CN1453578A - 气敏传感器温度补偿电路 - Google Patents

气敏传感器温度补偿电路 Download PDF

Info

Publication number
CN1453578A
CN1453578A CN 02117270 CN02117270A CN1453578A CN 1453578 A CN1453578 A CN 1453578A CN 02117270 CN02117270 CN 02117270 CN 02117270 A CN02117270 A CN 02117270A CN 1453578 A CN1453578 A CN 1453578A
Authority
CN
China
Prior art keywords
temperature
divider resistance
voltage
sensor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 02117270
Other languages
English (en)
Inventor
马立文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN 02117270 priority Critical patent/CN1453578A/zh
Publication of CN1453578A publication Critical patent/CN1453578A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种气敏传感器温度补偿电路,其特征在于:第一分压电阻(R1)与第二分压电阻(R2)串联,热敏电阻(Rc)与第一电阻(R1)并联;第二分压电阻(R2)接恒压,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体电压作气敏传感器的加热电压,或第一分压电阻(R1)与第二分压电阻(R2)串联的整体接恒压,第一分压电阻(R1)的电压作气敏传感器的加热电压。它能够提高气敏传感器的温度稳定性、气体选择性,拓宽使用温度范围。

Description

气敏传感器温度补偿电路
技术领域
本发明属于气体检测应用领域,主要是一种气敏传感器(GASSENSOR)温度补偿电路。
现有技术
在气体检测时一般要用到气敏传感器(GAS SENSOR)。气敏传感器(GAS SENSOR)在特定的温度下对特定的气体进行响应,将气体浓度转化为电信号。半导体气敏传感器的特性受温度的影响较大,其灵敏度、选择性都随环境温度的变化而有较大的变化。在气体检测中,必须使用温度补偿电路,对气敏传感器(GAS SENSOR)的温度特性进行补偿,才能够保证在一定的温度范围内,有稳定的输出。现有的气敏传感器(GASSENSOR)温度补偿技术,一种是采用对传感器的敏感体电阻进行补偿,基本原理如图1所示,图1中的Rc是热敏电阻,对敏感体电阻R2进行补偿,OP1代表运算放大器。另一种是采用对传感器外围的比较电压进行温度补偿,基本原理如图2所示。
对于特定的气体,半导体传感器与其发生响应时,要求具有特定的温度,所以,传感器工作于合适的温度区间内,是能够有效鉴别气体的一个重要条件。现有的这类温度补偿方式,虽然可以对温度引起的灵敏度变化起到一定补偿作用,但由于传感器的敏感体随环境温度变化,会超出对于特定气体的感应温度范围,从而破坏了传感器对气体的选择性,导致气敏传感器(GAS SENSOR)使用温度范围较窄。
发明内容
本发明的目的是提供一种气敏传感器温度补偿电路,它能够提高气敏传感器的温度稳定性、气体选择性,拓宽使用温度范围。
为实现上述目的,本发明的解决方案是:一种气敏传感器温度补偿电路,第一分压电阻与第二分压电阻串联,热敏电阻与第一电阻并联;第二分压电阻接恒压,以第一分压电阻与第二分压电阻串联的整体电压作气敏传感器的加热电压,或第一分压电阻与第二分压电阻串联的整体接恒压,第一分压电阻的电压作气敏传感器的加热电压。
由于本发明是通过上述补偿电路,对传感器的加热电压进行温度补偿,就使得传感器敏感体的工作温度始终保持恒温状态,不随环境温度变化,从而可以拓宽传感器使用的温度范围,保证其灵敏度、选择性等特性的温度稳定性。
附图说明
图1是现有技术中对传感器的敏感体电阻进行补偿的电路图。
图2是现有技术中对传感器外围的比较电压进行温度补偿的电路图。
图3是本发明实施例1的电路图。
图4和图5是本发明实施例2的两个具体电路图。
图6是本发明实施例3的电路图。
图7是温度补偿的电阻网络的一种实施形式图。
图8是温度补偿的电阻网络的另一种实施形式图。
图9是温度补偿的电阻网络的又一种实施形式图。
图10是本发明补偿后的效果曲线图。
具体实现方式
本发明的中心思路是对传感器的加热电压进行温度补偿,其具体可以有如下几种方式:
实施例1:电压反馈式
原理图如图3所示,其中Rc为NTC热敏电阻,Vt为加热器电压,Vcc为电路的工作电压。
图3中,第一分压电阻(R1)与第二分压电阻(R2)串联,热敏电阻(Rc)与第一电阻(R1)并联。第一分压电阻(R1)与第二分压电阻(R2)串联的整体接电路的工作电压(Vcc),第一分压电阻(R1)的电压经一个反馈运算放大器(OP1)接入气敏传感器的加热丝。图3中第一分压电阻(R1)的一端接运算放大器(OP1)的负输入端,运算放大器(OP1)的正输入端接气敏传感器的加热丝后回到第一分压电阻(R1)的另一端。
如图可知:V1=Vcc·R2/(R2+R1//Rc)
通过放大器的反馈作用使得:V2=V1,
所以,传感器上的加热电压:
Vt=Vcc-V2=Vcc-V1=Vcc-Vcc·R2/(R2+R1//Rc)=Vcc·(R1//Rc)/(R2+R1//Rc),-(1)式
当环境温度降低时,热敏电阻Rc的值变大,导致R2上的分压V1变小,通过电路的反馈作用,使得V2变小,则加热电压Vt增加,提高传感器的温升,使之温度保持不变。反之亦然。
这种电路的特点是:
1)电源电压不变,整个电路的工作电源与作用于加热器的电源可用同一电源。
2)增加了专门的电压反馈电路,通过运算放大器的反馈,将补偿后的电压加在气敏传感器的加热丝上。实施例2:线性稳压器方式
原理图如图4和图5,其中Rc为温度补偿用的热敏电阻。图4和图5中,第一分压电阻(R1)与第二分压电阻(R2)串联,热敏电阻(Rc)与第一电阻(R1)并联;第二分压电阻(R2)接在线性稳压器的输出端,在图4中是LM317的输出端,在图5中是稳压二极管TL431的两端,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体接入气敏传感器的加热丝。
对于图4,加热电压为:
Vout=(1.25V/R2)[1+(Rc//R1)/R2],-(2)式
其中1.25V为稳压器LM317基准比较电压。
当环境温度降低时,热敏电阻Rc的值变大,导致加热电压Vout增加,可以使加热温度保持不变。反之亦然。
对于图5,加热电压为:
Vout=(1.25V/R2)[1+(Rc//R)/R2],-(3)式
其中1.25V为基准电压源TL431的基准比较电压。
当环境温度降低时,热敏电阻Rc的值变大,导致加热电压Vout增加,可以使加热温度保持不变。反之亦然。
这种电路的特点:
1)电路结构简单,将补偿直接作于电路的稳压器中,成本低。
2)加热电压由于温度不同,有一定幅度的变化,变化的范围如果在电路工作电压允许的波动范围内,加热电源与电路工作电源可共用,否则,需分开使用。实施例3:开关型稳压器变压式
原理图如图6所示,其中Rc为温度补偿用的热敏电阻。第一分压电阻(R1)与第二分压电阻(R2)串联,热敏电阻(Rc)与第一电阻(R1)并联;第二分压电阻(R2)接在开关型稳压器(图6中的MC34063)的输出端(COMP),第二分压电阻(R2)一端接在COMP端口,另一端接地,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体接入气敏传感器的加热丝。
加热电压为:
Vout=(1.25V/R2)[1+(Rc//R)/R2],-(4)式
(其中1.25V为元件MC34063基准比较电压)
当环境温度降低时,热敏电阻Rc的值变大,导致加热电压Vout增加,可以使加热温度保持不变,反之亦然。
该电路的特点:
1)电路结构简单,将补偿直接作于电路的稳压器中,成本低。
2)转换效率高,功耗低。
3)加热电压由于温度不同,有一定幅度的变化,变化的范围如果在电路工作电压允许的波动范围内,加热电源与电路工作电源可共用,否则,需分开使用。
通过对以上3个实施例的总结,得出结论:只要电路满足这样的结构就能达到本发明的目的:
第一分压电阻(R1)与第二分压电阻(R2)串联,热敏电阻(Rc)与第一电阻(R1)并联;第二分压电阻(R2)接恒压,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体电压作气敏传感器的加热电压,或第一分压电阻(R1)与第二分压电阻(R2)串联的整体接恒压,第一分压电阻(R1)的电压作气敏传感器的加热电压。比如在实施例1中是第一分压电阻(R1)与第二分压电阻(R2)串联的整体接恒压,第一分压电阻(R1)的电压作气敏传感器的加热电压,我们称这种方式为部分引出式,但实际上如果我们采用另一种形式,将Vcc加在第二分压电阻(R2)上,将第一分压电阻(R1)与第二分压电阻(R2)串联的整体引出,其电压作气敏传感器的加热电压,也能达到效果,我们称这种方式为整体引出式。但前提是必须气敏传感器的加热电压与热敏电阻(Rc)之间是正向变化,即如果热敏电阻(Rc)增加,气敏传感器的加热电压也增加。如果选择第一分压电阻(R1)与第二分压电阻(R2)串联的整体接恒压,第二分压电阻(R2)的电压作气敏传感器的加热电压这样就达不到本发明的目的。
温度补偿的电阻网络除了实施例1、2、3中揭示的几种形式以外,还可以采用几种方式,如图7、8、9所示。其形式表现不同,但这三个图有一个共同特点就是:Vcc和V1之间的电压,即加在传感器加热丝上的电压都随Rc的变化而正向变化,或者说,只要Rc增加,Vcc和V1接入点之间的阻抗都增加。
下面介绍温度补偿相关元件的参数确定,主要是第一分压电阻(R1)与第二分压电阻(R2),其过程如下:
1)确定传感器的整个环境的工作范围。
2)由传感器的工作温度范围来确定加热电压的范围,即最高加热电压和最低加热电压。
常温下加热电压一般由传感器厂家提供,在要求的最高温度的加热电压与最低温度的加热电压,可由理论计算法或实测法求得。——理论计算法:设定加热电压为V,则有:
ΔT=PRT=(V2/R)·RT,-(5)式
Ti=ΔT+Ta,          -(6)式
其中:ΔT为加热电压为V时,传感器的温升,P为传感器加热功率,RT为传感器与空气间的热阻,R为传感器加热电阻,Ti为传感器最佳工作温度,Ta为环境温度。
以传感器最佳工作温度减去常温温度的差值代入ΔT=PRT=·(V2/R)·RT,求得RT值,再分别以传感器最佳工作温度减去传感器最低工作温度和最高工作温度,作为ΔT值,代入ΔT=(V2/R)·RT中,求得最低温度时的工作电压和最高温度时的工作电压。——实测法:
步骤一:在常温状态下(20~25℃),按照厂家提供的常温工作电压进行加热,待热平衡后,在标定的气体浓度中,测得敏感体的电阻值,(或使用分压的方式测得输出电压)。
步骤二:在最高工作温度状态下,在同一标定的气体浓度中,调整加热电压至敏感体的电阻值(或输出电压)与步骤一测得的值相同,此时的加热电压值即为最高工作温度的加热电压值。
步骤三:在最低工作温度下,在同一标定的气体浓度中,调整加热电压至敏感体的电阻值(或输出电压)与步骤一测得的值相同,此时的加热电压值即为最低工作温度时的加热电压值。
3)确定温度补偿相关元件的参数,即图3-6中的Rc、R1、R2的值。方法有两种:
——两点法:首先选定Rc的B值及电阻值,再按照
B=[(T1T2)/(T2-T1)]ln(Rc1/Rc2)——(7)式
或查热敏电阻资料获得在最低温度和最高温度时的电阻值Rc1,其中,T1是最低或最高温度的绝对温度,T2是常温的绝对温度,Rc2是常温下的热敏电阻。再将最高、最低工作温度时相应的加热电压以及最低温度和最高温度时的电阻值Rc1,代入(1)、(2)、(3)、(4)式中,可求得各个电路结构的参数值。
——三点法:选定Rc的电阻值,再求得最高、最低温度及常温时相应的加热电压,将这三个电压值代入(1)、(2)、(3)、(4)式中,再根据Rc的B值公式:B=[(T1T2)/(T2-T1)]ln(Rc1/Rc2),可求得各个电路结构的参数值。
4)整个工作温度范围内,均匀设定几个温度点,考察实际温度补偿效果,以确定各元件参数的选定是否合理。
本发明与原温度补偿方式相比,无须增加成本,或成本增加很少,就可以达到非常理想的效果,具有十分广泛的应用前景和推广价值。实施举例
选择实施例3作为我们的实施方式。
选用气敏传感器TGS813,感应气体为丁烷气,其常温下要求加热电压为5V,最佳工作温度Ti为250~300℃,选定Ti为265℃,加热丝电阻R为30Ω,
1)确定传感器的整个环境的工作范围。
确定要求传感器工作于-10~+40℃范围内。
2)由传感器的工作温度范围来确定加热电压的范围,即最高加热电压和最低加热电压。
常温(25℃)时,使传感器工作于最佳温度的温升为:
              ΔT=265-25=240℃
由:ΔT=PRT=(V2/R)·RT
可得:RT=288℃/W。
最低环境工作温度Tal为-10℃时,使传感器工作于最佳温度时的温升为:
              ΔT=Ti-Tal=265-(-10)=275℃
代入ΔT=PRT=(V2/R)/RT中,可得-10℃时的加热电压为:
               VL=5.35V
同理,+40℃时的加热电压为:VH=4.84V
3)确定温度补偿相关元件的参数。
采用图6中的电路进行温度补偿,取热敏电阻Rc的阻值为10K,B值为3960,可由(7)式计算或查热敏电阻厂家资料,求得在各种温度下的电阻值。
由(7)式计算的方式如下:在25℃时,Rc的电阻值为10K,在-10℃,绝对温度T1为263℃,25℃时的绝对温度T2为298℃,
将T1、T2代入(7)式:B=[(T1T2)/(T2-T1)]ln(Rc1/Rc2)中,
可求得-10℃时的电阻值为59K;
同理,可求得40℃时的电阻值为5.2K。
实查厂家资料可得,热敏电阻在-10℃时,阻值为55K,+40℃时,阻值为5.315K。
如果我们采用第2种方法,即实查的方法,将VH、VL及两种温度下的Rc值代入(4)式中,有:
        5.35V=(1.25/R2)(R2+R1//5.315K)
        4.84V=(1.25/R2)(R2+R1//55K)
解得:R1=896,R2=269
取:  R1=910,R2=270
4)整个工作温度范围内,均匀设定几个温度点,考察实际温度补偿效果,以确定各元件参数的选定是否合理。
补偿后的效果如图10所示:图中Rs为1000ppm丁烷气,湿度为65%R.H,各种温度条件下的传感器阻抗,Ro为1000ppm丁烷气,湿度为65%R.H,温度为20℃条件下的传感器阻抗,——表示未加补偿时Rs/Ro随温度变化线,……表示补偿后Rs/Ro随温度变化线。经过补偿后的曲线比未经过补偿的曲线要平滑得多,表明取得了良好的补偿效果。

Claims (5)

1、一种气敏传感器温度补偿电路,其特征在于:第一分压电阻(R1)与第二分压电阻(R2)串联,热敏电阻(Rc)与第一电阻(R1)并联;第二分压电阻(R2)接恒压,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体电压作气敏传感器的加热电压,或第一分压电阻(R1)与第二分压电阻(R2)串联的整体接恒压,第一分压电阻(R1)的电压作气敏传感器的加热电压。
2、根据权利要求1所述的气敏传感器温度补偿电路,其特征在于:第一分压电阻(R1)与第二分压电阻(R2)串联的整体接电路的工作电压(Vcc),第一分压电阻(R1)的电压经一个反馈运算放大器(OP1)接入气敏传感器的加热丝。
3、根据权利要求1所述的气敏传感器温度补偿电路,其特征在于:第二分压电阻(R2)接在线性稳压器的输出端,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体接入气敏传感器的加热丝。
4、根据权利要求1所述的气敏传感器温度补偿电路,其特征在于:第二分压电阻(R2)接在开关型稳压器的输出端,以第一分压电阻(R1)与第二分压电阻(R2)串联的整体接入气敏传感器的加热丝。
5、根据权利要求1、2、3或4所述的气敏传感器温度补偿电路,其特征在于:其第一分压电阻(R1)与第二分压电阻(R2)的阻值这样得到:确定传感器的整个环境的要求的工作范围,以传感器最佳工作温度减去常温温度的差值代入ΔT=PRT=(V2/R)·RT,ΔT为加热电压为V时,传感器的温升,P为传感器加热功率,RT为传感器与空气间的热阻,R为传感器加热电阻,求得RT值,再分别以传感器最佳工作温度减去传感器最低工作温度和最高工作温度,作为ΔT值,代入ΔT=(V2/R)·RT中,求得最低温度时的工作电压和最高温度时的工作电压,再按照B=[(T1T2)/(T2-T1)]ln(Rc1/Rc2)或查热敏电阻资料获得在最低温度和最高温度时的电阻值Rc1,其中,T1是最低或最高温度的绝对温度,T2是常温的绝对温度,Rc2是常温下的热敏电阻,B值已知,将最低温度和最高温度时的电阻值、最低温度时的工作电压和最高温度时的工作电压代入权利要求1、2、3或4中的电路的具体分压公式,得到含有R1、R2的方程组,联立得到第一分压电阻(R1)与第二分压电阻(R2)的阻值。
CN 02117270 2002-04-23 2002-04-23 气敏传感器温度补偿电路 Pending CN1453578A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02117270 CN1453578A (zh) 2002-04-23 2002-04-23 气敏传感器温度补偿电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02117270 CN1453578A (zh) 2002-04-23 2002-04-23 气敏传感器温度补偿电路

Publications (1)

Publication Number Publication Date
CN1453578A true CN1453578A (zh) 2003-11-05

Family

ID=29257223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02117270 Pending CN1453578A (zh) 2002-04-23 2002-04-23 气敏传感器温度补偿电路

Country Status (1)

Country Link
CN (1) CN1453578A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403017C (zh) * 2005-07-12 2008-07-16 赵飞 一种恒温式可燃气体浓度检测装置
CN101738589A (zh) * 2008-11-13 2010-06-16 精工电子有限公司 传感器电路
CN101975804A (zh) * 2010-08-20 2011-02-16 郑州炜盛电子科技有限公司 半导体气体传感器及其温度补偿方法
CN101360991B (zh) * 2005-11-24 2012-02-01 咨询实施技术管理公司 电子化学痕量检测器
CN102713596A (zh) * 2010-02-04 2012-10-03 费加罗技研株式会社 电化学气体检测装置
CN102736717A (zh) * 2011-03-31 2012-10-17 研祥智能科技股份有限公司 一种宽温控制电路及主板以及控制主板宽温的方法
CN102968145A (zh) * 2012-11-08 2013-03-13 中国船舶重工集团公司第七二四研究所 一种功放模块工作电压的温度自适应调节方法
CN101629928B (zh) * 2009-07-29 2013-03-27 李晓村 一种用于催化燃烧型可燃气体传感器信号采集的电路结构
WO2014075349A1 (zh) * 2012-11-15 2014-05-22 创天昱科技(深圳)有限公司 解决温度对气味传感器输出值影响的电路
CN104236009A (zh) * 2013-06-20 2014-12-24 广东美的制冷设备有限公司 空调信号采集补偿装置和方法
CN104519609A (zh) * 2013-09-26 2015-04-15 哈尔滨府明电器有限公司 一种带空气质量监控功能的灯具
CN107014868A (zh) * 2017-05-17 2017-08-04 中国民航大学 消除温度漂移的易燃有害气体探测器
CN112615592A (zh) * 2020-11-25 2021-04-06 中国电子科技集团公司第二十九研究所 一种高驱动能力的小型化自适应温度补偿电路

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403017C (zh) * 2005-07-12 2008-07-16 赵飞 一种恒温式可燃气体浓度检测装置
CN101360991B (zh) * 2005-11-24 2012-02-01 咨询实施技术管理公司 电子化学痕量检测器
CN101738589A (zh) * 2008-11-13 2010-06-16 精工电子有限公司 传感器电路
CN101629928B (zh) * 2009-07-29 2013-03-27 李晓村 一种用于催化燃烧型可燃气体传感器信号采集的电路结构
CN102713596A (zh) * 2010-02-04 2012-10-03 费加罗技研株式会社 电化学气体检测装置
CN102713596B (zh) * 2010-02-04 2014-07-02 费加罗技研株式会社 电化学气体检测装置
CN101975804A (zh) * 2010-08-20 2011-02-16 郑州炜盛电子科技有限公司 半导体气体传感器及其温度补偿方法
CN102736717B (zh) * 2011-03-31 2016-08-24 研祥智能科技股份有限公司 一种宽温控制电路及主板以及控制主板宽温的方法
CN102736717A (zh) * 2011-03-31 2012-10-17 研祥智能科技股份有限公司 一种宽温控制电路及主板以及控制主板宽温的方法
CN102968145A (zh) * 2012-11-08 2013-03-13 中国船舶重工集团公司第七二四研究所 一种功放模块工作电压的温度自适应调节方法
WO2014075349A1 (zh) * 2012-11-15 2014-05-22 创天昱科技(深圳)有限公司 解决温度对气味传感器输出值影响的电路
CN104236009A (zh) * 2013-06-20 2014-12-24 广东美的制冷设备有限公司 空调信号采集补偿装置和方法
CN104236009B (zh) * 2013-06-20 2017-03-15 广东美的制冷设备有限公司 空调信号采集补偿装置和方法
CN104519609A (zh) * 2013-09-26 2015-04-15 哈尔滨府明电器有限公司 一种带空气质量监控功能的灯具
CN107014868A (zh) * 2017-05-17 2017-08-04 中国民航大学 消除温度漂移的易燃有害气体探测器
CN112615592A (zh) * 2020-11-25 2021-04-06 中国电子科技集团公司第二十九研究所 一种高驱动能力的小型化自适应温度补偿电路

Similar Documents

Publication Publication Date Title
CN1453578A (zh) 气敏传感器温度补偿电路
CN106028497B (zh) 可降低电流涟波的电流调节电路及降低电流涟波的方法
CN104620482A (zh) 绝缘栅型半导体元件的驱动装置
CN104821552A (zh) 过温保护方法、电路以及带该电路的线性驱动电路
CN102722197A (zh) 一种自校准的温度控制装置及方法
CN1917341A (zh) 平均电流控制模式的升压型连续功率因素校正装置及方法
CN1181420C (zh) 一种用于热电制冷器的高精度温度控制电路
CN105699904A (zh) 一种电池电压的检测电路及电压检测方法
CN110190587B (zh) 过流保护方法、过流保护电路、智能功率模块及空调器
CN102052341A (zh) 风扇控制系统
CN1612458A (zh) 开关电源装置
CN1381954A (zh) 动态范围宽的可小型化的发射器的检波电路
CN103671182A (zh) 风扇转速控制装置
CN203516159U (zh) 散热风扇控制电路及电子设备
CN1283042C (zh) 放大电路和具有该电路的电源装置
CN1292531C (zh) 发电机控制装置
CN105843285B (zh) 一种具有恒定波长和功率的激光驱动器电路
CN204538461U (zh) 一种激光器驱动电路
CN107834850A (zh) 一种直流线性稳压电源电路
CN104795728B (zh) 一种带温度补偿的半导体激光器可调恒流驱动电路
CN202326331U (zh) 风扇及其自动温控调速电路
CN1624729A (zh) 多变量发射机及其计算处理方法
CN108593133A (zh) 一种检测空调中冷水机组的水温的检测电路、方法、装置
CN204598430U (zh) 一种led灯
CN103982455B (zh) 易于设置工作点的风扇温控调速电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication