JP2008235801A - Multi-layer printed wiring board and manufacturing method therefor - Google Patents

Multi-layer printed wiring board and manufacturing method therefor Download PDF

Info

Publication number
JP2008235801A
JP2008235801A JP2007077033A JP2007077033A JP2008235801A JP 2008235801 A JP2008235801 A JP 2008235801A JP 2007077033 A JP2007077033 A JP 2007077033A JP 2007077033 A JP2007077033 A JP 2007077033A JP 2008235801 A JP2008235801 A JP 2008235801A
Authority
JP
Japan
Prior art keywords
layer
hole
core substrate
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007077033A
Other languages
Japanese (ja)
Other versions
JP5165265B2 (en
Inventor
Fumihiko Matsuda
田 文 彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2007077033A priority Critical patent/JP5165265B2/en
Priority to TW97103731A priority patent/TWI403242B/en
Priority to CN2008100872160A priority patent/CN101272661B/en
Publication of JP2008235801A publication Critical patent/JP2008235801A/en
Application granted granted Critical
Publication of JP5165265B2 publication Critical patent/JP5165265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-layer printed wiring board wherein centers of an upper hole and a lower hole of a step via are arranged at almost the same position, and to provide a method for manufacturing the board stably at a low cost, in a structure of the multi-layer printed wiring board containing a step via structure at an inter-layer connection part, and to provide its manufacturing method. <P>SOLUTION: In the structure, an outer-layer build-up layer is laminated on an inner layer core substrate. A step via hole 23a for inter-layer connection of three or more wiring layers, where diameter of a conducting hole becomes larger going toward the outer side layer and a blind via hole 23b for inter-layer connection of only the outermost layer and the next lower wiring layer are provided to the printed wiring board for inter-layer connection of the inner layer core substrate and the outer layer build-up layer. In this printed wiring board and the method for manufacturing the same, the conductor thickness of a receiving land of the inner layer core substrate to the step via hole 23a is thinner than the conductor thickness of a receiving land of the blind via hole 23b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ビルドアップ型多層プリント配線板およびその製造方法に係わり、特に層間接続部にステップビア構造を含む多層フレキシブルプリント配線板およびその製造方法に関する。   The present invention relates to a build-up type multilayer printed wiring board and a manufacturing method thereof, and more particularly to a multilayer flexible printed wiring board including a step via structure in an interlayer connection portion and a manufacturing method thereof.

近年、電子機器の小型化および高機能化は益々促進されており、そのためにプリント配線板に対する高密度化の要求が高まっている。そこで、プリント配線板を片面から両面や三層以上の多層プリント配線板へと変えることにより、プリント配線板の高密度化を図ることが行われている。   In recent years, downsizing and higher functionality of electronic devices have been increasingly promoted, and for this reason, the demand for higher density of printed wiring boards is increasing. Therefore, the printed wiring board is increased in density by changing the printed wiring board from one side to a double-sided or a multilayer printed wiring board having three or more layers.

この一環として、各種電子部品を実装する多層プリント配線板や硬質プリント配線板の間を、コネクタ等を介して接続する別体のフレキシブルプリント配線板やフレキシブルフラットケーブルを一体化した可撓性ケーブル部を有する多層フレキシブルプリント配線板が、携帯電話等の小型電子機器を中心に広く普及している(特許文献1(4頁、図5)参照)。   As a part of this, it has a flexible cable part that integrates a separate flexible printed wiring board and flexible flat cable that connect between multilayer printed wiring boards and hard printed wiring boards for mounting various electronic components via connectors etc. Multilayer flexible printed wiring boards are widely used, especially in small electronic devices such as mobile phones (see Patent Document 1 (page 4, FIG. 5)).

特に携帯電話の小型化・高機能化はめざましく、それに伴い多層フレキシブルプリント配線板に実装される部品もCSP(チップサイズパッケージ)に置き換わり、高機能かつ高密度にパッケージングし、基板サイズを大きくすることなく、高機能を付加しようという流れがある。   In particular, the miniaturization and high functionality of mobile phones are remarkable, and as a result, parts mounted on multilayer flexible printed wiring boards are also replaced with CSP (chip size package), packaging with high functionality and high density, and increasing the board size. There is a trend to add high functionality without any problems.

そこで、高密度実装を実現するため、両面あるいは多層フレキシブルプリント配線板をコア基板として、1〜2層程度のビルドアップ層を両面あるいは片面に配したビルドアップ型多層フレキシブルプリント配線板も実用化されている(特許文献2、9頁、図3参照)。   Therefore, in order to realize high-density mounting, a built-up type multilayer flexible printed wiring board in which a double-sided or multilayer flexible printed wiring board is used as a core substrate and about one or two build-up layers are arranged on both sides or one side has been put into practical use. (See Patent Document 2, page 9, FIG. 3).

加えて、折畳型の携帯電話の場合には、ケーブル部の屈曲特性に対する要求も厳しく、ポリイミドフィルム等の可撓性絶縁ベース材の片面もしくは両面に、電解銅箔に比べ屈曲特性に優れた圧延銅箔を有する両面銅張り積層板多層を出発材料としたケーブル部を用いるケースが多い。   In addition, in the case of a foldable mobile phone, the requirements for the bending characteristics of the cable part are also strict, and the bending characteristics are superior to electrolytic copper foil on one or both sides of a flexible insulating base material such as polyimide film. In many cases, a cable portion using a double-sided copper-clad laminate having a rolled copper foil as a starting material is used.

上述の圧延銅箔からなる両面銅張り積層板をケーブル部となる両面のコア基板に用いる場合には、特許文献2(8頁、図2)に記載の層間接続部のみをめっきで接続する部分めっきによる両面のコア基板を作製すれば、ケーブル部となる回路パターン上にはめっきが付かないため、屈曲特性を確保できる。この両面コア基板にカバーレイを形成し、さらにその上に1段ビルドアップを行うことで、高密度実装の要求をある程度は満たしながら、屈曲特性も確保できることが可能となった。   In the case where the double-sided copper-clad laminate made of the above-described rolled copper foil is used for the double-sided core substrate serving as the cable part, only the interlayer connection part described in Patent Document 2 (page 8, FIG. 2) is connected by plating. If the core substrate on both sides is produced by plating, the circuit pattern to be the cable portion is not plated, so that bending characteristics can be secured. By forming a cover lay on this double-sided core substrate and further performing a one-stage build-up thereon, it becomes possible to ensure bending characteristics while satisfying the requirements for high-density mounting to some extent.

また、特許文献3(3頁、図1)では、工程数を増やすことなく高密度な層間接続を可能とする、段状のビアホール、いわゆる、ステップビアホールを組み合わせることも提案されている。   Further, Patent Document 3 (page 3, FIG. 1) proposes combining stepped via holes, so-called step via holes, that enable high-density interlayer connection without increasing the number of processes.

これは、多層構造の層間接続を一括で行うことが可能な手法で、レーザ加工用のメタルマスク、いわゆるコンフォーマルマスクの径を、位置ズレ等を考慮して内層に行くに従い小さくしていき、レーザ加工により導通用孔を形成し、めっき等により層間接続を得る。   This is a technique capable of performing interlayer connection of a multilayer structure in a lump, and the diameter of a metal mask for laser processing, so-called conformal mask, is reduced as it goes to the inner layer in consideration of misalignment, etc. Conductive holes are formed by laser processing, and interlayer connection is obtained by plating or the like.

図2は、従来のステップビアホールの形成方法を示す工程図である。すなわち、導通用孔を有する多層回路基材に、図2(1)に示すように、25〜30μm程度の電解めっきを行い、ステップビアホール101、ビアホール102を形成し、層間導通をとって層間導通の完了した多層回路基材100を得る。   FIG. 2 is a process diagram showing a conventional method for forming a step via hole. That is, as shown in FIG. 2 (1), a multi-layer circuit substrate having conduction holes is subjected to electrolytic plating of about 25 to 30 μm to form step via holes 101 and via holes 102, and interlayer conduction is established by interlayer conduction. The completed multilayer circuit board 100 is obtained.

このとき、コンフォーマルマスク111とコンフォーマルマスク112との中心が、最大で約100μm程度の位置ズレが発生するから、導通用孔の下側の孔へのめっき付き周りが不安定になる。   At this time, the center misalignment between the conformal mask 111 and the conformal mask 112 is displaced up to about 100 μm at maximum, so that the area around the bottom of the hole for plating becomes unstable.

この結果、めっきボイド等の不良が発生し易いことや、めっきされて得られたステップビアホールが構造的に非対称となることから、温度サイクル試験等でステップビアホール101(図2(1))に発生する熱応力が局所的に大きくなり、層間接続の信頼性低下の原因ともなる。また、局所的にめっき厚が薄い箇所が発生し易いことから、これについても温度サイクル試験等の層間接続の信頼性低下の原因となる。   As a result, defects such as plating voids are likely to occur, and the step via holes obtained by plating are structurally asymmetric. Therefore, they occur in the step via holes 101 (FIG. 2 (1)) in temperature cycle tests. The thermal stress that is generated locally increases, which causes a decrease in reliability of interlayer connection. In addition, since a portion having a thin plating thickness is likely to occur locally, this also causes a decrease in reliability of interlayer connection such as a temperature cycle test.

次に、図2(2)に示すように、外層のパターン103を通常のフォトファブリケーション手法により形成する。この際、コア基板120のカバーフィルム121上に析出しためっき層があれば、これも除去される。   Next, as shown in FIG. 2B, an outer layer pattern 103 is formed by a normal photofabrication technique. At this time, if there is a plating layer deposited on the cover film 121 of the core substrate 120, this is also removed.

この後、必要に応じて基板表面に半田めっき、ニッケルめっき、金めっき等の表面処理を施し、フォトソルダーレジスト層の形成および外形加工を行うことで、内層にケーブル部104を有する多層プリント配線板100を得る。   Thereafter, the surface of the substrate is subjected to surface treatment such as solder plating, nickel plating, or gold plating as necessary, and a photo solder resist layer is formed and externally processed, so that the multilayer printed wiring board having the cable portion 104 in the inner layer. Get 100.

しかしながら、このステップビアホールを形成するには幾つかの問題がある。上述したように、位置ズレを考慮し、外層側のコンフォーマルマスクを大きく形成する必要があり、積層等の位置精度によっては、必ずしも高密度な層間接続にならないことがある。   However, there are several problems in forming this step via hole. As described above, it is necessary to form a large conformal mask on the outer layer side in consideration of misalignment, and depending on the positional accuracy of stacking and the like, high-density interlayer connection may not always be achieved.

さらに、各層のコンフォーマルマスクの中心が揃わない場合には、外層側のコンフォーマルマスクが庇のようになり、内層側のレーザ加工の不良原因となったり、導通用孔の形成後にめっきを行った際のめっき付き周りが不安定になったりし、めっきボイド等の不良が発生し易いことや、めっきされて得られたステップビアホールが構造的に非対称となる等の問題である。これは、温度サイクル試験等でステップビアホールに発生する熱応力が局所的に大きくなり、層間接続の信頼性低下の原因ともなる。   Furthermore, if the centers of the conformal masks in each layer are not aligned, the conformal mask on the outer layer side will look like a flaw, which may cause defects in laser processing on the inner layer side, or plating after the formation of holes for conduction. In other words, the surroundings with plating become unstable, defects such as plating voids are likely to occur, and step via holes obtained by plating become structurally asymmetric. This is because the thermal stress generated in the step via hole in a temperature cycle test or the like is locally increased, which causes a decrease in reliability of interlayer connection.

このような理由から、結局、ビアホールの信頼性を得るためには、めっき厚を厚くする必要がある。めっき厚を厚くすると、導体層厚が厚くなり、微細回路の形成は困難である。また、ビルドアップ層と内層の両面コア基板とを電気的に接続するビアホールの接続信頼性を確保するためにも、ビルドアップ層のビアホールの壁面のめっき厚を厚くする必要がある。このように、微細回路の形成は困難であり、高密度実装の要求を満足することができない。   For these reasons, it is necessary to increase the plating thickness in order to obtain via hole reliability. When the plating thickness is increased, the conductor layer thickness is increased and it is difficult to form a fine circuit. Further, in order to ensure the connection reliability of the via hole that electrically connects the buildup layer and the double-sided core substrate of the inner layer, it is necessary to increase the plating thickness of the wall surface of the via hole of the buildup layer. As described above, it is difficult to form a fine circuit, and the demand for high-density mounting cannot be satisfied.

そこで、微細回路形成能力の不足を層数の増加で補うべく、さらに2段目のビルドアップを行う手法が提案されている。しかし、この手法を用いて、2段ビルドアップ型多層フレキシブルプリント配線板を作製するには、逐次積層を繰り返すため、層数が増すに連れて工程が煩雑になり、歩留まりが低下する問題がある。
特許第2631287号公報 特開2003-188535号公報 特許第2562373号公報
In view of this, there has been proposed a method of further building up the second stage in order to make up for the shortage of fine circuit formation capability by increasing the number of layers. However, in order to fabricate a two-stage build-up type multilayer flexible printed wiring board using this method, since successive lamination is repeated, there is a problem that the process becomes complicated as the number of layers increases and the yield decreases. .
Japanese Patent No. 2631287 JP 2003-188535 A Japanese Patent No. 2562373

上述したように、ステップビアホールについては、特許文献3(3頁、図1)等に記載されている。   As described above, step via holes are described in Patent Document 3 (page 3, FIG. 1) and the like.

しかしながら、各配線層の位置ずれのないステップビアの具体的方法は提供されておらず、ステップビアホールを用いて多層プリント配線板を製造する上では種々の問題が残っている。これらのことから、高密度実装が可能なケーブル部を有する多層プリント配線板を安価かつ安定的に製造する方法が望まれている。   However, a specific method of step vias without misalignment of each wiring layer is not provided, and various problems remain in manufacturing a multilayer printed wiring board using step via holes. For these reasons, a method for stably and inexpensively manufacturing a multilayer printed wiring board having a cable portion capable of high-density mounting is desired.

本発明は、上述の点を考慮してなされたもので、層間接続部にステップビア構造を含む多層プリント配線板の構造および製造方法につき、ステップビアの上穴と下穴との中心が略等しい位置に配置された多層プリント配線板、およびその多層プリント配線板を安価かつ安定的に製造する方法を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and the center of the upper hole and the lower hole of the step via is substantially equal in the structure and manufacturing method of the multilayer printed wiring board including the step via structure in the interlayer connection portion. It is an object of the present invention to provide a multilayer printed wiring board disposed at a position and a method for stably and inexpensively manufacturing the multilayer printed wiring board.

上記目的達成のため、本願では、次の各発明を提供する。   In order to achieve the above object, the present invention provides the following inventions.

まず本願のプリント配線板の発明では、
内層コア基板に外層ビルドアップ層を積層した構造であり、前記内層コア基板および前記外層ビルドアップ層の層間接続に、外層側ほど導通用孔の径が大きくなる3層以上の配線層の層間接続を行うステップビアホールと、最外層とその1層下の配線層のみの層間接続を行うブラインドビアホールとをそなえたプリント配線板において、
前記ステップビアホールに対する前記内層コア基板の受けランドの導体厚が、前記ブラインドビアホールの受けランドの導体厚よりも薄い
ことを特徴とするプリント配線板、を提供する。
First, in the invention of the printed wiring board of the present application,
It is a structure in which an outer layer buildup layer is laminated on an inner layer core substrate, and the interlayer connection between the inner layer core substrate and the outer layer buildup layer is an interlayer connection of three or more wiring layers in which the diameter of the conduction hole increases toward the outer layer side. In a printed wiring board provided with a step via hole for performing an interlayer connection and a blind via hole for performing interlayer connection only between the outermost layer and the wiring layer one layer below,
The printed wiring board is characterized in that the conductor thickness of the receiving land of the inner core substrate with respect to the step via hole is thinner than the conductor thickness of the receiving land of the blind via hole.

また、本願の製造方法の発明では、
a)樹脂フィルムからなる絶縁ベース材の上に、少なくとも1層の導電層を有する内層コア基板を製造する工程、b)少なくとも一面に導電層を有する銅張積層板からなる外層ビルドアップ層を前記内層コア基板に接着材を介して積層し、積層前または後に前記銅張積層板の導電層の導通用孔の形成部位に穿孔用の銅箔の開口を形成して積層回路基材とする工程、c)前記積層回路基材に対し、外層側ほど径が大きくなるステップビアホール用の導通用孔を形成する工程、d)前記導通用孔に対し導電化処理を行った上で電解めっきによりビアホールを形成する工程、を含み、前記内層コア基板に外層ビルドアップ層を積層した構造であり、前記内層コア基板と前記外層ビルドアップ層との層間接続用に、3層以上の配線層の層間接続を行う前記ステップビアホールを有する多層プリント配線板の製造方法において、
前記工程c)は、
前記穿孔用の銅箔の開口に対し、銅の融点以上まで加熱可能なレーザ光を照射することにより前記外層ビルドアップ層の層間絶縁樹脂および前記接着剤をコンフォーマル加工により穿孔し、
さらに前記レーザ光を照射することにより、前記内層コア基板における前記レーザ光の照射面側の導電層および前記内層コア基板の前記絶縁ベースを穿孔し、
前記穿孔用の銅箔の開口の中心と前記ダイレクト加工により形成された前記内層コア基板の導電層の孔の中心とが略等しい位置にあるステップビアホール用の導通用孔を形成することを特徴とする多層プリント配線板の製造方法、を提供する。
In the invention of the manufacturing method of the present application,
a) a step of producing an inner core substrate having at least one conductive layer on an insulating base material made of a resin film; b) an outer buildup layer made of a copper clad laminate having a conductive layer on at least one surface; Laminating the inner layer core substrate via an adhesive, and forming a copper foil opening for perforation in the conductive hole forming portion of the conductive layer of the copper-clad laminate to form a laminated circuit substrate before or after lamination C) a step of forming a conductive hole for a step via hole whose diameter increases toward the outer layer side with respect to the laminated circuit substrate; d) a via hole formed by electroplating after conducting the conductive treatment on the conductive hole. Forming an outer layer build-up layer on the inner-layer core substrate, and for interlayer connection between the inner-layer core substrate and the outer-layer build-up layer, interlayer connection of three or more wiring layers Do the step The method for manufacturing a multilayer printed wiring board having a via hole,
Said step c)
Perforating the interlayer insulating resin of the outer layer buildup layer and the adhesive by conformal processing by irradiating the opening of the copper foil for punching with a laser beam that can be heated to a melting point of copper or higher.
Further, by irradiating the laser beam, the conductive layer on the laser beam irradiation surface side in the inner layer core substrate and the insulating base of the inner layer core substrate are perforated,
A conduction hole for a step via hole is formed in which the center of the opening of the copper foil for perforation and the center of the hole of the conductive layer of the inner core substrate formed by the direct processing are substantially equal. A multilayer printed wiring board manufacturing method is provided.

これらの特徴により、本発明は次のような効果を奏する。   Due to these features, the present invention has the following effects.

本発明によるケーブル部を有する多層プリント配線板は、3層の配線層を接続するステップビアホールの受けランドの銅厚を、最外層とその1層下の配線層のみの層間接続を行うブラインドビアホールの受けランドの銅厚よりも薄くしたため、ステップビアホールを形成する際に、最外層のみコンフォーマルマスクを形成し、その中心にダイレクトレーザ加工によりステップビアホールの下穴を好適に形成でき、歩留まりの向上や信頼性を確保するのに必要なめっき厚の低減が図れる。   The multilayer printed wiring board having the cable portion according to the present invention has a copper thickness of the receiving land of the step via hole connecting the three wiring layers, and the blind via hole connecting the interlayer between the outermost layer and the wiring layer just below it. Since the thickness of the receiving land is thinner than the copper thickness of the receiving land, a conformal mask can be formed only in the outermost layer when forming a step via hole, and a pilot hole for the step via hole can be suitably formed in the center by direct laser processing, improving yield. The plating thickness required to ensure reliability can be reduced.

また、本発明による多層プリント基板の製造方法によれば、従来の製造方法では困難であった、層間接続部にステップビア構造を含む多層プリント配線板のうち、ステップビアの上穴および下穴の中心が略等しい位置に配置された多層プリント配線板を安価かつ安定的に製造することができる。   In addition, according to the method for manufacturing a multilayer printed board according to the present invention, among the multilayer printed wiring board including the step via structure in the interlayer connection portion, which is difficult in the conventional manufacturing method, the upper and lower holes of the step via are formed. A multilayer printed wiring board whose centers are arranged at substantially equal positions can be manufactured inexpensively and stably.

以下、図1Aないし図1Cを参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1A to 1C.

図1Aないし図1Cは、本発明による層間接続部にステップビア構造を含むケーブル部を有する多層プリント配線板の製造方法の実施形態を示す断面工程図であって、まず、図1A(1)に示すように、ポリイミド等の可撓性絶縁ベース材1(ここでは、厚さ25μmのポリイミド)の両面に厚さ7μmの銅箔2,3を有する、いわゆる両面銅張積層板4を用意し、両面銅張積層板4に導通用孔5をNCドリル等で形成する。このときの銅箔2,3は、屈曲性に優れる圧延銅箔あるいは特殊電解銅箔が好ましい。   1A to 1C are cross-sectional process diagrams illustrating an embodiment of a method of manufacturing a multilayer printed wiring board having a cable portion including a step via structure in an interlayer connection portion according to the present invention. First, FIG. As shown, a so-called double-sided copper-clad laminate 4 having 7 μm thick copper foils 2 and 3 on both sides of a flexible insulating base material 1 such as polyimide (here, 25 μm thick polyimide) is prepared, Conductive holes 5 are formed in the double-sided copper clad laminate 4 with an NC drill or the like. The copper foils 2 and 3 at this time are preferably a rolled copper foil or a special electrolytic copper foil having excellent flexibility.

その後、導電化処理を行い、ケーブル等の配線パターン上にめっきを付けず、内壁に位置する部分に選択的に電解めっきを行うべく、露光の位置ずれ、基板の寸法ばらつき、NCドリル加工の位置ずれ等を考慮した寸法のスルーホールランドも含めて、導通用孔5の内壁およびビルドアップ層との層間接続用孔の受けランドに位置する部分に選択的に電解めっきを行うべく、部分めっき用レジスト層6を形成する。ただし、ビルドアップ後にレーザで貫通させるランドには電解めっきを付けないため、これに相当する箇所にも部分めっき用レジスト層6を形成する。   After that, conducting the conductive treatment, without plating on the wiring pattern such as cables, the position of the exposure, the dimensional variation of the substrate, the position of the NC drill processing, to selectively perform the electroplating on the portion located on the inner wall For partial electroplating to selectively perform electroplating on the inner wall of the hole 5 for conduction and the receiving land of the hole for interlayer connection with the build-up layer, including through-hole lands with dimensions taking account of misalignment, etc. A resist layer 6 is formed. However, since the land that is penetrated by the laser after build-up is not subjected to electrolytic plating, the resist layer 6 for partial plating is also formed at a portion corresponding to this.

次に図1A(2)に示すように、導通用孔5および上記受けランドに位置する部分8に対し、10μm程度の電解めっきを行い、層間導通をとる。ここまでの工程で、スルーホール7を形成する。また、上記受けランドに位置する部分8にもめっきが厚付けされる。   Next, as shown in FIG. 1A (2), the conductive hole 5 and the portion 8 located on the receiving land are subjected to electrolytic plating of about 10 μm to obtain interlayer conduction. Through holes 7 are formed through the steps so far. The plating is also thickened on the portion 8 located on the receiving land.

次いで図1B(3)に示すように、両面の回路パターンをフォトファブリケーション手法により形成するためのレジスト層を形成する。レジスト層を用い、フォトファブリケーション手法により、回路パターン9およびランド10a,10bを形成し、さらにレジスト層を剥離する。ここまでの工程で、多層プリント配線板のコア基板となる両面コア基板11を得る。   Next, as shown in FIG. 1B (3), a resist layer for forming circuit patterns on both sides by a photofabrication technique is formed. Using the resist layer, the circuit pattern 9 and the lands 10a and 10b are formed by a photofabrication technique, and the resist layer is further peeled off. The double-sided core substrate 11 that becomes the core substrate of the multilayer printed wiring board is obtained through the steps so far.

この実施例1ではスルーホール型の両面コア基板を適用したが、ビアホール型の両面コア基板も適用可能である。また、この実施例1では、先に導通用孔内と受けランドに部分めっきを行い、その後、ケーブル等の回路パターンの形成を行ったが、先に導通用孔の穴明け、ケーブル等の回路パターンを形成した後、部分めっきにより、導通用孔および受けランド上にめっきを厚付けすることも可能である。   In the first embodiment, a through-hole type double-sided core substrate is applied, but a via-hole type double-sided core substrate is also applicable. Further, in Example 1, first, partial plating was performed on the inside of the conduction hole and the receiving land, and then a circuit pattern such as a cable was formed. After the pattern is formed, the plating can be thickened on the conduction hole and the receiving land by partial plating.

この後、両面コア基板11の銅表面に粗化処理を行い、後のカバーレイ形成時の密着性を向上させるとともに、ビルドアップ後にレーザ加工する際のレーザ光の吸収を安定的に向上させる。ここでは、日本マクダーミット社(株)のマルチボンド150を用いた。   Thereafter, a roughening process is performed on the copper surface of the double-sided core substrate 11 to improve adhesion at the time of subsequent cover lay formation, and to stably improve the absorption of laser light during laser processing after buildup. Here, Multi Bond 150 manufactured by Nihon McDermitt Co., Ltd. was used.

これにより、密着性を確保するとともに、銅表面の炭酸ガスレーザ光(波長:約9.8μm)の吸収性を向上させることができ、処理前後で吸収率が約20%から約30%に向上することを確認した。   As a result, the adhesion can be secured and the absorption of carbon dioxide laser light (wavelength: about 9.8μm) on the copper surface can be improved, and the absorption rate is improved from about 20% to about 30% before and after treatment. It was confirmed.

続いて図1A(4)に示すように、例えば12μm厚のポリイミドフィルム12上に厚さ20μmのアクリル・エポキシ等の接着材13を有する、いわゆるカバーレイ14を用意し、両面コア基板11の両面にカバーレイ14を、真空プレス、ラミネーター等で貼り付ける。ここまでの工程で、カバーレイ付きの両面コア基板15を得る。   Subsequently, as shown in FIG. 1A (4), for example, a so-called cover lay 14 having an adhesive 13 such as acrylic / epoxy having a thickness of 20 μm is prepared on a 12 μm-thick polyimide film 12. The coverlay 14 is attached to the substrate with a vacuum press, a laminator or the like. Through the steps so far, the double-sided core substrate 15 with a coverlay is obtained.

次いで図1B(5)に示すように、ポリイミド等の可撓性絶縁ベース材16(ここでは、厚さ25μmのポリイミド)の片面に厚さ12μmの銅箔17aを有する、いわゆる片面銅張積層板18aを用意し、さらに片面銅張積層板18aを型抜きし、片面銅張積層板18aの銅箔17aにレーザ加工の際のコンフォーマルマスクをフォトファブリケーション手法により形成するためのレジスト層を形成する。   Next, as shown in FIG. 1B (5), a so-called single-sided copper-clad laminate having a 12 μm-thick copper foil 17a on one side of a flexible insulating base material 16 such as polyimide (here, polyimide having a thickness of 25 μm). 18a is prepared, the single-sided copper-clad laminate 18a is die-cut, and a resist layer is formed on the copper foil 17a of the single-sided copper-clad laminate 18a to form a conformal mask for laser processing by a photofabrication technique. To do.

このレジスト層を用い、フォトファブリケーション手法により、レーザ加工の際のコンフォーマルマスク17b,17cを形成し、さらにレジスト層を剥離する。ここまでの工程で、多層プリント配線板のビルドアップ層18bを得る。ビルドアップ層18bをカバーレイ付きの両面コア基板15にビルドアップするための接着材19を予め型抜きし、位置合わせを行う。   Using this resist layer, conformal masks 17b and 17c for laser processing are formed by a photofabrication technique, and the resist layer is further peeled off. The build-up layer 18b of the multilayer printed wiring board is obtained through the steps so far. The adhesive 19 for building up the buildup layer 18b on the double-sided core substrate 15 with the coverlay is previously punched and aligned.

接着材19としては、ローフロータイプのプリプレグやボンディングシート等の流れ出しの少ないものが好ましい。ここでは、導体層を充填する必要がないため、接着材19の厚さは15μm程度、あるいはさらに薄いものが選択できる。接着材19を介し、ビルドアップ層18bとカバーレイ付きの両面コア基板15とを真空プレス等で積層する。ここまでの工程で、多層回路基材20を得る。   The adhesive 19 is preferably a low-flow type prepreg, a bonding sheet, or the like with little flow-out. Here, since there is no need to fill the conductor layer, the thickness of the adhesive 19 can be selected to be about 15 μm or thinner. The build-up layer 18b and the double-sided core substrate 15 with a coverlay are laminated with an adhesive 19 through a vacuum press or the like. The multilayer circuit substrate 20 is obtained through the steps so far.

この後、図1B(6)に示すように、予め作製したレーザ加工の際のコンフォーマルマスク17b,17cを用い、レーザ加工を行って導通用孔21a,21bを形成する。レーザ加工法については、銅箔の貫通加工が必須であることから、レーザ照射により銅の融点以上まで加熱可能なYAGレーザ、炭酸ガスレーザ等による加工が必要である。   Thereafter, as shown in FIG. 1B (6), using the conformal masks 17b and 17c prepared in advance for laser processing, laser processing is performed to form conduction holes 21a and 21b. As for the laser processing method, since it is essential to penetrate through the copper foil, processing using a YAG laser, a carbon dioxide gas laser, or the like that can be heated to the melting point of copper or higher by laser irradiation is necessary.

この実施例1では、加工速度が速く生産性に優れた炭酸ガスレーザを用いた。ただし、この実施例1の導通用孔21aについては炭酸ガスレーザを用い、所定の箇所のみ銅箔を貫通させて他の箇所は貫通させずに導通用孔を形成する必要があり、以下の条件により加工を行った。   In Example 1, a carbon dioxide laser having a high processing speed and excellent productivity was used. However, for the conduction hole 21a of Example 1, it is necessary to form a conduction hole using a carbon dioxide laser, penetrating the copper foil only at a predetermined portion and not penetrating the other portion, and under the following conditions Processing was performed.

炭酸ガスレーザ加工機としてML605GTXIII-5100U2(三菱電機(株)製)を用い、コンフォーマルマスク17bの中心に画像処理あるいは基板上の複数点のターゲットマークを読み取り、さらに多層回路基材20の寸法伸縮を個別に読み取り、補正を加える等して位置合わせし、レーザ光を照射する。レーザビームは、まずビーム径約300μm、パルス幅10μsec、10mJの3ショットにより加工し、次いで所定のアパーチャー等でビーム径を100μmまで絞り、更にパルス幅15μsec、10mJの3ショットを加える。   Using ML605GTXIII-5100U2 (manufactured by Mitsubishi Electric Corporation) as a carbon dioxide laser processing machine, image processing or reading a plurality of target marks on the substrate at the center of the conformal mask 17b, and further dimensional expansion / contraction of the multilayer circuit substrate 20 Individually read, adjusted, etc., aligned, and irradiated with laser light. The laser beam is first processed by three shots with a beam diameter of about 300 μm, a pulse width of 10 μsec, and 10 mJ, then the beam diameter is reduced to 100 μm with a predetermined aperture, and then three shots with a pulse width of 15 μsec and 10 mJ are added.

これにより、コンフォーマルマスク17b,17cの銅箔は溶融させずに、銅厚が薄く、炭酸ガスレーザ光の吸収の良い表面状態としたランド10aは貫通し、その他のめっきで厚付けしたランド10bは炭酸ガスレーザ光の吸収の良い表面状態であっても貫通せずに、導通用孔21a,21bを形成した。   As a result, the copper foil of the conformal masks 17b and 17c is not melted, the copper thickness is thin, the land 10a having a surface state with good absorption of carbon dioxide laser light penetrates, and the land 10b thickened by other plating is Conductive holes 21a and 21b were formed without penetrating even in a surface state with good absorption of carbon dioxide laser light.

ランド10aの所定の箇所を安定した径で貫通するためには、レーザ光の中心のエネルギー密度が高い、いわゆるガウシアン分布等のビームプロファイルを有するレーザ光学系が必要となる。ランド10aの銅厚みとしては、10μm以下であれば、上述のレーザ加工条件のプラスマイナス30%程度のエネルギー量においても再現よく貫通することも確認している。5μm以下の厚みになると、上述の粗化工程、この後のめっき前処理のエッチング等で残すべきランドの銅が部分的になくなることもあるため、銅厚としては5〜10μmが好ましい。   In order to penetrate a predetermined portion of the land 10a with a stable diameter, a laser optical system having a beam profile such as a so-called Gaussian distribution having a high energy density at the center of the laser beam is required. It has also been confirmed that if the copper thickness of the land 10a is 10 μm or less, it penetrates with good reproducibility even with an energy amount of about plus or minus 30% of the laser processing conditions described above. When the thickness is 5 μm or less, the copper in the land to be left in the above-described roughening step, etching in the subsequent pre-plating process, or the like may be partially lost. Therefore, the copper thickness is preferably 5 to 10 μm.

ランド10bの銅厚みについては、下側の孔21cのレーザ照射面の反対面に位置するランド10bの銅厚みを厚くしておくことで、ランド10bの貫通に対するマージンを得ることができる。具体的には、14μm以上であれば、貫通に必要なレーザのエネルギーが3倍以上になることも確認しており、十分なマージンとなる。   With respect to the copper thickness of the land 10b, a margin for penetration of the land 10b can be obtained by increasing the copper thickness of the land 10b located on the opposite surface of the lower hole 21c to the laser irradiation surface. Specifically, if it is 14 μm or more, it has been confirmed that the laser energy required for penetration is three times or more, which is a sufficient margin.

このため、14μm以上の銅厚であることが好ましい。コンフォーマルマスク17b,17cの径は、それぞれ200μmとし、このとき、導通用孔21aの下側の孔21cは、アパーチャー等で絞ったビーム径にほぼ等しい約100μmの穴径で、ランド10a上のコンフォーマルマスク17bの略中心に安定的に形成された。   For this reason, it is preferable that the copper thickness is 14 μm or more. The diameters of the conformal masks 17b and 17c are 200 μm, respectively. At this time, the hole 21c on the lower side of the conduction hole 21a has a hole diameter of about 100 μm which is substantially equal to the beam diameter narrowed by an aperture or the like, and is on the land 10a. It was stably formed at the approximate center of the conformal mask 17b.

また、図1Bに示すように、導通用孔21a,21cと導通用孔21bとが対向する位置に配置されている場合には、ランド10bを貫通させないことを考慮し、貫通加工を含む、導通用孔21a,21cを先に形成し、その後、導通用孔21bを形成することが好ましい。   In addition, as shown in FIG. 1B, when the conduction holes 21a and 21c and the conduction hole 21b are arranged at positions facing each other, the lead including the penetration process is taken into consideration that the land 10b is not penetrated. It is preferable to form the through holes 21a and 21c first, and then form the through holes 21b.

このため、図1Bにおいては、図中の上側の導通用孔21a,21cを先に加工し、下側の導通用孔21a,21cおよび導通用孔21bを加工する。したがって、この実施例1においては、導通用孔21a,21cと導通用孔21bとが対向する場合、導通用孔21a,21cが全て上側に位置するように設計すると、レーザ加工をまず、上側の全ての導通用孔から行い、次に下側の全ての導通用孔に対し行うことが可能で、効率的である。   Therefore, in FIG. 1B, the upper conduction holes 21a and 21c in the drawing are processed first, and the lower conduction holes 21a and 21c and the conduction holes 21b are processed. Therefore, in the first embodiment, when the conduction holes 21a and 21c and the conduction hole 21b are opposed to each other, if the conduction holes 21a and 21c are all positioned on the upper side, the laser processing is first performed on the upper side. It can be done from all the conduction holes and then to all the lower conduction holes, which is efficient.

さらに、電解めっきにより層間接続をとるためのデスミア処理、導電化処理を行う。ただし、導通用孔21aの下側の孔21c周縁のランド10aの銅箔は溶融しており、後のめっき工程において、めっきボイドを発生させる等の不具合の原因となり得るため、デスミア処理工程中に、過硫酸アンモニウム水溶液等のエッチング液で2μm程度エッチングし、溶融した銅箔を除去した。   Furthermore, a desmear process and a conductive process are performed for interlayer connection by electrolytic plating. However, since the copper foil of the land 10a around the hole 21c on the lower side of the hole 21a for the conduction is melted and may cause problems such as generation of plating voids in the subsequent plating process, Then, the molten copper foil was removed by etching about 2 μm with an etching solution such as an aqueous ammonium persulfate solution.

尚、レーザ加工には、上記のようにコンフォーマルマスクを用いた加工以外にも、予めレーザのビーム径よりも大きく銅マスクを開口しておき、そこへレーザ加工を行うラージウインドウ法も適用可能である。   In addition to the processing using a conformal mask as described above, a large window method in which a copper mask larger than the laser beam diameter is opened in advance and laser processing is applied to the laser processing is also applicable. It is.

次いで図1C(7)に示すように、導通用孔21a,21bを有する多層回路基材22に10〜15μm程度の電解めっきを行い、導通用孔21aより得られるステップビアホール23a、および導通用孔21bより得られるビアホール23bを形成し、層間導通をとる。   Next, as shown in FIG. 1C (7), electrolytic plating of about 10 to 15 μm is performed on the multilayer circuit substrate 22 having the conduction holes 21a and 21b, and the step via hole 23a obtained from the conduction hole 21a and the conduction hole A via hole 23b obtained from 21b is formed to provide interlayer conduction.

ステップビアホール23aの上穴および下穴の中心には位置ズレが発生しないことから、導通用孔の下側の孔へのめっき付き周りが安定である。このため、めっきボイド等の不良が発生し難いことや、めっきされて得られたステップビアホールが構造的に対称となることから、温度サイクル試験等でステップビアホール23aに発生する熱応力が均一に分散し、層間接続信頼性が向上する。これにより、電解めっき厚が10〜15μm程度で良好な層間接続の信頼性を確保できる。   Since there is no misalignment in the center of the upper hole and the lower hole of the step via hole 23a, the surroundings with plating on the lower hole of the conduction hole are stable. For this reason, defects such as plating voids are unlikely to occur, and step via holes obtained by plating are structurally symmetric, so that the thermal stress generated in the step via hole 23a in a temperature cycle test or the like is evenly distributed. In addition, the interlayer connection reliability is improved. Thereby, it is possible to ensure good interlayer connection reliability with an electrolytic plating thickness of about 10 to 15 μm.

ここまでの工程で、層間導通の完了した多層回路基材24を得る。また、挿し部品等の実装用の貫通穴が必要な場合には、導通用孔形成の際にNCドリル等で貫通孔を形成し、上記したビアホールめっきの際にスルーホールを同時に形成することも可能である。   The multilayer circuit base material 24 in which interlayer conduction is completed is obtained through the steps so far. In addition, when a through hole for mounting such as an insertion part is required, a through hole can be formed with an NC drill or the like when forming a conduction hole, and a through hole can be formed simultaneously with the above via hole plating. Is possible.

そして図1C(8)に示すように、外層のパターン25を通常のフォトファブリケーション手法により形成する。この際、コア基板15のカバーフィルム12上に析出しためっき層があれば、これも除去される。この後、必要に応じて基板表面に半田めっき、ニッケルめっき、金めっき等の表面処理を施し、フォトソルダーレジスト層の形成および外形加工を行うことで、内層にケーブル部を有する多層プリント配線板26を得る。   Then, as shown in FIG. 1C (8), the outer layer pattern 25 is formed by a normal photofabrication technique. At this time, if there is a plating layer deposited on the cover film 12 of the core substrate 15, this is also removed. Thereafter, the surface of the substrate is subjected to surface treatment such as solder plating, nickel plating, gold plating, etc., if necessary, and a photo solder resist layer is formed and externally processed so that the multilayer printed wiring board 26 having a cable portion on the inner layer is obtained. Get.

高密度実装基板に要求されるパターン形成能力としては、例えば0.5mmピッチCSPを実装するランドの大きさが300μmとすると、ランド間にパターンを1本通すためには、ライン/スペース=50μm/50μm、いわゆるピッチ100μmを形成する必要がある。   The pattern forming capability required for a high-density mounting board is, for example, if the size of a land on which 0.5 mm pitch CSP is mounted is 300 μm, in order to pass one pattern between lands, line / space = 50 μm / 50 μm It is necessary to form a so-called pitch of 100 μm.

しかしながら、上述のように、10〜15μm程度の電解めっきを7μm厚の銅箔上に行うと、外層の総導体厚は17〜22μmになり、ピッチ100μmの微細パターンを歩留まり良く形成することは十分可能であるため、高密度実装の要求を満足することができる。   However, as described above, when electroplating of about 10 to 15 μm is performed on a 7 μm thick copper foil, the total conductor thickness of the outer layer is 17 to 22 μm, and it is sufficient to form fine patterns with a pitch of 100 μm with good yield Since it is possible, the requirement of high-density mounting can be satisfied.

また、ケーブルが第2層に配置されていることから、最短距離で部品実装部を接続するためには、第1層と第2層とを接続するビアホールが狭ピッチに配置可能で、第2層の配線が微細であることが必要である。ビアホールの配置に関しては、ビアホール23a,23bはビアホール径を200μm以下に形成可能であることから、ピッチ0.4mm以下に配置可能である。   In addition, since the cable is arranged on the second layer, via holes for connecting the first layer and the second layer can be arranged at a narrow pitch in order to connect the component mounting portions at the shortest distance. It is necessary that the wiring of the layer is fine. As for the arrangement of the via holes, the via holes 23a and 23b can be formed with a pitch of 0.4 mm or less because the via hole diameter can be formed to 200 μm or less.

本発明によるケーブル部を有する多層プリント配線板の層間接続構造は、ビアホール径200μm以下のビアホール23aを採用していることから、高密度化に有利な構造となり、高密度実装の要求を満足することができる。層間接続部にステップビア構造を含む多層プリント配線板のうち、ステップビアの上穴と下穴との中心が略等しい位置に配置された多層プリント配線板を安価かつ安定的に製造する方法を提供することができる。   The interlayer connection structure of the multilayer printed wiring board having the cable portion according to the present invention employs the via hole 23a having a via hole diameter of 200 μm or less, so that the structure is advantageous for high density and satisfies the demand for high density mounting. Can do. Provided a method for inexpensively and stably manufacturing a multilayer printed wiring board in which the center of the upper hole and the lower hole of the step via are arranged at substantially the same position among the multilayer printed wiring boards including the step via structure in the interlayer connection portion. can do.

本発明に係る多層プリント配線板の製造方法の概念的断面図。The conceptual sectional drawing of the manufacturing method of the multilayer printed wiring board concerning this invention. 図1Aに続く本発明に係る多層プリント配線板の製造方法の概念的断面図。FIG. 1B is a conceptual cross-sectional view of the method for manufacturing a multilayer printed wiring board according to the present invention following FIG. 1A. 図1Bに続く本発明に係る多層プリント配線板の製造方法の概念的断面図。1B is a conceptual cross-sectional view of a method for manufacturing a multilayer printed wiring board according to the present invention following FIG. 1B. 従来工法によるケーブル部を有する多層プリント配線板の製造方法の概念的断面図。The conceptual sectional drawing of the manufacturing method of the multilayer printed wiring board which has a cable part by a conventional construction method.

符号の説明Explanation of symbols

1 可撓性絶縁ベース材
2,3 銅箔
4 両面銅張積層板
5 導通用孔
6 部分めっき用レジスト層
7 スルーホール
8 受けランドに位置する部分
9 回路パターン
10a,10b ランド
11 両面コア基板
12 ポリイミドフィルム
13 接着材
14 カバーレイ
15 両面コア基板
16 可撓性絶縁ベース材
17a 銅箔
17b,17c コンフォーマルマスク
18a 片面銅張積層板
18b ビルドアップ層
19 接着材
20 多層回路基材
21a,21b 導通用孔
21c 導通用孔21aの下側の孔
22 多層回路基材
23a ステップビアホール
23b ビアホール
24 層間導通の完了した多層回路基材
25 外層回路パターン
26 本発明によるケーブル部を有する多層プリント配線板
161 ポリイミドフィルム
162 接着材
163 カバーレイ
164 カバーレイ付き両面コア基板
165 可撓性絶縁ベース材
166a 銅箔
166b コンフォーマルマスク
167a 片面銅張積層板
167b ビルドアップ層
168 接着材
169a 多層回路基材
169b 導通用孔を有する多層回路基材
170a,170b 導通用孔
171a ステップビアホール
171b ビアホール
172 層間導通の完了した多層回路基材
173 外層回路パターン
174 ケーブル部
175 従来工法によるケーブル部を有する多層プリント配線板
DESCRIPTION OF SYMBOLS 1 Flexible insulating base material 2,3 Copper foil 4 Double-sided copper clad laminated board 5 Conductive hole 6 Partial plating resist layer 7 Through hole 8 The part located in a receiving land 9 Circuit pattern 10a, 10b Land 11 Double-sided core board 12 Polyimide film 13 Adhesive material 14 Coverlay 15 Double-sided core substrate 16 Flexible insulating base material 17a Copper foils 17b and 17c Conformal mask 18a Single-sided copper-clad laminate 18b Build-up layer 19 Adhesive material 20 Multilayer circuit base materials 21a and 21b Through hole 21c Lower hole 22 for conduction hole 21a Multilayer circuit substrate 23a Step via hole 23b Via hole 24 Multilayer circuit substrate 25 with completed interlayer conduction Outer circuit pattern 26 Multilayer printed wiring board 161 having a cable portion according to the present invention Polyimide Film 162 Adhesive 163 Coverlay 164 Both with coverlay Core substrate 165 Flexible insulating base material 166a Copper foil 166b Conformal mask 167a Single-sided copper-clad laminate 167b Build-up layer 168 Adhesive 169a Multilayer circuit substrate 169b Multilayer circuit substrates 170a and 170b having conduction holes 171a Step via hole 171b Via hole 172 Multilayer circuit substrate 173 having completed inter-layer conduction Outer circuit pattern 174 Cable portion 175 Multilayer printed wiring board having cable portion by conventional method

Claims (2)

内層コア基板に外層ビルドアップ層を積層した構造であり、前記内層コア基板および前記外層ビルドアップ層の層間接続に、外層側ほど導通用孔の径が大きくなる3層以上の配線層の層間接続を行うステップビアホールと、最外層とその1層下の配線層のみの層間接続を行うブラインドビアホールとをそなえたプリント配線板において、
前記ステップビアホールに対する前記内層コア基板の受けランドの導体厚が、前記ブラインドビアホールの受けランドの導体厚よりも薄い
ことを特徴とするプリント配線板。
It is a structure in which an outer layer buildup layer is laminated on an inner layer core substrate, and the interlayer connection between the inner layer core substrate and the outer layer buildup layer is an interlayer connection of three or more wiring layers in which the diameter of the conduction hole increases toward the outer layer side. In a printed wiring board provided with a step via hole for performing an interlayer connection and a blind via hole for performing interlayer connection only between the outermost layer and the wiring layer one layer below,
The printed wiring board, wherein the conductor thickness of the receiving land of the inner core substrate with respect to the step via hole is thinner than the conductor thickness of the receiving land of the blind via hole.
a)樹脂フィルムからなる絶縁ベース材の上に、少なくとも1層の導電層を有する内層コア基板を製造する工程、b)少なくとも一面に導電層を有する銅張積層板からなる外層ビルドアップ層を前記内層コア基板に接着材を介して積層し、積層前または後で前記銅張積層板の導電層の導通用孔の形成部位に穿孔用の銅箔の開口を形成して積層回路基材とする工程、c)前記積層回路基材に対し、外層側ほど径が大きくなるステップビアホール用の導通用孔を形成する工程、およびd)前記導通用孔に対し、導電化処理を行い電解めっきによりビアホールを形成する工程、を含み、前記内層コア基板に外層ビルドアップ層を積層した構造であり、前記内層コア基板と前記外層ビルドアップ層との層間接続用に、3層以上の配線層の層間接続を行う前記ステップビアホールを有する多層プリント配線板の製造方法において、
前記工程c)は、
前記穿孔用の銅箔の開口に対し、銅の融点以上まで加熱可能なレーザ光を照射することにより前記外層ビルドアップ層の層間絶縁樹脂および前記接着剤をコンフォーマル加工により穿孔し、
さらに前記レーザ光を照射することにより、前記内層コア基板における前記レーザ光の照射面側の導電層および前記内層コア基板の前記絶縁ベースを穿孔し、
前記穿孔用の銅箔の開口の中心と前記ダイレクト加工により形成された前記内層コア基板の導電層の孔の中心とが略等しい位置にあるステップビアホール用の導通用孔を形成することを特徴とする多層プリント配線板の製造方法。
a) a step of producing an inner core substrate having at least one conductive layer on an insulating base material made of a resin film; b) an outer buildup layer made of a copper clad laminate having a conductive layer on at least one surface; A laminated circuit substrate is formed by laminating an inner layer core substrate with an adhesive, and forming a copper foil opening for perforation at a site where a conductive hole is formed in the conductive layer of the copper clad laminate before or after lamination. Step c) a step of forming a conductive hole for a step via hole whose diameter increases toward the outer layer side with respect to the laminated circuit substrate; and d) a conductive treatment is performed on the conductive hole and the via hole is formed by electrolytic plating. Forming an outer layer build-up layer on the inner-layer core substrate, and for interlayer connection between the inner-layer core substrate and the outer-layer build-up layer, interlayer connection of three or more wiring layers Do the step The method for manufacturing a multilayer printed wiring board having flop via hole,
Said step c)
Perforating the interlayer insulating resin of the outer layer buildup layer and the adhesive by conformal processing by irradiating the opening of the copper foil for punching with a laser beam that can be heated to a melting point of copper or higher.
Further, by irradiating the laser beam, the conductive layer on the laser beam irradiation surface side in the inner layer core substrate and the insulating base of the inner layer core substrate are perforated,
A conduction hole for a step via hole is formed in which the center of the opening of the copper foil for perforation and the center of the hole of the conductive layer of the inner core substrate formed by the direct processing are substantially equal. A method for manufacturing a multilayer printed wiring board.
JP2007077033A 2007-03-23 2007-03-23 Manufacturing method of multilayer printed wiring board Active JP5165265B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007077033A JP5165265B2 (en) 2007-03-23 2007-03-23 Manufacturing method of multilayer printed wiring board
TW97103731A TWI403242B (en) 2007-03-23 2008-01-31 Production method of multilayer printed wiring board
CN2008100872160A CN101272661B (en) 2007-03-23 2008-03-24 Method for manufacturing multi-layer wiring substrate and the multi-layer wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077033A JP5165265B2 (en) 2007-03-23 2007-03-23 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2008235801A true JP2008235801A (en) 2008-10-02
JP5165265B2 JP5165265B2 (en) 2013-03-21

Family

ID=39908207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077033A Active JP5165265B2 (en) 2007-03-23 2007-03-23 Manufacturing method of multilayer printed wiring board

Country Status (3)

Country Link
JP (1) JP5165265B2 (en)
CN (1) CN101272661B (en)
TW (1) TWI403242B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096293A1 (en) * 2010-02-08 2011-08-11 日本メクトロン株式会社 Method of manufacturing multi-layered printed circuit board
CN103391682A (en) * 2012-05-10 2013-11-13 深南电路有限公司 Method for processing PCB with step groove
US20140096382A1 (en) * 2012-10-08 2014-04-10 Subtron Technology Co., Ltd. Manufacturing method of substrate structure
CN104392934A (en) * 2014-10-31 2015-03-04 华进半导体封装先导技术研发中心有限公司 Solder resist manufacturing method of packaging substrate
CN114554681A (en) * 2022-03-28 2022-05-27 黄石永兴隆电子有限公司 Circuit board that contains notch cuttype blind hole
CN114554681B (en) * 2022-03-28 2024-04-12 黄石永兴隆电子有限公司 Circuit board with stepped blind holes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945535B (en) * 2010-08-30 2011-12-28 昆山元茂电子科技有限公司 Printed circuit board(PCB) with thicker inner-layer baseplates
JP2013243227A (en) * 2012-05-18 2013-12-05 Ibiden Co Ltd Wiring board and method of manufacturing the same
CN104955276A (en) * 2014-03-24 2015-09-30 深南电路有限公司 Processing method for step holes of circuit board, and circuit board with step holes
US10499509B1 (en) * 2018-12-31 2019-12-03 General Electric Company Methods and systems for a flexible circuit
CN113709985A (en) * 2021-08-30 2021-11-26 德中(天津)技术发展股份有限公司 Method for manufacturing circuit board by selectively plating via and pad, laser-made resist pattern, and chemically etching conductive pattern
CN113727539A (en) * 2021-08-30 2021-11-30 德中(天津)技术发展股份有限公司 Method for manufacturing circuit board by selective electroplating of holes, laser-made plating-resistant pattern and pattern electroplating etching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562373B2 (en) * 1990-03-31 1996-12-11 日本メクトロン株式会社 Method of forming interlayer conductive structure of multilayer circuit board
JPH11274731A (en) * 1998-03-26 1999-10-08 Fujitsu Ltd Thin-film multilayer circuit substrate and its manufacture
JP2000332421A (en) * 1999-05-18 2000-11-30 Samsung Electro Mech Co Ltd Printed circuit substrate and manufacture thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815765B2 (en) * 1998-01-14 2006-08-30 三井金属鉱業株式会社 Manufacturing method of multilayer printed wiring board
JP2003078247A (en) * 2001-08-30 2003-03-14 Kyocera Corp Wiring substrate and method of manufacturing the same
JP2005166764A (en) * 2003-11-28 2005-06-23 Toshiba Corp Multilayer printed wring board and its manufacturing method
JP2005183798A (en) * 2003-12-22 2005-07-07 Toshiba Corp Multilayer print-circuit board and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562373B2 (en) * 1990-03-31 1996-12-11 日本メクトロン株式会社 Method of forming interlayer conductive structure of multilayer circuit board
JPH11274731A (en) * 1998-03-26 1999-10-08 Fujitsu Ltd Thin-film multilayer circuit substrate and its manufacture
JP2000332421A (en) * 1999-05-18 2000-11-30 Samsung Electro Mech Co Ltd Printed circuit substrate and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096293A1 (en) * 2010-02-08 2011-08-11 日本メクトロン株式会社 Method of manufacturing multi-layered printed circuit board
CN103391682A (en) * 2012-05-10 2013-11-13 深南电路有限公司 Method for processing PCB with step groove
US20140096382A1 (en) * 2012-10-08 2014-04-10 Subtron Technology Co., Ltd. Manufacturing method of substrate structure
US9131635B2 (en) * 2012-10-08 2015-09-08 Subtron Technology Co., Ltd. Manufacturing method of substrate structure
CN104392934A (en) * 2014-10-31 2015-03-04 华进半导体封装先导技术研发中心有限公司 Solder resist manufacturing method of packaging substrate
CN114554681A (en) * 2022-03-28 2022-05-27 黄石永兴隆电子有限公司 Circuit board that contains notch cuttype blind hole
CN114554681B (en) * 2022-03-28 2024-04-12 黄石永兴隆电子有限公司 Circuit board with stepped blind holes

Also Published As

Publication number Publication date
CN101272661B (en) 2011-04-06
JP5165265B2 (en) 2013-03-21
CN101272661A (en) 2008-09-24
TWI403242B (en) 2013-07-21
TW200847883A (en) 2008-12-01

Similar Documents

Publication Publication Date Title
JP5165265B2 (en) Manufacturing method of multilayer printed wiring board
JP4527045B2 (en) Method for manufacturing multilayer wiring board having cable portion
JP5073395B2 (en) Manufacturing method of multilayer printed wiring board
JP5014878B2 (en) Multilayer printed wiring board manufacturing method and wiring board
JP2008016482A (en) Manufacturing method of multilayer printed wiring board
JP2010232249A (en) Multilayer printed wiring board and manufacturing method of the same
JP2009111133A (en) Method of manufacturing multilayer printed wiring board incorporating film resistance element
JP5066427B2 (en) Method for manufacturing printed wiring board
JP5693339B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4857433B2 (en) Metal laminate, metal laminate manufacturing method and printed circuit board manufacturing method
JP5485299B2 (en) Manufacturing method of multilayer printed wiring board
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP4813204B2 (en) Multilayer circuit board manufacturing method
JP2007287721A (en) Multilayer circuit board having cable section, and manufacturing method thereof
JP4319917B2 (en) Manufacturing method of component built-in wiring board
JP4302045B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
JP4397793B2 (en) Circuit board and manufacturing method thereof
JP5000742B2 (en) Method for manufacturing multilayer wiring board having cable portion
JP2005236129A (en) Tape carrier for semiconductor device, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250