pattern 12 of the double-sided core substrate 17 can be miniaturized.
  • the wiring pattern and the plating film are made of copper.
  • the present invention is not limited to this, and other metals such as aluminum and silver may be used.

Abstract

Disclosed is a method of manufacturing build-up type multi-layer printed circuit boards having a stacked via structure allowing high-density component mounting. After forming a plated through via hole (9) and a plated via hole with a bottom (10) in a dual-side copper-clad laminate board, the copper foil on both sides of the dual-side copper-clad laminate board is patterned, resulting in a substrate with dual-side flexibility. Two cover lays (16) are prepared and laminated upon both sides of the substrate with dual-side flexibility. The laminating process is carried out under the following conditions: the interior of the plated through via hole (9) is completely filled with an adhesive agent derived by melting an adhesive agent layer (15) of the cover lay (16); and an air void (15a) may be allowed to occur, such that the interior of the plated via hole with the bottom (10) cannot be filled with the adhesive agent. After adhering a single-side copper-clad laminate board (20) to an insulator film (14) with an adhesive agent layer (22), laser working is used to remove the adhesive agent, and eliminate the air void (15a), within the plated via hole with the bottom (10), forming a step via hole such that the plated via hole with the bottom (10) becomes a lower hole.

Description

多層プリント配線板の製造方法Manufacturing method of multilayer printed wiring board
 本発明は、多層プリント配線板の製造方法に関し、より詳しくは、ビルドアップ型の多層プリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a multilayer printed wiring board, and more particularly to a method for manufacturing a build-up type multilayer printed wiring board.
 近年、携帯電話等の携帯情報端末に代表されるように、電子機器の小型化および高機能化がますます進展している。そのため、電子機器に用いられるプリント配線板に対する高密度化の要求が高まっている。 In recent years, as represented by mobile information terminals such as mobile phones, electronic devices are becoming smaller and more functional. For this reason, there is an increasing demand for higher density of printed wiring boards used in electronic devices.
 そこで、プリント配線板に電子部品等を高密度に実装するため、ビルドアップ型の多層フレキシブルプリント配線板が活発に研究開発されている(例えば特許文献1参照)。このビルドアップ型多層フレキシブルプリント配線板は、両面フレキシブルプリント配線板あるいは多層フレキシブルプリント配線板をコア基板として、このコア基板の両面あるいは片面に1~2層程度のビルドアップ層を形成したものである。このビルドアップ型多層フレキシブルプリント配線板には、ビルドアップ層と内層のコア基板とを電気的に接続するために、有底型のビアホール(導通用孔)の内壁にめっき処理を施して層間導通を得ためっきビアホールが設けられる。 Therefore, a build-up type multilayer flexible printed wiring board has been actively researched and developed in order to mount electronic components and the like on the printed wiring board with high density (see, for example, Patent Document 1). This build-up type multilayer flexible printed wiring board is obtained by forming a double-sided flexible printed wiring board or a multilayer flexible printed wiring board as a core substrate and forming one or two build-up layers on both sides or one side of the core substrate. . In order to electrically connect the buildup layer and the inner core substrate, the buildup type multilayer flexible printed wiring board is subjected to interlayer conduction by plating the inner wall of the bottomed via hole (conduction hole). The plated via hole obtained is provided.
 しかし、この有底型のビアホールが深くなるにつれて、次のような問題が生じる。まず、プリント配線板の各構成部材が熱膨張することによって、めっきビアホールが破壊され易くなる。また、層間導通を得るために有底型のビアホールの内壁にめっき皮膜を形成する際、めっき液がビアホールの底部に滞留し易くなるため、所望のめっき厚が得られない。このような理由から、有底型のビアホールが深くなるほど、ビア配線の電気的信頼性を確保することが困難となる。 However, the following problems occur as the bottomed via hole becomes deeper. First, each component of the printed wiring board is thermally expanded, so that the plated via hole is easily broken. Further, when a plating film is formed on the inner wall of a bottomed via hole in order to obtain interlayer conduction, the plating solution tends to stay at the bottom of the via hole, so that a desired plating thickness cannot be obtained. For this reason, the deeper the bottomed via hole is, the more difficult it is to ensure the electrical reliability of the via wiring.
 この問題の対策として、有底型のビアホールの内壁に十分厚くめっき皮膜を形成することが考えられる。しかしながら、有底型のビアホールの内壁に形成するめっき皮膜の厚みが増すと、それに応じて、ビルドアップ層上に形成される導体層の厚みも大きくなることが避けられない。外層の回路パターンは、ビルドアップ層上の導体層を所望のパターンに従ってウェットエッチングすることにより形成される。このため、導体層の厚みが増すにつれて、ビルドアップ層上の導体層を微細に加工することが困難となる。その結果、外層の回路パターンとして微細なパターンを形成することができず、ビルドアップ層上に電子部品を高密度に実装することが困難となる。 As a countermeasure against this problem, it is conceivable to form a sufficiently thick plating film on the inner wall of the bottomed via hole. However, when the thickness of the plating film formed on the inner wall of the bottomed via hole is increased, the thickness of the conductor layer formed on the buildup layer is inevitably increased accordingly. The circuit pattern of the outer layer is formed by wet etching the conductor layer on the buildup layer according to a desired pattern. For this reason, as the thickness of the conductor layer increases, it becomes difficult to finely process the conductor layer on the build-up layer. As a result, a fine pattern cannot be formed as the circuit pattern of the outer layer, and it is difficult to mount electronic components on the buildup layer at high density.
 上述のように、従来のビルドアップ型多層フレキシブルプリント配線板には、高密度実装の要求を満足することが難しいという問題があった。 As described above, the conventional build-up type multilayer flexible printed wiring board has a problem that it is difficult to satisfy the demand for high-density mounting.
 ところで、ビルドアップ型の多層フレキシブルプリント配線板のうち、特に、いわゆるスタックビア構造を有するビルドアップ型多層フレキシブルプリント配線板が、高密度化および設計自由度の向上という観点から求められている。ここで、スタックビア構造とは、コア基板のめっきビアホールから構成される層間接続部の上に、ビルドアップ層のめっきビアホールから構成される層間接続部を重ねて配置した構造をいう。 Incidentally, among the build-up type multilayer flexible printed wiring boards, in particular, a build-up type multilayer flexible printed wiring board having a so-called stack via structure is demanded from the viewpoint of increasing the density and improving the degree of freedom in design. Here, the stack via structure refers to a structure in which an interlayer connection portion constituted by a plating via hole of a buildup layer is placed on an interlayer connection portion constituted by a plating via hole of a core substrate.
 高密度実装が可能なスタックビア構造を有する多層プリント配線板を、安価に且つ安定的に製造する方法が強く望まれている。 There is a strong demand for a method for stably and inexpensively manufacturing a multilayer printed wiring board having a stacked via structure capable of high-density mounting.
 従来、いわゆるステップビア構造のビアホール(ステップビアホール)を、レーザ加工により一括して形成する手法が開示されている(特許文献2、特許文献3及び特許文献4参照)。これらの文献に開示された手法によれば、ステップビア構造を効率良く形成することが可能である。しかし、この手法においては、ステップビアホールの内壁をめっき皮膜で被覆するための電解銅めっきは、通常、一度にまとめて行われる。このため、ステップビアホールの下穴(小径側)の側壁に形成されるめっき皮膜が薄くなる傾向がある。よって、層間接続の信頼性を十分に確保することが難しい場合がある。 Conventionally, there has been disclosed a method of forming via holes having a so-called step via structure (step via holes) collectively by laser processing (see Patent Document 2, Patent Document 3 and Patent Document 4). According to the methods disclosed in these documents, a step via structure can be formed efficiently. However, in this method, the electrolytic copper plating for covering the inner wall of the step via hole with a plating film is usually performed all at once. For this reason, the plating film formed on the side wall of the prepared hole (small diameter side) of the step via hole tends to be thin. Therefore, it may be difficult to ensure sufficient reliability of interlayer connection.
 次に、従来技術による、スタックビア構造を有するビルドアップ型多層プリント配線板の製造方法を、図3を用いて詳細に説明する。図3は、スタックビア構造を有するビルドアップ型多層プリント配線板の製造方法を説明するための工程断面図である。 Next, a method for manufacturing a build-up type multilayer printed wiring board having a stacked via structure according to the prior art will be described in detail with reference to FIG. FIG. 3 is a process cross-sectional view for explaining a manufacturing method of a build-up type multilayer printed wiring board having a stacked via structure.
 まず、ポリイミド等の可撓性絶縁ベース材101(例えば25μm厚)と、その両面に銅箔102および銅箔103(ともに例えば8μm厚)とを有する両面銅張積層板104を準備する。 First, a double-sided copper clad laminate 104 having a flexible insulating base material 101 such as polyimide (for example, 25 μm thick) and a copper foil 102 and a copper foil 103 (both for example 8 μm thick) on both sides thereof is prepared.
 次に、図3(1)からわかるように、この両面銅張積層板104に対し、レーザ加工法により有底型のビアホールである有底ビアホール105を形成する。この有底ビアホール105の底部には、銅箔103が露出している。その後、導電化処理とそれに続く電解めっき処理を、銅箔102,103及び有底ビアホール105に施すことにより、銅箔102,103上、及び有底ビアホール105の内壁に電解めっき皮膜を形成する。この電解めっき皮膜の厚さは、ビア配線の接続信頼性を確保するために必要な値(例えば15μm程度)とされる。ここまでの工程を経て、可撓性絶縁ベース材101の銅箔102と銅箔103を電気的に接続する有底型の層間導通部である、めっき有底ビアホール106が形成される。 Next, as can be seen from FIG. 3A, a bottomed via hole 105 which is a bottomed via hole is formed on the double-sided copper-clad laminate 104 by a laser processing method. The copper foil 103 is exposed at the bottom of the bottomed via hole 105. Thereafter, a conductive treatment and subsequent electrolytic plating treatment are performed on the copper foils 102 and 103 and the bottomed via hole 105, thereby forming an electrolytic plating film on the copper foils 102 and 103 and on the inner wall of the bottomed via hole 105. The thickness of the electrolytic plating film is set to a value (for example, about 15 μm) necessary to ensure connection reliability of the via wiring. Through the steps so far, the plated bottomed via hole 106, which is a bottomed interlayer conductive portion that electrically connects the copper foil 102 and the copper foil 103 of the flexible insulating base material 101, is formed.
 次に、図3(1)からわかるように、フォトファブリケーション法により、可撓性絶縁ベース材101の銅箔102と銅箔103を、所定のパターンに従ってエッチングすることで、回路パターン(内層回路パターン)を形成する。より詳細には、レジスト層の形成、露光、現像、銅箔のエッチング及びレジスト層の剥離等からなる一連の工程によって、可撓性絶縁ベース材101の両面に回路パターンを形成する。 Next, as can be seen from FIG. 3A, a circuit pattern (inner layer circuit) is obtained by etching the copper foil 102 and the copper foil 103 of the flexible insulating base material 101 according to a predetermined pattern by a photofabrication method. Pattern). More specifically, circuit patterns are formed on both surfaces of the flexible insulating base material 101 by a series of steps including resist layer formation, exposure, development, copper foil etching, and resist layer peeling.
 次に、図3(1)からわかるように、ポリイミドフィルム等の絶縁フィルム107(例えば12μm厚)上に、接着剤層108を有するカバーレイ109を準備する。接着剤層108は、例えばアクリル、エポキシ等の接着剤からなる。そして、真空ラミネータ等を用いて、回路パターンの形成された可撓性絶縁ベース材101上にカバーレイ109を貼り付けるラミネート工程を行う。この接着材層108の厚さは、めっき有底ビアホール106の内部を接着剤で完全に充填可能な厚さ(例えば25μm)とされる。ここまでの工程を経て、図3(1)に示す両面コア基板110を得る。 Next, as can be seen from FIG. 3 (1), a coverlay 109 having an adhesive layer 108 is prepared on an insulating film 107 (for example, 12 μm thick) such as a polyimide film. The adhesive layer 108 is made of an adhesive such as acrylic or epoxy. Then, using a vacuum laminator or the like, a laminating process is performed in which the cover lay 109 is attached onto the flexible insulating base material 101 on which the circuit pattern is formed. The thickness of the adhesive layer 108 is set to a thickness (for example, 25 μm) that can completely fill the inside of the plated bottomed via hole 106 with an adhesive. Through the steps so far, a double-sided core substrate 110 shown in FIG.
 次に、図3(2)からわかるように、可撓性絶縁ベース材(例えば25μm厚のポリイミド)の片面に銅箔(例えば厚さ12μm)を有する片面銅張積層板111を準備する。前述のフォトファブリケーション法により、この片面銅張積層板111の銅箔の所定の部分に開口部を形成する。この開口部を有する銅箔をレーザ遮光用のコンフォーマルマスク(メタルマスクともいう。)となる。銅箔に形成された開口は、この開口の底面に露出した可撓性絶縁ベース材等の樹脂をレーザ加工により除去し、ビアホールを形成する為のものである。 Next, as can be seen from FIG. 3B, a single-sided copper clad laminate 111 having a copper foil (for example, 12 μm thick) on one side of a flexible insulating base material (for example, polyimide having a thickness of 25 μm) is prepared. An opening is formed in a predetermined portion of the copper foil of the single-sided copper clad laminate 111 by the photofabrication method described above. The copper foil having the opening serves as a conformal mask (also referred to as a metal mask) for laser shielding. The opening formed in the copper foil is for removing a resin such as a flexible insulating base material exposed at the bottom of the opening by laser processing to form a via hole.
 次に、図3(2)からわかるように、両面コア基板110にビルドアップするための接着材を用いて、コンフォーマルマスクを有する片面銅張積層板111,111を、接着剤層112,112を介して両面コア基板110の表面および裏面にそれぞれ積層接着する。 Next, as can be seen from FIG. 3 (2), the single-sided copper- clad laminates 111 and 111 having a conformal mask are bonded to the adhesive layers 112 and 112 using an adhesive for building up the double-sided core substrate 110. Are laminated and adhered to the front and back surfaces of the double-sided core substrate 110, respectively.
 次に、図3(2)からわかるように、片面銅張積層板111のコンフォーマルマスクを用いてレーザ加工を行うことにより、ステップビアホール113A及びビアホール113B,113Cを形成する。 Next, as can be seen from FIG. 3B, the step via hole 113A and the via holes 113B and 113C are formed by performing laser processing using the conformal mask of the single-sided copper clad laminate 111.
 次に、図3(3)からわかるように、導電化処理とそれに続く電解めっき処理を、片面銅張積層板111の銅箔上、ステップビアホール113Aの内壁、及びビアホール113B,113Cの内壁に施すことにより、電解めっき皮膜を形成する。この電解めっき皮膜の厚みは、層間接続の信頼性を確保するため、例えば25~30μm程度とする。これにより、コア基板とビルドアップ層との層間導通を得るための、めっきビルドアップビアホール114A,114B,114Cが形成される。めっきビルドアップビアホール114Aは、ステップビアホール113Aの内壁にめっき処理が施されたものであり、めっきビルドアップビアホール114Bは、ステップビアホール113Aに対向するビアホール113Bの内壁にめっき処理が施されたものであり、めっきビルドアップビアホール114Cは、ビアホール113Cの内壁にめっき処理が施されたものである。 Next, as can be seen from FIG. 3 (3), the conductive treatment and the subsequent electroplating treatment are performed on the copper foil of the single-sided copper clad laminate 111 on the inner wall of the step via hole 113A and the inner walls of the via holes 113B and 113C. Thus, an electrolytic plating film is formed. The thickness of the electrolytic plating film is, for example, about 25 to 30 μm in order to ensure the reliability of interlayer connection. As a result, plating buildup via holes 114A, 114B, and 114C for obtaining interlayer conduction between the core substrate and the buildup layer are formed. The plating buildup via hole 114A is obtained by plating the inner wall of the step via hole 113A, and the plating buildup via hole 114B is obtained by plating the inner wall of the via hole 113B facing the step via hole 113A. The plating buildup via hole 114C is obtained by plating the inner wall of the via hole 113C.
 次に、図3(3)からわかるように、フォトファブリケーション法を用いて片面銅張積層板111,111の銅箔を、所定のパターンに従ってエッチングすることにより、外層回路パターン115,115を形成する。この後、必要に応じて、フォトソルダーレジスト層(図示せず)を形成し、回路パターンの端子に半田めっき、ニッケルめっき、金めっき等の表面処理を施し、金型による打ち抜き等により外形加工を行う。 Next, as can be seen from FIG. 3 (3), the outer layer circuit patterns 115 and 115 are formed by etching the copper foil of the single-sided copper- clad laminates 111 and 111 according to a predetermined pattern using a photofabrication method. To do. After that, if necessary, a photo solder resist layer (not shown) is formed, surface treatments such as solder plating, nickel plating, gold plating are applied to the terminals of the circuit pattern, and outer shape processing is performed by punching with a mold or the like. Do.
 以上の工程を経て、スタックビア構造を有するビルドアップ型多層プリント配線板116が得られる。図3(3)からわかるように、めっきビルドアップビアホール114Aは、内層の両面コア基板110のめっき有底ビアホール106の直上に形成されており、めっき有底ビアホール106とめっきビルドアップビアホール114Aはスタックビア構造を形成している。ビルドアップ型多層プリント配線板116においては、両面コア基板110の表面と裏面の層間接続は、めっき有底ビアホール106によって行われる。 Through the above steps, a build-up type multilayer printed wiring board 116 having a stacked via structure is obtained. As can be seen from FIG. 3 (3), the plated buildup via hole 114A is formed immediately above the plated bottomed via hole 106 of the inner-layer double-sided core substrate 110, and the plated bottomed via hole 106 and the plated buildup via hole 114A are stacked. A via structure is formed. In the build-up type multilayer printed wiring board 116, the interlayer connection between the front surface and the back surface of the double-sided core substrate 110 is made by the plated bottom via hole 106.
 なお、図3(3)からわかるように、ビルドアップ型多層プリント配線板116は、両面コア基板110にビルドアップ層が積層された部品実装部116aと、この部品実装部116bから延伸する可撓性ケーブル部116bとを有する。この可撓性ケーブル部116bは、ビルドアップ層が設けられていない両面コア基板110の一部である。 As can be seen from FIG. 3 (3), the build-up type multilayer printed wiring board 116 includes a component mounting portion 116a in which a build-up layer is laminated on the double-sided core substrate 110, and a flexible extending from the component mounting portion 116b. Cable portion 116b. The flexible cable portion 116b is a part of the double-sided core substrate 110 on which no buildup layer is provided.
 上記の工程において、めっき有底ビアホール106内部は接着材で完全に充填される必要がある。しかし、めっき有底ビアホール106は、両面銅張積層板104を貫通するビアホールの内壁にめっき処理を施して形成しためっき貫通ビアホールに比べると、接着剤を充填しづらい。これは、めっき貫通ビアホールは表面と裏面の2方向から充填できるのに対して、有底めっきビアホールは1方向からしか充填できないからである。このため、接着材層108の厚みは、両面コア基板110の層間接続をめっき貫通ビアホールで行う場合と比較して厚くなることが避けられない。よって、ビルドアップビアホール113が深くなる。そうすると、前述のように、層間接続の信頼性を確保するためのめっき厚が大きくなる。例えば、上述のようにめっきビルドアップビアホール114A,114B,114Cを形成する際、25~30μm程度のめっき皮膜を形成するための電解めっきを行う必要がある。仮にこの程度の電解めっきを片面銅張積層板111の銅箔(12μm厚)上に行った場合、片面銅張積層板111上の導体層(銅箔+電解めっき皮膜)の厚みは、トータルで37~42μmになる。導体層のパターニングはウェットエッチングより行われるため、回路ピッチが100μm程度の微細な回路パターンを歩留まり良く形成することは困難となる。 In the above process, the inside of the plated bottomed via hole 106 needs to be completely filled with an adhesive. However, the plated-bottomed via hole 106 is harder to fill the adhesive than the plated through via hole formed by plating the inner wall of the via hole that penetrates the double-sided copper clad laminate 104. This is because a through-plating via hole can be filled from two directions of the front and back surfaces, whereas a bottomed plated via hole can be filled only from one direction. For this reason, the thickness of the adhesive layer 108 is inevitably increased as compared to the case where the interlayer connection of the double-sided core substrate 110 is performed by a plated through via hole. Therefore, the build-up via hole 113 is deepened. Then, as described above, the plating thickness for ensuring the reliability of the interlayer connection is increased. For example, when the plated build-up via holes 114A, 114B, and 114C are formed as described above, it is necessary to perform electrolytic plating to form a plating film of about 25 to 30 μm. If this level of electrolytic plating is performed on the copper foil (12 μm thick) of the single-sided copper-clad laminate 111, the thickness of the conductor layer (copper foil + electrolytic plating film) on the single-sided copper-clad laminate 111 is 37-42 μm. Since the patterning of the conductor layer is performed by wet etching, it is difficult to form a fine circuit pattern with a circuit pitch of about 100 μm with a high yield.
 以上説明したように、従来、高密度実装の要求を満足するビルドアップ型多層プリント配線板を製造することができないという問題があった。なお、当然ながら、この問題は、可撓性ケーブル116bを有しない多層プリント配線板であっても同様である。 As described above, conventionally, there has been a problem that a build-up type multilayer printed wiring board that satisfies the demand for high-density mounting cannot be manufactured. Needless to say, this problem also applies to a multilayer printed wiring board that does not have the flexible cable 116b.
特開2004-200260号公報JP 2004-200260 A 特開2008-235801号公報JP 2008-235801 A 特開2008-288434号公報JP 2008-288434 A 特開2009-026912号公報JP 2009-026912 A
 本発明は、微細な外層回路パターンを形成することが困難なため、高密度実装可能な多層プリント配線板が得られないという上述の問題を解決するものであり、高密度実装が可能なスタックビア構造を有するビルドアップ型多層プリント配線板の製造方法を提供することを目的とする。 The present invention solves the above-described problem that a multilayer printed wiring board capable of high-density mounting cannot be obtained because it is difficult to form a fine outer layer circuit pattern. An object of the present invention is to provide a method for producing a build-up type multilayer printed wiring board having a structure.
 本発明の一態様によれば、表面及び裏面にそれぞれ第1の導電膜及び第2の導電膜を有する両面導電膜張積層板に、前記第1の導電膜と前記第2の導電膜を電気的に接続するめっき貫通ビアホール及びめっき有底ビアホールを形成し、
 前記第1の導電膜及び前記第2の導電膜を所定のパターンに従ってエッチングすることにより、内層回路パターンを有する両面可撓性基板を作製し、
 絶縁フィルムと、前記絶縁フィルムの片面に形成された接着剤層とを有するカバーレイを準備し、
 前記カバーレイの前記接着剤層が溶融した接着剤により前記めっき貫通ビアホールの内部が完全に充填され、且つ、前記めっき有底ビアホールの内部には前記接着剤により充填されないエアボイドの発生を許容する条件下において、前記カバーレイを前記両面可撓性基板の両面に貼り付けるラミネート工程を行い、これにより、両面コア基板を作製し、
 前記両面コア基板の少なくとも前記めっき有底ビアホールの開口面側に、片面に形成された第3の導電膜を有するビルドアップ層を積層接着し、
 レーザ加工により、前記めっき有底ビアホール内部の前記接着剤を除去し前記エアボイドを消滅させ、これにより、底部に前記めっき有底ビアホールが露出し、前記めっき有底ビアホールが下穴となるステップビアホールを形成し、
 前記第3の導電膜及び前記ステップビアホールの内壁にめっき処理を施すことにより、前記第3の導電膜と前記内層回路パターンとを電気的に接続するめっきビルドアップビアホールを形成し、
めっき処理を施された前記第3の導電膜を、所定のパターンに従ってエッチングすることにより、外層回路パターンを形成することを特徴とする多層プリント配線板の製造方法が提供される。
According to one embodiment of the present invention, the first conductive film and the second conductive film are electrically connected to a double-sided conductive film-clad laminate having a first conductive film and a second conductive film on a front surface and a back surface, respectively. Through-plating via holes and plated-bottomed via holes to be connected to each other,
Etching the first conductive film and the second conductive film according to a predetermined pattern to produce a double-sided flexible substrate having an inner circuit pattern,
Preparing a coverlay having an insulating film and an adhesive layer formed on one side of the insulating film;
Conditions that allow the inside of the plated through via hole to be completely filled with an adhesive in which the adhesive layer of the coverlay is melted, and allow the generation of air voids not filled with the adhesive into the plated bottomed via hole Underneath, performing a laminating step of pasting the coverlay on both sides of the double-sided flexible substrate, thereby producing a double-sided core substrate,
A buildup layer having a third conductive film formed on one side is laminated and bonded to at least the opening side of the plated bottomed via hole of the double-sided core substrate,
By laser processing, the adhesive inside the plated bottomed via hole is removed and the air voids disappear, thereby exposing the plated bottomed via hole to the bottom and forming a step via hole where the plated bottomed via hole serves as a pilot hole. Forming,
A plating buildup via hole that electrically connects the third conductive film and the inner layer circuit pattern is formed by plating the third conductive film and the inner wall of the step via hole.
An outer layer circuit pattern is formed by etching the third conductive film that has been plated in accordance with a predetermined pattern, thereby providing a method for manufacturing a multilayer printed wiring board.
 これらの特徴により、本発明は次のような効果を奏する。 Due to these features, the present invention has the following effects.
 本発明の一実施形態に係るスタックビア構造を有するビルドアップ型多層プリント配線板において、スタックビア構造は、両面可撓性基板の表面と裏面を電気的に接続するめっき有底ビアホールと、このめっき有底ビアホールの上に配置されためっきビルドアップビアホールとから構成される。このめっきビルドアップビアホールは、外層回路パターンと内層回路パターンとを電気的に接続するものであり、両面可撓性基板に形成された有底ビアホールを小径のホールとするステップビアホールの内壁にめっき皮膜を形成したものである。これにより、めっき有底ビアホールとその上に形成されためっきビルドアップビアホールとから構成されるステップビア構造が形成される。 In a build-up type multilayer printed wiring board having a stacked via structure according to an embodiment of the present invention, the stacked via structure includes a plated bottomed via hole that electrically connects the front surface and the back surface of a double-sided flexible substrate, and this plating. It is comprised from the plating buildup via hole arrange | positioned on the bottomed via hole. This plated build-up via hole is for electrically connecting the outer layer circuit pattern and the inner layer circuit pattern, and the plating film is formed on the inner wall of the step via hole with the bottomed via hole formed on the double-sided flexible substrate as a small diameter hole. Is formed. As a result, a step via structure including a plated bottom via hole and a plated buildup via hole formed thereon is formed.
 このような特徴により、本発明の一実施形態によれば、カバーレイをラミネートする際に、両面可撓性基板に形成されためっき有底ビアホールの内部に接着材が完全に充填される必要はない。なぜなら、前述のステップビアホールを形成する際に、めっき有底ビアホール内の接着剤は除去されることになるからである。このため、両面可撓性基板の貫通ビアホール内に接着剤を充填することが可能な範囲内で、接着材層の厚さを可及的に小さくすることができる。 Due to such features, according to one embodiment of the present invention, when laminating a coverlay, it is not necessary to completely fill the inside of the plated bottomed via hole formed in the double-sided flexible substrate with the adhesive. Absent. This is because the adhesive in the plated-bottomed via hole is removed when forming the aforementioned step via hole. For this reason, the thickness of the adhesive layer can be made as small as possible within a range in which the adhesive can be filled into the through via hole of the double-sided flexible substrate.
 その結果、従来に比べて、ステップビアホールを浅くすることができる。これにより、めっきビルドアップビアホールを形成するために電解めっき処理を行う際、電着容易性が向上するとともに、構成部材の熱膨張によるめっきビルドアップビアホールへの影響が軽減される。 As a result, the step via hole can be made shallower than in the prior art. Thereby, when performing an electroplating process in order to form a plating buildup via hole, the ease of electrodeposition is improved and the influence on the plating buildup via hole due to the thermal expansion of the constituent members is reduced.
 このため、本発明によれば、歩留まりを向上させることができ、ビア配線の接続信頼性を確保するのに必要なめっき厚を可及的に低減することができる。したがって、本発明によれば、ビルドアップ層に形成される外層回路パターンをより微細にすることができる。 For this reason, according to the present invention, the yield can be improved, and the plating thickness required to ensure the connection reliability of the via wiring can be reduced as much as possible. Therefore, according to the present invention, the outer layer circuit pattern formed in the buildup layer can be made finer.
 さらに、本発明によれば、めっきビルドアップビアホールを形成する際に、両面可撓性基板のめっき有底ビアホールの上にも電解めっき皮膜が形成される。これにより、非対称な形状に起因してめっき貫通ビアホールに比べて熱応力が集中しやすいめっき有底ビアホールが補強され、接続信頼性を向上させることができる。 Furthermore, according to the present invention, when the plated build-up via hole is formed, an electrolytic plating film is also formed on the plated bottomed via hole of the double-sided flexible substrate. This reinforces the plated bottomed via hole where thermal stress tends to concentrate compared to the plated through via hole due to the asymmetric shape, and can improve the connection reliability.
 さらに、上記のようにめっき有底ビアホールが補強されることから、このめっき有底ビアホールのめっき厚を、めっき貫通ビアホールの接続信頼性を確保できる程度にまで薄くすることができる。その結果、めっき工程に要する時間が短縮され、コストを低減することができる。また、両面可撓性基板に形成される内層回路パターンを微細化することができる。 Furthermore, since the plated-bottomed via hole is reinforced as described above, the plating thickness of the plated-bottomed via hole can be reduced to such an extent that the connection reliability of the plated through via hole can be ensured. As a result, the time required for the plating process is shortened, and the cost can be reduced. Further, the inner layer circuit pattern formed on the double-sided flexible substrate can be miniaturized.
 上述のように、本発明によれば、高密度実装が可能なスタックビア構造を有するビルドアップ型多層プリント配線板を、安価に且つ安定的に製造する方法が提供される。 As described above, according to the present invention, a method for stably and inexpensively manufacturing a build-up type multilayer printed wiring board having a stack via structure capable of high-density mounting is provided.
本発明の実施形態に係るビルドアップ型多層プリント配線板の製造方法を説明するための工程断面図である。It is process sectional drawing for demonstrating the manufacturing method of the buildup type multilayer printed wiring board which concerns on embodiment of this invention. 図1Aに続く、本発明の実施形態に係るビルドアップ型多層プリント配線板の製造方法を説明するための工程断面図である。It is process sectional drawing for demonstrating the manufacturing method of the buildup type multilayer printed wiring board which concerns on embodiment of this invention following FIG. 1A. 図1Bに続く、本発明の実施形態に係るビルドアップ型多層プリント配線板の製造方法を説明するための工程断面図である。It is process sectional drawing for demonstrating the manufacturing method of the buildup type multilayer printed wiring board which concerns on embodiment of this invention following FIG. 1B. 本発明の実施形態に係るビルドアップ型多層プリント配線板の断面図である。It is sectional drawing of the buildup type multilayer printed wiring board which concerns on embodiment of this invention. 従来技術による、スタックビア構造を有するビルドアップ型多層プリント配線板の製造方法の工程断面図である。It is process sectional drawing of the manufacturing method of the buildup type multilayer printed wiring board which has a stack via structure by a prior art.
 以下、図面を参照しながら、本発明の実施形態に係るスタックビア構造を有するビルドアップ型多層プリント配線板の製造方法について説明する。 Hereinafter, a method for manufacturing a build-up type multilayer printed wiring board having a stacked via structure according to an embodiment of the present invention will be described with reference to the drawings.
 なお、同等の機能を有する構成要素には同一の符号を付し、詳しい説明は省略する。また、図面は模式的なものであり、実施形態に係る特徴部分を中心に示すものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。 In addition, the same code | symbol is attached | subjected to the component which has an equivalent function, and detailed description is abbreviate | omitted. Further, the drawings are schematic and show mainly the characteristic portions according to the embodiment, and the relationship between the thickness and the planar dimension, the ratio of the thickness of each layer, and the like are different from the actual ones.
 まず、図1A乃至図1Cおよび図2を用いて、本発明の実施形態に係るスタックビア構造を有するビルドアップ型多層プリント配線板32の製造方法について説明する。 First, the manufacturing method of the build-up type multilayer printed wiring board 32 having the stack via structure according to the embodiment of the present invention will be described with reference to FIGS. 1A to 1C and FIG.
 図1A乃至図1Cは、このビルドアップ型多層プリント配線板32の製造方法を説明するための工程断面図である。図2は、本実施形態に係るビルドアップ型多層プリント配線板32の断面図である。 1A to 1C are process cross-sectional views for explaining a manufacturing method of the build-up type multilayer printed wiring board 32. FIG. FIG. 2 is a cross-sectional view of the build-up type multilayer printed wiring board 32 according to the present embodiment.
 まず、図1A(1)からわかるように、可撓性絶縁ベース材1(例えば25μm厚のポリイミド)の両面にそれぞれ銅箔2及び銅箔3(第1の導電膜および第2の導電膜)を有する両面銅張積層板4を準備する。銅箔2及び銅箔3の厚みは、例えばともに5μmである。 First, as can be seen from FIG. 1A (1), copper foil 2 and copper foil 3 (first conductive film and second conductive film) are formed on both sides of a flexible insulating base material 1 (for example, polyimide having a thickness of 25 μm), respectively. 2 is prepared. The thicknesses of the copper foil 2 and the copper foil 3 are both 5 μm, for example.
 次に、この両面銅張積層板4に対し、レーザ加工法又は樹脂エッチング法等を用いて、両面銅張積層板4を貫通する貫通ビアホール5、及び有底ビアホール6を形成する。この有底ビアホール6は、図1A(1)からわかるように、底面に銅箔3が露出している有底型のビアホールである。なお、この貫通ビアホール5及び有底ビアホール6の加工径は共に、例えば直径70μmである。 Next, through via holes 5 and bottomed via holes 6 penetrating the double-sided copper-clad laminate 4 are formed on the double-sided copper-clad laminate 4 by using a laser processing method or a resin etching method. As can be seen from FIG. 1A (1), the bottomed via hole 6 is a bottomed via hole in which the copper foil 3 is exposed on the bottom surface. Both the through-hole 5 and the bottomed via-hole 6 have a processing diameter of, for example, 70 μm.
 本工程においてレーザ加工法を用いる場合には、次の2つの方法を選択することができる。第1の方法は、コンフォーマルレーザ加工法と呼ばれる方法である。この方法では、ビアホール径と同じ径の開口部を銅箔2,3に設け、コンフォーマルマスクを形成しておく。その後、レーザ光をコンフォーマルマスクに照射して開口部に露出している絶縁樹脂を除去する。第2の方法は、ダイレクトレーザ加工法と呼ばれる方法である。この方法では、コンフォーマルマスクを形成せずに、銅箔上にレーザ光を直接照射して、銅箔及びその下の絶縁樹脂を除去する。本実施形態では、フォトファブリケーション法による銅箔のエッチング工程が必要なコンフォーマルレーザ加工法ではなく、生産性を考慮し、炭酸ガスレーザによるダイレクトレーザ加工法を選択した。 When the laser processing method is used in this step, the following two methods can be selected. The first method is a method called a conformal laser processing method. In this method, an opening having the same diameter as the via hole diameter is provided in the copper foils 2 and 3 to form a conformal mask. Thereafter, the conformal mask is irradiated with laser light to remove the insulating resin exposed in the opening. The second method is a method called a direct laser processing method. In this method, without forming a conformal mask, laser light is directly irradiated on the copper foil to remove the copper foil and the underlying insulating resin. In the present embodiment, a direct laser processing method using a carbon dioxide gas laser is selected in consideration of productivity, not a conformal laser processing method that requires a copper foil etching process by a photofabrication method.
 このダイレクトレーザ加工法を行う前には、両面銅張積層板4の銅箔2,3に表面処理を施す。即ち、レーザ光が照射される銅箔面を低粗度とする粗化処理を行う。これにより、炭酸ガスレーザ(波長:約9.8μm)を用いてレーザ加工を行う際、銅箔2,3のレーザ光の吸収を安定的に向上させることができる。本実施形態では、この粗化処理に日本マクダーミット社(株)のマルチボンド150を用いた。これにより、後の工程で形成される電解銅めっき皮膜7との密着性が確保されるとともに、銅箔の表面における炭酸ガスレーザ光の吸収を向上させることができる。実際に、表面処理の前後で、炭酸ガスレーザ光の吸収率が約20%から約30%に向上することを確認した。 Before performing this direct laser processing method, the copper foils 2 and 3 of the double-sided copper clad laminate 4 are subjected to surface treatment. That is, the roughening process which makes the copper foil surface irradiated with a laser beam low roughness is performed. Thereby, when performing laser processing using a carbon dioxide laser (wavelength: about 9.8 μm), the absorption of laser light of the copper foils 2 and 3 can be stably improved. In this embodiment, the multi bond 150 of Nippon McDermitt Co., Ltd. was used for this roughening process. Thereby, the adhesiveness with the electrolytic copper plating film 7 formed in a later step is ensured, and the absorption of the carbon dioxide laser beam on the surface of the copper foil can be improved. Actually, it was confirmed that the absorption rate of the carbon dioxide laser beam was improved from about 20% to about 30% before and after the surface treatment.
 なお、本実施形態では、貫通ビアホール5と有底ビアホール6を同時に加工する。このため、銅箔2の表面に対しては、上述の粗化処理を行うことで銅箔2の加工を容易にする。それとともに、有底ビアホール6を形成する際に銅箔3を貫通しないように、銅箔3の裏面処理として銅箔面を低粗度とする処理を行い、レーザ光の吸収を低下させることが好ましい。但し、貫通ビアホール5を効率良く形成したい場合には、銅箔3の裏面処理として粗化処理を行うことが好ましい。 In the present embodiment, the through via hole 5 and the bottomed via hole 6 are processed simultaneously. For this reason, processing of the copper foil 2 is facilitated by performing the above-described roughening treatment on the surface of the copper foil 2. At the same time, as the back surface treatment of the copper foil 3, the copper foil surface is processed to have a low roughness so as not to penetrate the copper foil 3 when forming the bottomed via hole 6, thereby reducing the absorption of laser light. preferable. However, when it is desired to efficiently form the through via hole 5, it is preferable to perform a roughening treatment as the back surface treatment of the copper foil 3.
 両面銅張積層板4の銅箔2,3が薄いほど、レーザ加工の際に銅箔2,3の貫通が起こりやすくなる。したがって、本実施形態のように銅箔の厚みが10μm以下と薄い場合には、有底ビアホール6の形成を容易にするため、裏面処理として粗化処理がほとんど施されていない、低粗度の銅箔3を用いることが好ましい。 As the copper foils 2 and 3 of the double-sided copper-clad laminate 4 are thinner, penetration of the copper foils 2 and 3 is more likely to occur during laser processing. Therefore, when the thickness of the copper foil is as thin as 10 μm or less as in the present embodiment, in order to facilitate the formation of the bottomed via hole 6, the roughening treatment is hardly performed as the back surface treatment, and the low roughness. It is preferable to use a copper foil 3.
 ここで、レーザ加工の方式について詳しく説明する。まず、有底ビアホール6を加工する場合について述べる。銅箔2を加工する際に、1ショット当たりのレーザ光のエネルギーを高くする(パワーPとする)。そして、好ましくは、1ショットで銅箔2の加工を完了する。その後、可撓性絶縁ベース材1の樹脂を銅箔3が露出するまで加工する際、1ショット当たりのレーザ光のエネルギーを(1/2)P~(1/3)Pまで低下させ、2~3ショットで樹脂の加工を完了する。次に、貫通ビアホール5の場合について述べる。この場合、1ショット当たりのレーザ光のエネルギーを前述のパワーPとしたレーザ光を用いて、両面の銅箔及び樹脂を加工する。3~4ショットを連続して照射して、貫通ビアホール5の加工を完了する。 Here, the laser processing method will be described in detail. First, the case where the bottomed via hole 6 is processed will be described. When processing the copper foil 2, the energy of the laser beam per shot is increased (referred to as power P). Preferably, the processing of the copper foil 2 is completed with one shot. Thereafter, when the resin of the flexible insulating base material 1 is processed until the copper foil 3 is exposed, the energy of the laser beam per shot is reduced to (1/2) P to (1/3) P, and 2 Complete resin processing in 3 shots. Next, the case of the through via hole 5 will be described. In this case, the copper foil and the resin on both sides are processed using the laser beam having the above-mentioned power P as the energy of the laser beam per shot. 3 to 4 shots are continuously irradiated to complete the processing of the through via hole 5.
 さらに薄い銅箔を用いる場合には、有底ビアホール6の形成を容易にするため、有底ビアホール6の底部となる銅箔3の裏面(ベース材と接する面)を低粗度にしておく。それとともに、銅箔2の裏面(ベース材と接する面)に粗化処理を行っておく。そして、貫通ビアホール5は、銅箔3の表面から加工して形成する。この方法によれば、有底ビアホール6の形成を容易にしつつも、貫通ビアホールを効率良く形成することができる。また、別の方法として、銅箔2の表面及び銅箔3の表面の2方向からレーザ加工を行い、貫通ビアホール5を形成してもよい。この場合、銅箔2,3の表面には粗化処理を行っていることから、いずれの方向からの加工も容易であるとともに、銅箔の裏面処理の状態(粗度の高低)を考慮する必要がないという利点がある。 When a thinner copper foil is used, the back surface (surface in contact with the base material) of the copper foil 3 serving as the bottom of the bottomed via hole 6 is set to a low roughness in order to facilitate the formation of the bottomed via hole 6. At the same time, a roughening process is performed on the back surface (surface in contact with the base material) of the copper foil 2. The through via hole 5 is formed by processing from the surface of the copper foil 3. According to this method, the through via hole can be efficiently formed while facilitating the formation of the bottomed via hole 6. As another method, the through via hole 5 may be formed by performing laser processing from two directions of the surface of the copper foil 2 and the surface of the copper foil 3. In this case, since the surface of the copper foils 2 and 3 is subjected to the roughening treatment, the processing from any direction is easy, and the state of the back surface treatment (roughness level) of the copper foil is considered There is an advantage that it is not necessary.
 次に、貫通ビアホール5及び有底ビアホール6を形成する際に生じたスミア(樹脂残渣)を除去するために、プラズマ処理およびウェットエッチングを行う(デスミア処理)。貫通ビアホール5と有底ビアホール6に対する、このプラズマ処理の最適な条件は、ほぼ同じである。一方、過硫酸ソーダ等を用いたウェットエッチングについては、両者の間で最適な条件が異なる。即ち、ウェットエッチングは貫通ビアホール5に対してほとんど必要ない。むしろ、エッチングすることで、銅箔2,3が後退し、後の導電化処理に対して悪影響を及ぼす場合がある。一方、有底ビアホール6に対しては、裏面処理による銅箔3の裏面のニッケル、クロム等の異種金属を除去するため、1~2μmのエッチングが必要である。貫通ビアホール5への影響を考慮し、極力少ないエッチング量で処理を完了することが好ましい。本実施形態では、1μmのエッチングを行った。 Next, plasma treatment and wet etching (desmear treatment) are performed to remove smear (resin residue) generated when the through via hole 5 and the bottomed via hole 6 are formed. The optimum conditions for this plasma treatment for the through via hole 5 and the bottomed via hole 6 are almost the same. On the other hand, for wet etching using sodium persulfate or the like, optimum conditions differ between the two. That is, almost no wet etching is required for the through via hole 5. Rather, the etching may cause the copper foils 2 and 3 to recede and adversely affect the subsequent conductive treatment. On the other hand, the bottomed via hole 6 needs to be etched by 1 to 2 μm in order to remove dissimilar metals such as nickel and chromium on the back surface of the copper foil 3 by the back surface treatment. In consideration of the influence on the through via hole 5, it is preferable to complete the processing with as small an etching amount as possible. In this embodiment, 1 μm etching was performed.
 次に、図1A(2)からわかるように、導電化処理とそれに続く電解銅めっき処理を、銅箔2,3上、貫通ビアホール5の内壁及び有底ビアホール6の内壁に施すことにより、電解銅めっき皮膜7(約8μm厚)を形成する。これにより、銅箔2,3上の銅めっき層8、めっき貫通ビアホール9、及びめっき有底ビアホール10を形成する。このめっき貫通ビアホール9は貫通型の層間導電路であり、めっき有底ビアホール10は有底型の層間導電路である。これらのめっきビアホールはともに、可撓性絶縁ベース材1の表面の銅箔2と、裏面の銅箔3とを電気的に接続する。 Next, as can be seen from FIG. 1A (2), electrolysis treatment and subsequent electrolytic copper plating treatment are applied to the inner walls of the through via holes 5 and the bottomed via holes 6 on the copper foils 2 and 3. A copper plating film 7 (about 8 μm thick) is formed. Thereby, the copper plating layer 8 on the copper foils 2 and 3, the plating through via hole 9, and the plated bottomed via hole 10 are formed. The plated through via hole 9 is a through type interlayer conductive path, and the plated bottomed via hole 10 is a bottomed type interlayer conductive path. Both of these plated via holes electrically connect the copper foil 2 on the front surface of the flexible insulating base material 1 and the copper foil 3 on the back surface.
 なお、上記の導電化処理工程及び電解銅めっき工程における処理液の液更新性が、貫通ビアホール5と有底ビアホール6では異なる。即ち、有底ビアホール6の方が貫通ビアホール5に比べて液更新性が劣る。このため、基本的には、有底ビアホール6を処理可能な条件での工程流動を行う。電解銅めっき工程については、有底ビアホール6の底部付近の側壁への付きまわりが悪くなりやすい。よって、電解銅めっき処理は、高濃度の硫酸銅を含むめっき浴を用いて行うことが好ましい。 In addition, the through-hole via 5 and the bottomed via-hole 6 differ in the liquid renewability of the treatment liquid in the above-described conductive treatment process and electrolytic copper plating process. That is, the bottomed via hole 6 is inferior in liquid renewability as compared to the through via hole 5. For this reason, the process flow is basically performed under conditions that allow the bottomed via hole 6 to be processed. As for the electrolytic copper plating process, the contact with the side wall near the bottom of the bottomed via hole 6 tends to deteriorate. Therefore, the electrolytic copper plating treatment is preferably performed using a plating bath containing a high concentration of copper sulfate.
 次に、図1A(3)からわかるように、銅めっき層8,8の上にレジスト層11,11を形成する。このレジスト層11の形成には、ドライフィルムレジストを用いる。このドライフィルムレジストは、めっき貫通ビアホール9及びめっき有底ビアホール10の両方をテンティング可能な厚さ(例えば20μm)のものを用いることが好ましい。これにより、めっき貫通ビアホール9及びめっき有底ビアホール10内にレジストが入り込むのを防ぎ、後に行うレジスト層11の剥離を容易にすることができる。なお、ドライフィルムレジストの代わりに、液状レジスト又は電着レジストを用いることもできる。 Next, as can be seen from FIG. 1A (3), resist layers 11 and 11 are formed on the copper plating layers 8 and 8, respectively. A dry film resist is used for forming the resist layer 11. It is preferable to use a dry film resist having a thickness (for example, 20 μm) capable of tenting both the plated through via hole 9 and the plated bottomed via hole 10. Thereby, it is possible to prevent the resist from entering the plated through via hole 9 and the plated bottomed via hole 10 and facilitate the subsequent peeling of the resist layer 11. A liquid resist or an electrodeposition resist can be used instead of the dry film resist.
 次に、図1A(4)からわかるように、フォトファブリケーション法により、レジスト層11の露光、現像によりレジスト層11を所定のパターンに従ってエッチングし、その後、パターニングされたレジスト層11をマスクにして、銅めっき層8及び銅箔2,3をエッチングする。その後、レジスト層11を剥離する。これにより、可撓性絶縁ベース材1の表面及び裏面に、内層回路パターン12A及び12Bがそれぞれ形成される。 Next, as can be seen from FIG. 1A (4), the resist layer 11 is etched according to a predetermined pattern by exposure and development of the resist layer 11 by a photofabrication method, and then the patterned resist layer 11 is used as a mask. The copper plating layer 8 and the copper foils 2 and 3 are etched. Thereafter, the resist layer 11 is peeled off. Thereby, inner layer circuit patterns 12A and 12B are formed on the front surface and the back surface of the flexible insulating base material 1, respectively.
 ここまでの工程により、図1A(4)に示す両面可撓性基板13を得る。 The double-sided flexible substrate 13 shown in FIG. 1A (4) is obtained through the steps so far.
 次に、図1B(5)からわかるように、ポリイミドフィルム等の絶縁フィルム14(例えば12μm厚)と、絶縁フィルム14の片面に形成された接着剤層15とを有するカバーレイ16を準備する。接着剤層15は、例えばアクリル、エポキシ等の接着剤からなる。そして、真空ラミネータ等を用いて、両面可撓性基板13の両面にカバーレイ16を貼り付けるラミネート工程を行う。これにより、内層回路パターン12A,12B及びめっき貫通ビアホール9は接着剤層15により充填される。 Next, as can be seen from FIG. 1B (5), a coverlay 16 having an insulating film 14 (for example, 12 μm thick) such as a polyimide film and an adhesive layer 15 formed on one surface of the insulating film 14 is prepared. The adhesive layer 15 is made of an adhesive such as acrylic or epoxy. And the lamination process which affixes the coverlay 16 on both surfaces of the double-sided flexible substrate 13 using a vacuum laminator etc. is performed. As a result, the inner layer circuit patterns 12 </ b> A and 12 </ b> B and the plated through via hole 9 are filled with the adhesive layer 15.
 本ラミネート工程において、めっき有底ビアホール10の内部を接着剤で完全に充填する必要はない。即ち、ラミネート工程は、カバーレイ16の接着剤層15が溶融した接着剤によりめっき貫通ビアホール9の内部が完全に充填され、且つ、めっき有底ビアホール10の内部には接着剤層15が溶融した接着剤により充填されないエアボイド15aの発生を許容する条件下で行う。このように、本実施形態における接着材層15の厚みは、めっき貫通ビアホール9を完全に充填できればよく、めっき有底ビアホール10内部の充填状態は考慮する必要がない。よって、接着剤層15は、めっき貫通ビアホール9を完全に充填可能な範囲で可及的に薄くする。本実施形態では、接着剤層15の厚さは15μmとした。図1B(5)に示すように、めっき有底ビアホール10内部にエアボイド15aが発生する場合がある。しかし、後の工程でレーザ加工によりめっき有底ビアホール10内の接着剤は全て除去することになるため、このエアボイド15aは問題とならない。 In this lamination process, it is not necessary to completely fill the inside of the plated bottomed via hole 10 with the adhesive. That is, in the laminating process, the inside of the plated through via hole 9 is completely filled with the adhesive in which the adhesive layer 15 of the cover lay 16 is melted, and the adhesive layer 15 is melted in the plated bottomed via hole 10. It is performed under conditions that allow the generation of air voids 15a not filled with the adhesive. As described above, the thickness of the adhesive layer 15 in the present embodiment only needs to be able to completely fill the plated through via hole 9, and it is not necessary to consider the filled state inside the plated bottomed via hole 10. Therefore, the adhesive layer 15 is made as thin as possible within a range in which the plated through via hole 9 can be completely filled. In the present embodiment, the thickness of the adhesive layer 15 is 15 μm. As shown in FIG. 1B (5), an air void 15a may be generated inside the plated bottomed via hole 10. However, since all the adhesive in the plated bottomed via hole 10 is removed by laser processing in a later step, the air void 15a is not a problem.
 ここまでの工程で、図1B(5)に示す、多層プリント配線板のコア基板となる両面コア基板17を得る。 Through the steps so far, the double-sided core substrate 17 that is the core substrate of the multilayer printed wiring board shown in FIG. 1B (5) is obtained.
 次に、図1B(6)に示すように、可撓性絶縁ベース材19(例えば25μm厚のポリイミド)の片面に、例えば12μm厚の銅箔18(第3の導電膜)を有する片面銅張積層板20を準備する。そして、フォトファブリケーション法により、片面銅張積層板20の銅箔18に開口部18aを形成する。より詳細には、銅箔18の上にレジスト層(図示せず)を形成し、このレジスト層を露光及び現像によりパターニングする。そして、パターニングされたレジスト層をマスクにして、銅箔18をエッチングする。これにより、コンフォーマルマスク21が形成される。この開口部18aは、後の工程においてレーザ加工によりベース材の樹脂を除去してビアホールを形成するためのものである。 Next, as shown in FIG. 1B (6), a single-sided copper-clad having, for example, a 12 μm-thick copper foil 18 (third conductive film) on one side of a flexible insulating base material 19 (for example, 25 μm-thick polyimide) The laminated board 20 is prepared. And the opening part 18a is formed in the copper foil 18 of the single-sided copper clad laminated board 20 by the photofabrication method. More specifically, a resist layer (not shown) is formed on the copper foil 18, and this resist layer is patterned by exposure and development. Then, the copper foil 18 is etched using the patterned resist layer as a mask. Thereby, the conformal mask 21 is formed. The opening 18a is for forming a via hole by removing the resin of the base material by laser processing in a later process.
 次に、図1B(6)からわかるように、ビルドアップするための接着剤を用いて、コンフォーマルマスク21が形成された片面銅張積層板20,20を、接着剤層22,22を介して両面コア基板17の両面に積層接着する。ここで用いる接着材としては、ローフロータイプのプリプレグやボンディングシート等といった流れ出しの少ないものが好ましい。なお、未加工の銅箔18を有する片面銅張積層板20を両面コア基板17に接着材層22を介して接着した後、銅箔18を所定のパターンに従ってエッチングして、コンフォーマルマスク21を形成してもよい。 Next, as can be seen from FIG. 1B (6), the single-sided copper clad laminates 20 and 20 on which the conformal mask 21 is formed using the adhesive for build-up are interposed through the adhesive layers 22 and 22. Then, the both sides of the double-sided core substrate 17 are laminated and bonded. The adhesive used here is preferably a low-flow type prepreg, a bonding sheet, or the like that does not flow out. In addition, after bonding the single-sided copper clad laminate 20 having the raw copper foil 18 to the double-sided core substrate 17 via the adhesive layer 22, the copper foil 18 is etched according to a predetermined pattern to form the conformal mask 21. It may be formed.
 次に、図1C(7)からわかるように、コンフォーマルマスク21を用いてレーザ加工を行い、ステップビアホール23及びビアホール24A,24Bを形成する。このステップビアホール23は、可撓性絶縁ベース材19、接着剤層22、絶縁フィルム14及び接着剤層15を貫通し、底部にめっき有底ビアホール10が露出している。このレーザ加工の工程において、めっき有底ビアホール10内部の樹脂は全て除去され、エアボイド15aは消滅する。ビアホール24A,24Bは、可撓性絶縁ベース材19、接着剤層22、絶縁フィルム14及び接着剤層15を貫通し、その底部には内層回路パターン12A,12Bが露出している。 Next, as can be seen from FIG. 1C (7), laser processing is performed using the conformal mask 21 to form step via holes 23 and via holes 24A and 24B. The step via hole 23 penetrates the flexible insulating base material 19, the adhesive layer 22, the insulating film 14, and the adhesive layer 15, and the plated bottomed via hole 10 is exposed at the bottom. In this laser processing step, all the resin inside the plated bottom via hole 10 is removed, and the air void 15a disappears. The via holes 24A and 24B penetrate the flexible insulating base material 19, the adhesive layer 22, the insulating film 14, and the adhesive layer 15, and the inner layer circuit patterns 12A and 12B are exposed at the bottoms.
 なお、ステップビアホール23を形成するためには、めっき有底ビアホール10内部にある樹脂も除去する必要がある。このため、除去すべき樹脂材料の量は、ステップビアホール23の方がビアホール24A,24Bよりも多い。このため、ステップビアホール23の形成に際しては、レーザ加工のショット数を増やしたり、レーザ光のパルス幅を長くすることが好ましい。このレーザ加工に用いるレーザとしては、UV-YAGレーザ、炭酸レーザ、エキシマレーザ等を選択することができる。 In addition, in order to form the step via hole 23, it is necessary to remove the resin inside the plated bottom via hole 10 as well. For this reason, the amount of the resin material to be removed is larger in the step via hole 23 than in the via holes 24A and 24B. For this reason, when forming the step via hole 23, it is preferable to increase the number of laser processing shots or to increase the pulse width of the laser beam. As a laser used for this laser processing, a UV-YAG laser, a carbonic acid laser, an excimer laser, or the like can be selected.
 次に、図1C(8)からわかるように、導電化処理とそれに続く電解めっき処理を、銅箔18上、ステップビアホール23の内壁及びビアホール24A,24Bの内壁に施すことにより、電解めっき皮膜25を形成する。これにより、銅箔18上の銅めっき層26、及びめっきビルドアップビアホール27,28,29を形成する。これらのめっきビアホールはいずれも、内層回路パターン12A,12Bと、銅箔18及び銅めっき層26(後の外層回路パターン30)と、を電気的に接続するものである。めっきビルドアップビアホール27は、ステップビアホール23の内壁にめっき層が形成されたものである。めっきビルドアップビアホール28は、ステップビアホール23に対向するビアホール24Aの内壁にめっき層が形成されたものである。めっきビルドアップビアホール29は、ビアホール24Bの内壁にめっき層が形成されたものである。 Next, as can be seen from FIG. 1C (8), the electroplating treatment and the subsequent electrolytic plating treatment are performed on the copper foil 18 on the inner wall of the step via hole 23 and the inner walls of the via holes 24A and 24B. Form. Thereby, the copper plating layer 26 on the copper foil 18 and the plating buildup via holes 27, 28, and 29 are formed. All of these plated via holes electrically connect the inner layer circuit patterns 12A and 12B to the copper foil 18 and the copper plating layer 26 (the later outer layer circuit pattern 30). The plating buildup via hole 27 is formed by forming a plating layer on the inner wall of the step via hole 23. The plating buildup via hole 28 is formed by forming a plating layer on the inner wall of the via hole 24 </ b> A facing the step via hole 23. The plating buildup via hole 29 is formed by forming a plating layer on the inner wall of the via hole 24B.
 この電解めっき皮膜25の厚さは、接続信頼性を確保するために必要な値とする。本実施形態では従来技術よりも接着剤層15の厚みが低減されることにより、電解めっき皮膜25の厚さも従来(例えば25~30μm程度)に比べて、例えば15μm~20μm程度まで薄くすることができる。 The thickness of the electrolytic plating film 25 is a value necessary for ensuring connection reliability. In this embodiment, the thickness of the adhesive layer 15 is reduced as compared with the prior art, so that the thickness of the electrolytic plating film 25 can be reduced to, for example, about 15 μm to 20 μm, compared to the conventional (for example, about 25 to 30 μm). it can.
 図1C(8)からわかるように、ここまでの工程により、めっきビルドアップビアホール27がめっき有底ビアホール10上に形成された、スタックビア構造が完成する。 As can be seen from FIG. 1C (8), the stacked via structure in which the plated build-up via hole 27 is formed on the plated bottomed via hole 10 is completed through the steps so far.
 次に、図2からわかるように、フォトファブリケーション法を用いて、銅箔18及び電解めっき皮膜25を所定のパターンに従ってエッチングすることにより、外層回路パターン30を形成する。この後、必要に応じて、フォトソルダーレジスト層(図示せず)を形成し、回路パターンの端子に半田めっき、ニッケルめっき、金めっき等の表面処理を施し、金型による打ち抜き等により外形加工を行う。 Next, as can be seen from FIG. 2, the outer layer circuit pattern 30 is formed by etching the copper foil 18 and the electrolytic plating film 25 in accordance with a predetermined pattern using a photofabrication method. After that, if necessary, a photo solder resist layer (not shown) is formed, surface treatments such as solder plating, nickel plating, gold plating are applied to the terminals of the circuit pattern, and outer shape processing is performed by punching with a mold or the like. Do.
 以上の工程を経て、図2に示す、本実施形態に係るスタックビア構造を有するビルドアップ型多層プリント配線板32が得られる。 Through the above steps, the build-up type multilayer printed wiring board 32 having the stack via structure according to the present embodiment shown in FIG. 2 is obtained.
 本実施形態に係るビルドアップ型多層プリント配線板32は、内層となる両面コア基板17の表面及び裏面に、接着剤層22,22を介して、外層の片面銅張積層板20,20を積層したものである。本実施形態はこれに限るものではなく、両面コア基板17の表面、即ち、両面コア基板17のめっき有底ビアホール10の開口面側にのみ、接着剤層22を介して外層の片面銅張積層板20を積層してもよい。これにより、片面にのみビルドアップ層を備えた多層プリント配線板を得ることができる。 In the build-up type multilayer printed wiring board 32 according to the present embodiment, outer-layer single-sided copper-clad laminates 20 and 20 are laminated on the front and back surfaces of a double-sided core substrate 17 serving as an inner layer via adhesive layers 22 and 22. It is what. The present embodiment is not limited to this, and the single-sided copper-clad laminate of the outer layer is provided via the adhesive layer 22 only on the surface of the double-sided core substrate 17, that is, on the opening side of the plated bottomed via hole 10 of the double-sided core substrate 17. The plate 20 may be laminated. Thereby, the multilayer printed wiring board provided with the buildup layer only on one side can be obtained.
 内層回路パターン12A,12Bは、めっきビルドアップビアホール27,28,29によって、外層回路パターン30と電気的に接続されている。 The inner layer circuit patterns 12A and 12B are electrically connected to the outer layer circuit pattern 30 through plating buildup via holes 27, 28 and 29.
 なお、本実施形態に係る製造方法により得られたビルドアップ型多層プリント配線板32は、可撓性プリント配線板である両面コア基板17にビルドアップ層31が積層された部品実装部32aと、両面コア基板17にビルドアップ層が積層されない可撓性ケーブル部32bとを有している。即ち、可撓性ケーブル部32bは部品実装部32aから延伸した構成である。本実施形態はこれに限るものではなく、両面コア基板17が可撓性ケーブル32bを構成しない多層プリント配線板を製造してもよい。 The build-up type multilayer printed wiring board 32 obtained by the manufacturing method according to the present embodiment includes a component mounting portion 32a in which the build-up layer 31 is laminated on the double-sided core substrate 17 that is a flexible printed wiring board, The double-sided core substrate 17 has a flexible cable portion 32b on which no buildup layer is laminated. That is, the flexible cable portion 32b is configured to extend from the component mounting portion 32a. The present embodiment is not limited to this, and a multilayer printed wiring board in which the double-sided core substrate 17 does not constitute the flexible cable 32b may be manufactured.
 また、本実施形態では、フレキシブル多層プリント配線板の製造方法について説明したが、本発明はこれに限るものではない。 In the present embodiment, the method for manufacturing a flexible multilayer printed wiring board has been described, but the present invention is not limited to this.
 また、レーザ加工法としては、前述のコンフォーマルレーザ加工法やダイレクトレーザ加工法以外にも、ステップビアホール23の上穴の径よりも大きな開口を銅箔18に形成した後、ステップビアホール23の上穴の径と同じビーム径のレーザ光を照射するラージウインドウ法などがある。選択可能なレーザ加工法は、上記実施形態の説明で用いたものに限られず、コンフォーマル法、ダイレクトレーザ法及びラージウインドウ法を、工程毎に任意に選択することができる。なお、ダイレクトレーザ法を用いる場合、本実施形態のように銅箔の厚さは15μm以下であることが好ましい。 In addition to the above-described conformal laser processing method and direct laser processing method, the laser processing method includes forming an opening larger than the diameter of the upper hole of the step via hole 23 in the copper foil 18, and then There is a large window method in which a laser beam having the same beam diameter as the hole diameter is irradiated. The laser processing methods that can be selected are not limited to those used in the description of the above embodiment, and a conformal method, a direct laser method, and a large window method can be arbitrarily selected for each step. When the direct laser method is used, the thickness of the copper foil is preferably 15 μm or less as in the present embodiment.
 また、本実施形態では、両面可撓性基板13の両面にカバーレイ16をラミネートして両面コア基板17を作製した後、両面コア基板17にビルドアップ層を積層したが、本発明はこれに限らず、カバーレイ16に代えて接着剤付き片面銅張積層板を用いて、両面可撓性基板13にビルドアップ層を直接設けるようにしてもよい。この場合、下記のようにして多層プリント配線板を作製する。まず、前述のようにして、めっき貫通ビアホール9、めっき有底ビアホール10及び内層回路パターン12A,12Bが形成された両面可撓性基板13を作製する。その後、絶縁ベース材と、前記絶縁ベース材の表面に形成された導電膜(第3の導電膜)と、前記絶縁ベース材の裏面に形成された接着剤層とを有する接着剤層付き片面導電膜張積層板を準備する。そして、接着剤層付き片面導電膜張積層板を両面可撓性基板13の両面に貼り付けるラミネート工程を行う。このラミネート工程は、接着剤層付き片面導電膜張積層板の接着剤層が溶融した接着剤によりめっき貫通ビアホール9の内部が完全に充填され、且つ、めっき有底ビアホール10の内部には接着剤層が溶融した接着剤により充填されないエアボイドの発生を許容する条件下において行う。このようにして得られた多層プリント配線板に対して、レーザ加工により、めっき有底ビアホール10内部の接着剤を除去しエアボイドを消滅させ、これにより、底部にめっき有底ビアホール10が露出し、めっき有底ビアホール10が下穴となるステップビアホールを形成する。その後、第3の導電膜及びステップビアホールの内壁にめっき処理を施すことにより、第3の導電膜と内層回路パターン12Aとを電気的に接続するめっきビルドアップビアホールを形成する。次に、めっき処理を施された第3の導電膜を、所定のパターンに従ってエッチングすることにより、外層回路パターンを形成し、ビルドアップ型の多層プリント配線板を得る。 In the present embodiment, the cover lay 16 is laminated on both sides of the double-sided flexible substrate 13 to produce the double-sided core substrate 17 and then the build-up layer is laminated on the double-sided core substrate 17. Not limited to this, a single-sided copper-clad laminate with an adhesive may be used in place of the coverlay 16 to directly provide a buildup layer on the double-sided flexible substrate 13. In this case, a multilayer printed wiring board is produced as follows. First, as described above, the double-sided flexible substrate 13 on which the plated through via hole 9, the plated bottomed via hole 10, and the inner layer circuit patterns 12A and 12B are formed. Thereafter, single-sided conduction with an adhesive layer comprising an insulating base material, a conductive film (third conductive film) formed on the surface of the insulating base material, and an adhesive layer formed on the back surface of the insulating base material A film-clad laminate is prepared. And the lamination process which affixes the single-sided electrically conductive film tension laminated board with an adhesive bond layer on both surfaces of the double-sided flexible substrate 13 is performed. In this laminating step, the inside of the plated through via hole 9 is completely filled with the adhesive in which the adhesive layer of the single-sided conductive film-clad laminate with the adhesive layer is melted, and the inside of the plated bottomed via hole 10 is adhesive. It is carried out under conditions that allow the generation of air voids in which the layer is not filled with molten adhesive. The multilayer printed wiring board obtained in this way is subjected to laser processing to remove the adhesive inside the plated bottomed via hole 10 and extinguish the air void, thereby exposing the plated bottomed via hole 10 to the bottom, A step via hole in which the plated bottom via hole 10 is a pilot hole is formed. Thereafter, a plating buildup via hole for electrically connecting the third conductive film and the inner layer circuit pattern 12A is formed by plating the third conductive film and the inner wall of the step via hole. Next, the third conductive film that has been plated is etched according to a predetermined pattern to form an outer layer circuit pattern, thereby obtaining a build-up type multilayer printed wiring board.
 上述したように、両面コア基板17は、内層回路パターン12Aと内層回路パターン12Bを電気的に接続するための、めっき貫通ビアホール9とめっき有底ビアホール10を有する。スタックビア構造は、めっき有底ビアホール10と、このめっき有底ビアホール10上に配置されためっきビルドアップビアホール27とから構成される。このめっきビルドアップビアホール27は、両面コア基板17に形成されためっき有底ビアホール10を小径のホールとするステップビアホール23の内壁に電解めっき皮膜を形成したものである。また、めっき貫通ビアホール10は、両面コア基板17の表面と裏面の層間導通を行うのみであり、外層回路パターン30と内層回路パターン12A,12Bとの層間導通は行わないものとして構成されている。 As described above, the double-sided core substrate 17 includes the plated through via hole 9 and the plated bottomed via hole 10 for electrically connecting the inner layer circuit pattern 12A and the inner layer circuit pattern 12B. The stacked via structure includes a plated bottomed via hole 10 and a plated buildup via hole 27 disposed on the plated bottomed via hole 10. The plated build-up via hole 27 is formed by forming an electrolytic plating film on the inner wall of the step via hole 23 in which the plated bottomed via hole 10 formed in the double-sided core substrate 17 is a small diameter hole. Further, the plated through via hole 10 is configured to only perform interlayer conduction between the front surface and the back surface of the double-sided core substrate 17 and does not perform interlayer conduction between the outer layer circuit pattern 30 and the inner layer circuit patterns 12A and 12B.
 上記の特徴により、本実施形態によれば以下の効果が得られる。 Due to the above characteristics, the following effects can be obtained according to the present embodiment.
 カバーレイ16をラミネートする際、めっき有底ビアホール10の内部を接着材で完全に充填する必要はなくなる。即ち、めっき有底ビアホール10の内部は接着剤で不完全に充填された状態であり、エアボイド15aが存在してもよい。そのため、めっき貫通ビアホール9の内部に接着剤を完全に充填することが可能な範囲内で、カバーレイ16の接着材層15の厚さを可及的に小さくすることができる。その結果、ステップビアホール23を可及的に浅くすることができ(例えば10μm程度)、ステップビアホール23及びビアホール24A,24Bの内壁に電解めっき処理を施す際の電着容易性が向上する。さらに、めっきビルドアップビアホール27,28,29は、プリント配線板の構成部材の熱膨張による影響を受け難いこと等の有利な構造となる。構成部材のうち特に接着剤層15を構成する接着剤は熱膨張率が大きいため、接着剤層15が薄くなることによる効果は大きい。このため、歩留まりの向上及び接続信頼性を確保するのに必要な電解めっき皮膜25の厚みを低減することができる。この結果、本実施形態によれば、微細な外層回路パターン30を形成することが可能となる。 When laminating the coverlay 16, it is not necessary to completely fill the inside of the plated bottomed via hole 10 with an adhesive. That is, the inside of the plated bottomed via hole 10 is in an incompletely filled state with the adhesive, and the air void 15a may exist. Therefore, the thickness of the adhesive layer 15 of the cover lay 16 can be made as small as possible within a range in which the adhesive can be completely filled into the plated through via hole 9. As a result, the step via hole 23 can be made as shallow as possible (for example, about 10 μm), and the ease of electrodeposition when electrolytic plating is performed on the inner wall of the step via hole 23 and the via holes 24A and 24B is improved. Further, the plated build-up via holes 27, 28, and 29 have an advantageous structure such as being hardly affected by the thermal expansion of the constituent members of the printed wiring board. Among the constituent members, particularly the adhesive constituting the adhesive layer 15 has a large coefficient of thermal expansion, so that the effect obtained by making the adhesive layer 15 thinner is great. For this reason, it is possible to reduce the thickness of the electrolytic plating film 25 necessary for improving the yield and ensuring the connection reliability. As a result, according to the present embodiment, a fine outer layer circuit pattern 30 can be formed.
 さらに、本実施形態によれば、めっきビルドアップビアホール27を形成する際に、めっき有底ビアホール10の上にも電解めっき皮膜26が形成される。これにより、非対称な形状に起因してめっき貫通ビアホール9に比べて熱応力が集中しやすいめっき有底ビアホール10が補強され、接続信頼性を向上させることができる。 Furthermore, according to the present embodiment, when the plating buildup via hole 27 is formed, the electrolytic plating film 26 is also formed on the plated bottomed via hole 10. This reinforces the plated bottomed via hole 10 where thermal stress is more likely to concentrate than the plated through via hole 9 due to the asymmetric shape, thereby improving the connection reliability.
 さらに、本実施形態によれば、めっき有底ビアホール10が補強されることから、めっき有底ビアホール10のめっき厚(電解銅めっき皮膜7の厚さ)を、めっき貫通ビアホール9の接続信頼性を確保できる程度にまで薄くすることができる。その結果、めっき工程に要する時間が短縮され、コストを低減することができる。また、めっき有底ビアホール10のめっき厚に合わせて銅めっき層8も薄くなるため、両面コア基板17の内層回路パターン12を微細化することができる。 Furthermore, according to the present embodiment, since the plated bottomed via hole 10 is reinforced, the plating thickness of the plated bottomed via hole 10 (thickness of the electrolytic copper plating film 7) can be set to the connection reliability of the plated through via hole 9. It can be made as thin as possible. As a result, the time required for the plating process is shortened, and the cost can be reduced. In addition, since the copper plating layer 8 becomes thinner in accordance with the plating thickness of the plated bottomed via hole 10, the inner layer circuit pattern 12 of the double-sided core substrate 17 can be miniaturized.
 なお、実施形態の説明では、配線パターンおよびめっき皮膜は銅からなるものとしたが、本発明はこれに限定されるものではなく、例えばアルミニウムや銀など他の金属でもよい。 In the description of the embodiment, the wiring pattern and the plating film are made of copper. However, the present invention is not limited to this, and other metals such as aluminum and silver may be used.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した実施形態に限定されるものではない。特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the above-described embodiments. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
 1,19,101 可撓性絶縁ベース材
 2,3,18,102,103 銅箔
 4,104 両面銅張積層板
 5 貫通ビアホール
 6,105 有底ビアホール
 7 電解銅めっき皮膜
 8,26 銅めっき層
 9 めっき貫通ビアホール
10,106 めっき有底ビアホール
11 レジスト層
12A,12B 内層回路パターン
13 両面可撓性基板
14,107 絶縁フィルム
15,22,108,112 接着材層
15a エアボイド
16,109 カバーレイ
17,110 両面コア基板
18 銅箔
18a 開口部
20,111 片面銅張積層板
21 コンフォーマルマスク
23,113A ステップビアホール
24A,24B,113B,113C ビアホール
25 電解めっき皮膜
27,28,29,114A,114B,114C めっきビルドアップビアホール
30,115 外層回路パターン
31 ビルドアップビアホール
32,116 ビルドアップ型多層プリント配線板
32a,116a 部品実装部
32b,116b 可撓性ケーブル部
DESCRIPTION OF SYMBOLS 1,19,101 Flexible insulation base material 2,3,18,102,103 Copper foil 4,104 Double-sided copper clad laminated board 5 Through-via hole 6,105 Bottomed via hole 7 Electrolytic copper plating film 8,26 Copper plating layer 9 Plating via hole 10, 106 Plating bottomed via hole 11 Resist layer 12A, 12B Inner layer circuit pattern 13 Double-sided flexible substrate 14, 107 Insulating film 15, 22, 108, 112 Adhesive layer 15a Air void 16, 109 Coverlay 17, 110 Double-sided core substrate 18 Copper foil 18a Opening 20, 111 Single-sided copper clad laminate 21 Conformal mask 23, 113A Step via hole 24A, 24B, 113B, 113C Via hole 25 Electrolytic plating film 27, 28, 29, 114A, 114B, 114C Plating build-up via hole 30 115 outer circuit pattern 31 buildup holes 32,116 buildup type multilayer printed wiring board 32a, 116a component mounting portion 32 b, 116 b flexible cable portion

Claims (3)

  1.  表面及び裏面にそれぞれ第1の導電膜及び第2の導電膜を有する両面導電膜張積層板に、前記第1の導電膜と前記第2の導電膜を電気的に接続するめっき貫通ビアホール及びめっき有底ビアホールを形成し、
     前記第1の導電膜及び前記第2の導電膜を所定のパターンに従ってエッチングすることにより、内層回路パターンを有する両面可撓性基板を作製し、
     絶縁フィルムと、前記絶縁フィルムの片面に形成された接着剤層とを有するカバーレイを準備し、
     前記カバーレイの前記接着剤層が溶融した接着剤により前記めっき貫通ビアホールの内部が完全に充填され、且つ、前記めっき有底ビアホールの内部には前記接着剤により充填されないエアボイドの発生を許容する条件下において、前記カバーレイを前記両面可撓性基板の両面に貼り付けるラミネート工程を行い、これにより、両面コア基板を作製し、
     前記両面コア基板の少なくとも前記めっき有底ビアホールの開口面側に、片面に形成された第3の導電膜を有するビルドアップ層を積層接着し、
     レーザ加工により、前記めっき有底ビアホール内部の前記接着剤を除去し前記エアボイドを消滅させ、これにより、底部に前記めっき有底ビアホールが露出し、前記めっき有底ビアホールが下穴となるステップビアホールを形成し、
     前記第3の導電膜及び前記ステップビアホールの内壁にめっき処理を施すことにより、前記第3の導電膜と前記内層回路パターンとを電気的に接続するめっきビルドアップビアホールを形成し、
     めっき処理を施された前記第3の導電膜を、所定のパターンに従ってエッチングすることにより、外層回路パターンを形成することを特徴とする多層プリント配線板の製造方法。
    A plated through via hole and a plating for electrically connecting the first conductive film and the second conductive film to a double-sided conductive film-clad laminate having a first conductive film and a second conductive film on the front and back surfaces, respectively. Forming a bottomed via hole,
    Etching the first conductive film and the second conductive film according to a predetermined pattern to produce a double-sided flexible substrate having an inner circuit pattern,
    Preparing a coverlay having an insulating film and an adhesive layer formed on one side of the insulating film;
    Conditions that allow the inside of the plated through via hole to be completely filled with an adhesive in which the adhesive layer of the coverlay is melted, and allow the generation of air voids not filled with the adhesive into the plated bottomed via hole Underneath, performing a laminating step of pasting the coverlay on both sides of the double-sided flexible substrate, thereby producing a double-sided core substrate,
    A buildup layer having a third conductive film formed on one side is laminated and bonded to at least the opening side of the plated bottomed via hole of the double-sided core substrate,
    By laser processing, the adhesive inside the plated bottomed via hole is removed and the air voids disappear, thereby exposing the plated bottomed via hole to the bottom and forming a step via hole where the plated bottomed via hole serves as a pilot hole. Forming,
    A plating buildup via hole that electrically connects the third conductive film and the inner layer circuit pattern is formed by plating the third conductive film and the inner wall of the step via hole.
    A method of manufacturing a multilayer printed wiring board, wherein an outer layer circuit pattern is formed by etching the third conductive film that has been plated in accordance with a predetermined pattern.
  2.  表面及び裏面にそれぞれ第1の導電膜及び第2の導電膜を有する両面導電膜張積層板に、前記第1の導電膜と前記第2の導電膜を電気的に接続するめっき貫通ビアホール及びめっき有底ビアホールを形成し、
     前記第1の導電膜及び前記第2の導電膜を所定のパターンに従ってエッチングすることにより、内層回路パターンを有する両面可撓性基板を作製し、
     絶縁ベース材と、前記絶縁ベース材の表面に形成された第3の導電膜と、前記絶縁ベース材の裏面に形成された接着剤層とを有する接着剤層付き片面導電膜張積層板を準備し、
     前記接着剤層が溶融した接着剤により前記めっき貫通ビアホールの内部が完全に充填され、且つ、前記めっき有底ビアホールの内部には前記接着剤により充填されないエアボイドの発生を許容する条件下において、前記接着剤層付き片面導電膜張積層板を前記両面可撓性基板の両面に貼り付けるラミネート工程を行い、
     レーザ加工により、前記めっき有底ビアホール内部の前記接着剤を除去し前記エアボイドを消滅させ、これにより、底部に前記めっき有底ビアホールが露出し、前記めっき有底ビアホールが下穴となるステップビアホールを形成し、
     前記第3の導電膜及び前記ステップビアホールの内壁にめっき処理を施すことにより、前記第3の導電膜と前記内層回路パターンとを電気的に接続するめっきビルドアップビアホールを形成し、
     めっき処理を施された前記第3の導電膜を、所定のパターンに従ってエッチングすることにより、外層回路パターンを形成することを特徴とする多層プリント配線板の製造方法。
    A plated through via hole and a plating for electrically connecting the first conductive film and the second conductive film to a double-sided conductive film-clad laminate having a first conductive film and a second conductive film on the front and back surfaces, respectively. Forming a bottomed via hole,
    Etching the first conductive film and the second conductive film according to a predetermined pattern to produce a double-sided flexible substrate having an inner circuit pattern,
    A single-sided conductive film-clad laminate with an adhesive layer comprising an insulating base material, a third conductive film formed on the surface of the insulating base material, and an adhesive layer formed on the back surface of the insulating base material is prepared. And
    Under the condition that the inside of the plated through via hole is completely filled with the adhesive in which the adhesive layer is melted, and the inside of the plated bottomed via hole is allowed to generate air voids that are not filled with the adhesive. Performing a laminating step of attaching a single-sided conductive film-clad laminate with an adhesive layer to both sides of the double-sided flexible substrate;
    By laser processing, the adhesive inside the plated bottomed via hole is removed and the air voids disappear, thereby exposing the plated bottomed via hole to the bottom and forming a step via hole where the plated bottomed via hole serves as a pilot hole. Forming,
    A plating buildup via hole that electrically connects the third conductive film and the inner layer circuit pattern is formed by plating the third conductive film and the inner wall of the step via hole.
    A method of manufacturing a multilayer printed wiring board, wherein an outer layer circuit pattern is formed by etching the third conductive film that has been plated in accordance with a predetermined pattern.
  3.  前記レーザ加工は、前記第3の導電膜をエッチングして形成されたコンフォーマルマスクを用いて行うコンフォーマルレーザ加工法、前記第3の導電膜にレーザ光を直接照射するダイレクトレーザ加工法、又は、前記ステップビアホールの上穴の径よりも大きな開口を前記第3の導電膜に形成し、前記上穴の径と同じビーム径のレーザ光を照射するラージウインドウ法により行うことを特徴とする請求項1又は2に記載の多層プリント配線板の製造方法。 The laser processing is a conformal laser processing method that uses a conformal mask formed by etching the third conductive film, a direct laser processing method that directly irradiates the third conductive film with laser light, or An opening larger than the diameter of the upper hole of the step via hole is formed in the third conductive film, and this is performed by a large window method in which a laser beam having the same beam diameter as the diameter of the upper hole is irradiated. Item 3. A method for producing a multilayer printed wiring board according to Item 1 or 2.
PCT/JP2011/051255 2010-02-08 2011-01-25 Method of manufacturing multi-layered printed circuit board WO2011096293A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011552730A JP5485299B2 (en) 2010-02-08 2011-01-25 Manufacturing method of multilayer printed wiring board
CN201180000967.4A CN102308679B (en) 2010-02-08 2011-01-25 Method of manufacturing multi-layered printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-025504 2010-02-08
JP2010025504 2010-02-08

Publications (1)

Publication Number Publication Date
WO2011096293A1 true WO2011096293A1 (en) 2011-08-11

Family

ID=44355294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051255 WO2011096293A1 (en) 2010-02-08 2011-01-25 Method of manufacturing multi-layered printed circuit board

Country Status (4)

Country Link
JP (1) JP5485299B2 (en)
CN (1) CN102308679B (en)
TW (1) TWI487451B (en)
WO (1) WO2011096293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190945A1 (en) * 2021-12-01 2023-06-07 Rohde & Schwarz GmbH & Co. KG Method of manufacturing a metal-coated workpiece, metal-coated workpiece, and manufacturing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246270B (en) * 2015-10-22 2018-09-04 深圳崇达多层线路板有限公司 A kind of preparation process of plug-in type blind hole HDI plates
CN107343361B (en) * 2016-04-29 2020-02-28 鹏鼎控股(深圳)股份有限公司 Method for manufacturing multilayer flexible circuit board
WO2020131897A1 (en) * 2018-12-17 2020-06-25 Averatek Corporation Three dimensional circuit formation
CN113329556B (en) * 2021-05-19 2022-06-07 景旺电子科技(龙川)有限公司 Flexible circuit board and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251054A (en) * 2000-03-08 2001-09-14 Ibiden Co Ltd Method for manufacturing circuit board for multilayer printed wiring board
JP2008235801A (en) * 2007-03-23 2008-10-02 Nippon Mektron Ltd Multi-layer printed wiring board and manufacturing method therefor
JP2008288434A (en) * 2007-05-18 2008-11-27 Nippon Mektron Ltd Method for manufacturing multilayer printed wiring board and wiring board thereof
JP2009026912A (en) * 2007-07-19 2009-02-05 Nippon Mektron Ltd Method for manufacturing multilayer printed-wiring board
JP2009260186A (en) * 2008-04-21 2009-11-05 Nippon Mektron Ltd Multilayer flexible printed wiring board, and its method for manufacturing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308529A (en) * 2000-04-21 2001-11-02 Ibiden Co Ltd Laminated wiring board and its manufacturing method
JP2004200260A (en) * 2002-12-17 2004-07-15 Sharp Corp Method for manufacturing flexible rigid build-up multilayer wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251054A (en) * 2000-03-08 2001-09-14 Ibiden Co Ltd Method for manufacturing circuit board for multilayer printed wiring board
JP2008235801A (en) * 2007-03-23 2008-10-02 Nippon Mektron Ltd Multi-layer printed wiring board and manufacturing method therefor
JP2008288434A (en) * 2007-05-18 2008-11-27 Nippon Mektron Ltd Method for manufacturing multilayer printed wiring board and wiring board thereof
JP2009026912A (en) * 2007-07-19 2009-02-05 Nippon Mektron Ltd Method for manufacturing multilayer printed-wiring board
JP2009260186A (en) * 2008-04-21 2009-11-05 Nippon Mektron Ltd Multilayer flexible printed wiring board, and its method for manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190945A1 (en) * 2021-12-01 2023-06-07 Rohde & Schwarz GmbH & Co. KG Method of manufacturing a metal-coated workpiece, metal-coated workpiece, and manufacturing system

Also Published As

Publication number Publication date
CN102308679A (en) 2012-01-04
JP5485299B2 (en) 2014-05-07
TW201146123A (en) 2011-12-16
JPWO2011096293A1 (en) 2013-06-10
CN102308679B (en) 2013-05-01
TWI487451B (en) 2015-06-01

Similar Documents

Publication Publication Date Title
JP5165265B2 (en) Manufacturing method of multilayer printed wiring board
TWI529023B (en) A laser processing method, and a manufacturing method of a multilayer flexible printed wiring board using the laser processing method
JP5313202B2 (en) Build-up type multilayer printed wiring board and manufacturing method thereof
WO2008004382A1 (en) Method for manufacturing multilayer printed wiring board
JP5485299B2 (en) Manufacturing method of multilayer printed wiring board
JP5073395B2 (en) Manufacturing method of multilayer printed wiring board
KR101387564B1 (en) Method of manufacturing multilayer printed circuit board and multilayer printed circuit board
JP5066427B2 (en) Method for manufacturing printed wiring board
JP4857433B2 (en) Metal laminate, metal laminate manufacturing method and printed circuit board manufacturing method
JP5693339B2 (en) Multilayer printed wiring board and manufacturing method thereof
TW201347639A (en) Method of manufacturing multilayer wiring substrate
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP4602783B2 (en) Manufacturing method of rigid flex buildup wiring board
JP4813204B2 (en) Multilayer circuit board manufacturing method
JP2014216406A (en) Method of manufacturing core substrate of multilayer lamination wiring board, core substrate of multilayer lamination wiring board, and multilayer lamination wiring board
TW200814893A (en) Multilayer circuit board having cable section, and manufacturing method thereof
JP2021012956A (en) Printed wiring board
JP2010182927A (en) Method of manufacturing printed wiring board, and printed wiring board manufactured by the method
JP2006086358A (en) Manufacturing method of double-sided printed wiring board
JP2006165231A (en) Multilayer flexible printed circuit board and its manufacturing method
JP2014090005A (en) Printed wiring board and method of manufacturing the same
JP2010183102A (en) Method of manufacturing multilayered wiring board having cable part

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000967.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552730

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739642

Country of ref document: EP

Kind code of ref document: A1