WO2014075349A1 - 解决温度对气味传感器输出值影响的电路 - Google Patents

解决温度对气味传感器输出值影响的电路 Download PDF

Info

Publication number
WO2014075349A1
WO2014075349A1 PCT/CN2012/085293 CN2012085293W WO2014075349A1 WO 2014075349 A1 WO2014075349 A1 WO 2014075349A1 CN 2012085293 W CN2012085293 W CN 2012085293W WO 2014075349 A1 WO2014075349 A1 WO 2014075349A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
circuit
coefficient thermistor
resistor
smell sensor
Prior art date
Application number
PCT/CN2012/085293
Other languages
English (en)
French (fr)
Inventor
田口洋一
杨连东
谢跃华
Original Assignee
创天昱科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创天昱科技(深圳)有限公司 filed Critical 创天昱科技(深圳)有限公司
Publication of WO2014075349A1 publication Critical patent/WO2014075349A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • G01N27/123Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature

Definitions

  • the utility model relates to the field of electronic circuits, in particular to a circuit for solving the influence of temperature on the output value of an odor sensor. Background technique
  • R1 is the equivalent resistance of the odor sensor, which itself generates heat, which affects the rise of its output voltage, as shown in Figures 2 and 3.
  • R1 decreases with the rise of temperature.
  • R1 decreases with temperature rise, and the calculation of combined output voltage
  • S-GAS rises as the temperature rises.
  • the technical problem mainly solved by the present invention is to provide a circuit for solving the influence of temperature on the output value of the odor sensor.
  • a technical solution adopted by the present invention is: Providing a circuit for solving the influence of temperature on the output value of the odor sensor, including:
  • the odor sensor includes a power access terminal, a ground terminal, and a voltage output terminal;
  • a negative temperature coefficient thermistor one end of which is connected to the ground end
  • the second resistor has one end connected to the voltage output terminal and the other end connected to the other end of the negative temperature coefficient thermistor.
  • the resistance of the first resistor is 2.7 k ohms, and the resistance of the second resistor is 39 k ohms.
  • the type of the negative temperature coefficient thermistor is SEMITEC 103AT-2
  • the utility model has the beneficial effects of: compensating the self-heating by the negative temperature coefficient thermistor, reducing the influence of the temperature on the odor sensor within a certain range, improving the temperature characteristic of the odor sensor, and stabilizing the output voltage of the odor sensor.
  • FIG. 1 is a circuit diagram of the prior art
  • FIG. 2 is a voltage-temperature diagram of the output voltage of the odor sensor affected by temperature in the prior art
  • FIG. 3 is a diagram showing the output voltage of the odor sensor corresponding to some temperature points selected from FIG. 2;
  • FIG. 4 is a circuit diagram for solving the influence of temperature on the output value of the odor sensor in an embodiment of the present invention
  • FIG. 5 is a circuit diagram for solving the influence of temperature on an odor sensing output value in another embodiment of the present invention.
  • FIG. 6 is a voltage-temperature diagram of an output voltage of an odor sensor affected by temperature according to an embodiment of the present invention
  • Figure 7 selects the odor sensor output voltage map corresponding to some temperature points from Figure 6.
  • VCC Power access terminal
  • the embodiment provides a circuit for solving the influence of temperature on the output value of the odor sensor, including: an odor sensor (GAS SENSOR), a negative temperature system thermistor, a first resistor R2, and a second resistor R3. , among them,
  • the odor sensor includes a power supply terminal VCC, a ground GND, and a voltage output terminal S-GAS; and a negative temperature coefficient thermistor, one end of which is connected to the ground GND; a first resistor R2, in parallel with the negative temperature coefficient thermistor;
  • the second resistor R3 has one end connected to the voltage output terminal S-GAS and the other end connected to the other end of the negative temperature coefficient thermistor.
  • the circuit further includes a capacitor C2 having one end connected to the voltage output terminal S-GAS and the other end connected to the ground terminal GND.
  • the capacitor C2 functions as a filter.
  • the resistance of the first resistor R2 is 2.7k ohms
  • the resistance of the second resistor R3 is 39k ohms.
  • the type of negative temperature coefficient thermistor is SEMITEC 103AT-2.
  • the model and related parameters of each component in the circuit can be adjusted according to the actual use, which can be done by those skilled in the art.
  • R1 is the internal equivalent resistance of the odor sensor.
  • the working principle of the odor sensor is: When the power is on, it generates heat itself, and the resistance of the equivalent resistance R1 decreases with the increase of temperature.
  • the technical solution adds a negative temperature coefficient thermistor to the circuit, and the negative temperature coefficient thermistor decreases as the temperature rises.
  • the equivalent resistance R1 decreases as the temperature rises, and VR201 also decreases with temperature rise, thereby offsetting the effect of temperature on the odor sensor output voltage.
  • the formula of the odor sensor output voltage in Figure 4 and Figure 5 is:
  • the odor sensor has an output voltage range of 1.26V_1.37V over a temperature range of 10 °C and 45 °C. From this, it can be concluded that the output voltage of the odor sensor can be stabilized at 1.3V within a certain range (10 ° C - 45 ° C) by using the circuit compensated by the negative temperature coefficient thermistor. Left and right, thereby increasing the temperature characteristics of the odor sensor and stabilizing its output voltage.

Abstract

本实用新型提供一种解决温度对气味传感器输出值影响的电路,包括:气味传感器,包括电源接入端、接地端及电压输出端;负温度系数热敏电阻,其一端与所述接地端相连;第一电阻,与所述负温度系数热敏电阻并联;第二电阻,其一端与所述电压输出端相连,另一端与负温度系数热敏电阻的另一端相连。通过负温度系数热敏电阻补偿其自身发热,在一定范围内减小温度对气味传感器的影响,提高气味传感器的温度特性,稳定气味传感器的输出电压。

Description

解决温度对气味传感器输出值影响的电路 技术领域
本实用新型涉及电子电路领域, 尤其涉及一种解决温度对气味传感器输出 值影响的电路。 背景技术
请参阅图 1至图 3, 当 GAS SENSOR (气味传感器)通电工作时, 其中 R1 为气味传感器等效电阻, 其本身会发热, 从而影响其输出电压的上升, 正如图 2 及图 3所示那样, 当气味传感器通电工作时, 其自身发热, 其等效电阻 R1的阻 值随温度的上升而减小, 在其它条件不变的情况下, R1随温度上升而减小, 结 合输出电压的计算公式可知: 输出电压 S-GAS随温度上升而升高。 其中, 图 1 中气味传感器输出电压的公式为: S-GAS= R200/ ( R200+R1 ) *VCC。 实用新型内容
本实用新型主要解决的技术问题是提供一种解决温度对气味传感器输出值 影响的电路。
为解决上述技术问题, 本实用新型采用的一个技术方案是: 提供一种解决 温度对气味传感器输出值影响的电路, 包括:
气味传感器, 包括电源接入端、 接地端及电压输出端;
负温度系数热敏电阻, 其一端与所述接地端相连;
第一电阻, 与所述负温度系数热敏电阻并联;
第二电阻, 其一端与所述电压输出端相连, 另一端与负温度系数热敏电阻 的另一端相连。
其中, 所述第一电阻的阻值为 2.7k欧姆, 第二电阻的阻值为 39k欧姆。 其中, 所述负温度系数热敏电阻的类型为 SEMITEC 103AT-2
本实用新型的有益效果是: 通过负温度系数热敏电阻补偿其自身发热, 在 一定范围内减小温度对气味传感器的影响, 提高气味传感器的温度特性, 稳定 气味传感器的输出电压。 附图说明
图 1是现有技术的电路图;
图 2是现有技术中气味传感器的输出电压受温度影响的电压-温度图; 图 3是从图 2中选取一些温度点对应的气味传感器输出电压图;
图 4是本实用新型一实施方式中解决温度对气味传感器输出值影响的电路 图;
图 5是本实用新型另一实施方式中解决温度对气味传感输出值影响的电路 图;
图 6是本实用新型一实施方式中气味传感器的输出电压受温度影响的电压- 温度图;
图 7从图 6中选取一些温度点对应的气味传感器输出电压图。
标号说明
R1: 等效电阻
R2: 第一电阻
R3: 第二电阻
C2: 电容
VCC: 电源接入端
GND: 接地端
S-GAS: 电压输出端 具体实施方式
为详细说明本实用新型的技术内容、 构造特征、 所实现目的及效果, 以下 结合实施方式并配合附图详予说明。
请参阅图 4及图 5 ,本实施方式提供一种解决温度对气味传感器输出值影响 的电路, 包括: 气味传感器(GAS SENSOR ), 负温度系统热敏电阻, 第一电阻 R2, 第二电阻 R3, 其中,
气味传感器, 包括电源接入端 VCC、 接地端 GND及电压输出端 S-GAS; 负温度系数热敏电阻, 其一端与所述接地端 GND相连; 第一电阻 R2, 与所述负温度系数热敏电阻并联;
第二电阻 R3, 其一端与所述电压输出端 S-GAS相连, 另一端与负温度系数 热敏电阻的另一端相连。
在本实用新型如图 5所示的另一实施方式中, 电路中还包括有电容 C2, 其 一端与所述电压输出端 S-GAS相连, 另一端与所述接地端 GND相连。 在本实 施方式中, 电容 C2起到的是滤波的作用。
在具体的实施例中, 所述第一电阻 R2的阻值为 2.7k欧姆, 第二电阻 R3的 阻值为 39k欧姆。 所述负温度系数热敏电阻的类型为 SEMITEC 103AT-2。 当然, 在电路中各元件的型号及相关参数可根据实际使用情况进行相应调整, 这是本 领域技术人员可以做到的。
图 4及图 5中 R1为气味传感器的内部等效电阻,气味传感器的工作原理为: 通电工作时, 其自身发热, 其等效电阻 R1的阻值随温度的上升而减小。 为能减 少温度对气味传感器的输出电压的影响, 本技术方案在电路中加了一个负温度 系数热敏电阻, 负温度系数热敏电阻随温度上升而减小。 在其它条件不变的情 况下, 等效电阻 R1随温度上升而减小, 而 VR201也会随温度上升而减小, 从 而抵消了温度对气味传感器输出电压的影响。 其中, 图 4及图 5 中气味传感器 输出电压的公式为:
S-GAS= ( ( R2//VR201 ) +R3 ) / ( ( R2//VR201 ) +R3+R1 ) *VCC
再请参阅图 6及图 7, 可以看出, 在温度范围为 10°C 45°C内, 气味传感器 的输出电压范围为 1.26V_1.37V。 由此可得出结论: 通过使用负温度系数热敏 电阻补偿后的电路, 能有效在一定的范围内 (10°C--45 °C )时, 将其气味传感器 的输出电压稳定在 1.3V左右, 从而提高了气味传感器的温度特性, 稳定其输出 电压。
以上所述仅为本实用新型的实施例, 并非因此限制本实用新型的专利范围, 凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换, 或直 接或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范 围内。

Claims

权 利 要 求 书
1、 一种解决温度对气味传感器输出值影响的电路, 其特征在于, 包括: 气味传感器, 包括电源接入端、 接地端及电压输出端;
负温度系数热敏电阻, 其一端与所述接地端相连;
第一电阻, 与所述负温度系数热敏电阻并联;
第二电阻, 其一端与所述电压输出端相连, 另一端与负温度系数热敏电阻 的另一端相连。
2、 根据权利要求 1所述的解决温度对气味传感器输出值影响的电路, 其特 征在于, 所述第一电阻的阻值为 2.7k欧姆, 第二电阻的阻值为 39k欧姆。
3、 根据权利要求 1或 2所述的解决温度对气味传感器输出值影响的电路, 其特征在于, 所述负温度系数热敏电阻的类型为 SEMITEC 103AT-2.
PCT/CN2012/085293 2012-11-15 2012-11-26 解决温度对气味传感器输出值影响的电路 WO2014075349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201220603608 CN202994755U (zh) 2012-11-15 2012-11-15 解决温度对气味传感器输出值影响的电路
CN201220603608.X 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014075349A1 true WO2014075349A1 (zh) 2014-05-22

Family

ID=48565925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085293 WO2014075349A1 (zh) 2012-11-15 2012-11-26 解决温度对气味传感器输出值影响的电路

Country Status (2)

Country Link
CN (1) CN202994755U (zh)
WO (1) WO2014075349A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453578A (zh) * 2002-04-23 2003-11-05 马立文 气敏传感器温度补偿电路
JP2005156161A (ja) * 2003-11-20 2005-06-16 Yazaki Corp ヒータ制御回路
CN201266119Y (zh) * 2008-09-10 2009-07-01 袁剑敏 温度补偿电路
CN101975804A (zh) * 2010-08-20 2011-02-16 郑州炜盛电子科技有限公司 半导体气体传感器及其温度补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453578A (zh) * 2002-04-23 2003-11-05 马立文 气敏传感器温度补偿电路
JP2005156161A (ja) * 2003-11-20 2005-06-16 Yazaki Corp ヒータ制御回路
CN201266119Y (zh) * 2008-09-10 2009-07-01 袁剑敏 温度补偿电路
CN101975804A (zh) * 2010-08-20 2011-02-16 郑州炜盛电子科技有限公司 半导体气体传感器及其温度补偿方法

Also Published As

Publication number Publication date
CN202994755U (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
US20130027827A1 (en) Protection circuit
CN206041465U (zh) 一种带过温保护的开关电源电路
CN103940507B (zh) 一种偏置电压补偿电路
TW201312915A (zh) 電感電流偵測電路
CN105005348B (zh) 一种光束激发放大式场强检测电流源
JP2010251653A5 (ja) 抵抗ばらつき検出回路
CN102411382A (zh) 防温度过冲的温控电路
WO2014075349A1 (zh) 解决温度对气味传感器输出值影响的电路
CN204119172U (zh) 一种功率放大器的温度补偿电路
CN201909684U (zh) 温度测量电路
CN102967756B (zh) 一种用于低温环境下的电能表加热电路
CN103423184B (zh) 一种功率式风扇转速控制电路及风扇装置
TWI416301B (zh) 參考電壓與電流電路
JP2008211757A5 (zh)
JP2014011668A5 (zh)
CN106841764B (zh) 一种利用mosfet管内阻实现输出电流检测的方法
CN105486423A (zh) 多路igbt内部ntc高温实时检测电路
CN204180314U (zh) 电磁加热控制电路和电磁加热装置
CN204144908U (zh) 过热保护电路
CN104202883B (zh) 内置过压保护的led驱动器、驱动电路及led驱动器工作方法
CN205179620U (zh) 一种导热铝箔
CN206806983U (zh) 充电器外置精准过温度保护电路
CN203502953U (zh) 一种计算机cpu高温语音报警器
CN204180317U (zh) 电磁加热控制电路和电磁加热装置
JP2011198209A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888231

Country of ref document: EP

Kind code of ref document: A1