JP2006165231A - Multilayer flexible printed circuit board and its manufacturing method - Google Patents

Multilayer flexible printed circuit board and its manufacturing method Download PDF

Info

Publication number
JP2006165231A
JP2006165231A JP2004353836A JP2004353836A JP2006165231A JP 2006165231 A JP2006165231 A JP 2006165231A JP 2004353836 A JP2004353836 A JP 2004353836A JP 2004353836 A JP2004353836 A JP 2004353836A JP 2006165231 A JP2006165231 A JP 2006165231A
Authority
JP
Japan
Prior art keywords
hole
plating
wiring board
inner layer
multilayer flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353836A
Other languages
Japanese (ja)
Other versions
JP4302045B2 (en
Inventor
Fumihiko Matsuda
文彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2004353836A priority Critical patent/JP4302045B2/en
Publication of JP2006165231A publication Critical patent/JP2006165231A/en
Application granted granted Critical
Publication of JP4302045B2 publication Critical patent/JP4302045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer flexible printed circuit board having a flexible cable section, and to provide a manufacturing method for the multilayer flexible printed circuit board. <P>SOLUTION: An internal-layer board having a cable structure is formed, a cover as a cable protective layer is formed to the internal-layer board, a first hole for a conduction is formed to the internal-layer board containing the cover, and a first through-hole is formed, by carrying out an electroless plating or/and a conductive treatment and the electroless plating to the first hole for the conduction. A previously rapped single-sided copper-clad laminated board and an adhesive are aligned and laminated to the internal-layer board, and a second hole for the conduction for forming a second through-hole will not interfere in the first through-hole and has a diameter smaller than that of the first through-hole, on the coaxis of the first through-hole. The second through-hole is formed on the coaxis of the first through-hole, by carrying out the electroless plating or/and the conductive treatment and the electroless plating to the second hole for conduction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多層回路配線基板の製造方法および構造に関し、特には、可撓性ケーブル部を有する多層フレキシブル回路配線基板及びその製造方法に関する。   The present invention relates to a manufacturing method and structure of a multilayer circuit wiring board, and more particularly to a multilayer flexible circuit wiring board having a flexible cable portion and a manufacturing method thereof.

近年、電子機器の小型化および高機能化は益々促進されてきており、そのために回路基板に対する高密度化の要求が高まってきている。そこで、回路基板を片面から両面や三層以上の多層回路基板とすることにより、回路基板の高密度化を図っている。   In recent years, downsizing and higher functionality of electronic devices have been promoted more and more, and therefore, there is an increasing demand for higher density of circuit boards. In view of this, the circuit board is made to be a multi-layer circuit board from one side to both sides or three or more layers to increase the density of the circuit board.

この一環として、各種電子部品を実装する多層回路基板や硬質回路基板間をコネクタ等を介して接続する別体のフレキシブル配線基板やフレキシブルフラットケーブルを一体化した可撓性ケーブル部を有する多層フレキシブル回路配線基板が、携帯電話などの小型電子機器を中心に広く普及している。   As part of this, a multilayer flexible circuit with a flexible cable unit that integrates a multilayer circuit board on which various electronic components are mounted, a separate flexible wiring board that connects hard circuit boards via connectors, etc., and a flexible flat cable. Wiring boards are widespread mainly in small electronic devices such as mobile phones.

多層フレキシブル回路配線基板の代表的な構造は、両面又は片面のフレキシブル配線基板を内層とし、それに外層となるフレキシブル又は硬質ベースの回路基板を積層し、メッキなどによるスルーホール接続を施して4〜8層程度の多層フレキシブル回路配線基板とする構造である。   A typical structure of a multilayer flexible circuit wiring board is such that a double-sided or single-sided flexible wiring board is used as an inner layer, and a flexible or hard base circuit board as an outer layer is laminated thereon, and through holes are connected by plating or the like. The structure is a multilayer flexible circuit wiring board having about one layer.

しかしながら、特許文献3や特許文献4に記載されているように多層回路配線基板内に可撓性ケーブル部を設けるため、この可撓性ケーブル部のポリイミド樹脂製カバーフィルムやそれを張り合わせるための接着剤の熱膨張係数が高く、部品実装時の約220〜240℃程度の半田リフロー時の熱によって膨張し、スルーホールめっき層にクラックが発生し易いという問題があり、基本的にスルーホールめっき厚を厚くすることでしか、クラックを回避できないため、表層の導体厚が厚くなり、高密度配線、高密度実装が要求される形態の多層フレキシブル回路配線基板では製品として重大な問題となる。   However, as described in Patent Document 3 and Patent Document 4, in order to provide a flexible cable portion in the multilayer circuit wiring board, a polyimide resin cover film for the flexible cable portion and a laminate for the same There is a problem that the thermal expansion coefficient of the adhesive is high, it expands due to heat during solder reflow of about 220 to 240 ° C. during component mounting, and cracks are likely to occur in the through-hole plating layer. Since the crack can be avoided only by increasing the thickness, the conductor thickness of the surface layer becomes thick, and a multilayer flexible circuit wiring board in a form that requires high-density wiring and high-density mounting becomes a serious problem as a product.

特許文献1には可撓性ケーブル部のポリイミド樹脂製カバーフィルムをスルーホール導通用孔より外側に後退させる構造が記載されている。しかしながら、端面を後退させたカバーフィルムの張り合わせずれが起きた際にはスルーホールクラック耐性は上がらず、上記問題の解決には至らない。また、可撓性ケーブル部に外層となる片面銅張り積層板等を積層するためのプリプレグ等の接着剤は可撓性ケーブル部端面等からの流れ出しを嫌い、流動性を抑えている。このため、端面を後退させたカバーフィルムの段差を充填することが困難である。プリプレグ等の接着剤の充填性を向上させた場合には、上述したように可撓性ケーブル部端面等からの流れ出しを発生させる原因となるので適用は困難である。   Patent Document 1 describes a structure in which a polyimide resin cover film of a flexible cable part is retracted outward from a through-hole conduction hole. However, when the cover film with the end face retracted is misaligned, the through-hole crack resistance is not improved, and the above problem cannot be solved. In addition, an adhesive such as a prepreg for laminating a single-sided copper-clad laminate or the like serving as an outer layer on the flexible cable part dislikes flowing out from the end face of the flexible cable part, and suppresses fluidity. For this reason, it is difficult to fill the level difference of the cover film whose end face is retracted. When the filling property of an adhesive such as a prepreg is improved, as described above, it causes a flow out from the end face of the flexible cable portion and the like, so that it is difficult to apply.

特許文献2にはスルーホール接続による多層基板の製造方法として、内層の穴径を外層に比べ大きくなるようにレーザ加工し、スルーホールめっき厚が内層のみを選択的に厚付けする手法が記載されている。しかしながら、穴径の制御をレーザ加工条件で制御しなければならないことから、構成材料が変わる毎に条件出しが必要なことや、そのレーザ加工条件のばらつきなどにより内層穴径が変化しても、その検出ができないといったことが懸念される上、スルーホール加工を従来のNCドリルのように基板を重ねて行うことができず、従来の手法よりも生産性が著しく劣るという欠点がある。また、めっき厚の制御に関しては内層のみを選択的に厚付けすることを安定的に行うことは困難であることと、本文献記載の範囲ではめっき厚みのコントラストをつけることも困難であり、多層フレキシブル回路配線基板のスルーホール信頼性確保と表層の微細配線形成を両立するには至らない。   Patent Document 2 describes a method of manufacturing a multilayer substrate by through-hole connection in which laser processing is performed so that the hole diameter of the inner layer is larger than that of the outer layer, and the through-hole plating thickness is selectively thickened only on the inner layer. ing. However, since the control of the hole diameter must be controlled by the laser processing conditions, even if the inner layer hole diameter changes due to variations in the laser processing conditions, it is necessary to determine the conditions every time the constituent material changes, There is a concern that the detection cannot be performed, and the through hole processing cannot be performed by stacking the substrates as in the conventional NC drill, and there is a disadvantage that the productivity is significantly inferior to the conventional method. In addition, regarding the control of the plating thickness, it is difficult to selectively thicken only the inner layer stably, and it is difficult to set the contrast of the plating thickness within the range described in this document. It is impossible to achieve both the through-hole reliability of the flexible circuit wiring board and the formation of fine wiring on the surface layer.

特許文献5および特許文献6には内層回路に予めスルーホールめっきし、外層を積層した後、前記スルーホールと同軸上に導通用孔を形成し、さらにスルーホールめっきを行うことで、内層と外層のめっき厚みのコントラストをつける手法が記載されている。しかしながら、これらの手法では内層のデスミア工程を簡略化することとしているため、ケーブルを有する内層回路のデスミア工程が必須の多層フレキシブル回路配線基板への適用は困難である。加えて、多層フレキシブル回路配線基板に特有の熱膨張係数の高い可撓性ケーブル部のポリイミド樹脂製カバーフィルム層や接着材層近傍で発生するスルーホールめっき層のクラックを防止するためには、これらの層のスルーホールめっき厚を厚くする必要があるが、特許文献5および特許文献6に記載の範囲では内層回路の層間接続部までのスルーホールめっき厚しか厚くならないため、問題の解決には至らない。   In Patent Document 5 and Patent Document 6, through-hole plating is performed on the inner layer circuit in advance, and the outer layer is laminated. Then, a conduction hole is formed coaxially with the through-hole, and further through-hole plating is performed. A method for providing a contrast of the plating thickness is described. However, since these methods simplify the inner layer desmear process, it is difficult to apply to a multilayer flexible circuit wiring board in which the inner layer circuit desmear process having a cable is essential. In addition, in order to prevent cracks in the polyimide resin cover film layer and adhesive layer in the vicinity of the flexible cable portion having a high thermal expansion coefficient unique to the multilayer flexible circuit wiring board, these It is necessary to increase the thickness of the through-hole plating of the layer, but in the range described in Patent Document 5 and Patent Document 6, since only the through-hole plating thickness up to the interlayer connection portion of the inner layer circuit is increased, the problem cannot be solved. Absent.

これらのことから、多層フレキシブル回路配線基板のスルーホールクラックを表層の導体厚を厚くすることなく、生産性の良い方法で効果的に防止する方法が望まれていた。   For these reasons, there has been a demand for a method of effectively preventing through-hole cracks in a multilayer flexible circuit wiring board by a method with good productivity without increasing the surface conductor thickness.

図8〜図10は、従来の両面型回路配線基板の製造方法を示す断面工程図であって、先ず、図8の(1)に示す様に、ポリイミド等の可撓性絶縁ベース材61の両面に銅箔等の導電層62、63を有する、所謂、両面銅張積層板64を用意する。   8 to 10 are sectional process diagrams showing a conventional method for manufacturing a double-sided circuit wiring board. First, as shown in FIG. 8 (1), a flexible insulating base material 61 such as polyimide is used. A so-called double-sided copper-clad laminate 64 having conductive layers 62 and 63 such as copper foil on both sides is prepared.

次に、同図(2)に示す様に、この両面型銅張積層板64の銅箔層62、63に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、ケーブル等の回路パターン65を形成し、内層回路66とする。   Next, as shown in FIG. 2B, a circuit pattern 65 such as a cable is formed on the copper foil layers 62 and 63 of the double-sided copper-clad laminate 64 by using an etching method based on a normal photofabrication method. To form an inner layer circuit 66.

次に、同図(3)に示す様に、ケーブル等の回路パターン65にポリイミドフィルム67を接着材68を介し張り合わせることでカバーを形成し、ケーブル部70を形成する。   Next, as shown in FIG. 3 (3), a cover is formed by bonding a polyimide film 67 to a circuit pattern 65 such as a cable via an adhesive 68, and a cable portion 70 is formed.

次に、同図(4)に示す様に、絶縁ベース材71の片面に銅箔等の導電層72を有する、所謂、片面銅張積層板73およびこれを金型等により所望の形状に打ち抜き加工した同図(3)のケーブル部70に張り合わせるための接着材74を用意する。このときの導電層72の厚みとしては50μm以下で、特に35μm以下が好ましい。   Next, as shown in FIG. 4 (4), a so-called single-sided copper-clad laminate 73 having a conductive layer 72 such as a copper foil on one side of an insulating base material 71 and this is punched into a desired shape by a mold or the like. An adhesive 74 is prepared for bonding to the processed cable portion 70 of FIG. The thickness of the conductive layer 72 at this time is 50 μm or less, and particularly preferably 35 μm or less.

次に、同図(5)に示す様に、片面銅張積層板73と接着材74を張り合わせ、これを金型等により所望の形状に打ち抜き加工する。   Next, as shown in FIG. 5 (5), the single-sided copper-clad laminate 73 and the adhesive 74 are bonded together and punched into a desired shape using a mold or the like.

次に、図9の(1)に示す様に、図8の(3)のケーブル部70に接着材74を介して同図(5)の打ち抜き加工した片面銅張積層板75を積層する。   Next, as shown in (1) of FIG. 9, the single-sided copper-clad laminate 75 of FIG. 5 (5) is laminated on the cable part 70 of FIG.

次に、同図(2)に示す様に、NCドリル等で導通用孔76を形成する。   Next, as shown in FIG. 2B, a conduction hole 76 is formed by an NC drill or the like.

次に、図10の(1)に示す様に、導通用孔76に無電解めっきあるいは導電化処理等を施した後、電気めっきでスルーホール77を形成する。このときのスルーホール77のめっき厚みは30〜50μm程度が信頼性を確保する上では好ましい。   Next, as shown in (1) of FIG. 10, the through hole 77 is formed by electroplating after the electroconductive plating 76 is subjected to electroless plating or conductive treatment. In this case, the plating thickness of the through hole 77 is preferably about 30 to 50 μm in order to ensure reliability.

次に、同図(2)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、回路パターン78を形成する。この後、必要に応じて基板表面にフォトソルダーレジスト層の形成、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで多層フレキシブル回路配線基板79を得る。
特開平6−21653号公報 特開2001−210953号公報 特許第2631287号公報 特許第3427011号公報 特開昭62−190797号公報 特開平8−264952号公報
Next, as shown in FIG. 2B, a circuit pattern 78 is formed on the through-hole surface by using an etching method based on a normal photofabrication method. Thereafter, a surface treatment such as formation of a photo solder resist layer, solder plating, nickel plating, gold plating, or the like is performed on the substrate surface as necessary, and outer shape processing is performed to obtain the multilayer flexible circuit wiring board 79.
JP-A-6-21653 JP 2001-210953 A Japanese Patent No. 2631287 Japanese Patent No. 3427011 JP-A-62-190797 JP-A-8-264952

本発明では、多層フレキシブル回路配線基板の製造において、スルーホール接続信頼性の確保と表層の微細パターン形成の両立を可能とする多層フレキシブル回路配線基板及びその製造方法を提供することを課題とする。   It is an object of the present invention to provide a multilayer flexible circuit wiring board and a method for manufacturing the multilayer flexible circuit wiring board capable of ensuring both through-hole connection reliability and forming a fine pattern on the surface layer in the production of the multilayer flexible circuit wiring board.

上記課題を解決する本発明によれば、スルーホール接続を有する多層フレキシブル回路配線基板において、ケーブル構造を有する内層基板のケーブル保護層となるカバーの導通用孔の外周が第一のスルーホールめっき皮膜からなり、内周が外層のスルーホールめっきと連続した第二のめっき皮膜で補強されていることを特徴とする多層フレキシブル回路配線基板が採用される。   According to the present invention for solving the above problems, in the multilayer flexible circuit wiring board having through-hole connection, the outer periphery of the conduction hole of the cover serving as the cable protection layer of the inner layer board having the cable structure is the first through-hole plating film And a multilayer flexible circuit wiring board characterized in that the inner periphery is reinforced with a second plating film continuous with the through-hole plating of the outer layer.

上記課題を解決する本発明を具現化するため第一の製造方法として、多層フレキシブル回路配線基板の製造方法において、ケーブル構造を有する内層基板を形成し、前記内層基板にケーブル保護層となるカバーを形成し、カバーを含む前記内層基板に第一の導通用孔を形成し、前記第一の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第一のスルーホールを形成し、予め型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、第一のスルーホールの同軸上に第一のスルーホールに干渉しない、第一のスルーホールよりも径の小さい第二のスルーホールを形成するための第二の導通用孔を形成し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第二のスルーホールを第一のスルーホールの同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法が採用される。   In order to embody the present invention to solve the above problems, as a first manufacturing method, in the manufacturing method of a multilayer flexible circuit wiring board, an inner layer substrate having a cable structure is formed, and a cover serving as a cable protection layer is formed on the inner layer substrate. Forming a first conduction hole in the inner substrate including the cover, and subjecting the first conduction hole to electroless plating or / and conductive treatment and electrolytic plating to form a first through hole. A first through-hole that is formed and laminated with a single-sided copper-clad laminate and an adhesive that have been pre-punched and aligned with the inner-layer substrate so as not to interfere with the first through-hole on the same axis as the first through-hole. Forming a second through hole for forming a second through hole having a smaller diameter, and electroless plating or / and conducting treatment and electrolytic plating on the second through hole Method for manufacturing a multilayer flexible circuit wiring board and forming a second through hole coaxially of the first through-hole is employed by applying.

上記課題を解決する本発明を具現化するため第二の製造方法として、多層フレキシブル回路配線基板の製造方法において、ケーブル構造を有する内層基板を形成し、前記内層基板にケーブル保護層となるカバーを形成し、カバーを含む前記内層基板に第一の導通用孔を形成し、前記第一の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第一のスルーホールを形成し、予め第一のスルーホールの同軸上に第一のスルーホールに干渉しない、第一のスルーホールよりも径の大きい第二のスルーホールを形成するための第二の導通用孔の形成および型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第二のスルーホールを第一のスルーホールの同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法が採用される。   In order to embody the present invention that solves the above problems, as a second manufacturing method, in the manufacturing method of a multilayer flexible circuit wiring board, an inner layer substrate having a cable structure is formed, and a cover that serves as a cable protection layer is formed on the inner layer substrate. Forming a first conduction hole in the inner substrate including the cover, and subjecting the first conduction hole to electroless plating or / and conductive treatment and electrolytic plating to form a first through hole. Formation of a second conduction hole for forming a second through hole having a diameter larger than that of the first through hole, which is formed in advance and does not interfere with the first through hole on the same axis as the first through hole. Then, a die-cut single-sided copper-clad laminate and an adhesive are aligned and laminated on the inner layer substrate, and the second conductive hole is electrolessly plated or / and electrically conductive and electroplated. Method for manufacturing a multilayer flexible circuit wiring board and forming a second through hole coaxially of the first through-hole is employed by the applying.

これらの特徴により、本発明は次のような効果を奏する。   Due to these features, the present invention has the following effects.

本発明によるスルーホール接続を有する多層フレキシブル回路配線基板は、ケーブル構造を有する内層基板のケーブル保護層となるカバーの導通用孔の外周が第一のスルーホールめっき皮膜からなり、内周が外層のスルーホールめっきと連続した第二のめっき皮膜で補強されていることを特徴とする多層フレキシブル回路配線基板が採用されるから、従来工法によるスルーホール接続を有する多層フレキシブル回路配線基板に比べ、内層基板のスルーホールめっき厚を厚くしながらも、表層のスルーホールめっき厚を薄くすることができるため、信頼性を確保しながら表層に微細パターンを形成可能である。加えて、表層のめっき厚を薄くできることから、めっき厚のばらつきに起因していた表層の平坦性も良化し、実装性も向上することから、従来工法では困難であった多層フレキシブル回路配線基板を安価にかつ安定的に提供することができる。   In the multilayer flexible circuit wiring board having through-hole connection according to the present invention, the outer periphery of the conduction hole of the cover, which is the cable protection layer of the inner layer board having the cable structure, is formed of the first through-hole plating film, and the inner circumference is the outer layer. Since the multilayer flexible circuit wiring board is reinforced by the second plating film continuous with the through-hole plating, the inner layer board is compared with the multilayer flexible circuit wiring board having the through-hole connection by the conventional method. Although the through-hole plating thickness of the surface layer can be reduced while increasing the through-hole plating thickness, it is possible to form a fine pattern on the surface layer while ensuring reliability. In addition, since the plating thickness of the surface layer can be reduced, the flatness of the surface layer caused by variations in the plating thickness is also improved and the mountability is improved. It can be provided inexpensively and stably.

以下、図示の実施例を参照しながら本発明をさらに説明する。   Hereinafter, the present invention will be further described with reference to the illustrated embodiments.

図1〜図4は、本発明の一実施例による多層フレキシブル回路配線基板の製造方法を示す工程図であって、先ず、図1の(1)に示す様に、ポリイミド等の可撓性絶縁ベース材1の両面に銅箔等の導電層2、3を有する、所謂、両面銅張積層板4を用意する。   1 to 4 are process diagrams showing a method of manufacturing a multilayer flexible circuit wiring board according to an embodiment of the present invention. First, as shown in FIG. A so-called double-sided copper-clad laminate 4 having conductive layers 2 and 3 such as copper foil on both sides of the base material 1 is prepared.

次に、同図(2)に示す様に、この両面型銅張積層板4の銅箔層2、3に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、ケーブル等の回路パターン5を形成し、内層回路6とする。   Next, as shown in FIG. 2 (2), a circuit pattern 5 such as a cable is formed on the copper foil layers 2 and 3 of the double-sided copper-clad laminate 4 by using an etching method based on a normal photofabrication method. To form an inner layer circuit 6.

次に、同図(3)に示す様に、内層回路6のケーブル等の回路パターンにポリイミドフィルム7を接着材8を介し張り合わせることでカバー9を形成し、ケーブル部10を形成する。   Next, as shown in FIG. 3 (3), the cover 9 is formed by bonding the polyimide film 7 to the circuit pattern such as the cable of the inner layer circuit 6 through the adhesive 8, and the cable portion 10 is formed.

次に、同図(4)に示す様に、NCドリル等で導通用孔11を形成する。導通用孔11の径としては例えば500μm径が適用可能である。   Next, as shown in FIG. 4 (4), the conduction hole 11 is formed with an NC drill or the like. As the diameter of the conduction hole 11, for example, a diameter of 500 μm is applicable.

次に、図2の(1)に示す様に、導通用孔11に無電解めっきあるいは導電化処理等を施した後、電気めっきでスルーホール12を形成する。このときのスルーホール12のめっき厚みは30〜50μm程度が信頼性を確保する上では好ましい。   Next, as shown in (1) of FIG. 2, the through hole 12 is formed by electroplating after conducting the electroless plating or conductive treatment on the conduction hole 11. In this case, the plating thickness of the through hole 12 is preferably about 30 to 50 μm in order to ensure reliability.

次に、同図(2)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、スルーホールランド13を形成し、ケーブル部を含む内層回路14を得る。   Next, as shown in FIG. 2 (2), through-hole lands 13 are formed on the through-hole surface by an etching method using a normal photofabrication method, and an inner layer circuit 14 including a cable portion is obtained. .

次に、同図(3)に示す様に、絶縁ベース材15の片面に銅箔等の導電層16を有する、所謂、片面銅張積層板17およびこれを金型等により所望の形状に打ち抜き加工した同図(6)のケーブル部を含む内層回路14に張り合わせるための接着材18を用意する。   Next, as shown in FIG. 3 (3), a so-called single-sided copper-clad laminate 17 having a conductive layer 16 such as a copper foil on one side of an insulating base material 15 and this is punched into a desired shape by a mold or the like. An adhesive 18 for bonding to the processed inner layer circuit 14 including the cable portion of FIG.

次に、同図(4)に示す様に、片面銅張積層板17と接着材18を張り合わせ、これを金型等により所望の形状に打ち抜き加工して片面銅張積層板19を得る。   Next, as shown in FIG. 4 (4), the single-sided copper-clad laminate 17 and the adhesive 18 are bonded together and punched into a desired shape with a mold or the like to obtain a single-sided copper-clad laminate 19.

次に、図3の(1)に示す様に、図2(2)のケーブル部を含む内層回路14に接着材18を介して図2の(4)の打ち抜き加工した片面銅張積層板19を積層する。   Next, as shown in FIG. 3 (1), the single-sided copper-clad laminate 19 of FIG. 2 (4) is punched into the inner layer circuit 14 including the cable portion of FIG. 2 (2) via an adhesive 18. Are laminated.

次に、同図(2)に示す様に、NCドリル等で導通用孔20を形成する。導通用孔20の径としてはスルーホール12に干渉しない径、例えば150〜300μm径が選択可能である。穴径があまりにも小さい場合はドリルの刃が折れ易くなり、歩留まり低下を招いたり、スルーホールめっきの付きまわりの悪化を招く恐れがある。穴径が大きい場合には、位置合わせ等の問題で導通用孔20を形成する際にスルーホール12にダメージを与えてしまう恐れがある。   Next, as shown in FIG. 2B, the conduction hole 20 is formed by an NC drill or the like. As the diameter of the conduction hole 20, a diameter that does not interfere with the through hole 12, for example, a diameter of 150 to 300 μm can be selected. If the hole diameter is too small, the drill blade is likely to be broken, which may lead to a decrease in yield or deterioration of the contact with the through-hole plating. If the hole diameter is large, the through hole 12 may be damaged when the conduction hole 20 is formed due to problems such as alignment.

次に、図4の(1)に示す様に、必要に応じてドリル加工後の導通用孔20内の余分な接着材18をデスミア処理で除去する。   Next, as shown in FIG. 4 (1), the excess adhesive 18 in the conduction hole 20 after drilling is removed by desmearing as necessary.

次に、同図(2)に示す様に、導通用孔20に導電化処理を施した後、電気めっきでスルーホール21を形成する。このときのスルーホール21のめっき厚は比較的薄くてよく、例えば約15μmで接続信頼性を確保することが可能である。   Next, as shown in FIG. 2 (2), after conducting the conductive treatment to the conduction hole 20, a through hole 21 is formed by electroplating. The plating thickness of the through hole 21 at this time may be relatively thin, and for example, connection reliability can be ensured at about 15 μm.

次に、同図(3)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、回路パターン22を形成する。この後、必要に応じて基板表面にフォトソルダーレジスト層の形成、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで多層フレキシブル回路配線基板23を得る。   Next, as shown in FIG. 3C, a circuit pattern 22 is formed on the through-hole surface by using an etching method using a normal photofabrication method. Thereafter, surface treatment such as formation of a photo solder resist layer, solder plating, nickel plating, and gold plating is performed on the substrate surface as necessary, and outer shape processing is performed to obtain the multilayer flexible circuit wiring board 23.

図5〜図7は、本発明の他の実施例による多層フレキシブル回路配線基板の製造方法を示す工程図であって、先ず、図5の(1)に示す様に、ポリイミド等の可撓性絶縁ベース材31の両面に銅箔等の導電層32、33を有する、所謂、両面銅張積層板34を用意する。   5 to 7 are process diagrams showing a method of manufacturing a multilayer flexible circuit wiring board according to another embodiment of the present invention. First, as shown in FIG. A so-called double-sided copper-clad laminate 34 having conductive layers 32 and 33 such as copper foil on both surfaces of the insulating base material 31 is prepared.

次に、同図(2)に示す様に、この両面型銅張積層板34の銅箔層32、33に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、ケーブル等の回路パターン35を形成し、内層回路36とする。   Next, as shown in FIG. 2B, a circuit pattern 35 such as a cable is formed on the copper foil layers 32 and 33 of the double-sided copper-clad laminate 34 by using an etching method based on a normal photofabrication method. To form the inner layer circuit 36.

次に、同図(3)に示す様に、内層回路36のケーブル等の回路パターン35にポリイミドフィルム37を接着材38を介し張り合わせることでカバー39を形成し、ケーブル部40を形成する。   Next, as shown in FIG. 3 (3), a cover 39 is formed by bonding a polyimide film 37 with an adhesive 38 to a circuit pattern 35 such as a cable of the inner layer circuit 36 to form a cable portion 40.

次に、同図(4)に示す様に、NCドリル等で導通用孔41を形成する。導通用孔41の径としては例えば300μm径が適用可能である。   Next, as shown in FIG. 4 (4), a conduction hole 41 is formed by an NC drill or the like. As the diameter of the hole 41 for conduction, for example, a diameter of 300 μm is applicable.

次に、図6の(1)に示す様に、導通用孔41に無電解めっきあるいは導電化処理等を施した後、導電化処理を施した後、電気めっきでスルーホール42を形成する。このときのスルーホール42のめっき厚みは30〜50μm程度が信頼性を確保する上では好ましい。   Next, as shown in (1) of FIG. 6, after conducting the electroless plating or the conductive treatment on the hole 41 for conduction, the conductive hole is formed, and then the through hole 42 is formed by electroplating. In this case, the plating thickness of the through hole 42 is preferably about 30 to 50 μm in order to ensure reliability.

次に、同図(2)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、スルーホールランド43を形成し、ケーブル部を含む内層回路44を得る。   Next, as shown in FIG. 2 (2), through-hole lands 43 are formed on the through-hole surface by using an etching method based on a normal photofabrication method to obtain an inner layer circuit 44 including a cable portion. .

次に、同図(3)に示す様に、絶縁ベース材45の片面に銅箔等の導電層46を有する、所謂、片面銅張積層板47およびこれを金型等により所望の形状に打ち抜き加工した図6の(2)に示すケーブル部を含む内層回路44に張り合わせるための接着材48を用意する。   Next, as shown in FIG. 3 (3), a so-called single-sided copper-clad laminate 47 having a conductive layer 46 such as a copper foil on one side of an insulating base material 45, and this is punched into a desired shape by a mold or the like. An adhesive 48 is prepared for bonding to the processed inner layer circuit 44 including the cable portion shown in (2) of FIG.

次に、同図(4)に示す様に、片面銅張積層板47と接着材48を張り合わせ、これを金型等により所望の形状に打ち抜き加工するとともに、NCドリル等で導通用孔50を形成して片面銅張積層板49を得る。導通用孔50の径としてはスルーホール42に干渉しない径、例えば500μm径が選択可能である。   Next, as shown in FIG. 4 (4), the single-sided copper-clad laminate 47 and the adhesive material 48 are bonded together and punched into a desired shape with a mold or the like, and the conduction hole 50 is formed with an NC drill or the like. A single-sided copper-clad laminate 49 is obtained by forming. As the diameter of the conduction hole 50, a diameter that does not interfere with the through hole 42, for example, a diameter of 500 μm can be selected.

次に、図7の(1)に示す様に、図6の(2)のケーブル部を含む内層回路44に接着材48を介して図6の(4)の打ち抜き加工した片面銅張積層板49を積層する。   Next, as shown in FIG. 7 (1), the single-sided copper-clad laminate obtained by punching the inner layer circuit 44 including the cable portion shown in FIG. 6 (2) through the adhesive 48 (4) shown in FIG. 49 are stacked.

次に、同図(2)に示す様に、導通用孔50に導電化処理を施した後、電気めっきでスルーホール51を形成する。このときのスルーホール51のめっき厚は比較的薄くてよく、例えば約15μmで接続信頼性を確保することが可能である。   Next, as shown in FIG. 2B, the conduction hole 50 is subjected to a conductive treatment, and then a through hole 51 is formed by electroplating. The plating thickness of the through hole 51 at this time may be relatively thin, and for example, connection reliability can be ensured at about 15 μm.

次に、同図(3)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、回路パターン52を形成する。この後、必要に応じて基板表面にフォトソルダーレジスト層の形成、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで多層フレキシブル回路配線基板53を得る。   Next, as shown in FIG. 3C, a circuit pattern 52 is formed on the through-hole surface by using an etching method based on a normal photofabrication method. Thereafter, surface treatment such as formation of a photo solder resist layer, solder plating, nickel plating, gold plating or the like is performed on the substrate surface as necessary, and external processing is performed to obtain the multilayer flexible circuit wiring board 53.

本発明の一実施例による多層フレキシブル回路配線基板の製造方法を示す製造工程図。The manufacturing process figure which shows the manufacturing method of the multilayer flexible circuit wiring board by one Example of this invention. 図1に続く製造工程図。The manufacturing process figure following FIG. 図2に続く製造工程図。The manufacturing process figure following FIG. 図3に続く製造工程図。Manufacturing process figure following FIG. 本発明の他の実施例による多層フレキシブル回路配線基板の製造方法を示す製造工程図。The manufacturing process figure which shows the manufacturing method of the multilayer flexible circuit wiring board by the other Example of this invention. 図5に続く製造工程図。Manufacturing process figure following FIG. 図6に続く製造工程図。Manufacturing process figure following FIG. 従来の手法による多層フレキシブル回路配線基板の製造方法を示す製造工程図。The manufacturing process figure which shows the manufacturing method of the multilayer flexible circuit wiring board by the conventional method. 図8に続く製造工程図。The manufacturing process figure following FIG. 図9に続く製造工程図。Manufacturing process figure following FIG.

符号の説明Explanation of symbols

1 可撓性絶縁ベース材
2 銅箔層
3 銅箔層
4 両面銅張積層板
5 回路パターン
6 内層回路
7 ポリイミドフィルム
8 接着剤
9 カバー
10 ケーブル部
11 導通用孔
12 スルーホール
13 スルーホールランド
14 ケーブル部を含む内層回路
15 可撓性絶縁ベース材
16 銅箔層
17 片面銅張積層板
18 接着剤
19 型抜きされた片面銅張積層板
20 導通用孔
21 スルーホール
22 回路パターン
23 多層フレキシブル回路配線基板
DESCRIPTION OF SYMBOLS 1 Flexible insulating base material 2 Copper foil layer 3 Copper foil layer 4 Double-sided copper clad laminated board 5 Circuit pattern 6 Inner layer circuit 7 Polyimide film 8 Adhesive 9 Cover 10 Cable part 11 Conductive hole 12 Through hole 13 Through hole land 14 Inner layer circuit including cable portion 15 Flexible insulating base material 16 Copper foil layer 17 Single-sided copper-clad laminate 18 Adhesive 19 Die-cut single-sided copper-clad laminate 20 Conductive hole 21 Through hole 22 Circuit pattern 23 Multilayer flexible circuit Wiring board

Claims (3)

スルーホール接続を有する多層フレキシブル回路配線基板において、ケーブル構造を有する内層基板のケーブル保護層となるカバーの導通用孔の外周が第一のスルーホールめっき皮膜からなり、内周が外層のスルーホールめっきと連続した第二のめっき皮膜で補強されていることを特徴とする多層フレキシブル回路配線基板。   In a multilayer flexible circuit wiring board having through-hole connection, the outer periphery of the conduction hole of the cover, which is the cable protection layer of the inner-layer board having the cable structure, is formed of the first through-hole plating film, and the inner circumference is the outer-layer plating. A multilayer flexible circuit wiring board characterized by being reinforced with a continuous second plating film. 多層フレキシブル回路配線基板の製造方法において、ケーブル構造を有する内層基板を形成し、前記内層基板にケーブル保護層となるカバーを形成し、カバーを含む前記内層基板に第一の導通用孔を形成し、前記第一の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第一のスルーホールを形成し、予め型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、第一のスルーホールの同軸上に第一のスルーホールに干渉しない、第一のスルーホールよりも径の小さい第二のスルーホールを形成するための第二の導通用孔を形成し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第二のスルーホールを第一のスルーホールの同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法。   In the method for manufacturing a multilayer flexible circuit wiring board, an inner layer substrate having a cable structure is formed, a cover serving as a cable protection layer is formed on the inner layer substrate, and a first conduction hole is formed on the inner layer substrate including the cover. The first through hole is formed on the first conductive hole by electroless plating and / or conductive treatment and electrolytic plating, and a single-sided copper-clad laminate and an adhesive previously punched are used as the inner layer substrate. The second conductor is formed to form a second through hole having a diameter smaller than that of the first through hole, which is aligned and stacked on the first through hole and does not interfere with the first through hole. A through hole is formed, and the second through hole is formed coaxially with the first through hole by performing electroless plating or / and conducting treatment and electrolytic plating on the second conductive hole. Method for manufacturing a multilayer flexible circuit wiring board, characterized by. 多層フレキシブル回路配線基板の製造方法において、ケーブル構造を有する内層基板を形成し、前記内層基板にケーブル保護層となるカバーを形成し、カバーを含む前記内層基板に第一の導通用孔を形成し、前記第一の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第一のスルーホールを形成し、予め第一のスルーホールの同軸上に第一のスルーホールに干渉しない、第一のスルーホールよりも径の大きい第二のスルーホールを形成するための第二の導通用孔の形成および型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことで第二のスルーホールを第一のスルーホールの同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法。   In the method for manufacturing a multilayer flexible circuit wiring board, an inner layer substrate having a cable structure is formed, a cover serving as a cable protection layer is formed on the inner layer substrate, and a first conduction hole is formed on the inner layer substrate including the cover. The first through hole is formed on the first through hole by electroless plating or / and conducting treatment and electrolytic plating, and the first through hole is coaxially formed in advance on the first through hole. Form the second through hole for forming the second through hole having a diameter larger than the first through hole without interference, and align the die-cut single-sided copper-clad laminate and adhesive with the inner layer substrate The second through hole is placed on the same axis as the first through hole by applying electroless plating or / and conducting treatment and electrolytic plating to the second conduction hole. Method for manufacturing a multilayer flexible circuit wiring board, which comprises forming.
JP2004353836A 2004-12-07 2004-12-07 Multilayer flexible circuit wiring board and manufacturing method thereof Expired - Fee Related JP4302045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353836A JP4302045B2 (en) 2004-12-07 2004-12-07 Multilayer flexible circuit wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353836A JP4302045B2 (en) 2004-12-07 2004-12-07 Multilayer flexible circuit wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006165231A true JP2006165231A (en) 2006-06-22
JP4302045B2 JP4302045B2 (en) 2009-07-22

Family

ID=36666904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353836A Expired - Fee Related JP4302045B2 (en) 2004-12-07 2004-12-07 Multilayer flexible circuit wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4302045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817847B2 (en) 2016-04-28 2023-11-14 Murata Manufacturing Co., Ltd. Elastic wave device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817847B2 (en) 2016-04-28 2023-11-14 Murata Manufacturing Co., Ltd. Elastic wave device

Also Published As

Publication number Publication date
JP4302045B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP2009088469A (en) Printed circuit board and manufacturing method of same
JP5165265B2 (en) Manufacturing method of multilayer printed wiring board
TW201528898A (en) Method for manufacturing multilayer printed wiring board, and multilayer printed wiring board
JP2007128970A (en) Manufacturing method of multilayer wiring board having cable section
KR100499008B1 (en) Two-sided PCB without via hole and the manufacturing method thereof
WO2008004382A1 (en) Method for manufacturing multilayer printed wiring board
JP2007184568A (en) Circuit board manufacturing method
JP2010232249A (en) Multilayer printed wiring board and manufacturing method of the same
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP2010016335A (en) Metal laminate plate and manufacturing method thereof
JP4485975B2 (en) Manufacturing method of multilayer flexible circuit wiring board
JP2006287007A (en) Multilayer printed circuit board and its manufacturing method
JP4813204B2 (en) Multilayer circuit board manufacturing method
JP2010016061A (en) Printed wiring board, and manufacturing method therefor
CN101754571B (en) Flexible multilayer wiring plate and its manufacturing method
JP2006165242A (en) Printed-wiring board and its manufacturing method
JP4302045B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
JP4738895B2 (en) Manufacturing method of build-up type multilayer flexible circuit board
JP2006203061A (en) Method for manufacturing buildup multilayer circuit boards
JP4522282B2 (en) Manufacturing method of multilayer flexible circuit wiring board
JP4233528B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
JP4347143B2 (en) Circuit board and manufacturing method thereof
JP4397793B2 (en) Circuit board and manufacturing method thereof
JP2004022713A (en) Multilayer wiring board
JP2005311244A (en) Partial multilayer interconnection board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees