WO2011096106A1 - 電気化学的ガス検出装置 - Google Patents

電気化学的ガス検出装置 Download PDF

Info

Publication number
WO2011096106A1
WO2011096106A1 PCT/JP2010/066023 JP2010066023W WO2011096106A1 WO 2011096106 A1 WO2011096106 A1 WO 2011096106A1 JP 2010066023 W JP2010066023 W JP 2010066023W WO 2011096106 A1 WO2011096106 A1 WO 2011096106A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
electrochemical gas
potential
impedance
output
Prior art date
Application number
PCT/JP2010/066023
Other languages
English (en)
French (fr)
Inventor
井上 智弘
裕樹 藤森
由起 加藤
Original Assignee
フィガロ技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィガロ技研株式会社 filed Critical フィガロ技研株式会社
Priority to EP10845238.4A priority Critical patent/EP2533038A4/en
Priority to JP2011552642A priority patent/JP5377670B2/ja
Priority to KR1020127015918A priority patent/KR101302531B1/ko
Priority to US13/521,270 priority patent/US20120290222A1/en
Priority to CN201080061736.XA priority patent/CN102713596B/zh
Publication of WO2011096106A1 publication Critical patent/WO2011096106A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a gas detection device using an electrochemical gas sensor, and more particularly to correction of the relative humidity dependency of the gas sensor.
  • Patent Document 1 JP2008-58213A
  • the conductivity of the proton conductor changes depending on the relative humidity, so that water vapor is supplied from the water reservoir.
  • providing a water reservoir increases the size of the gas sensor.
  • Patent Document 2 JPH05-39509B (USP4718991) discloses correcting humidity dependence by measuring the impedance of a proton conductor gas sensor.
  • the driving circuit of the gas sensor in Patent Document 2 is complicated. Therefore, the inventor studied a practical circuit for correcting the humidity dependence of the proton conductor gas sensor, and reached the present invention.
  • JP2008-58213A JPH05-39509B (USP4718991)
  • An object of the present invention is to correct the humidity dependence and temperature dependence of an electrochemical gas sensor with a simple circuit.
  • the electrochemical gas detection device of the present invention does not include a water reservoir, and corrects the output of the electrochemical gas sensor according to the impedance of the gas sensor, thereby detecting the gas.
  • DC power supply At least a pair of resistors connected to a DC power source;
  • a buffer amplifier that outputs a potential following the potential between the resistors of the at least one pair of resistors;
  • An electrochemical gas sensor comprising a detection electrode, a counter electrode, and a solid electrolyte membrane, wherein one of the detection electrode and the counter electrode is connected to the buffer amplifier;
  • a current amplification circuit for amplifying the current flowing through the electrochemical gas sensor;
  • An impedance measurement circuit for measuring the impedance of the electrochemical gas sensor;
  • a switch for switching the connection destination of the other electrode of the electrochemical gas sensor to a current amplification circuit and an impedance measurement circuit;
  • Storage means for storing data of humidity dependence and temperature dependence of the electrochemical gas sensor;
  • a temperature sensor for measuring the ambient
  • the solid electrolyte membrane is, for example, a proton conductor membrane or a hydroxide ion conductor membrane, and the detection electrode is brought into contact with one surface of the solid electrolyte membrane and the counter electrode is brought into contact with the other surface.
  • the voltage of the DC power supply is divided into, for example, 1: 1 by at least a pair of resistors and connected to one electrode of the gas sensor via the buffer amplifier.
  • the other electrode of the gas sensor is connected to the current amplification circuit and the impedance measurement circuit through a switch.
  • the bias voltage obtained by dividing the DC power supply for example, 1: 1 is applied to the gas sensor, it can be amplified regardless of whether the current flows in the positive or negative direction.
  • the switch is switched to shut off the gas sensor and the current amplification circuit, and AC is applied from the AC power supply.
  • the AC when the output of the AC power supply is switched between the output potential of the DC power supply and the ground potential, the AC can be easily applied to the series piece of the gas sensor and the resistor.
  • Humidity is determined from the impedance of the gas sensor, and the ambient temperature is measured with the temperature sensor. According to the measured impedance value and the ambient temperature, the correction coefficient data is read from the storage means, and the output of the current amplifier circuit is corrected to correct the influence of the ambient humidity and temperature to obtain the gas concentration. it can.
  • the relative humidity dependency and the temperature dependency of the gas sensor can be corrected with a simple circuit without a water reservoir.
  • the configuration of the AC power source is simplified by configuring the AC power source with an output port of the microcomputer.
  • the AC voltage measurement circuit is an AD converter of the microcomputer.
  • the alternating current is preferably a rectangular wave whose potential changes between the output potential of the DC power supply and the ground potential.
  • Block diagram of the gas detector of the embodiment The figure which shows the processing with the microcomputer Diagram showing AC waveform for impedance measurement
  • FIG. 1 shows a circuit example of a detection device.
  • a DC power source Vcc such as 2 V is divided by resistors R1 and R2 to 1: 1, for example, to create a bias potential 1/2 Vcc of 1 V, and an electric current is supplied via a buffer amplifier 4.
  • Vcc such as 2 V
  • R1 and R2 resistors
  • an electric current is supplied via a buffer amplifier 4.
  • it is added to the counter electrode C of the chemical gas sensor 2.
  • the direction of the gas sensor 2 may be reversed from that in FIG. 1 and a bias potential may be applied to the detection electrode W.
  • the other detection electrode W of the gas sensor 2 is connected to the switch 10.
  • a current amplifying circuit 6 amplifies the current flowing through the gas sensor 2 and AD converts the output V 0 by the AD converter 20 of the microcomputer 8.
  • R3 is an impedance measurement resistor such as 1K ⁇ , and the resistance value can be changed in the range of 100 ⁇ to 10K ⁇ .
  • + Vcc and 0 V ground potential
  • the output port 9 is a switch that switches the output between, for example, + Vcc and 0 V in accordance with a control command from a control unit (not shown) in the microcomputer 8.
  • a switch such as a three-state buffer 12 may be provided instead of the output port 9 and controlled by the microcomputer 8 to switch the output potential between Vcc and ground.
  • the AC signal applied to the connection point of the resistor R3 and the switch 10 is AD-converted by the AD converter of the microcomputer 8 and used as a signal V1 representing the relative humidity.
  • Reference numeral 14 denotes a map made of a storage medium such as an EEPROM, and stores data on the relative humidity dependency and the ambient temperature dependency of the gas sensor 2.
  • Reference numeral 16 denotes a temperature sensor such as a thermistor, R4 is a fixed resistor, and a signal V2 at a connection point between the temperature sensor 16 and the resistor R4 is AD converted by the microcomputer 8 to obtain an ambient temperature.
  • the gas sensor 2 has a detection electrode and a counter electrode connected to a solid electrolyte membrane such as a proton conductor film, and the electrodes are two electrodes, a detection electrode and a counter electrode.
  • the proton conductor membrane is, for example, a polymer solid electrolyte membrane, which is proton conductive, but may be a metal oxide proton conductive solid electrolyte membrane.
  • the midpoint potential of the resistors R1 and R2 is not limited to 50% of the DC power supply Vcc, and may be changed, for example, in the range of about 48 to 52%.
  • the DC power supply Vcc is not limited to 2V, and may be a voltage of about 1V to 3V, for example.
  • the resistor R3 is not limited to a single resistor, and may be composed of a plurality of resistors.
  • the switch 10 is controlled by the control unit in the microcomputer 8, and when the three-state buffer 12 is provided, similarly, the control unit of the microcomputer 8 Control by.
  • Fig. 2 shows the processing of input signals V0 to V2.
  • the AD converter 20 in the microcomputer 8 AD converts these signals, and the signal V0 is proportional to the gas concentration. Since the gas sensor 2 has a relative humidity dependency and an ambient temperature dependency, the relative humidity dependency is corrected by the signal V1, and the ambient temperature dependency is corrected by the signal V2.
  • the map 14 describes the dependence of the gas sensor 2 on the ambient temperature and relative humidity.
  • the correction coefficient is read by referring to this data as signals V1 and V2, stored in a RAM (not shown) in the microcomputer 8, and stored in the microcomputer. 8 calculates the gas concentration by multiplying the signal V0 by the correction coefficient.
  • the detection accuracy of the gas concentration is determined according to the application, for example, high accuracy is used for measurement, and the gas concentration may be classified into a plurality of ranks for air conditioning control.
  • the microcomputer 8 includes a timer (not shown) and switches the connection of the switch 10 to the resistor R3 side at an appropriate cycle such as once per hour to once every 6 hours.
  • the potential applied to the resistor R3 is between + Vcc and ground (2V and 0V), for example, at a frequency of about 10 Hz to 1 KHz, for example, over several cycles. Change. For this reason, while the connection of the switch 10 is switched to the resistor R3 side, the control unit in the microcomputer 8 changes the output of the output port 9 between 0V and + Vcc.
  • the counter electrode of the gas sensor 2 Since the counter electrode of the gas sensor 2 is fixed at a bias potential such as 1/2 Vcc, an alternating current consisting of a rectangular wave with an amplitude Vcc is applied to the series piece of the gas sensor 2 and the resistor R3 for several cycles.
  • the voltage applied to the gas sensor 2 is limited by the resistor R3, and the AC signal V1 applied to the connection portion of the resistor R3 and the switch 10 is AD-converted by the AD converter 20, and the gas sensor 2 is determined from the amplitude, peak value, effective value, etc. of the AC signal V1. Measure the impedance.
  • This impedance is mainly due to the resistance of the gas sensor 2, in particular, the resistance of the solid electrolyte membrane, the detection electrode and the counter electrode, and the contribution of the capacitance component is small.
  • the measurement accuracy may be such that the impedance can be divided into several ranks. However, the impedance may be measured more accurately and more accurate humidity correction may be performed.
  • the alternating current is added, for example, for about 1 to 10,000 cycles, and the time for applying the alternating current is, for example, 1 msec to 10 seconds.
  • the voltage waveform for AD conversion is not limited to the potential between the resistor R3 and the switch 10, but may be a potential waveform between the gas sensor 2 and the switch 10 or a voltage waveform obtained by dividing the voltage applied to the resistor R3.
  • an arbitrary AC voltage measurement circuit that measures the resistance of the gas sensor 2 by adding the amplitude + Vcc to the series circuit of the resistor R3 and the gas sensor 2 can be used.
  • an alternating current consisting of a sine wave may be added instead of the rectangular wave.
  • a DA converter is used instead of the output port 9.
  • the map 14 may be stored in a ROM or the like inside the microcomputer 8 or in a memory outside the microcomputer 8.
  • the map 14 is composed of, for example, a two-dimensional table. One dimension is a signal V1 for washing the impedance of the gas sensor 2, and the other dimension is a signal V2 for washing the ambient temperature.
  • the correction coefficient can be read from the signals V1 and V2. Like that.
  • the following effects can be obtained.
  • a water reservoir for supplying water vapor to the electrochemical gas sensor is not required.
  • Impedance can be measured simply by adding the switch 10 and the resistor R3 to the circuit for driving the gas sensor 2.
  • the AC power source is configured by the output port of the microcomputer 8, the AC power source can be configured particularly easily.
  • both the temperature dependency data and the relative humidity dependency data of the gas sensor 2 are stored in the map 14 and the thermistor 16 is provided, both the humidity dependency and the temperature dependency can be corrected.
  • Electrochemical gas sensor 4
  • Buffer amplifier 6
  • Current amplification circuit 8
  • Microcomputer 9
  • Output port 10
  • Switch 12
  • Three-state buffer 14
  • Map Thermistor
  • AD converter 22

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 直流電源の出力を一対の抵抗で分圧し、バッファ増幅器を介して、検知極と対極と固体電解質膜とを備えた電気化学的ガスセンサにいずれかの電極に加える。スイッチで、電気化学的ガスセンサの他極の接続先を、電流増幅回路とインピーダンス測定回路とに切り替え、ガスセンサのインピーダンスを測定する。インピーダンス測定回路は、スイッチに一端側が接続された抵抗と抵抗の他端側の電位を、直流電源の出力電位とグラウンド電位との間で切り替える交流電源とからなる。電気化学的ガスセンサの湿度依存性と温度依存性とを記憶し、測定したインピーダンスと周囲温度とから、電流増幅回路の出力を補正して、ガス濃度を求める。

Description

電気化学的ガス検出装置
 この発明は電気化学ガスセンサを用いたガス検出装置に関し、特にガスセンサの相対湿度依存性の補正に関する。
 発明者らは、プロトン導電体膜に検知極と対極とを接続した電気化学的ガスセンサを開発した(例えば特許文献1:JP2008-58213A)。これらのガスセンサでは、プロトン導電体の導電性が相対湿度により変化するので、水溜から水蒸気を供給する。しかし水溜を設けると、ガスセンサが大形化する。
 特許文献2:JPH05-39509B(USP4718991)は、プロトン導電体ガスセンサのインピーダンスを測定することにより、湿度依存性を補正することを開示している。しかしながら特許文献2でのガスセンサの駆動回路は複雑である。そこで発明者は、プロトン導電体ガスセンサの湿度依存性を補正するための実用的な回路を検討し、この発明に到った。
JP2008-58213A JPH05-39509B(USP4718991)
 この発明の課題は、簡単な回路で電気化学的ガスセンサの湿度依存性と温度依存性とを補正することにある。
 この発明の電気化学的ガス検出装置は、水溜を備えず、電気化学的ガスセンサの出力を前記ガスセンサのインピーダンスに応じて補正することにより、ガスを検出するガス検出装置において、
 直流電源と、
 直流電源に接続された少なくとも一対の抵抗と、
 前記少なくとも一対の抵抗での抵抗間の電位に追随した電位を出力するバッファ増幅器と、
 検知極と対極と固体電解質膜とを備え、前記バッファ増幅器に検知極と対極の一方が接続された電気化学的ガスセンサと、
 電気化学的ガスセンサを流れる電流を増幅する電流増幅回路と、
 電気化学的ガスセンサのインピーダンスを測定するインピーダンス測定回路と、
 電気化学的ガスセンサの他極の接続先を、電流増幅回路とインピーダンス測定回路とに切り替えるスイッチと、
 電気化学的ガスセンサの湿度依存性と温度依存性とのデータを記憶する記憶手段と、
 周囲温度の測定用の温度センサと、
 前記インピーダンス測定回路の出力信号と前記温度センサの出力信号とに応じて前記記憶手段のデータを読み出して、該データにより前記電流増幅回路の出力信号を補正することによりガス濃度を求めると共に、前記スイッチを制御するマイクロコンピュータ、とを備え、
 前記インピーダンス測定回路は、前記スイッチに一端側が接続された抵抗と前記抵抗の他端側の電位を前記直流電源の出力電位とグラウンド電位との間で切り替える交流電源と、電気化学的ガスセンサに加わる交流電圧を測定する交流電圧測定回路とからなる、ことを特徴とする。
 固体電解質膜は例えばプロトン導電体膜、水酸イオン導電体膜等とし、固体電解質膜の一面に検知極を他面に対極を接触させる。
 この発明では、少なくとも一対の抵抗により、直流電源の電圧を例えば1:1に分圧し、バッファ増幅器を介してガスセンサの一方の電極に接続する。ガスセンサの他方の電極をスイッチを介して、電流増幅回路とインピーダンス測定回路とに接続する。そして検出対象のガスが検知極で反応し、ガスセンサに電流が流れると、電流増幅回路で増幅する。ここでガスセンサには直流電源を例えば1:1に分圧したバイアス電圧が加わっているので、電流が正負いずれの向きに流れても増幅できる。インピーダンスを測定する際には、スイッチを切り替えて、ガスセンサと電流増幅回路を遮断し、交流電源から交流を加える。ここで交流電源の出力を直流電源の出力電位とグラウンド電位との間で切り替えると、簡単に交流をガスセンサと抵抗との直列片に加えることができる。ガスセンサのインピーダンスから湿度が判明し、温度センサで周囲温度を測定する。インピーダンスの測定値と周囲の温度とに応じて、記憶手段から補正係数のデータを読み出し、電流増幅回路の出力を補正すると、周囲の湿度と温度の影響を補正して、ガス濃度を求めることができる。この発明では、水溜無しで、ガスセンサの相対湿度依存性と、温度依存性とを、簡単な回路で補正できる。
 好ましくは交流電源をマイクロコンピュータの出力ポートで構成することにより、交流電源の構成を簡単にする。好ましくは、前記交流電圧測定回路は前記マイクロコンピュータのADコンバータである。交流は好ましくは、直流電源の出力電位とグラウンド電位との間で電位が変化する矩形波である。 
 
実施例のガス検出装置のブロック図 マイクロコンピュータでの処理を示す図 インピーダンス測定用の交流波形を示す図 実施例でのマップの構成を示す図
 以下に本発明を実施するための最適実施例を示す。
 図1~図4に、実施例の電気化学的ガス検出装置を示す。図1に検出装置の回路例を示すと、2Vなどの直流電源Vccを抵抗R1,R2で例えば1:1に分圧して1Vのバイアス電位1/2Vccを作り、バッファ増幅器4を介して、電気化学ガスセンサ2の例えば対極Cに加える。なおガスセンサ2の向きを図1とは逆にし、検知極Wにバイアス電位を加えても良い。ガスセンサ2の他極の検知極Wをスイッチ10に接続する。6は電流増幅回路で、ガスセンサ2を流れる電流を電流増幅し、その出力V0をマイクロコンピュータ8のADコンバータ20でAD変換する。R3は1KΩなどのインピーダンス測定用抵抗で、抵抗値は100Ω~10KΩなどの範囲で変更できる。抵抗R3には、例えばマイクロコンピュータ8の出力ポート9から,+Vccと0V(グラウンド電位)とを交互に加え、マイクロコンピュータ8を交流電源とする。出力ポート9は、マイクロコンピュータ8内の図示しない制御部からの制御指令により、出力を例えば+Vccと0Vとに切り替えるスイッチである。なお図1に鎖線で示すように、出力ポート9に代えてスリーステートバッファ12等のスイッチを設けて、マイクロコンピュータ8により制御し、出力電位をVccとグラウンドとの間で切り替えても良い。
 抵抗R3とスイッチ10の接続点に加わる交流信号を、マイクロコンピュータ8のADコンバータでAD変換し、相対湿度を表す信号V1として用いる。14はマップでEEPROM等の記憶媒体からなり、ガスセンサ2の相対湿度依存性と周囲温度依存性とのデータを記憶する。16はサーミスタなどの温度センサ、R4は固定抵抗で、温度センサ16と抵抗R4の接続点の信号V2をマイクロコンピュータ8でAD変換し、周囲温度を求める。
 ガスセンサ2は、プロトン導電体膜等の固体電解質膜に検知極と対極とを接続したもので、電極は検知極と対極の2電極である。プロトン導電体膜は例えば高分子の固体電解質膜で、プロトン導電性であるが、金属酸化物のプロトン導電性固体電解質膜でも良い。ガスセンサ2では、相対湿度が低下すると、固体電解質膜の導電性が低下し、ガスの検出電流が小さくなる。この発明では、ガスセンサ2の相対湿度依存性をインピーダンスにより補正するので、水溜は不要である。
 なお抵抗R1,R2の中点電位は、直流電源Vccの50%に限らず、例えば48~52%程度の範囲で変化させても良い。また直流電源Vccは2Vに限らず、例えば1V~3V程度の電圧としても良い。抵抗R3は1個の抵抗に限らず複数の抵抗で構成しても良く、スイッチ10はマイクロコンピュータ8内の制御部により制御し、スリーステートバッファ12を設ける場合、同様にマイクロコンピュータ8の制御部により制御する。
 図2に入力信号V0~V2への処理を示す。マイクロコンピュータ8内のADコンバータ20はこれらの信号をAD変換し、信号V0はガス濃度に比例する。ガスセンサ2には相対湿度依存性と周囲温度依存性とがあるので、信号V1により相対湿度依存性を補正し、信号V2により周囲温度依存性を補正する。マップ14にはガスセンサ2の周囲温度と相対湿度への依存性が記載され、このデータを信号V1,V2で参照して補正係数を読み出し、マイクロコンピュータ8内の図示しないRAMで記憶し、マイクロコンピュータ8内のガス濃度算出部22で信号V0に補正係数を乗算し、ガス濃度を求める。ガス濃度の検出精度は用途に応じて定め、例えば計測用では高精度とし、空調の制御用などではガス濃度を複数のランクに分類すれば良い。
 スイッチ10が電流増幅回路6側へ接続されている場合、ガスセンサ2の一方の電極にバイアス電位1/2Vccが加わり、ガスセンサ2を流れる電流を電流増幅回路6で増幅する。この場合、ガスセンサ2内をどちら側に電流が流れても、電流増幅回路6で増幅できる。湿度依存性を補正するために、マイクロコンピュータ8は図示しないタイマを備え、1時間に1回~6時間に1回等の適宜の周期でスイッチ10の接続を抵抗R3側に切り替える。スイッチ10の接続を抵抗R3側に切り替えると、図3のように抵抗R3へ加える電位を+Vccとグラウンド(2Vと0V)の間で、例えば10Hz~1KHz程度の周波数で例えば数周期程度に渡って変化させる。このため、スイッチ10の接続を抵抗R3側に切り替えている間、マイクロコンピュータ8内の制御部は出力ポート9の出力を0Vと+Vccとの間で変化させる。
 ガスセンサ2の対極は1/2Vccなどのバイアス電位に固定されているので、振幅Vccの矩形波からなる交流がガスセンサ2と抵抗R3との直列片に数周期程度加わる。抵抗R3によりガスセンサ2に加わる電圧を制限すると共に、抵抗R3とスイッチ10の接続部に加わる交流信号V1をADコンバータ20でAD変換し、交流信号V1の振幅、ピーク値、実効値等からガスセンサ2のインピーダンスを測定する。このインピーダンスは主としてガスセンサ2の抵抗、特に固体電解質膜と検知極及び対極の抵抗、によるもので、容量成分などの寄与は小さい。また測定精度はインピーダンスを数種類のランクに分けることができる程度で良い。しかしインピーダンスをより正確に測定し、より正確な湿度補正を行うようにしても良い。交流は例えば1周期~10,000周期程度加えとし、交流を加える時間は例えば1msec~10secとする。AD変換する電圧波形は、抵抗R3とスイッチ10の間の電位に限らず、ガスセンサ2とスイッチ10の間の電位、抵抗R3に加わる電圧を分割した電圧波形などでも良い。即ち、抵抗R3とガスセンサ2との直列回路に振幅+Vccを加えて、ガスセンサ2の抵抗を測定する、任意の交流電圧測定回路を用いることができる。なお矩形波に代えて正弦波からなる交流を加えても良く、その場合は出力ポート9に代えてDAコンバータを用いる。 
 図4にマップ14の構成を示し、マップ14はマイクロコンピュータ8の内部のROM等に記憶しても、マイクロコンピュータ8の外部のメモリに記憶しても良い。そしてマップ14は例えば2次元のテーブルから成り、一方の次元はガスセンサ2のインピーダンスを洗わす信号V1で、他方の次元は周囲温度を洗わす信号V2で、信号V1,V2から補正係数を読み出せるようにする。
 実施例では以下の効果が得られる。
(1) 電気化学的ガスセンサに水蒸気を供給するための水溜が不要になる。
(2) ガスセンサ2を駆動するための回路に、スイッチ10と抵抗R3等を追加するだけで、インピーダンスを測定できる。
(3) 交流電源をマイクロコンピュータ8の出力ポートで構成すると、特に簡単に交流電源を構成できる。
(4) マップ14にガスセンサ2の温度依存性と相対湿度依存性の双方のデータを記憶させ、サーミスタ16を設けると、湿度依存性と温度依存性の双方を補正できる。
 
2     電気化学的ガスセンサ
4     バッファ増幅器
6     電流増幅回路
8     マイクロコンピュータ
9     出力ポート
10    スイッチ
12    スリーステートバッファ
14    マップ
16    サーミスタ
20    ADコンバータ
22    ガス濃度算出部
R1~R4   抵抗

Claims (4)

  1.  水溜を備えず、電気化学的ガスセンサの出力を前記ガスセンサのインピーダンスに応じて補正することにより、ガスを検出するガス検出装置において、
     直流電源と、
     直流電源に接続された少なくとも一対の抵抗と、
     前記少なくとも一対の抵抗での抵抗間の電位に追随した電位を出力するバッファ増幅器と、
     検知極と対極と固体電解質膜とを備え、前記バッファ増幅器に検知極と対極の一方が接続された電気化学的ガスセンサと、
     電気化学的ガスセンサを流れる電流を増幅する電流増幅回路と、
     電気化学的ガスセンサのインピーダンスを測定するインピーダンス測定回路と、
     電気化学的ガスセンサの他極の接続先を、電流増幅回路とインピーダンス測定回路とに切り替えるスイッチと、
     電気化学的ガスセンサの湿度依存性と温度依存性とのデータを記憶する記憶手段と、
     周囲温度の測定用の温度センサと、
     前記インピーダンス測定回路の出力信号と前記温度センサの出力信号とに応じて前記記憶手段のデータを読み出して、該データにより前記電流増幅回路の出力信号を補正することによりガス濃度を求めると共に、前記スイッチを制御するマイクロコンピュータ、とを備え、
     前記インピーダンス測定回路は、前記スイッチに一端側が接続された抵抗と前記抵抗の他端側の電位を、前記直流電源の出力電位とグラウンド電位との間で切り替える交流電源と、電気化学的ガスセンサに加わる交流電圧を測定する交流電圧測定回路とからなる、ことを特徴とする、電気化学的ガス検出装置。
  2.  前記交流電源が前記マイクロコンピュータの出力ポートからなることを特徴とする、請求項1の電気化学的ガス検出装置。
  3.  前記交流電圧測定回路が前記マイクロコンピュータのADコンバータであることを特徴とする、請求項2の電気化学的ガス検出装置。
  4.  前記交流電源の出力は矩形波であることを特徴とする、請求項3の電気化学的ガス検出装置。
PCT/JP2010/066023 2010-02-04 2010-09-16 電気化学的ガス検出装置 WO2011096106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10845238.4A EP2533038A4 (en) 2010-02-04 2010-09-16 ELECTROCHEMICAL GAS DETECTION DEVICE
JP2011552642A JP5377670B2 (ja) 2010-02-04 2010-09-16 電気化学的ガス検出装置
KR1020127015918A KR101302531B1 (ko) 2010-02-04 2010-09-16 전기화학적 가스검출장치
US13/521,270 US20120290222A1 (en) 2010-02-04 2010-09-16 Electrochemical gas detection device
CN201080061736.XA CN102713596B (zh) 2010-02-04 2010-09-16 电化学气体检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-022896 2010-02-04
JP2010022896 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096106A1 true WO2011096106A1 (ja) 2011-08-11

Family

ID=44355128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066023 WO2011096106A1 (ja) 2010-02-04 2010-09-16 電気化学的ガス検出装置

Country Status (6)

Country Link
US (1) US20120290222A1 (ja)
EP (1) EP2533038A4 (ja)
JP (1) JP5377670B2 (ja)
KR (1) KR101302531B1 (ja)
CN (1) CN102713596B (ja)
WO (1) WO2011096106A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711700A1 (en) 2012-09-25 2014-03-26 Figaro Engineering Inc. Electrochemical gas sensor and mounting structure therefor
JP2014130017A (ja) * 2012-12-28 2014-07-10 Figaro Eng Inc ガス検出装置
US20150369774A1 (en) * 2011-09-08 2015-12-24 Brk Brands, Inc. Carbon Monoxide Sensor System and Method
JP2019120655A (ja) * 2018-01-11 2019-07-22 フィガロ技研株式会社 Co検出装置の温度補正係数の設定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253148B1 (ko) 2014-04-28 2021-05-18 삼성전자주식회사 냄새를 측정하는 후각 감지 장치 및 방법
CN105466977B (zh) * 2015-11-19 2017-12-12 河南驰诚电气股份有限公司 适用于多种气体传感器的信号处理模块
JP2019078676A (ja) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 内燃機関のSOx指標取得装置
CN114152654B (zh) * 2021-11-18 2024-03-26 国网山东省电力公司电力科学研究院 一种大气可溶盐沉积量监测装置及测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172256A (ja) * 1986-01-27 1987-07-29 Figaro Eng Inc プロトン導電体ガス検出装置
US4718991A (en) 1986-01-27 1988-01-12 Figaro Engineering Inc. Proton conductor gas sensor and method of detecting gas using proton conductor gas sensor
JPH03277961A (ja) * 1990-03-27 1991-12-09 Matsushita Electric Works Ltd 電気化学式ガスセンサ
JPH1123527A (ja) * 1997-07-02 1999-01-29 Figaro Eng Inc 二酸化炭素検出装置
JP2008058213A (ja) 2006-09-01 2008-03-13 Figaro Eng Inc 液体電気化学ガスセンサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042464A (en) * 1975-10-10 1977-08-16 Energetics Science, Inc. Method for the detection and measurement of noxious gases
US6241873B1 (en) * 1997-02-20 2001-06-05 Tdk Corporation Sold electrolytes, carbon dioxide sensors and method for correcting the output of sensors
JP2001153837A (ja) * 1999-11-24 2001-06-08 Ngk Spark Plug Co Ltd ガス濃度検出器及びガス濃度測定方法
CN1453578A (zh) * 2002-04-23 2003-11-05 马立文 气敏传感器温度补偿电路
CN1734262B (zh) * 2004-08-13 2010-09-01 杭州生源医疗保健技术开发有限公司 固体聚合物电解质电化学传感器及用其检测气体的方法
JP2006343306A (ja) * 2004-11-15 2006-12-21 Denso Corp ガス濃度検出装置
JP4927639B2 (ja) * 2007-05-07 2012-05-09 ホーチキ株式会社 ガス警報器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172256A (ja) * 1986-01-27 1987-07-29 Figaro Eng Inc プロトン導電体ガス検出装置
US4718991A (en) 1986-01-27 1988-01-12 Figaro Engineering Inc. Proton conductor gas sensor and method of detecting gas using proton conductor gas sensor
JPH03277961A (ja) * 1990-03-27 1991-12-09 Matsushita Electric Works Ltd 電気化学式ガスセンサ
JPH1123527A (ja) * 1997-07-02 1999-01-29 Figaro Eng Inc 二酸化炭素検出装置
JP2008058213A (ja) 2006-09-01 2008-03-13 Figaro Eng Inc 液体電気化学ガスセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2533038A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150369774A1 (en) * 2011-09-08 2015-12-24 Brk Brands, Inc. Carbon Monoxide Sensor System and Method
EP2711700A1 (en) 2012-09-25 2014-03-26 Figaro Engineering Inc. Electrochemical gas sensor and mounting structure therefor
US8815065B2 (en) 2012-09-25 2014-08-26 Figaro Engineering Inc. Electrochemical gas sensor and mounting structure therefor
JP2014130017A (ja) * 2012-12-28 2014-07-10 Figaro Eng Inc ガス検出装置
JP2019120655A (ja) * 2018-01-11 2019-07-22 フィガロ技研株式会社 Co検出装置の温度補正係数の設定方法

Also Published As

Publication number Publication date
CN102713596A (zh) 2012-10-03
KR20120093391A (ko) 2012-08-22
CN102713596B (zh) 2014-07-02
JPWO2011096106A1 (ja) 2013-06-10
EP2533038A1 (en) 2012-12-12
US20120290222A1 (en) 2012-11-15
EP2533038A4 (en) 2014-12-10
KR101302531B1 (ko) 2013-09-02
JP5377670B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5377670B2 (ja) 電気化学的ガス検出装置
JP6112062B2 (ja) 空燃比センサ制御装置
RU2011141088A (ru) Устройство управления для вращающейся машины переменного тока
US9244032B2 (en) Gas detecting apparatus and gas detecting method
JP6382561B2 (ja) 電気化学計測装置
JP2011097434A5 (ja)
CN101738588A (zh) 传感器电路
CN106840441B (zh) 多路温度检测装置及方法
CN105455809B (zh) 半导体装置以及包括半导体装置的ac电阻测量系统
GB201211855D0 (en) Phosphate detection
JP2010078392A (ja) イオン濃度測定回路及びイオン電流センサ
JP2009139213A (ja) 磁気センサ装置及びその制御方法
JP2007132777A (ja) インピーダンス測定装置
JP6054100B2 (ja) 電力測定装置および電力測定方法
JP2020186934A (ja) 容量式電磁流量計および計測制御方法
JP2009229254A (ja) 電気化学式ガス検知装置
JP2000271101A (ja) 生体インピ−ダンス測定装置
KR100539567B1 (ko) 식품의 부패 확인 장치
US20240097632A1 (en) Integrated circuit and semiconductor device
KR200443022Y1 (ko) 전해질형 가스센서의 기전력 증폭회로 및 이를 이용한가스농도 측정 모듈
KR20230088105A (ko) 수질 감지 장치
JP2019056673A (ja) センサ制御装置
JP3106660B2 (ja) 湿度検出装置
RU12253U1 (ru) Кондуктометр для определения удельной электропроводности водных растворов
JP5897371B2 (ja) 電気化学ガスセンサの感度調整方法、及びガス検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061736.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552642

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127015918

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13521270

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010845238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010845238

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE