JP4233528B2 - Multilayer flexible circuit wiring board and manufacturing method thereof - Google Patents

Multilayer flexible circuit wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4233528B2
JP4233528B2 JP2005004845A JP2005004845A JP4233528B2 JP 4233528 B2 JP4233528 B2 JP 4233528B2 JP 2005004845 A JP2005004845 A JP 2005004845A JP 2005004845 A JP2005004845 A JP 2005004845A JP 4233528 B2 JP4233528 B2 JP 4233528B2
Authority
JP
Japan
Prior art keywords
conductive
hole
layer
wiring board
flexible circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004845A
Other languages
Japanese (ja)
Other versions
JP2006196571A (en
Inventor
文彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2005004845A priority Critical patent/JP4233528B2/en
Publication of JP2006196571A publication Critical patent/JP2006196571A/en
Application granted granted Critical
Publication of JP4233528B2 publication Critical patent/JP4233528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多層回路配線基板の製造方法および構造に関し、特には、可撓性ケーブル部を有する多層フレキシブル回路配線基板及びその製造方法に関する。   The present invention relates to a manufacturing method and structure of a multilayer circuit wiring board, and more particularly to a multilayer flexible circuit wiring board having a flexible cable portion and a manufacturing method thereof.

近年、電子機器の小型化および高機能化は益々促進されてきており、そのために回路基板に対する高密度化の要求が高まってきている。そこで、回路基板を片面から両面や三層以上の多層回路基板とすることにより、回路基板の高密度化を図っている。   In recent years, downsizing and higher functionality of electronic devices have been promoted more and more, and therefore, there is an increasing demand for higher density of circuit boards. In view of this, the circuit board is made to be a multi-layer circuit board from one side to both sides or three or more layers to increase the density of the circuit board.

この一環として、各種電子部品を実装する多層回路基板や硬質回路基板間をコネクタ等を介して接続する別体のフレキシブル配線基板やフレキシブルフラットケーブルを一体化した可撓性ケーブル部を有する多層フレキシブル回路配線基板が、携帯電話などの小型電子機器を中心に広く普及している。   As part of this, a multilayer flexible circuit with a flexible cable unit that integrates a multilayer circuit board on which various electronic components are mounted, a separate flexible wiring board that connects hard circuit boards via connectors, etc., and a flexible flat cable. Wiring boards are widespread mainly in small electronic devices such as mobile phones.

多層フレキシブル回路配線基板の代表的な構造は、両面又は片面のフレキシブル配線基板を内層とし、それに外層となるフレキシブル又は硬質ベースの回路基板を積層し、メッキなどによるスルーホール接続を施して4〜8層程度の多層フレキシブル回路配線基板とする構造である。   A typical structure of a multilayer flexible circuit wiring board is such that a double-sided or single-sided flexible wiring board is used as an inner layer, and a flexible or hard base circuit board as an outer layer is laminated thereon, and through holes are connected by plating or the like. The structure is a multilayer flexible circuit wiring board having about one layer.

しかしながら、特許文献3や4に記載されているように多層回路配線基板内に可撓性ケーブル部を設けるため、この可撓性ケーブル部のポリイミド樹脂製カバーフィルムやそれを張り合わせるための接着剤の熱膨張係数が高く、部品実装時の約220〜240℃程度の半田リフロー時の熱によって膨張し、スルーホールめっき層にクラックが発生し易いという問題があり、基本的にスルーホールめっき厚を厚くすることでしか、クラックを回避できないため、表層の導体厚が厚くなり、高密度配線、高密度実装が要求される形態の多層フレキシブル回路配線基板では製品として重大な問題となる。   However, as described in Patent Documents 3 and 4, in order to provide a flexible cable portion in the multilayer circuit wiring board, a polyimide resin cover film of the flexible cable portion and an adhesive for bonding the same The coefficient of thermal expansion is high, and there is a problem that cracks are likely to occur in the through-hole plating layer due to heat during solder reflow of about 220 to 240 ° C during component mounting. Since cracks can only be avoided by increasing the thickness, the conductor thickness of the surface layer is increased, and this is a serious problem as a product in a multilayer flexible circuit wiring board that requires high-density wiring and high-density mounting.

特許文献1には可撓性ケーブル部のポリイミド樹脂製カバーフィルムをスルーホール導通用孔より外側に後退させる構造が記載されている。しかしながら、端面を後退させたカバーフィルムの張り合わせずれが起きた際にはスルーホールクラック耐性は上がらず、上記問題の解決には至らない。また、可撓性ケーブル部に外層となる片面銅張り積層板等を積層するためのプリプレグ等の接着剤は可撓性ケーブル部端面等からの流れ出しを嫌い、流動性を抑えている。このため、端面を後退させたカバーフィルムの段差を充填することが困難である。プリプレグ等の接着剤の充填性を向上させた場合には、上述したように可撓性ケーブル部端面等からの流れ出しを発生させる原因となるので適用は困難である。   Patent Document 1 describes a structure in which a polyimide resin cover film of a flexible cable part is retracted outward from a through-hole conduction hole. However, when the cover film with the end face retracted is misaligned, the through-hole crack resistance is not improved, and the above problem cannot be solved. In addition, an adhesive such as a prepreg for laminating a single-sided copper-clad laminate or the like serving as an outer layer on the flexible cable part dislikes flowing out from the end face of the flexible cable part, and suppresses fluidity. For this reason, it is difficult to fill the level difference of the cover film whose end face is retracted. When the filling property of an adhesive such as a prepreg is improved, as described above, it causes a flow out from the end face of the flexible cable portion and the like, so that it is difficult to apply.

特許文献2にはスルーホール接続による多層基板の製造方法として、内層の穴径を外層に比べ大きくなるようにレーザ加工し、スルーホールめっき厚が内層のみを選択的に厚付けする手法が記載されている。しかしながら、穴径の制御をレーザ加工条件で制御しなければならないことから、構成材料が変わる毎に条件出しが必要なことや、そのレーザ加工条件のばらつきなどにより内層穴径が変化しても、その検出ができないといったことが懸念される上、スルーホール加工を従来のNCドリルのように基板を重ねて行うことができず、従来の手法よりも生産性が著しく劣るという欠点がある。また、めっき厚の制御に関しては内層のみを選択的に厚付けすることを安定的に行うことは困難であることと、本文献記載の範囲ではめっき厚みのコントラストをつけることも困難であり、多層フレキシブル回路配線基板のスルーホール信頼性確保と表層の微細配線形成を両立するには至らない。   Patent Document 2 describes a method of manufacturing a multilayer substrate by through-hole connection in which laser processing is performed so that the hole diameter of the inner layer is larger than that of the outer layer, and the through-hole plating thickness is selectively thickened only on the inner layer. ing. However, since the control of the hole diameter must be controlled by the laser processing conditions, even if the inner layer hole diameter changes due to variations in the laser processing conditions, it is necessary to determine the conditions every time the constituent material changes, There is a concern that the detection cannot be performed, and the through hole processing cannot be performed by stacking the substrates as in the conventional NC drill, and there is a disadvantage that the productivity is significantly inferior to the conventional method. In addition, regarding the control of the plating thickness, it is difficult to selectively thicken only the inner layer stably, and it is difficult to set the contrast of the plating thickness within the range described in this document. It is impossible to achieve both the through-hole reliability of the flexible circuit wiring board and the formation of fine wiring on the surface layer.

特許文献5および6には内層回路に予めスルーホールめっきし、外層を積層した後前記スルーホールと同軸上に導通用孔を形成し、さらにスルーホールめっきを行うことで、内層と外層のめっき厚みのコントラストをつける手法が記載されている。しかしながら、これらの手法では内層のデスミア工程を簡略化することとしているため、ケーブルを有する内層回路のデスミア工程が必須の多層フレキシブル回路配線基板への適用は困難である。加えて、多層フレキシブル回路配線基板に特有の熱膨張係数の高い可撓性ケーブル部のポリイミド樹脂製カバーフィルム層や接着材層近傍で発生するスルーホールめっき層のクラックを防止するためには、これらの層のスルーホールめっき厚を厚くする必要があるが、特許文献5および6に記載の範囲では内層回路の層間接続部までのスルーホールめっき厚しか厚くならないため、問題の解決には至らない。さらには、煩雑なめっき工程を複数回行う必要があり、生産性の高い方法とは言い難い。   In Patent Documents 5 and 6, through-hole plating is performed in advance on the inner layer circuit, and after laminating the outer layer, a conduction hole is formed coaxially with the through-hole, and further through-hole plating is performed. A method of adding contrast is described. However, since these methods simplify the inner layer desmear process, it is difficult to apply to a multilayer flexible circuit wiring board in which the inner layer circuit desmear process having a cable is essential. In addition, in order to prevent cracks in the polyimide resin cover film layer and adhesive layer in the vicinity of the flexible cable portion having a high thermal expansion coefficient unique to the multilayer flexible circuit wiring board, these It is necessary to increase the thickness of the through-hole plating of this layer. However, in the range described in Patent Documents 5 and 6, since only the through-hole plating thickness up to the interlayer connection portion of the inner layer circuit is increased, the problem cannot be solved. Furthermore, it is necessary to perform a complicated plating process a plurality of times, and it is difficult to say that the method is highly productive.

これらのことから、多層フレキシブル回路配線基板のスルーホールクラックを表層の導体厚を厚くすることなく、生産性の良い方法で効果的に防止する方法が望まれていた。   For these reasons, there has been a demand for a method of effectively preventing through-hole cracks in a multilayer flexible circuit wiring board by a method with good productivity without increasing the surface conductor thickness.

図11〜図13は、従来の多層フレキシブル回路配線基板の製造方法を示す工程図であって、先ず、図11(1)に示す様に、ポリイミド等の可撓性絶縁ベース材71の両面に銅箔等の導電層72、73を有する、所謂、両面銅張積層板74を用意する。   11 to 13 are process diagrams showing a conventional method for manufacturing a multilayer flexible circuit wiring board. First, as shown in FIG. 11 (1), both surfaces of a flexible insulating base material 71 such as polyimide are provided. A so-called double-sided copper-clad laminate 74 having conductive layers 72 and 73 such as copper foil is prepared.

次に、同図(2)に示す様に、この両面型銅張積層板74の銅箔層72、73に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、ケーブル等の回路パターン75を形成し、内層回路76とする。   Next, as shown in FIG. 2B, a circuit pattern 75 such as a cable is formed on the copper foil layers 72 and 73 of the double-sided copper-clad laminate 74 using an etching method by a normal photofabrication method. To form an inner layer circuit 76.

次に、同図(3)に示す様に、ケーブル等の回路パターン75にポリイミドフィルム77を接着材78を介し張り合わせることでカバー79を形成し、ケーブル部80を形成する。   Next, as shown in FIG. 3 (3), a cover 79 is formed by bonding a polyimide film 77 to a circuit pattern 75 such as a cable via an adhesive 78, thereby forming a cable portion 80.

次に、同図(4)に示す様に、絶縁ベース材81の片面に銅箔等の導電層82を有する、所謂、片面銅張積層板83およびこれを金型等により所望の形状に打ち抜き加工した同図(3)のケーブル部80に張り合わせるための接着材84を用意する。このときの導電層82の厚みとしては50μm以下で、特に35μm以下が好ましい。   Next, as shown in FIG. 4 (4), a so-called single-sided copper-clad laminate 83 having a conductive layer 82 such as a copper foil on one side of an insulating base material 81, and this is punched into a desired shape by a mold or the like. An adhesive 84 for bonding to the processed cable portion 80 in FIG. The thickness of the conductive layer 82 at this time is 50 μm or less, and particularly preferably 35 μm or less.

次に、同図(5)に示す様に、片面銅張積層板83と接着材84を張り合わせ、これを金型等により所望の形状に打ち抜き加工して片面銅張積層板85を形成する。   Next, as shown in FIG. 5 (5), the single-sided copper-clad laminate 83 and the adhesive 84 are bonded together, and this is punched into a desired shape using a mold or the like to form a single-sided copper-clad laminate 85.

次に、図12(1)に示す様に、図11(3)のケーブル部80に接着材84を介して図11(5)の打ち抜き加工した片面銅張積層板85を積層する。   Next, as shown in FIG. 12 (1), the single-sided copper-clad laminate 85 of FIG. 11 (5) is laminated on the cable portion 80 of FIG. 11 (3) via an adhesive 84.

次に、図12(2)に示す様に、NCドリル等で導通用孔86を形成する。このとき、内層のカバー79のポリイミドフィルム77と接着剤78がドリル加工時に熱ダレを起こし、内層回路76の銅箔層72、73へのスルーホールめっき付きまわりが悪化するため、デスミア処理を行う。   Next, as shown in FIG. 12 (2), a conduction hole 86 is formed by an NC drill or the like. At this time, the polyimide film 77 and the adhesive 78 of the inner layer cover 79 cause heat sagging during drilling, and the periphery of the inner layer circuit 76 with the through-hole plating on the copper foil layers 72 and 73 is deteriorated, so that desmear processing is performed. .

次に、図13(1)に示す様に、導通用孔86に無電解めっきあるいは導電化処理等を施した後、電気めっきでスルーホール87を形成する。このときのスルーホール87のめっき厚みは30〜50μm程度が信頼性を確保する上では好ましい。   Next, as shown in FIG. 13 (1), the electroconductive plating 86 is subjected to electroless plating or conductive treatment, and then a through hole 87 is formed by electroplating. At this time, the plating thickness of the through hole 87 is preferably about 30 to 50 μm in order to ensure reliability.

次に、図13(2)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、回路パターン88を形成する。この後、必要に応じて基板表面にフォトソルダーレジスト層の形成、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで多層フレキシブル回路配線基板89を得る。
特開平6−21653号公報 特開2001−210953号公報 特許第2631287号公報 特許第3427011号公報 特開昭62−190797号公報 特開平8−264952号公報 特開2002-141629号公報 特開2003-129259号公報
Next, as shown in FIG. 13B, a circuit pattern 88 is formed on the through-hole surface by using an etching method based on a normal photofabrication method. Thereafter, a surface treatment such as formation of a photo solder resist layer, solder plating, nickel plating, gold plating or the like is performed on the surface of the substrate as necessary, and outer shape processing is performed to obtain the multilayer flexible circuit wiring board 89.
JP-A-6-21653 JP 2001-210953 A Japanese Patent No. 2631287 Japanese Patent No. 3427011 JP-A-62-190797 JP-A-8-264952 JP 2002-141629 A JP 2003-129259 A

本発明では、多層フレキシブル回路配線基板の製造において、スルーホール接続信頼性の確保と表層の微細パターン形成の両立を可能とする多層フレキシブル回路配線基板及びその製造方法を提供することを課題とする。   It is an object of the present invention to provide a multilayer flexible circuit wiring board and a method for manufacturing the multilayer flexible circuit wiring board capable of ensuring both through-hole connection reliability and forming a fine pattern on the surface layer in the production of the multilayer flexible circuit wiring board.

上記課題を解決するために発明によれば、スルーホール接続を有する多層フレキシブル回路配線基板において、ケーブル構造を有する内層基板のケーブル保護層となるカバーの導通用孔の外周が導電性突起からなり、内周が外層のスルーホールめっきと連続しためっき皮膜で補強されていることを特徴とする多層フレキシブル回路配線基板が採用される。   According to the invention to solve the above-mentioned problem, in the multilayer flexible circuit wiring board having through-hole connection, the outer periphery of the hole for conducting the cover serving as the cable protection layer of the inner layer board having the cable structure is made of a conductive protrusion, A multilayer flexible circuit wiring board is employed in which the inner periphery is reinforced with a plating film continuous with through-hole plating of the outer layer.

上記課題を解決するための本発明の製造方法として、多層フレキシブル回路配線基板の製造方法において、1面に導電性突起が立設した導電層の導電性突起が立設する面にケーブル構造のカバーとなる可撓性絶縁層を形成した回路基材を用意し、前記回路基材を予め前記導電性突起よりも大きい径の第一の導通用孔を形成したケーブル構造に前記導電性突起と前記第一の導通用孔とを位置合わせして張り合わせ内層基板とし、予め型抜きした片面銅張り積層板および接着材を前記内層基板に位置合わせを行い積層し、前記導電性突起の同軸上に前記導電性突起が同心円状に残る前記導電性突起よりも径の小さいスルーホールを形成するための第二の導通用孔を形成し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことでスルーホールを前記導電性突起の同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法が採用される。   As a manufacturing method of the present invention for solving the above-mentioned problem, in the method for manufacturing a multilayer flexible circuit wiring board, a cable structure cover is provided on the surface on which the conductive protrusion of the conductive layer is erected on one surface. A circuit base material on which a flexible insulating layer is formed is prepared, and the conductive protrusion and the circuit base are formed in a cable structure in which a first conduction hole having a diameter larger than that of the conductive protrusion is previously formed on the circuit base material. The first hole for conduction is aligned to form a laminated inner layer substrate, and a single-sided copper-clad laminate and an adhesive that have been pre-cut are aligned and laminated on the inner layer substrate, and the conductive projections are arranged on the same axis. Forming a second conduction hole for forming a through-hole having a diameter smaller than that of the conductive projection in which the conductive projection remains concentrically, and electroless plating or / and conducting to the second conduction hole; Treatment and electrolysis A method of manufacturing a multilayer flexible circuit wiring board is employed, wherein a through hole is formed on the same axis as the conductive protrusion by applying a plating.

上記課題を解決するための本発明の他の製造方法として、多層フレキシブル回路配線基板の製造方法において、1面に導電性突起が立設した導電層の導電性突起が立設する面にケーブル構造のカバーとなる可撓性絶縁層を形成した回路基材を用意し、前記回路基材を予め形成したケーブル構造を有する可撓性回路に張り合わせ内層基板とし、予め型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、前記導電性突起の同軸上に前記導電性突起が同心円状に残る前記導電性突起よりも径の小さいスルーホールを形成するための導通用孔を形成し、前記導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことでスルーホールを前記導電性突起の同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法が採用される。   As another manufacturing method of the present invention for solving the above-mentioned problem, in the method for manufacturing a multilayer flexible circuit wiring board, a cable structure is provided on the surface where the conductive protrusions of the conductive layer are erected on one surface. A single-sided copper-clad laminate that has been prepared by preparing a circuit base material on which a flexible insulating layer is formed to serve as a cover, and pasting the circuit base material onto a flexible circuit having a cable structure that has been formed in advance, as an inner layer substrate And an adhesive for positioning on the inner layer substrate and laminating, and forming a through hole having a diameter smaller than that of the conductive protrusion on which the conductive protrusion remains concentrically on the same axis of the conductive protrusion Forming a through hole, and forming a through hole on the same axis as the conductive protrusion by performing electroless plating or / and conducting treatment and electrolytic plating on the conductive hole. A method for manufacturing a sibling circuit wiring board is employed.

これらの特徴により、本発明は次のような効果を奏する。   Due to these features, the present invention has the following effects.

本発明による、スルーホール接続を有する多層フレキシブル回路配線基板において、ケーブル構造を有する内層基板のケーブル保護層となるカバーの導通用孔の外周が導電性突起からなり、内周が外層のスルーホールめっきと連続しためっき皮膜で補強されていることを特徴とする多層フレキシブル回路配線基板が採用されるから、従来工法に比べ、内層基板は導電性突起を用い、層間接続部に十分な強度を有しながら、表層のスルーホールめっき厚を薄くすることができるため、接続信頼性を確保しながら表層に微細パターンを形成可能である。加えて、表層のめっき厚を薄くできることで、めっき厚のばらつきに起因していた表層の平坦性も良化し、実装性も向上する。   In the multilayer flexible circuit wiring board having through-hole connection according to the present invention, the outer periphery of the conduction hole of the cover serving as the cable protection layer of the inner layer board having the cable structure is made of conductive protrusions, and the inner circumference is the outer layer through-hole plating. Multilayer flexible circuit wiring board, which is reinforced with a continuous plating film, is used, so the inner layer board has conductive protrusions and has sufficient strength at the interlayer connection compared to the conventional method However, since the through-hole plating thickness of the surface layer can be reduced, a fine pattern can be formed on the surface layer while ensuring connection reliability. In addition, since the plating thickness of the surface layer can be reduced, the flatness of the surface layer caused by the variation in plating thickness is improved, and the mountability is also improved.

さらに、本発明の製造方法として、多層フレキシブル回路配線基板の製造方法において、1面に導電性突起が立設した導電層の導電性突起が立設する面にケーブル構造のカバーとなる可撓性絶縁層を形成した回路基材を用意し、前記回路基材を予め前記導電性突起よりも大きい径の第一の導通用孔を形成したケーブル構造に前記導電性突起と前記第一の導通用孔とを位置合わせして張り合わせ内層基板とし、予め型抜きした片面銅張り積層板および接着材を前記内層基板に位置合わせを行い積層し、前記導電性突起の同軸上に前記導電性突起が同心円状に残る前記導電性突起よりも径の小さいスルーホールを形成するための第二の導通用孔を形成し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことでスルーホールを前記導電性突起の同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法が採用され、また、本発明の他の製造方法として、多層フレキシブル回路配線基板の製造方法において、1面に導電性突起が立設した導電層の導電性突起が立設する面にケーブル構造のカバーとなる可撓性絶縁層を形成した回路基材を用意し、前記回路基材を予め形成したケーブル構造を有する可撓性回路に張り合わせ内層基板とし、予め型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、前記導電性突起の同軸上に前記導電性突起が同心円状に残る前記導電性突起よりも径の小さいスルーホールを形成するための導通用孔を形成し、前記導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことでスルーホールを前記導電性突起の同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法が採用されるから、従来工法同様にスルーホール加工は基板を重ねて生産性良く加工できるうえ、特に第二の製造方法では工数が多く煩雑なデスミア工程が不要である。これらのことから、従来工法では困難であった多層フレキシブル回路配線基板を生産性を損なうことなく安価にかつ安定的に提供することができる。   Furthermore, as a manufacturing method of the present invention, in the manufacturing method of a multilayer flexible circuit wiring board, the flexibility that becomes a cover of the cable structure on the surface where the conductive protrusion of the conductive layer is erected on one surface and the conductive protrusion is erected A circuit base material on which an insulating layer is formed is prepared, and the conductive protrusion and the first conductive conductor are formed in a cable structure in which the first conductive hole having a diameter larger than the conductive protrusion is previously formed on the circuit base material. The holes are aligned to form a laminated inner layer substrate, a pre-die-cut single-sided copper-clad laminate and an adhesive are aligned and laminated on the inner layer substrate, and the conductive protrusions are concentric on the same axis as the conductive protrusions. Forming a second conduction hole for forming a through hole having a diameter smaller than that of the conductive protrusion remaining in a shape, and subjecting the second conduction hole to electroless plating and / or conductive treatment and electrolytic plating. By applying A method for manufacturing a multilayer flexible circuit wiring board, wherein a through hole is formed on the same axis as the conductive protrusion, is adopted, and as another manufacturing method of the present invention, a method for manufacturing a multilayer flexible circuit wiring board is provided. Preparing a circuit base material on which a flexible insulating layer serving as a cable structure cover is formed on the surface of the conductive layer on which the conductive protrusion is erected on one surface, A flexible circuit having a formed cable structure is bonded to an inner layer substrate, a pre-die-cut single-sided copper-clad laminate and an adhesive are aligned and stacked on the inner layer substrate, and the conductive layer is coaxially connected to the conductive protrusion. A conductive hole for forming a through-hole having a diameter smaller than that of the conductive protrusion in which the conductive protrusion remains concentrically, and electroless plating and / or conductive treatment is performed on the conductive hole; Since a method for manufacturing a multilayer flexible circuit wiring board is employed, in which a through hole is formed on the same axis as the conductive protrusion by applying electrolytic plating, the through hole processing is performed by stacking the substrates as in the conventional method. In addition to being able to process with good productivity, the second manufacturing method does not require a complicated desmear process with many man-hours. For these reasons, it is possible to provide a multilayer flexible circuit wiring board, which has been difficult with the conventional method, at low cost and stably without impairing productivity.

以下、図示の実施例を参照しながら本発明をさらに説明する。   Hereinafter, the present invention will be further described with reference to the illustrated embodiments.

図1は、本発明の多層フレキシブル回路配線基板の製造方法を示す工程図であって、先ず、同図(1)に示す様に、ポリイミド等の可撓性絶縁ベース材1の両面に銅箔等の導電層2、3を有する、所謂、両面銅張積層板4を用意する。   FIG. 1 is a process diagram showing a method for producing a multilayer flexible circuit wiring board according to the present invention. First, as shown in FIG. 1 (1), copper foil is provided on both sides of a flexible insulating base material 1 such as polyimide. A so-called double-sided copper-clad laminate 4 having conductive layers 2 and 3 such as these is prepared.

次に、同図(2)に示す様に、この両面型銅張積層板4の銅箔層2、3に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、ケーブル等の回路パターン5を形成し、内層回路6とする。   Next, as shown in FIG. 2 (2), a circuit pattern 5 such as a cable is formed on the copper foil layers 2 and 3 of the double-sided copper-clad laminate 4 by using an etching method based on a normal photofabrication method. To form an inner layer circuit 6.

次に、同図(3)に示す様に、内層回路6にNCドリル等で導通用孔7を形成する。導通用孔7の径としては例えば300μm径が適用可能である。   Next, as shown in FIG. 3C, a conduction hole 7 is formed in the inner layer circuit 6 with an NC drill or the like. As the diameter of the conduction hole 7, for example, a diameter of 300 μm is applicable.

次に、同図(4)に示す様に、銅箔8を用意する。この銅箔は後に導電性突起を形成するため、その厚さは50μmから200μm程度が好ましい。   Next, a copper foil 8 is prepared as shown in FIG. Since this copper foil will later form conductive protrusions, its thickness is preferably about 50 μm to 200 μm.

次に、同図(5)に示す様に、銅箔8に導電性突起をフォトファブリケーション手法により形成するためのレジスト層9を形成する。   Next, as shown in FIG. 5 (5), a resist layer 9 for forming conductive protrusions on the copper foil 8 by a photofabrication method is formed.

次に、図2(1)に示す様に、特許文献7および8に記載されている方法にて、レジスト層9を用い、フォトファブリケーション手法にて、銅箔8から導電性突起10が立設する基材11を形成する。導電性突起10は、この後、図1(3)にて形成した内層回路6の導通用孔7よりも小さいことが望ましく、ここでは導電性突起10の頂部の直径が200μm、底部の直径が350μm、高さが50μmのものを形成した。この後の工程で、導電性突起10が立設する基材11上にカバーとなるポリイミドフィルムと接着剤の層を形成するが、このカバー厚みよりも導電性突起10が高い必要がある。この導電性突起10は500μm以下のピッチで形成可能で高密度スルーホール形成に十分対応可能である。   Next, as shown in FIG. 2 (1), the conductive protrusions 10 are raised from the copper foil 8 by the photofabrication method using the resist layer 9 by the method described in Patent Documents 7 and 8. The base material 11 to be provided is formed. Thereafter, the conductive protrusion 10 is desirably smaller than the conduction hole 7 of the inner layer circuit 6 formed in FIG. 1 (3). Here, the top diameter of the conductive protrusion 10 is 200 μm, and the bottom diameter is 200 μm. A film having a thickness of 350 μm and a height of 50 μm was formed. In a subsequent process, a polyimide film and an adhesive layer are formed on the base material 11 on which the conductive protrusions 10 are erected, and the conductive protrusions 10 need to be higher than the cover thickness. The conductive protrusions 10 can be formed at a pitch of 500 μm or less and can sufficiently cope with the formation of high-density through holes.

次に、図2(2)に示す様に、導電性突起10が立設する基材11上に図1(2)にて形成したケーブル等の内層回路6のカバー12となるポリイミドフィルム13および接着材14を形成する。このカバー12の形成方法はラミネート法、キャスティング法等の手法が選択可能で、ここではラミネート法を選択した。   Next, as shown in FIG. 2 (2), a polyimide film 13 that becomes the cover 12 of the inner layer circuit 6 such as a cable formed in FIG. 1 (2) on the base material 11 on which the conductive protrusions 10 are erected, and The adhesive material 14 is formed. A method such as a laminating method or a casting method can be selected as the method for forming the cover 12, and the laminating method is selected here.

次に、図2(3)に示す様に、導電性突起10の頂部および側壁を露出させるためにCMP等の研磨工程を行い、導電性突起10の頂部および側壁を露出させ、導電性突起を有するカバー基材15を形成する。   Next, as shown in FIG. 2 (3), a polishing process such as CMP is performed to expose the top and side walls of the conductive protrusion 10, and the top and side walls of the conductive protrusion 10 are exposed to remove the conductive protrusion. The cover base material 15 having is formed.

次に、図2(4)に示す様に、導電性突起10を内層回路6の導通用孔7に位置合わせし、内層回路6のケーブル等の回路パターンに導電性突起を有するカバー基材15を接着材14を介し張り合わせる。   Next, as shown in FIG. 2 (4), the conductive protrusion 10 is aligned with the conduction hole 7 of the inner layer circuit 6, and the cover base material 15 having the conductive protrusion on the circuit pattern such as the cable of the inner layer circuit 6. Are bonded together with an adhesive 14.

次に、図2(5)に示す様に、通常のフォトファブリケーション手法で導電性突起10の立設しない側の不要な銅箔を除去するが、このときカバー12のポリイミドフィルム13の端面に確実に導電性突起10を密着させるために、導電性突起10の底部よりも大きな同心円状のランドを形成すると良いので、図のように導電性突起10のランド16を形成する。ここまでの工程で、導電性突起10を有するケーブル部を含む内層回路17を形成する。   Next, as shown in FIG. 2 (5), unnecessary copper foil on the side where the conductive protrusions 10 are not erected is removed by a normal photofabrication technique. At this time, the end face of the polyimide film 13 of the cover 12 is removed. In order to ensure that the conductive protrusions 10 are brought into close contact with each other, it is preferable to form a concentric land larger than the bottom of the conductive protrusions 10, so the lands 16 of the conductive protrusions 10 are formed as shown in the figure. Through the steps so far, the inner layer circuit 17 including the cable portion having the conductive protrusion 10 is formed.

次に、図3(1)に示す様に、絶縁ベース材18の片面に銅箔等の導電層19を有する、所謂、片面銅張積層板20およびこれを金型等により所望の形状に打ち抜き加工した図2(5)の導電性突起10を有するケーブル部を含む内層回路17に張り合わせるための接着材21を用意する。   Next, as shown in FIG. 3A, a so-called single-sided copper-clad laminate 20 having a conductive layer 19 such as a copper foil on one side of an insulating base material 18 and this is punched into a desired shape by a mold or the like. An adhesive 21 is prepared for bonding to the inner layer circuit 17 including the cable portion having the processed conductive protrusion 10 of FIG.

次に、図3(2)に示す様に、片面銅張積層板20と接着材21を張り合わせ、これを金型等により所望の形状に打ち抜き加工し、型抜きされた片面銅張積層板22を形成する。   Next, as shown in FIG. 3 (2), the single-sided copper-clad laminate 20 and the adhesive 21 are bonded together, punched into a desired shape with a mold or the like, and the die-cut one-sided copper-clad laminate 22 Form.

次に、図3(3)に示す様に、図2(5)の導電性突起10を有するケーブル部を含む内層回路17に接着材21を介して図3(2)の打ち抜き加工した片面銅張積層板22を積層する。   Next, as shown in FIG. 3 (3), the single-sided copper of FIG. 3 (2) is punched into the inner layer circuit 17 including the cable portion having the conductive protrusions 10 of FIG. 2 (5) through the adhesive 21. The tension laminate 22 is laminated.

次に、図4(1)に示す様に、NCドリル等で導通用孔23を形成する。導通用孔23の径としては図1(3)で形成した導通用孔7よりも小さい径で、十分な導電性突起10の層厚みが確保できる径、例えば150〜200μm径が選択可能である。穴径があまりにも小さい場合はドリルの刃が折れ易くなり、歩留まり低下を招いたり、この後のスルーホールめっきの付きまわりの悪化を招く恐れがある。穴径が大きい場合には、位置合わせ等の問題で導通用孔23を形成する際に導電性突起10に割れや欠け等の欠陥を与えてしまう恐れがある。   Next, as shown in FIG. 4A, the conduction hole 23 is formed by an NC drill or the like. The diameter of the conduction hole 23 is smaller than the diameter of the conduction hole 7 formed in FIG. 1 (3), and a diameter that can secure a sufficient layer thickness of the conductive protrusion 10, for example, a diameter of 150 to 200 μm can be selected. . If the hole diameter is too small, the drill blade is likely to be broken, leading to a decrease in yield, and a risk of worsening the contact with the subsequent through-hole plating. When the hole diameter is large, there is a risk that defects such as cracks and chippings may be imparted to the conductive protrusion 10 when forming the conduction hole 23 due to problems such as alignment.

次に、図4(2)に示す様に、この後のスルーホールめっき工程でのめっきのつきまわり等を向上させる目的で、必要に応じて、ドリル加工した導電性突起10に対して、ソフトエッチング加工を行い、バリ等を除去する。また、図3(3)で片面銅張積層板22を積層した際に、接着材21が流れる場合があるので、必要に応じてデスミア処理を行う。   Next, as shown in FIG. 4 (2), for the purpose of improving the plating coverage in the subsequent through-hole plating step, the drilled conductive protrusion 10 is softened as necessary. Etching is performed to remove burrs and the like. Further, when the single-sided copper-clad laminate 22 is laminated in FIG. 3 (3), the adhesive 21 may flow, and therefore desmear treatment is performed as necessary.

次に、図5(1)に示す様に、導通用孔23に導電化処理を施した後、電気めっきでスルーホール24を形成する。このときのスルーホール24のめっき厚は比較的薄くてよく、例えば約15μmで接続信頼性を確保することが可能である。   Next, as shown in FIG. 5A, after conducting the conductive treatment to the conduction hole 23, the through hole 24 is formed by electroplating. The plating thickness of the through hole 24 at this time may be relatively thin, and for example, connection reliability can be ensured at about 15 μm.

次に、図5(2)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、回路パターン25を形成する。この後、必要に応じて基板表面にフォトソルダーレジスト層の形成、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで多層フレキシブル回路配線基板26を得る。   Next, as shown in FIG. 5B, a circuit pattern 25 is formed on the through-hole surface by using an etching method based on a normal photofabrication method. Thereafter, the multilayer flexible circuit wiring board 26 is obtained by subjecting the surface of the substrate to surface treatment such as formation of a photo solder resist layer, solder plating, nickel plating, gold plating, and the like, as necessary, and performing external processing.

図6〜図9は、本発明の多層フレキシブル回路配線基板の他の製造方法を示す工程図であって、先ず、図6(1)に示す様に、ポリイミド等の可撓性絶縁ベース材31の両面に銅箔等の導電層32、33を有する、所謂、両面銅張積層板34を用意する。   6 to 9 are process diagrams showing another method for manufacturing the multilayer flexible circuit wiring board of the present invention. First, as shown in FIG. 6A, a flexible insulating base material 31 such as polyimide is used. A so-called double-sided copper-clad laminate 34 having conductive layers 32 and 33 such as copper foil on both sides is prepared.

次に、同図(2)に示す様に、この両面型銅張積層板34の銅箔層32、33に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、ケーブル等の回路パターン35を形成し、内層回路36とする。   Next, as shown in FIG. 2B, a circuit pattern 35 such as a cable is formed on the copper foil layers 32 and 33 of the double-sided copper-clad laminate 34 by using an etching method based on a normal photofabrication method. To form the inner layer circuit 36.

次に、同図(3)に示す様に、銅箔37を用意する。この銅箔は後に導電性突起を形成するため、その厚さは50μmから200μm程度が好ましい。   Next, a copper foil 37 is prepared as shown in FIG. Since this copper foil will later form conductive protrusions, its thickness is preferably about 50 μm to 200 μm.

次に、同図(4)に示す様に、銅箔37に導電性突起をフォトファブリケーション手法により形成するためのレジスト層38を形成する。   Next, as shown in FIG. 4 (4), a resist layer 38 for forming conductive protrusions on the copper foil 37 by a photofabrication technique is formed.

次に、図7(1)に示す様に、特許文献7および8に記載されている方法にて、レジスト層38を用い、フォトファブリケーション手法にて、銅箔37から導電性突起39が立設する基材40を形成する。導電性突起39はこの後形成する導通用孔よりも小さいことが望ましく、ここでは導電性突起39の頂部の直径が200μm、底部の直径が350μm、高さが50μmのものを形成した。この後の工程で、導電性突起39が立設する基材40上にカバーとなるポリイミドフィルムと接着剤の層を形成するが、このカバー厚みよりも導電性突起39が高い必要がある。この導電性突起39は500μm以下のピッチで形成可能で高密度スルーホール形成に十分対応可能である。   Next, as shown in FIG. 7 (1), the conductive protrusions 39 are raised from the copper foil 37 by the photofabrication method using the resist layer 38 by the method described in Patent Documents 7 and 8. The base material 40 to be provided is formed. The conductive protrusion 39 is preferably smaller than the conductive hole to be formed later. Here, the conductive protrusion 39 has a top diameter of 200 μm, a bottom diameter of 350 μm, and a height of 50 μm. In a subsequent process, a polyimide film and an adhesive layer are formed on the base material 40 on which the conductive protrusions 39 are erected, and the conductive protrusions 39 need to be higher than the cover thickness. The conductive protrusions 39 can be formed at a pitch of 500 μm or less and can sufficiently cope with the formation of high-density through holes.

次に、図7(2)に示す様に、導電性突起39が立設する基材40上に図6(2)にて形成したケーブル等の内層回路36のカバー41となるポリイミドフィルム42および接着材43を形成する。このカバー41の形成方法はラミネート法、キャスティング法等の手法が選択可能で、ここではラミネート法を選択した。   Next, as shown in FIG. 7 (2), the polyimide film 42 which becomes the cover 41 of the inner layer circuit 36 such as the cable formed in FIG. 6 (2) on the base material 40 on which the conductive protrusions 39 are erected, and An adhesive 43 is formed. As a method for forming the cover 41, a method such as a laminating method or a casting method can be selected. Here, the laminating method is selected.

次に、図7(3)に示す様に、導電性突起39の頂部および側壁を露出させるためにCMP等の研磨工程を行い、導電性突起39の頂部および側壁を露出させ、導電性突起を有するカバー基材44を形成する。   Next, as shown in FIG. 7 (3), a polishing process such as CMP is performed to expose the top and side walls of the conductive protrusions 39, and the top and side walls of the conductive protrusions 39 are exposed to remove the conductive protrusions. The cover base material 44 having is formed.

次に、図7(4)に示す様に、内層回路36のケーブル等の回路パターンに導電性突起を有するカバー基材44を接着材43を介し張り合わせる。   Next, as shown in FIG. 7 (4), a cover substrate 44 having conductive protrusions is bonded to a circuit pattern such as a cable of the inner layer circuit 36 through an adhesive 43.

次に、図7(5)に示す様に、通常のフォトファブリケーション手法で導電性突起39の立設しない側の不要な銅箔を除去するが、このときカバー基材44のポリイミドフィルム42の端面に確実に導電性突起39を密着させるために、導電性突起39の底部よりも大きな同心円状のランドを形成すると良いので、図のように導電性突起39のランド45を形成する。ここまでの工程で、導電性突起39を有するケーブル部を含む内層回路46を形成する。   Next, as shown in FIG. 7 (5), unnecessary copper foil on the side where the conductive protrusions 39 are not erected is removed by a normal photofabrication technique. At this time, the polyimide film 42 of the cover base 44 is removed. A concentric land larger than the bottom of the conductive protrusion 39 is preferably formed in order to ensure that the conductive protrusion 39 is in close contact with the end face. Therefore, the land 45 of the conductive protrusion 39 is formed as shown in the figure. Through the steps so far, the inner layer circuit 46 including the cable portion having the conductive protrusions 39 is formed.

次に、図8(1)に示す様に、絶縁ベース材47の片面に銅箔等の導電層48を有する、所謂、片面銅張積層板49およびこれを金型等により所望の形状に打ち抜き加工した図7(5)の導電性突起39を有するケーブル部を含む内層回路46に張り合わせるための接着材50を用意する。   Next, as shown in FIG. 8 (1), a so-called single-sided copper-clad laminate 49 having a conductive layer 48 such as copper foil on one side of an insulating base material 47, and this is punched into a desired shape by a mold or the like. An adhesive 50 is prepared for bonding to the inner layer circuit 46 including the cable portion having the processed conductive protrusion 39 of FIG. 7 (5).

次に、図8(2)に示す様に、片面銅張積層板49と接着材50を張り合わせ、これを金型等により所望の形状に打ち抜き加工し、型抜きされた片面銅張積層板51を形成する。   Next, as shown in FIG. 8 (2), the single-sided copper-clad laminate 51 and the adhesive 50 are bonded together and punched into a desired shape with a mold or the like, and the die-cut one-sided copper-clad laminate 51 Form.

次に、図8(3)に示す様に、図7(5)の導電性突起39を有するケーブル部を含む内層回路46に接着材50を介して図8(2)の打ち抜き加工した片面銅張積層板51を積層する。   Next, as shown in FIG. 8 (3), the single-sided copper of FIG. 8 (2) is punched into the inner layer circuit 46 including the cable portion having the conductive protrusions 39 of FIG. 7 (5) through the adhesive 50. The tension laminate 51 is laminated.

次に、図9(1)に示す様に、NCドリル等で導通用孔52を形成する。導通用孔52の径としては図7(1)で形成した導電性突起39の層厚みが確保できる径、例えば150μm径が選択可能である。穴径があまりにも小さい場合はドリルの刃が折れ易くなり、歩留まり低下を招いたり、この後のスルーホールめっきの付きまわりの悪化を招く恐れがある。穴径が大きい場合には、位置合わせ等の問題で導通用孔52を形成する際に導電性突起39に割れや欠け等の欠陥を与えてしまう恐れがある。内層のカバー基材44は直接ドリル加工されないためドリル加工時に熱ダレを起こす恐れがなく、デスミア処理を行う必要はない。   Next, as shown in FIG. 9A, the conduction hole 52 is formed by an NC drill or the like. As the diameter of the conduction hole 52, a diameter capable of ensuring the layer thickness of the conductive protrusion 39 formed in FIG. 7A, for example, a diameter of 150 μm can be selected. If the hole diameter is too small, the drill blade is likely to be broken, leading to a decrease in yield, and a risk of worsening the contact with the subsequent through-hole plating. When the hole diameter is large, there is a possibility that a defect such as cracking or chipping may be given to the conductive protrusion 39 when the conduction hole 52 is formed due to problems such as alignment. Since the inner layer cover base 44 is not directly drilled, there is no risk of thermal sagging during drilling, and there is no need to perform desmear treatment.

次に、図9(2)に示す様に、導通用孔52に導電化処理を施した後、電気めっきでスルーホール53を形成する。このときのスルーホール53のめっき厚は比較的薄くてよく、例えば約15μmで接続信頼性を確保することが可能である。   Next, as shown in FIG. 9 (2), after conducting the conductive treatment to the conduction hole 52, a through hole 53 is formed by electroplating. At this time, the plating thickness of the through hole 53 may be relatively thin. For example, connection reliability can be ensured at about 15 μm.

次に、図9(3)に示す様に、上記スルーホール面に対し、通常のフォトファブリケーション手法によるエッチング手法を用いて、回路パターン54を形成する。この後、必要に応じて基板表面にフォトソルダーレジスト層の形成、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、外形加工を行うことで多層フレキシブル回路配線基板55を得る。   Next, as shown in FIG. 9 (3), a circuit pattern 54 is formed on the through-hole surface by using an etching method by a normal photofabrication method. Thereafter, surface treatment such as formation of a photo solder resist layer, solder plating, nickel plating, gold plating or the like is performed on the substrate surface as necessary, and external processing is performed to obtain the multilayer flexible circuit wiring board 55.

図10は、本発明の多層フレキシブル回路配線基板の製造方法により作製された構造を示す断面図であって、図に示す様に、多層フレキシブル回路配線基板の製造工程において、導電性突起を有するケーブル部を含む内層回路を作製する際に、導電性突起のランドを形成する工程で配線を形成することも可能で、これにより配線62を有する多層フレキシブル回路配線基板61を得る。   FIG. 10 is a cross-sectional view showing a structure manufactured by the method for manufacturing a multilayer flexible circuit wiring board according to the present invention. As shown in the drawing, in the manufacturing process of the multilayer flexible circuit wiring board, a cable having conductive protrusions When manufacturing the inner layer circuit including the portion, it is also possible to form the wiring in the step of forming the land of the conductive protrusion, and thereby the multilayer flexible circuit wiring board 61 having the wiring 62 is obtained.

本発明による多層フレキシブル回路配線基板の製造工程図。The manufacturing process figure of the multilayer flexible circuit wiring board by this invention. 図1に続く製造工程図。The manufacturing process figure following FIG. 図2に続く製造工程図。The manufacturing process figure following FIG. 図3に続く製造工程図。Manufacturing process figure following FIG. 図4に続く製造工程図。The manufacturing process figure following FIG. 本発明の他の製造方法による多層フレキシブル回路配線基板の製造工程図。The manufacturing process figure of the multilayer flexible circuit wiring board by the other manufacturing method of this invention. 図6に続く製造工程図。Manufacturing process figure following FIG. 図7に続く製造工程図。Manufacturing process figure following FIG. 図8に続く製造工程図。The manufacturing process figure following FIG. 本発明による多層フレキシブル回路配線基板の概念的断面構成図。The conceptual cross-sectional block diagram of the multilayer flexible circuit wiring board by this invention. 従来の手法による多層フレキシブル回路配線基板の製造工程図。The manufacturing process figure of the multilayer flexible circuit wiring board by the conventional method. 図11に続く製造工程図。The manufacturing process figure following FIG. 図12に続く製造工程図。The manufacturing process figure following FIG.

符号の説明Explanation of symbols

1 可撓性絶縁ベース材
2 銅箔層
3 銅箔層
4 両面銅張積層板
5 回路パターン
6 内層回路
7 導通用孔
8 銅箔
9 レジスト層
10 導電性突起
11 導電性突起が立設する基材
12 カバー
13 ポリイミドフィルム
14 接着剤
15 導電性突起を有するカバー基材
16 導電性突起のランド
17 導電性突起を有するケーブル部を含む内層回路
18 絶縁ベース材
19 導電層
20 片面銅張積層板
21 接着剤
22 型抜きされた片面銅張積層板
23 導通用孔
24 スルーホール
25 回路パターン
DESCRIPTION OF SYMBOLS 1 Flexible insulating base material 2 Copper foil layer 3 Copper foil layer 4 Double-sided copper clad laminated board 5 Circuit pattern 6 Inner layer circuit 7 Conductive hole 8 Copper foil 9 Resist layer 10 Conductive protrusion 11 Conductive protrusion standing base Material 12 Cover 13 Polyimide film 14 Adhesive 15 Cover base material having conductive protrusion 16 Land of conductive protrusion 17 Inner layer circuit including cable portion having conductive protrusion 18 Insulating base material 19 Conductive layer 20 Single-sided copper-clad laminate 21 Adhesive 22 Die-cut single-sided copper-clad laminate 23 Conductive hole 24 Through hole 25 Circuit pattern

Claims (3)

スルーホール接続を有する多層フレキシブル回路配線基板において、ケーブル構造を有する内層基板のケーブル保護層となるカバーの導通用孔の外周が導電性突起からなり、内周が外層のスルーホールめっきと連続しためっき皮膜で補強されていることを特徴とする多層フレキシブル回路配線基板。   In a multilayer flexible circuit wiring board having through-hole connection, the outer periphery of the conductive hole of the cover serving as the cable protection layer of the inner-layer board having the cable structure is made of conductive protrusions, and the inner periphery is continuous with the through-hole plating of the outer layer. A multilayer flexible circuit wiring board characterized by being reinforced with a film. 1面に導電性突起が立設した導電層の導電性突起が立設する面にケーブル構造のカバーとなる可撓性絶縁層を形成した回路基材を用意し、前記回路基材を予め前記導電突起よりも大きい径の第一の導通用孔を形成したケーブル構造に前記導電性突起と前記第一の導通用孔とを位置合わせして張り合わせ内層基板とし、予め型抜きした片面銅張り積層板および接着材を前記内層基板に位置合わせを行い積層し、前記導電性突起の同軸上に前記導電性突起が同心円状に残る前記導電突起よりも径の小さいスルーホールを形成するための第二の導通用孔を形成し、前記第二の導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことでスルーホールを前記導電性突起の同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法。   A circuit base material is prepared in which a flexible insulating layer serving as a cable structure cover is formed on the surface of the conductive layer on which the conductive protrusion is erected on one side, and the circuit base is previously A single-sided copper-clad laminate in which the conductive protrusions and the first conductive holes are aligned and bonded to a cable structure in which a first conductive hole having a diameter larger than the conductive protrusion is formed, and is die-cut in advance. A second plate for aligning and laminating a plate and an adhesive on the inner layer substrate to form a through hole having a diameter smaller than that of the conductive protrusion on which the conductive protrusion remains concentrically on the conductive protrusion. A through hole is formed on the same axis as the conductive protrusion by performing electroless plating and / or conductive treatment and electrolytic plating on the second conductive hole. Multilayer flexible circuit arrangement A method of manufacturing a wire substrate. 1面に導電性突起が立設した導電層の導電性突起が立設する面にケーブル構造のカバーとなる可撓性絶縁層を形成した回路基材を用意し、前記回路基材を予め形成したケーブル構造を有する可撓性回路に張り合わせ内層基板とし、予め型抜きした片面銅張り積層板および接着剤を前記内層基板に位置合わせを行い積層し、前記導電性突起の同軸上に前記導電性突起が同心円状に残る前記導電性突起よりも径の小さいスルーホールを形成するための導通用孔を形成し、前記導通用孔に無電解めっきまたは/および導電化処理および電解めっきを施すことでスルーホールを前記導電性突起の同軸上に形成することを特徴とする多層フレキシブル回路配線基板の製造方法。   Prepare a circuit board with a flexible insulating layer that will be the cover of the cable structure on the surface of the conductive layer where the conductive protrusion is erected on one side, and pre-form the circuit base The inner layer substrate is laminated to a flexible circuit having a cable structure, and a single-sided copper-clad laminate and an adhesive previously punched are aligned and laminated on the inner layer substrate, and the conductive layer is coaxially connected to the conductive protrusion. By forming a conduction hole for forming a through hole having a diameter smaller than that of the conductive protrusion in which the protrusions remain concentrically, and subjecting the conduction hole to electroless plating and / or conductive treatment and electrolytic plating. A method of manufacturing a multilayer flexible circuit wiring board, wherein a through hole is formed on the same axis as the conductive protrusion.
JP2005004845A 2005-01-12 2005-01-12 Multilayer flexible circuit wiring board and manufacturing method thereof Expired - Fee Related JP4233528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004845A JP4233528B2 (en) 2005-01-12 2005-01-12 Multilayer flexible circuit wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004845A JP4233528B2 (en) 2005-01-12 2005-01-12 Multilayer flexible circuit wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006196571A JP2006196571A (en) 2006-07-27
JP4233528B2 true JP4233528B2 (en) 2009-03-04

Family

ID=36802421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004845A Expired - Fee Related JP4233528B2 (en) 2005-01-12 2005-01-12 Multilayer flexible circuit wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4233528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658959A (en) * 2015-10-28 2017-05-10 富葵精密组件(深圳)有限公司 Flexible circuit board and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693534B2 (en) * 1990-02-26 1994-11-16 日本アビオニクス株式会社 Flexible rigid printed wiring board
JPH07176837A (en) * 1993-12-17 1995-07-14 Mitsui Toatsu Chem Inc Rigid-flexible printed wiring board and its manufacture
JP2004228322A (en) * 2003-01-22 2004-08-12 Sumitomo Bakelite Co Ltd Method for manufacturing multilayer flexible wiring board
KR100865060B1 (en) * 2003-04-18 2008-10-23 이비덴 가부시키가이샤 Rigid-flex wiring board

Also Published As

Publication number Publication date
JP2006196571A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP5010737B2 (en) Printed wiring board
JP4767269B2 (en) Method for manufacturing printed circuit board
JP4203435B2 (en) Multilayer resin wiring board
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
WO2009141928A1 (en) Printed wiring board and method for manufacturing the same
JP2009277916A (en) Wiring board, manufacturing method thereof, and semiconductor package
WO2008004382A1 (en) Method for manufacturing multilayer printed wiring board
KR100820633B1 (en) Printed circuit board having embedded electronic component and manufacturing method thereof
US20140166355A1 (en) Method of manufacturing printed circuit board
JP2017135357A (en) Printed wiring board and method of manufacturing the same
JP2010123829A (en) Printed wiring board and manufacturing method thereof
JP4485975B2 (en) Manufacturing method of multilayer flexible circuit wiring board
JP2005039233A (en) Substrate having via hole and its producing process
JP2020057767A (en) Printed wiring board
JP4233528B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
JP4813204B2 (en) Multilayer circuit board manufacturing method
JP2006203061A (en) Method for manufacturing buildup multilayer circuit boards
JP2007208229A (en) Manufacturing method of multilayer wiring board
JP4522282B2 (en) Manufacturing method of multilayer flexible circuit wiring board
JP4302045B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
KR100975927B1 (en) Method of manufacturing package board
JP2006049536A (en) Multilayer circuit board
KR100649683B1 (en) Printed circuit board and method for manufacturing the same
JP2009081334A (en) Multi-layer printed wiring board, and manufacturing method thereof
JP4397793B2 (en) Circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees