JP2007208229A - Manufacturing method of multilayer wiring board - Google Patents

Manufacturing method of multilayer wiring board Download PDF

Info

Publication number
JP2007208229A
JP2007208229A JP2006051137A JP2006051137A JP2007208229A JP 2007208229 A JP2007208229 A JP 2007208229A JP 2006051137 A JP2006051137 A JP 2006051137A JP 2006051137 A JP2006051137 A JP 2006051137A JP 2007208229 A JP2007208229 A JP 2007208229A
Authority
JP
Japan
Prior art keywords
wiring
conductor
wiring board
hole
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051137A
Other languages
Japanese (ja)
Inventor
Masashi Miyazaki
政志 宮崎
Hideki Yokota
英樹 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2006051137A priority Critical patent/JP2007208229A/en
Publication of JP2007208229A publication Critical patent/JP2007208229A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a manufacturing method permitting the efficient manufacture of a multilayer wiring board and an improvement in the reliability of interlayer conduction connection of a stacked via or the like. <P>SOLUTION: In an insulating resin substrate 1, there is formed a via hole 2 having the maximum diameter that is twice or less the thickness of a wiring conductor to be formed. In the insulating resin substrate with the via hole formed, a base metal layer 3 and a resist film 4 are formed. An electrolytic plating metal 5 is deposited by electrolytic plating to form a wiring conductor of a predetermined thickness and fill the via hole conductor at the same time. By stacking a predetermined kind and number of single-layer wiring boards 6 obtained in this way to press them, a multilayer wiring board is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁層間に配線導体を有し、該絶縁層間の配線導体をビアホール導体を通じて接続する多層配線基板の製造方法に関するもので、一括積層法に関するものである。  The present invention relates to a method for manufacturing a multilayer wiring board having wiring conductors between insulating layers and connecting the wiring conductors between the insulating layers through via-hole conductors, and relates to a batch lamination method.

近年の電子機器の高機能化および軽薄短小化の要求により、電子部品の高集積化および高密度実装化が進んできており、これらの電子部品を搭載する回路基板にも同様に高機能化が要求されてきている。  Due to the recent demand for higher functionality and lighter, thinner and smaller electronic devices, electronic components have been highly integrated and densely mounted, and circuit boards on which these electronic components are mounted are also becoming highly functional. It has been requested.

多層配線基板を製造する方法としては、ビルドアップ工法と呼ばれる逐次積層方式があった。これは、コア基板上に、配線層と樹脂絶縁層とを交互に積層形成することによって多層配線基板を製造する方法である。しかしながら従来のビルドアップ工法よりも効率化させるため、近年では、各配線層をそれぞれ予め作成しておき、最後にそれらを一括プレスして積層する一括積層方式が用いられるようになってきた。  As a method of manufacturing a multilayer wiring board, there was a sequential lamination method called a build-up method. This is a method of manufacturing a multilayer wiring board by alternately laminating wiring layers and resin insulating layers on a core substrate. However, in order to improve efficiency over the conventional build-up method, in recent years, a batch lamination method has been used in which each wiring layer is prepared in advance, and finally they are collectively pressed and laminated.

一括積層方式による多層配線基板の製造方法については、各社から様々な手法が提案されている。これらの共通点としては、
1. 配線とビアホール導体を形成した単層の配線層を作成する。
2. 必要種類の単層の配線層を、必要枚数積み重ねてプレスで張り合わせと同時に異な る配線層の配線導体とビアホール導体を導電接続させる。
が挙げられる。ビアホール導体形成方法、絶縁樹脂、ビアホール導体充填方法、ビアホール導体と配線導体の接合方法および配線導体形成方法については、各社から様々な方法が提案されている。
Various methods have been proposed by various companies for the method of manufacturing a multilayer wiring board by the batch lamination method. These common points are:
1. A single wiring layer in which wiring and via-hole conductors are formed is created.
2. The required number of single-layer wiring layers are stacked and bonded together by pressing, and at the same time, the wiring conductors of different wiring layers and via-hole conductors are conductively connected.
Is mentioned. Various methods have been proposed by various companies for the via hole conductor forming method, insulating resin, via hole conductor filling method, via hole conductor and wiring conductor bonding method, and wiring conductor forming method.

特開2002−158447号公報JP 2002-158447 A

単層の配線層を形成する場合、配線導体の形成とビアホール導体の形成は、別工程にて形成されていた。例えば配線導体は無電解銅メッキまたは銅箔エッチングで形成し、ビアホール導体は導電性ペーストを充填する方法等で形成していた。しかしながら、ビアホール導体と配線導体を異なる工程で形成した場合、導体の密度が異なるため、例えば導電性ペーストを充填したビアホール導体の場合、導電の他に樹脂成分を含むため、図4(a)に示すように、ビアホール導体の中央表面に凹みが生じてしまうことがあった。ビアホール導体にこのような凹みが生じた場合、他の配線層の配線導体との間に接合不良が起こるという問題がある。特に、ビアホール導体の上にビアホール導体を形成するいわゆるスタックドビアにした場合、図4(b)にあるように、重なった分の凹みによる影響が蓄積されるので、接合不良が顕著になるという問題がある。  In the case of forming a single wiring layer, the formation of the wiring conductor and the formation of the via-hole conductor are formed in separate steps. For example, the wiring conductor is formed by electroless copper plating or copper foil etching, and the via-hole conductor is formed by a method of filling a conductive paste. However, when the via hole conductor and the wiring conductor are formed in different steps, the density of the conductor is different. For example, in the case of the via hole conductor filled with the conductive paste, since the resin component is included in addition to the conductivity, FIG. As shown, the center surface of the via-hole conductor sometimes has a dent. When such a dent is generated in the via-hole conductor, there is a problem that a bonding failure occurs with the wiring conductor of another wiring layer. In particular, when a so-called stacked via in which a via-hole conductor is formed on a via-hole conductor is used, as shown in FIG. is there.

本発明は、上記のような配線層間の接合不良を解決するべく、ビアホール導体と配線導体との接合の信頼性を向上させることが可能な、多層配線基板の製造方法を提案するものである。  The present invention proposes a method for manufacturing a multilayer wiring board capable of improving the reliability of bonding between a via-hole conductor and a wiring conductor in order to solve the above-described bonding failure between wiring layers.

本発明は、絶縁性樹脂基板を用意する工程と、前記絶縁性樹脂基板に、孔の最大直径が、形成すべき配線導体の厚みの2倍以下となるビアホールを形成する工程と、前記ビアホールを形成した前記絶縁性樹脂基板に無電解メッキによって下地金属層を形成する工程と、前記下地金属層を形成した前記絶縁性樹脂基板に所定のパターンでレジスト膜を形成する工程と、電解メッキによって所定の厚みの配線導体の形成およびビアホール導体の充填を同時に行う工程と、レジスト膜および不要な下地金属層を除去する工程と、前記の工程によって形成された単層の配線基板を所定種類かつ所定枚数用意する工程と、用意した所定種類かつ所定枚数の前記単層の配線基板を積み重ねてプレスする工程と、を有することを特徴とする多層配線基板の製造方法を提案する。    The present invention includes a step of preparing an insulating resin substrate, a step of forming a via hole in the insulating resin substrate, wherein the maximum diameter of the hole is not more than twice the thickness of the wiring conductor to be formed, and the via hole Forming a base metal layer on the formed insulating resin substrate by electroless plating; forming a resist film in a predetermined pattern on the insulating resin substrate on which the base metal layer is formed; and predetermined by electrolytic plating A step of simultaneously forming a wiring conductor of a predetermined thickness and filling a via-hole conductor, a step of removing a resist film and an unnecessary base metal layer, and a predetermined type and a predetermined number of single-layer wiring boards formed by the above steps A step of preparing and a step of stacking and pressing the prepared single-layered wiring board of a predetermined type and a predetermined number of sheets. We propose a method.

本発明によれば、配線導体とビアホール導体を同じ工程で形成できるので、多層配線基板の製造を効率化することができる。また、配線導体とビアホール導体の密度が同じになるため、ビアホール導体に凹みが生じなくなり、ビアホール導体と配線導体との接合の信頼性が向上する。  According to the present invention, since the wiring conductor and the via-hole conductor can be formed in the same process, the production of the multilayer wiring board can be made efficient. In addition, since the density of the wiring conductor and the via hole conductor is the same, the via hole conductor is not recessed, and the reliability of bonding between the via hole conductor and the wiring conductor is improved.

また、本発明では、さらに、前記単層の配線基板の、配線導体が形成された面と反対側の面のビアホール導体に錫メッキを施すことを提案する。これによってビアホール導体と配線導体との接合の信頼性がさらに向上する。  The present invention further proposes that the via-hole conductor on the surface opposite to the surface on which the wiring conductor is formed of the single-layer wiring board is subjected to tin plating. This further improves the reliability of bonding between the via-hole conductor and the wiring conductor.

また、本発明では、さらに、前記単層の配線基板の、配線導体が形成された面と反対側の面に層間接着用樹脂を付与することを提案する。これによって、各単層の配線基板の接合がより強固になるとともに、ビアホール導体と配線導体との接合の信頼性が向上する。  In the present invention, it is further proposed to apply an interlayer adhesive resin to the surface of the single-layer wiring board opposite to the surface on which the wiring conductor is formed. As a result, the bonding of each single-layer wiring board becomes stronger, and the reliability of the bonding between the via-hole conductor and the wiring conductor is improved.

本発明によれば、ビアホール導体と配線導体との接合の信頼性が向上する。したがって、例えばスタックドビアなどの、接合の信頼性についてシビアなものであっても、その接合の信頼性が高い多層配線基板を得ることが可能となる。  According to the present invention, the reliability of bonding between the via-hole conductor and the wiring conductor is improved. Therefore, even if the junction reliability is severe, such as a stacked via, for example, it is possible to obtain a multilayer wiring board with high junction reliability.

本発明に係る多層配線基板の製造方法の実施形態を、以下の図面に基づいて説明する。  An embodiment of a method for manufacturing a multilayer wiring board according to the present invention will be described with reference to the following drawings.

図1は、本実施形態の単層の配線基板を形成する工程を示す図である。図2は、本実施形態の単層の配線基板を積み重ねてプレスして、多層配線基板を形成する工程を示す図である。図3は、本実施形態の配線導体の形成とビアホール導体の充填を行う工程における現象を説明する図である。なお、本図面では、説明しやすいようにビアホール導体とその周囲の配線導体以外を省略してある。  FIG. 1 is a diagram illustrating a process of forming a single-layer wiring board according to the present embodiment. FIG. 2 is a diagram illustrating a process of forming a multilayer wiring board by stacking and pressing single-layer wiring boards according to the present embodiment. FIG. 3 is a diagram for explaining a phenomenon in the process of forming the wiring conductor and filling the via-hole conductor according to the present embodiment. It should be noted that in the present drawing, other than via hole conductors and surrounding wiring conductors are omitted for easy explanation.

まず、図1(a)のように絶縁性樹脂基板1を用意する。このような絶縁性樹脂基板としては、FR−5相当のガラスエポキシ基板やポリイミド基板などが挙げられる。金属箔付の基板を用いる場合には、その金属箔をエッチングで除去したものを準備してもよい。  First, an insulating resin substrate 1 is prepared as shown in FIG. Examples of such an insulating resin substrate include a glass epoxy substrate and a polyimide substrate corresponding to FR-5. When using a substrate with a metal foil, a substrate obtained by removing the metal foil by etching may be prepared.

次に、図1(b)に示すように、この絶縁性樹脂基板1にビアホール2を形成する。ビアホールの形成方法としては、レーザー加工機による孔あけが挙げられる。レーザーとしては、炭酸ガスレーザー、紫外線レーザー、エキシマレーザー等を使用することができる。ビアホール2の形状は、その最大直径が、後で形成する配線導体の厚みの2倍以下になる形状とする。  Next, as shown in FIG. 1B, a via hole 2 is formed in the insulating resin substrate 1. As a method for forming a via hole, drilling with a laser processing machine can be mentioned. As the laser, a carbon dioxide laser, an ultraviolet laser, an excimer laser, or the like can be used. The shape of the via hole 2 is such that its maximum diameter is not more than twice the thickness of a wiring conductor to be formed later.

このような設定を行う理由を図3に基づいて説明する。図3(a)に示すように、メッキ金属層5が絶縁性樹脂基板1の表面及びビアホール2内面に形成されていく。メッキ金属層5は、図3(b)に示すように、厚みを増しながらビアホール2内に充填されていく。ビアホール2の最大径W、配線導体の厚みTとして、W≦2Tとしたとき、配線導体の厚みが所定の厚みになったとき、図3(c)に示すように、配線導体の形成と同時にビアホール2内に金属が充填される。尚W>2Tである場合は、ビアホール導体に凹みが形成されるか、ビアホール2内に金属が充填されないことがある。  The reason for such setting will be described with reference to FIG. As shown in FIG. 3A, the plated metal layer 5 is formed on the surface of the insulating resin substrate 1 and the inner surface of the via hole 2. As shown in FIG. 3B, the plated metal layer 5 is filled in the via hole 2 while increasing the thickness. When the maximum diameter W of the via hole 2 and the thickness T of the wiring conductor are W ≦ 2T, when the thickness of the wiring conductor reaches a predetermined thickness, as shown in FIG. The via hole 2 is filled with metal. When W> 2T, a recess may be formed in the via hole conductor or the via hole 2 may not be filled with metal.

次に、図1(c)に示すように、絶縁性樹脂基板1の表面およびビアホール2の内面に下地金属層3を形成する。下地金属層3を形成する方法としては、銅、クロム、ニッケル等の無電解メッキが挙げられる。この下地金属層3は、後で電解メッキによって配線導体及びビアホール導体を形成するときに、通電させてメッキ金属層を定着させるための給電用金属層としても利用されるものである。  Next, as shown in FIG. 1C, a base metal layer 3 is formed on the surface of the insulating resin substrate 1 and the inner surface of the via hole 2. Examples of the method for forming the base metal layer 3 include electroless plating of copper, chromium, nickel and the like. The base metal layer 3 is also used as a power supply metal layer for energizing and fixing the plated metal layer when a wiring conductor and a via-hole conductor are formed later by electrolytic plating.

次に、図1(d)に示すように、絶縁性樹脂基板1の上に、レジスト膜4を形成する。配線導体を形成しない裏面は、全面をレジスト膜4で覆う。配線導体を形成する表面は、全面にレジスト膜4を被覆後、所定のパターンに応じて露光、現像する。これにより、配線導体を形成する部分およびビアホール部分のみレジスト膜4を除去してパターニングを行う。なお、後述のコア基板10の場合は、両面ともパターニングを行う。  Next, as shown in FIG. 1D, a resist film 4 is formed on the insulating resin substrate 1. The back surface where the wiring conductor is not formed is entirely covered with a resist film 4. The surface on which the wiring conductor is formed is exposed and developed in accordance with a predetermined pattern after covering the entire surface with the resist film 4. As a result, the resist film 4 is removed only at the portion where the wiring conductor is formed and the via hole portion, and patterning is performed. In the case of the core substrate 10 described later, both sides are patterned.

次に、図1(e)に示すように、電解メッキによってレジスト4が形成されていない部分に電解メッキ金属5を充填し、配線導体の形成及びビアホール導体の充填を行う。電解メッキ金属5は、下地金属層3に通電されることにより、レジスト膜4に形成されたパターン形状で析出する。メッキ金属としては銅が好ましい。前述したように、W≦2Tに設定することにより、配線導体が所定の厚みに形成されると同時にビアホール導体の充填が完了する。  Next, as shown in FIG. 1E, a portion where the resist 4 is not formed by electrolytic plating is filled with an electrolytic plating metal 5 to form a wiring conductor and a via hole conductor. The electroplating metal 5 is deposited in the pattern shape formed on the resist film 4 by energizing the base metal layer 3. Copper is preferred as the plating metal. As described above, by setting W ≦ 2T, the wiring conductor is formed to a predetermined thickness, and at the same time, the filling of the via-hole conductor is completed.

次に、図1(f)に示すように、レジスト膜4を除去する。続いて図1(g)に示すように不要な下地金属層3を除去する。このようにして、単層の配線基板6を得ることができる。  Next, as shown in FIG. 1F, the resist film 4 is removed. Subsequently, as shown in FIG. 1G, the unnecessary base metal layer 3 is removed. In this way, a single-layer wiring board 6 can be obtained.

なお、異なる配線基板のビアホール導体と配線導体との接合をさらに強固にするため、図1(h)に示すように、単層の配線基板6の配線導体形成面に、保護シート7を貼付し、電解Snメッキを施して、図1(i)及び(j)に示すように、ビアホール導体の先端にSnメッキ金属8を形成しても良い。Snメッキ金属8を形成しなくてもビアホール導体と配線導体との接合が十分に確保できるのであれば、Snメッキ金属8の形成は任意である。  In order to further strengthen the bonding between the via-hole conductor and the wiring conductor of different wiring boards, a protective sheet 7 is attached to the wiring conductor forming surface of the single-layer wiring board 6 as shown in FIG. Electrolytic Sn plating may be performed to form Sn plating metal 8 at the tip of the via-hole conductor as shown in FIGS. 1 (i) and (j). The formation of the Sn-plated metal 8 is optional as long as sufficient bonding between the via-hole conductor and the wiring conductor can be ensured without forming the Sn-plated metal 8.

また、単層の配線基板同士の接合を強固にするため、または互いに張り付きにくい材質の基板同士を接合するために、図1(k)に示すように、配線導体形成面の反対側の面に、層間接着用樹脂9を付与しても良い。なお、層間接着用樹脂9を用いなくても配線基板同士の接合が可能であれば、層間接着用樹脂9の使用は任意である。  Further, in order to strengthen the bonding between the single-layer wiring substrates or to bond the substrates made of materials that are difficult to stick to each other, as shown in FIG. Alternatively, an interlayer adhesive resin 9 may be applied. The use of the interlayer adhesive resin 9 is optional as long as the wiring boards can be joined without using the interlayer adhesive resin 9.

次に、単層の配線基板を積み重ねて多層配線基板を形成する工程を、図2に基づいて説明する。図2(a)に示すように、両面に配線導体を形成したコア基板10を用意する。このコア基板10は、他の単層の配線基板6と同様に、前述の工程にて形成される。  Next, the process of stacking single-layer wiring boards to form a multilayer wiring board will be described with reference to FIG. As shown in FIG. 2A, a core substrate 10 having wiring conductors formed on both sides is prepared. The core substrate 10 is formed in the above-described steps, similarly to the other single-layer wiring substrate 6.

次に、図2(b)に示すように、コア基板10の両面に、所定種類の単層の配線基板6を所定の順序で重なるように配列し、位置あわせを行って積み重ねる。位置あわせの方法としては、予め形成されている位置決めマーク(図示せず)を、画像認識装置により読み取り位置合わせする方法、位置合わせ用のピン(図示せず)等で位置合わせする方法等を用いることができる。  Next, as shown in FIG. 2B, predetermined types of single-layer wiring boards 6 are arranged on both surfaces of the core substrate 10 so as to overlap in a predetermined order, and are aligned and stacked. As a positioning method, a method of positioning a positioning mark (not shown) formed in advance by an image recognition device, a positioning method using a positioning pin (not shown), or the like is used. be able to.

次に、図2(c)に示すように、積み重ねたコア基板を含む複数の配線基板をプレスして一体化して多層配線基板11を形成する。以上のようにして得られた多層配線基板は、配線導体とビアホール導体との接合の信頼性が高く、図2にあるようなスタックドビアにおいても接続の信頼性が高いものである。  Next, as shown in FIG. 2C, a plurality of wiring boards including the stacked core boards are pressed and integrated to form a multilayer wiring board 11. The multilayer wiring board obtained as described above has a high reliability of bonding between the wiring conductor and the via-hole conductor, and has a high connection reliability even in the stacked via as shown in FIG.

以下、実施例により更に具体的に説明するが、本発明はこれによって何ら限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

厚み12μmの銅箔が両面に形成されたFR−5相当のガラスエポキシ両面銅張板を用意し、この両面の銅箔をエッチングで除去し、絶縁性樹脂基板を得た。この絶縁性樹脂基板の所定の位置に、UV−YAGレーザー加工機を用いてトップ径30μm、ボトム径25μnのビアホールを形成した。レーザー加工の場合、孔の形状は略円錐形になるので、トップ径が最大径となる。次いでビアホール内面及び孔周辺部を過マンガン酸系の樹脂エッチング液にて清浄化した。  A glass epoxy double-sided copper-clad plate equivalent to FR-5 in which a copper foil having a thickness of 12 μm was formed on both sides was prepared, and the copper foils on both sides were removed by etching to obtain an insulating resin substrate. A via hole having a top diameter of 30 μm and a bottom diameter of 25 μn was formed at a predetermined position of the insulating resin substrate using a UV-YAG laser processing machine. In the case of laser processing, the shape of the hole is substantially conical, so the top diameter is the maximum diameter. Next, the inner surface of the via hole and the peripheral portion of the hole were cleaned with a permanganate resin etching solution.

次に、清浄化した絶縁性樹脂基板に、無電解銅メッキを施し、基板両面及びビアホール内面に下地金属層となる銅メッキ膜を形成する。次いで、無電解銅メッキ膜を形成した絶縁性樹脂基板の両面に、UV硬化性樹脂からなるメッキレジストシート(日立化成製:商品名RY3319)を貼り付けた。次いで、前記絶縁性樹脂基板の配線導体を形成する面のメッキレジストを、配線パターンを形成したマスクを通して紫外線を照射して硬化させる。その後、炭酸ナトリウム水溶液で未硬化のレジストを除去して、銅メッキ膜が所定の配線パターンの形状に露出するようにした。  Next, the cleaned insulating resin substrate is subjected to electroless copper plating to form a copper plating film serving as a base metal layer on both the substrate surface and the inner surface of the via hole. Next, a plating resist sheet (trade name RY3319, manufactured by Hitachi Chemical Co., Ltd.) made of a UV curable resin was attached to both surfaces of the insulating resin substrate on which the electroless copper plating film was formed. Next, the plating resist on the surface of the insulating resin substrate on which the wiring conductor is to be formed is cured by irradiating with ultraviolet rays through a mask on which the wiring pattern is formed. Thereafter, the uncured resist was removed with an aqueous sodium carbonate solution so that the copper plating film was exposed in the shape of a predetermined wiring pattern.

次に、この基板に、無電解銅メッキ膜を下地金属層として電解銅メッキを施した。電解銅メッキによる金属層の厚みが15μmになったところで通電を停止した。これにより、配線導体とビアホール導体を同時に形成した。次いで、2.5wt%水酸化ナトリウム水溶液でメッキレジストを除去した。次いで、12wt%過硫酸アンモニウム水溶液で不要な無電解銅メッキ膜を除去した。このようにして、配線導体とビアホール導体を形成した単層の配線基板が得られる。  Next, this substrate was subjected to electrolytic copper plating using an electroless copper plating film as a base metal layer. The current supply was stopped when the thickness of the metal layer by electrolytic copper plating reached 15 μm. Thereby, a wiring conductor and a via-hole conductor were formed simultaneously. Next, the plating resist was removed with a 2.5 wt% sodium hydroxide aqueous solution. Next, an unnecessary electroless copper plating film was removed with a 12 wt% ammonium persulfate aqueous solution. In this way, a single-layer wiring board having a wiring conductor and a via-hole conductor is obtained.

次に、この単層の配線基板の配線が形成された面を、保護シートとして弱粘着マスキングテープを貼り付けて、電解錫メッキを施し、ビアホール導体の先端に厚さ5μmの錫メッキ膜を形成した。保護シートを剥離した後、錫メッキ膜を形成した面に厚さ10μmのエポキシ樹脂系の接着用樹脂シートを貼り付けた。このようにして形成した単層の配線導体を、所定の種類、所定の枚数を用意した。  Next, the surface on which the wiring of this single-layer wiring board is formed is attached with a weak adhesive masking tape as a protective sheet and subjected to electrolytic tin plating to form a tin plating film having a thickness of 5 μm at the end of the via-hole conductor. did. After the protective sheet was peeled off, an epoxy resin adhesive resin sheet having a thickness of 10 μm was attached to the surface on which the tin plating film was formed. A predetermined type and a predetermined number of single-layer wiring conductors thus formed were prepared.

上記工程と同様にして、両面に配線導体を形成したコア基板を形成し、用意した。このコア基板には、錫メッキ膜及び接着用樹脂シートは付与されていない。  In the same manner as in the above process, a core substrate having wiring conductors formed on both sides was formed and prepared. The core substrate is not provided with a tin plating film and an adhesive resin sheet.

用意された単層の配線基板及びコア基板を、所定の順序で積み重ねる。このとき、各基板に予め設けられた位置決めマークを用いて、画像認識によって位置あわせを行い、各配線基板を、温度100℃、圧力5kgf/cmで仮圧着しながら積層する。その後温度220℃、圧力10kgf/cmで本プレスを行い、一体化した。このときビアホール導体の先端は接着用樹脂シートを貫通して隣接する配線基板の配線導体に接合され、多層配線基板が得られた。The prepared single-layer wiring board and core board are stacked in a predetermined order. At this time, alignment is performed by image recognition using a positioning mark provided in advance on each substrate, and each wiring substrate is laminated while being temporarily pressed at a temperature of 100 ° C. and a pressure of 5 kgf / cm 2 . Thereafter, this press was performed at a temperature of 220 ° C. and a pressure of 10 kgf / cm 2 to be integrated. At this time, the tip of the via-hole conductor penetrated the adhesive resin sheet and was joined to the wiring conductor of the adjacent wiring board, and a multilayer wiring board was obtained.

このようにして得られた多層配線基板は、ビアホール導体の凹みが少なく、スタックドビアを形成する場合にも、凹みの影響が増幅されにくいので、層間の導電接続の信頼性が向上するものである。  The multilayer wiring board thus obtained has few dents in the via-hole conductor, and even when a stacked via is formed, the influence of the dent is difficult to be amplified, so that the reliability of conductive connection between layers is improved.

(a)は絶縁性樹脂基板を用意する工程を示す図、(b)は絶縁性樹脂基板にビアホールを形成する工程を示す図、(c)は絶縁性樹脂基板に下地金属層を形成する工程を示す図、(d)はレジスト膜を形成する工程を示す図、(e)は配線導体とビアホール導体を電解メッキで同時形成する工程を示す図、(f)はレジスト膜を除去する工程を示す図、(g)は不要な下地金属層を除去する工程を示す図、(h)は配線導体面に保護シートを貼付する工程を示す図、(i)はビアホール導体の先端にSnメッキを施す工程を示す図、(j)は保護シートを除去する工程を示す図、(k)は層間接着用樹脂を付与する工程を示す図である。(A) is a diagram showing a step of preparing an insulating resin substrate, (b) is a diagram showing a step of forming a via hole in the insulating resin substrate, and (c) is a step of forming a base metal layer on the insulating resin substrate. (D) is a diagram showing a step of forming a resist film, (e) is a diagram showing a step of simultaneously forming a wiring conductor and a via-hole conductor by electrolytic plating, and (f) is a step of removing the resist film. (G) is a diagram showing a process of removing an unnecessary base metal layer, (h) is a diagram showing a process of attaching a protective sheet to the wiring conductor surface, and (i) is Sn plating on the tip of the via-hole conductor. The figure which shows the process to perform, (j) is a figure which shows the process of removing a protection sheet, (k) is a figure which shows the process of providing resin for interlayer adhesion. (a)はコア配線基板を用意する工程を示す図、(b)は複数の配線基板を位置あわせして積み重ねる工程を示す図、(c)はプレスして形成された多層配線基板を示す図である。(A) is a diagram showing a step of preparing a core wiring substrate, (b) is a diagram showing a step of aligning and stacking a plurality of wiring substrates, and (c) is a diagram showing a multilayer wiring substrate formed by pressing. It is. (a)、(b)、(c)は配線導体の形成及びビアホール導体の充填がなされていく様子を示す図である。(A), (b), (c) is a figure which shows a mode that formation of a wiring conductor and filling of a via-hole conductor are made | formed. (a)は従来の単層の配線基板を示す図、(b)は従来の単層の配線基板を複数積み重ねてスタックドビアを形成した様子を示す図である。(A) is a figure which shows the conventional single layer wiring board, (b) is a figure which shows a mode that the stacked via | veer was formed by accumulating several conventional single layer wiring boards.

符号の説明Explanation of symbols

1 絶縁性樹脂基板
2 ビアホール
3 下地金属層
4 レジスト膜
5 電解メッキ金属(配線導体及びビアホール導体)
6 単層の配線基板
7 保護シート
8 Snメッキ金属
9 層間接着用樹脂
10 コア基板
11 多層配線基板
12 ビアホール導体(導電性ペースト充填)
13 凹み
T 配線導体の厚み
W ビアホールの最大径
DESCRIPTION OF SYMBOLS 1 Insulating resin board 2 Via hole 3 Underlying metal layer 4 Resist film 5 Electroplating metal (wiring conductor and via hole conductor)
6 Single-layer wiring board 7 Protective sheet 8 Sn-plated metal 9 Interlayer adhesion resin 10 Core board 11 Multi-layer wiring board 12 Via-hole conductor (filled with conductive paste)
13 Depression T Wiring conductor thickness W Maximum via hole diameter

Claims (3)

a、絶縁性樹脂基板を用意する工程と、
b、前記絶縁性樹脂基板に、孔の最大直径が、形成すべき配線導体の厚みの2倍以下となるビアホールを形成する工程と、
c、前記ビアホールを形成した前記絶縁性樹脂基板に無電解メッキによって下地金属層を形成する工程と、
d、前記下地金属層を形成した前記絶縁性樹脂基板に所定のパターンでレジスト膜を形成する工程と、
e、電解メッキによって所定の厚みの配線導体の形成およびビアホール導体の充填を同時に行う工程と、
f、レジスト膜および不要な下地金属層を除去する工程と、
g、前記a〜fの工程によって形成された単層の配線基板を所定種類かつ所定枚数用意する工程と、
h、用意した所定種類かつ所定枚数の前記単層の配線基板を積み重ねてプレスする工程と、
を有することを特徴とする多層配線基板の製造方法。
a. preparing an insulating resin substrate;
b, forming a via hole in the insulating resin substrate in which the maximum diameter of the hole is twice or less the thickness of the wiring conductor to be formed;
c, forming a base metal layer by electroless plating on the insulating resin substrate on which the via hole is formed;
d, forming a resist film in a predetermined pattern on the insulating resin substrate on which the base metal layer is formed;
e, a step of simultaneously forming a wiring conductor having a predetermined thickness by electrolytic plating and filling a via-hole conductor;
f, a step of removing the resist film and the unnecessary base metal layer,
g, a step of preparing a predetermined type and a predetermined number of single-layer wiring boards formed by the steps a to f;
h, a step of stacking and pressing the prepared predetermined type and the predetermined number of the single-layer wiring boards;
A method for producing a multilayer wiring board, comprising:
前記fの工程の後に、前記単層の配線基板の、配線導体が形成された面と反対側の面の、ビアホール導体に錫メッキを施す
ことを特徴とする請求項1に記載の多層配線基板の製造方法。
2. The multilayer wiring board according to claim 1, wherein after the step f, the via-hole conductor on the surface opposite to the surface on which the wiring conductor is formed of the single-layer wiring substrate is subjected to tin plating. Manufacturing method.
前記単層の配線基板の、配線導体が形成された面と反対側の面に層間接着用樹脂を付与する
ことを特徴とする請求項1に記載の多層配線基板の製造方法。
The method for manufacturing a multilayer wiring board according to claim 1, wherein an interlayer adhesive resin is applied to a surface of the single-layer wiring substrate opposite to the surface on which the wiring conductor is formed.
JP2006051137A 2006-01-31 2006-01-31 Manufacturing method of multilayer wiring board Pending JP2007208229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051137A JP2007208229A (en) 2006-01-31 2006-01-31 Manufacturing method of multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051137A JP2007208229A (en) 2006-01-31 2006-01-31 Manufacturing method of multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2007208229A true JP2007208229A (en) 2007-08-16

Family

ID=38487391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051137A Pending JP2007208229A (en) 2006-01-31 2006-01-31 Manufacturing method of multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2007208229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990576B1 (en) 2008-05-26 2010-10-29 삼성전기주식회사 A printed circuit board comprising a high density external circuit pattern and method for manufacturing the same
JP2011077487A (en) * 2009-10-01 2011-04-14 Samsung Electro-Mechanics Co Ltd Multi-layer ceramic substrate and method for manufacturing the same
KR20150123172A (en) * 2014-04-24 2015-11-03 아지노모토 가부시키가이샤 Method for producing circuit board
JP2019016811A (en) * 2018-10-09 2019-01-31 味の素株式会社 Method for manufacturing circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312472A (en) * 1996-05-23 1997-12-02 Kyocera Corp Multilayer wiring board and its manufacturing method
JP2002158447A (en) * 2000-09-08 2002-05-31 Sumitomo Bakelite Co Ltd Multilayer wiring board and method of manufacturing the same
JP2004023002A (en) * 2002-06-19 2004-01-22 Ibiden Co Ltd Multilayered circuit board and its manufacturing method
JP2004193370A (en) * 2002-12-11 2004-07-08 Sumitomo Bakelite Co Ltd Wiring board, its manufacturing method, and multilayer wiring board
WO2004103039A1 (en) * 2003-05-19 2004-11-25 Dai Nippon Printing Co., Ltd. Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312472A (en) * 1996-05-23 1997-12-02 Kyocera Corp Multilayer wiring board and its manufacturing method
JP2002158447A (en) * 2000-09-08 2002-05-31 Sumitomo Bakelite Co Ltd Multilayer wiring board and method of manufacturing the same
JP2004023002A (en) * 2002-06-19 2004-01-22 Ibiden Co Ltd Multilayered circuit board and its manufacturing method
JP2004193370A (en) * 2002-12-11 2004-07-08 Sumitomo Bakelite Co Ltd Wiring board, its manufacturing method, and multilayer wiring board
WO2004103039A1 (en) * 2003-05-19 2004-11-25 Dai Nippon Printing Co., Ltd. Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990576B1 (en) 2008-05-26 2010-10-29 삼성전기주식회사 A printed circuit board comprising a high density external circuit pattern and method for manufacturing the same
JP2011077487A (en) * 2009-10-01 2011-04-14 Samsung Electro-Mechanics Co Ltd Multi-layer ceramic substrate and method for manufacturing the same
KR20150123172A (en) * 2014-04-24 2015-11-03 아지노모토 가부시키가이샤 Method for producing circuit board
JP2015211085A (en) * 2014-04-24 2015-11-24 味の素株式会社 Method of manufacturing circuit board
TWI666980B (en) * 2014-04-24 2019-07-21 日商味之素股份有限公司 Circuit substrate, manufacturing method thereof, and semiconductor device
KR102304528B1 (en) * 2014-04-24 2021-09-27 아지노모토 가부시키가이샤 Method for producing circuit board
JP2019016811A (en) * 2018-10-09 2019-01-31 味の素株式会社 Method for manufacturing circuit board

Similar Documents

Publication Publication Date Title
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
JP2008112993A (en) Manufacturing method of circuit board
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP4460013B2 (en) Wiring board manufacturing method
JP5066427B2 (en) Method for manufacturing printed wiring board
JP4857433B2 (en) Metal laminate, metal laminate manufacturing method and printed circuit board manufacturing method
JPH1013028A (en) Single-sides circuit board for multilayered printed wiring board and multilayered printed wiring board and its manufacture
JP2002076578A (en) Printed wiring board and manufacturing method therefor
JP2008311612A (en) Multilayer printed circuit board, and method of manufacturing the same
JPH10190232A (en) Multilayer interconnection board and its manufacture
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP2007208229A (en) Manufacturing method of multilayer wiring board
JPH1154926A (en) One-sided circuit board and its manufacture
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2006253347A (en) Multilayer flexible circuit wiring board and manufacturing method thereof
JP4797310B2 (en) Alignment mark
JP2007335631A (en) Manufacturing method of laminated wiring board
JP2006049536A (en) Multilayer circuit board
JP4347143B2 (en) Circuit board and manufacturing method thereof
KR100733814B1 (en) Manufacturing method of pcb
JP4429712B2 (en) Manufacturing method of substrate precursor
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board
JP2005109188A (en) Circuit board and multilayer board, and method for manufacturing circuit board and multilayer board
JP2004214227A (en) Interlayer connection part and multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705