WO2011096025A1 - 遅延検波回路および受信装置 - Google Patents

遅延検波回路および受信装置 Download PDF

Info

Publication number
WO2011096025A1
WO2011096025A1 PCT/JP2010/004451 JP2010004451W WO2011096025A1 WO 2011096025 A1 WO2011096025 A1 WO 2011096025A1 JP 2010004451 W JP2010004451 W JP 2010004451W WO 2011096025 A1 WO2011096025 A1 WO 2011096025A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
circuit
output
delay
symbol
Prior art date
Application number
PCT/JP2010/004451
Other languages
English (en)
French (fr)
Inventor
梅田直樹
前田充
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/576,809 priority Critical patent/US8831152B2/en
Priority to JP2011552587A priority patent/JP5480302B2/ja
Priority to KR1020127022515A priority patent/KR101390597B1/ko
Priority to CN201080063119.3A priority patent/CN102763390B/zh
Publication of WO2011096025A1 publication Critical patent/WO2011096025A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines

Definitions

  • the present invention relates to a delay detection circuit that performs part of a decoding process for decoding data transmitted by a transmission device based on a received wave of a received two-phase phase modulation method, and a reception device using the delay detection circuit.
  • a communication protocol for monitoring control that mainly transmits and receives data such as command data and monitoring data is used.
  • Examples of such a communication protocol for monitoring and control include a communication protocol according to the RS485 standard which is a typical communication protocol, and LonWorks (Local Operating Network, LON) which is an intelligent distributed control network technology developed by Echelon. , Ron Works) (registered trademark) and NMAST (registered trademark) proposed by Panasonic Electric Works. This NMAST has features such that the wiring topology is free and a pair line can be used for the transmission path.
  • a signal having a fixed phase is extracted (carrier wave recovery) from a communication signal (received signal) received from the network, and this is used as a reference (reference phase signal) for decoding.
  • the phase of the received wave in (time slot) that is, when the signal is in phase with this signal based on the signal one symbol before
  • the value of the data is set to “0” (or “1”).
  • delay detection method in which decoding is performed by setting the data value to “1” (or “0”) when the phase is different from that of this signal. Since this delay detection method performs decoding as described above, there is no need to generate a reference phase signal by performing carrier wave recovery unlike the synchronous detection method.
  • Such a delay detection circuit includes, for example, a delay detection circuit disclosed in Patent Document 1.
  • the delay detection circuit disclosed in Patent Document 1 includes a limiter amplifier that converts and amplifies an intermediate frequency signal of a received two-phase PSK modulated wave into a square wave signal, and edge detection that extracts only a rising edge of the square wave signal.
  • a sawtooth wave generator that generates a sawtooth wave signal having a period according to the frequency of the intermediate frequency signal, and a first that samples and holds the sawtooth wave signal by the rising edge and detects the phase of the received signal as a voltage.
  • the delay detection circuit is required to reduce the cost and the power consumption in the same manner as a general circuit.
  • the present invention has been made in view of the above circumstances, and its object is to provide a delay detection circuit capable of reducing power consumption at a low cost by using a configuration different from that of the delay detection circuit disclosed in Patent Document 1. And it is providing the receiver using this delay detection circuit.
  • the delay detection circuit according to the present invention performs a part of the decoding process for decoding the data transmitted by the transmitting device based on the received two-phase phase modulation received wave.
  • the receiving apparatus according to the present invention uses such a delay detection circuit. For this reason, the delay detection circuit and the receiving apparatus according to the present invention can reduce power consumption at low cost.
  • FIG. 1 is a diagram illustrating a configuration of a communication device according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration of a receiving circuit in the communication apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating a frame configuration of a communication signal used in the communication apparatus according to the embodiment.
  • FIG. 4 is a diagram for explaining the operation of the tracking circuit in the communication apparatus according to the embodiment.
  • FIG. 5 is a diagram illustrating a configuration of a decoding circuit in the communication apparatus according to the embodiment.
  • FIG. 5A illustrates a first configuration of the decoding circuit
  • FIG. 5B illustrates a second configuration of the decoding circuit.
  • the communication device M includes a function as a reception device that receives a communication signal transmitted from another communication device (not shown) connected via a network, and the other communication device via the network. Or it is an apparatus provided with the function as a transmission apparatus which transmits a communication signal to another communication apparatus (not shown).
  • a differential two-phase phase modulation method (DBPSK method) is adopted for this communication signal, and data to be transmitted is encoded (modulated) by the DBPSK method, and transmission of the communication signal is performed. Waves are being generated.
  • DBPSK method differential two-phase phase modulation method
  • such a communication device M is connected to the transmission line PL by a bridge diode circuit 1, and includes a power reception unit 2, an analog front end unit (AFE unit) 3, a communication unit 4, An input / output interface unit (input / output IF unit) 5 is provided.
  • the transmission path PL is a medium for propagating (transmitting) a communication signal, and is connected to the network or constitutes a part of the network.
  • the transmission line PL is, for example, a pair of pair wires.
  • the wiring polarity when the communication device M is connected to the pair wire is relative to the pair wire. It is non-polar and can be connected to a pair line without considering the polarity of the pair line. That is, one end and the other end of the pair of input terminals of the bridge diode circuit 1 may be connected to the pair line voltage line and the ground line, respectively, or may be connected to the pair line ground line and the voltage line, respectively. .
  • the power receiving unit 2 is a circuit that is connected to the bridge diode circuit 1 and generates drive power for driving the communication device M from power flowing through the transmission line PL via the bridge diode circuit 1.
  • the power receiving unit 2 includes, for example, an impedance upper circuit 21 having a high impedance with respect to a communication band of a communication signal propagating through the transmission line PL, and a power supply circuit 22 that generates DC power from AC power. Configured. High impedance with respect to the communication band means that the influence on the transmission distance of the communication signal propagating through the transmission line PL is small.
  • the impedance upper circuit 21 includes, for example, an inductor that has a high impedance with respect to a communication band of a communication signal propagating through the transmission line PL.
  • the power supply circuit 22 includes, for example, a three-terminal regulator and a capacitor, and generates driving power having a predetermined constant voltage from AC power.
  • the power flowing through the transmission line PL is fed to the power receiving unit 2 via the bridge diode circuit 1.
  • the power receiving unit 2 converts the power supplied via the impedance upper circuit 21 into driving power of the predetermined constant voltage by the power supply circuit 22, and converts the predetermined constant voltage into the AFE unit 3, the communication unit 4, and the like. Are supplied to each part of the communication apparatus M that requires driving power.
  • the AFE unit 3 is a circuit that is connected to the bridge diode circuit 1 and couples the transmission line PL and the communication unit 4 to each other via the bridge diode circuit 1.
  • the AFE unit 3 is connected to the bridge diode circuit 1 through the bridge diode circuit 1.
  • a reception wave depending on the communication signal is taken out from the transmission line PL and output to the communication unit 4, and a transmission wave based on the communication signal from the communication unit 4 is sent to the transmission line PL via the bridge diode circuit 1. is there.
  • the AFE unit 3 includes, for example, capacitors C1 and C2, an amplifier 31, and a limiter amplifier 32.
  • the capacitors C1 and C2 are elements that cut (cut off) the frequency of the power component flowing through the transmission line PL, that is, the frequency of the power component excluding at least the power component due to the communication signal.
  • the capacitor C1 has one end connected to the output end of the amplifier 31 and the other end connected to the voltage line of the bridge diode circuit 1, thereby being interposed between the amplifier 31 and the bridge diode circuit 1.
  • the capacitor C2 has one end connected to the voltage line of the bridge diode circuit 1 and the other end connected to an input end of an amplifier AP, which will be described later, thereby being interposed between the bridge diode circuit 1 and the amplifier AP.
  • the amplifier 31 is a circuit that amplifies the communication signal input from the communication unit 4 with a predetermined amplification factor, and is driven by the driving power supplied from the power receiving unit 2.
  • the limiter amplifier 32 converts the received wave into a square wave signal having a substantially square waveform by limiting the amplitude of the received wave received from the transmission line PL via the bridge diode circuit 1 and the capacitor C2 to a predetermined constant value. And a circuit to amplify.
  • the limiter amplifier 32 has a hysteresis in its output characteristics. When a voltage value greater than or equal to a predetermined threshold value is input, the limiter amplifier 32 outputs a predetermined high voltage value, and a voltage value less than the predetermined threshold value is input. Then, a predetermined low-level voltage value is output.
  • the limiter amplifier 32 is driven when the driving power is supplied from the power receiving unit 2 to the amplifier AP.
  • a communication wave by a communication signal propagating through the transmission line PL is received as a reception wave via the bridge diode circuit 1, and this reception wave is input to the limiter amplifier 32 via the capacitor C ⁇ b> 2 of the AFE unit 3. It is converted into a square wave signal according to the amplitude level and amplified.
  • the amplified square wave signal is output from the limiter amplifier 32 of the AFE unit 3 to the communication unit 4.
  • the communication signal generated by the communication unit 4 is input from the communication unit 4 to the amplifier 31 of the AFE unit 3, amplified by a predetermined amplification factor, and sent to the transmission line PL through the capacitor C 1 and the bridge diode circuit 1.
  • the limiter amplifier 32 may be an active filter having a function of a band pass filter (BPF) that extracts only a communication band (transmission band) used for communication. As a result, a signal having a frequency excluding the communication band can be removed as noise.
  • BPF band pass filter
  • the communication unit 4 is connected to each of the power receiving unit 2 and the AFE unit 3, and decodes (demodulates) the data of the communication signal based on the square wave signal input from the limiter amplifier 32 of the AFE unit 3 and should transmit it
  • This circuit encodes (modulates) data into a communication signal.
  • the communication unit 4 decodes the data of the communication signal based on the output of the transmission circuit 41 that encodes (modulates) the data to be transmitted into the communication signal and the limiter amplifier 32 of the AFE unit 3 ( And a receiving circuit 42 for demodulation. Details of the receiving circuit 42 will be described later.
  • the input / output IF unit 5 is connected to the communication unit 4 and is an interface circuit for inputting / outputting data between the communication device M and an external device.
  • the external device is connected to the input / output IF unit 5
  • the data input from the external device to the input / output IF unit 5 is output to the transmission circuit 41 of the communication unit 4.
  • the data encoded (modulated) by the transmission circuit 41 and decoded (demodulated) by the reception circuit 42 of the communication unit 4 is output to the input / output IF unit 5 and output to the external device.
  • the receiving circuit 42 includes, for example, a delay detection circuit S, a tracking circuit 8, and a decoding circuit 9, as shown in FIG.
  • the delay detection circuit S is a circuit that is connected to the output terminal of the limiter amplifier 32 in the AFE unit 3 and receives the output of the limiter amplifier 32 and checks whether the received wave is a communication signal. More specifically, the delay detection circuit S includes a delay correlation calculation circuit 6 that performs a delay correlation calculation on the received wave, and the received wave is transmitted by the other communication device based on the output of the delay correlation calculation circuit 6. An output unit SL for outputting the output of the delayed correlation operation circuit 6 to the decoding circuit 9 for decoding data based on the output of the delay correlation operation circuit 6 And is configured. In this embodiment, first, the capture circuit 7 operates to capture a communication signal transmitted by the other transmission device based on the output of the delay correlation calculation circuit 6. Thereafter, a decoding circuit 9 described later operates to detect the end of a preamble section described later.
  • the output unit SL is a wiring (including a lead wire, a wiring pattern of a substrate, a wiring pattern in an integrated circuit, etc.) that connects the delay correlation calculation circuit 6 and the decoding circuit 9.
  • the output unit SL is not limited to this wiring, and may be, for example, a terminal for outputting the output of the delay correlation calculation circuit 6.
  • the delay correlation calculation circuit 6 is connected to the limiter amplifier 32 of the AFE unit 3, and for example, an I multiplier (I mixer) 61I, an I Nyquist filter 62I, an I shift register 63I, and an I correlation calculation.
  • the circuit 64I, a Q multiplier (I mixer) 61Q, a Q Nyquist filter 62Q, a Q shift register 63Q, a Q correlation calculation circuit 64Q, and an adder 65 are provided.
  • the output of the limiter amplifier 32 of the AFE unit 3 is sampled at a predetermined sampling interval, input to the reception circuit 42, and input to the delay correlation calculation circuit 6.
  • the sampling interval is determined by a so-called sampling theorem, in the present embodiment, the waveform of one symbol is set to be sampled at a predetermined number n of sampling points.
  • the I multiplier 61I is a circuit that is connected to the limiter amplifier 32 of the AFE unit 3 and generates an I signal component by multiplying the output of the limiter amplifier 32 and the sin ⁇ t of the local frequency ⁇ .
  • the I Nyquist filter 62I is a circuit that is connected to the I multiplier 61I and filters the I signal component output from the I multiplier 61I with a predetermined Nyquist filter characteristic.
  • the Nyquist filter for reception is configured to have a Nyquist filter characteristic as a set (set) with the Nyquist filter for transmission.
  • the I shift register 63I is a circuit that is connected to the I Nyquist filter 62I and stores the output of the I Nyquist filter 62I for a predetermined number of bits.
  • the receiving circuit 42 since the receiving circuit 42 is configured to sample the waveform of one symbol at the n sampling points, the I shift register 63I can store data for one symbol.
  • the shift register is a digital circuit in which a plurality of flip-flops that store 1-bit data (value) are cascade-connected, and the 1-bit data is sequentially moved (shifted) in the circuit.
  • the I correlation calculation circuit 64I is connected to the I Nyquist filter 62I and the I shift register 63I, and performs a correlation calculation between the output of the I Nyquist filter 62I and the output of the I shift register 63I. As a result, a delayed correlation operation is performed on the I signal component.
  • the Q multiplier 61Q is a circuit that is connected to the limiter amplifier 32 of the AFE unit 3 and generates a Q signal component by multiplying the output of the limiter amplifier 32 and -cos ⁇ t of the local frequency ⁇ .
  • the Q Nyquist filter 62Q is a circuit that is connected to the Q multiplier 61Q and filters the Q signal component output from the Q multiplier 61Q with a predetermined Nyquist filter characteristic. This Nyquist filter for reception is configured to have a Nyquist filter characteristic as a set with the Nyquist filter for transmission.
  • the Q shift register 63Q is a circuit that is connected to the Q Nyquist filter 62Q and stores the output of the Q Nyquist filter 62Q for a predetermined number of bits.
  • the Q shift register 63Q is composed of n bits so that data for one symbol can be stored.
  • the Q correlation calculation circuit 64Q is connected to the Q Nyquist filter 62Q and the Q shift register 63Q, and performs a correlation calculation between the output of the Q Nyquist filter 62Q and the output of the Q shift register 63Q. Thereby, a delayed correlation calculation is performed on the Q signal component.
  • the adder 65 is connected to each of the I correlation calculation circuit 64I and the Q correlation calculation circuit 64Q, and adds the output of the I correlation calculation circuit 64I and the output of the Q correlation calculation circuit 64Q.
  • the addition result is output as an output of the delayed correlation calculation circuit 6 to each of the capture circuit 7 and the decoding circuit 9 by the output unit SL.
  • the capture circuit 7 is connected to the delay correlation calculation circuit 6.
  • the capture circuit 7 includes a square calculation circuit 71, a first threshold value comparison circuit 72, a sync shift register 73, and a candidate comparison circuit 74.
  • a match determination circuit 75 and a pattern candidate storage circuit 76 are provided.
  • the square calculation circuit 71 is connected to the adder 65 of the delay correlation calculation circuit 6 and calculates the square of the output of the delay correlation calculation circuit 6, that is, the output of the adder 65.
  • the first threshold value comparison circuit 72 is connected to the square calculation circuit 71, and compares the output (square result) of the square calculation circuit 72 with a predetermined first threshold value Th1, which is set in advance. 71 is a circuit for binarizing the output of 71.
  • the sync shift register 73 is a circuit that is connected to the first threshold comparison circuit 72 and stores the output (first threshold comparison result) of the first threshold comparison circuit 72 with a predetermined number of bits.
  • the sync shift register 73 is composed of n bits so that data for one symbol can be stored.
  • the output of the delayed correlation calculation circuit 6 is squared by the square calculation circuit 71, and the square result is compared with the predetermined first threshold Th1 by the first threshold comparison circuit 72, and the first threshold comparison is performed.
  • the result is stored in the sync shift register 73.
  • a shape for one symbol based on the output of the delay correlation calculation circuit 6 is generated, and the shape for one symbol based on the output of the delay correlation calculation circuit 6 is stored in the sync shift register.
  • the shape of one symbol is represented by a plurality of bits.
  • the square calculation circuit 71, the first threshold value comparison circuit 72, and the sync shift register 73 constitute a shape generation unit that generates a shape for one symbol based on the output of the delay correlation calculation circuit 6, and generates this shape. This corresponds to an example of a section.
  • the pattern candidate storage circuit 76 is a circuit that previously stores a plurality of candidate shapes for one symbol as pattern candidates.
  • the pattern candidates are predetermined bit patterns formed by presetting the value of each bit, the plurality of pattern candidates are different bit patterns from each other, and at least one of the plurality of pattern candidates is: At least one value of each bit is arbitrary.
  • the frame 100 of the communication signal is configured to include a preamble section 101 and a payload section 102 that accommodates data to be transmitted.
  • the synchronization pattern unit 111 that accommodates the synchronization pattern used to synchronize the timing of decoding with the received reception wave
  • the SFD unit 112 that represents the end of the synchronization pattern unit 111 are provided. Configured.
  • the SFD unit 112 represents the end of the preamble unit 101, and further represents the start of the payload unit 102.
  • “111... 111” is accommodated in the synchronization pattern portion 111 as a synchronization pattern, and “1010” is accommodated in the SFD portion 112, for example.
  • the amount of phase change between two adjacent symbols is associated with the data value.
  • the phase is inverted every time. Therefore, “111... 111” is adopted as the synchronization pattern so that synchronization can be easily obtained. Yes.
  • the first threshold determination result of the square is when the correlation is high, and the received wave has almost no noise
  • a pattern that is “1” near the center of the 16 sampling points and “0” elsewhere for example, “00... 01110. Or “00... 00100... 00”.
  • the result of the first threshold determination may be “1” where it is not near the center of the n sampling points.
  • a plurality of pattern candidates are stored in advance in the pattern candidate storage circuit 76, and “1” is set in the plurality of pattern candidates in a place that is not near the center of the n sampling points. Patterns that are not included in the vicinity of the center of the n sampling points are included (patterns with arbitrary data values, ie, “0” or “1”).
  • the plurality of pattern candidates are predetermined in advance by considering, for example, the topology of the transmission path used by the communication apparatus and its transmission characteristics (for example, how the phase is lost).
  • ”And“ 00... 00100... 00 ”further include patterns such as“ 00... 011110... 00 ”and“ 00... 1XX1111XX1.
  • the pattern candidate is a predetermined bit pattern formed by predetermining the value of each bit, and the plurality of pattern candidates are different bit patterns from each other, and are at least one of the plurality of pattern candidates.
  • the value of at least one of the bits is arbitrary.
  • the candidate comparison circuit 74 is connected to each of the sync shift register 73 and the pattern candidate storage circuit 76, and the shape for one symbol stored in the sync shift register 73 and a plurality of patterns stored in the pattern candidate storage circuit 76. This is a circuit for comparing the shapes of the pattern candidates.
  • the candidate comparison circuit 74 includes a sync shift register 73. Each value stored in each bit is compared with each value of each bit of the pattern candidate.
  • the coincidence determination circuit 75 is connected to the candidate comparison circuit 74. Based on the comparison result input from the candidate comparison circuit 74, the match determination circuit 75 compares the shape for one symbol of the sync shift register 73 compared with the candidate comparison circuit 74 and a plurality of symbols.
  • This circuit is a circuit that regards the received wave as a communication signal transmitted by the other communication device when any of the pattern candidates matches a plurality of times at n sample intervals (one symbol interval).
  • the number of matches may be, for example, 2 times, 3 times, 4 times, or the like. If the number of matches is large, the determination accuracy is improved, but on the other hand, the determination time is long.
  • the tracking circuit 8 is connected to the delay detection circuit S, and performs the predetermined processing at a time interval corresponding to the time length of one symbol so that decoding can be performed at the temporal center position of one symbol. This circuit adjusts the time interval.
  • the predetermined process includes a decoding process by the data decoding circuit 92 for the Dec shift register 91 of the decoding circuit 9. More specifically, the tracking circuit 8 includes, for example, a Tr shift register 81 and an interval adjustment circuit 82 as shown in FIG.
  • the Tr shift register 81 is connected to the square calculation circuit 71 of the delay detection circuit S, and stores a square result obtained by squaring the output of the delay correlation calculation circuit 6 for one symbol by the square calculation circuit 71. It is.
  • the interval adjustment circuit 82 is connected to the Tr shift register 81, and in the squared result of one symbol stored in the Tr shift register 81, the sampling value (mean value) at the center position approximately in the center in time. ), A sampling value (early value) at a preceding position one sampling point ahead of the center position, and a sampling value (late value) at a succeeding position one sampling point later than the center position. It is a circuit which compares each and adjusts the time interval according to the comparison result.
  • the mean value, the early value, and the late value are compared every n cycles, and the comparison result of the MEAN counter, the EARLY counter, and the LATE counter corresponding to the three values is compared. Add 1 point to the maximum counter.
  • the time adjustment circuit 82 operates the decoding circuit 9 so as to maintain the current time interval, and the EARLY counter is set to the predetermined second threshold Th2.
  • the second threshold value Th2 is exceeded, the time adjustment circuit 82 operates the decoding circuit 9 so as to lengthen the current time interval by one sampling length, and the LATE counter has the predetermined second threshold value.
  • Th2 is exceeded, the time adjustment circuit 82 operates the decoding circuit 9 so as to shorten the current time interval by one sampling length.
  • each circuit operates in accordance with the clock timing of the operation clock, and one symbol is sampled at n sampling points. Therefore, as shown in FIG.
  • the threshold value Th2 is exceeded, the approximate center position of the symbol in time coincides with the timing at which data is decoded by the decoding circuit 9 (see FIG. 4 (I)). Operates the decoding circuit 9 at the time interval of n cycles so as to maintain the current synchronization timing (see FIGS.
  • the EARLY counter is When the predetermined second threshold value Th2 is exceeded, the timing at which the decoding circuit 9 decodes data precedes the temporally central position of the symbol in time ( 4 (I)), the time adjustment circuit 82 operates the decoding circuit 9 at the time interval of (n + 1) cycles only once by outputting an early_out signal so as to delay the current synchronization timing (FIG. 4). (Refer to (A), (B), (C), (D) and (G)), and when the LATE counter exceeds the predetermined second threshold Th2, the symbol is approximately at the center in time. Since the timing at which the decoding circuit 9 decodes data from the position is behind (see FIG.
  • the time adjustment circuit 82 uses the late_out signal so as to advance the current synchronization timing. Is output once so that the decoding circuit 9 is operated at the time interval of (n ⁇ 1) cycles (see FIGS. 4A, 4B, 4C, 4F and 4H).
  • FIG. 4A shows a clock for synchronizing the operation timing of each circuit in the communication unit 4
  • FIG. 4B shows each bit value (correlation signal) of the Tr shift register 81
  • FIG. 4 (C) represents the synchronization timing established by the delay detection circuit S
  • FIG. 4 (D) represents the EARLY counter
  • FIG. 4 (E) represents the MEAN counter
  • FIG. 4 (G) represents the early_out signal
  • FIG. 4 (H) represents the late_out signal
  • FIG. 4 (I) corresponds to FIG. 4 (B) and FIG. 4 (C).
  • FIG. 4 (D) represents the EARLY counter
  • FIG. 4 (E) represents the MEAN counter
  • FIG. 4 (G) represents the early_out signal
  • FIG. 4 (H) represents the late_out signal
  • FIG. 4 (I) corresponds to FIG. 4 (B) and FIG. 4 (C).
  • FIG. 4 (G) represents the early_out
  • the decoding circuit 9 is a circuit that is connected to the delay correlation calculation circuit 6 of the delay detection circuit S by the output unit SL and decodes data based on the output of the delay correlation calculation circuit 6. More specifically, the decoding circuit 9 includes, for example, a Dec shift register 91 and a data decoding circuit 92 as shown in FIG. 2 (FIG. 5A).
  • the Dec shift register 91 is connected to the delay correlation calculation circuit 6 of the delay detection circuit S by the output unit SL, and stores the output of the delay correlation calculation circuit 6 for one symbol.
  • the data decoding circuit 92 is a circuit that is connected to the Dec shift register 91 and decodes data based on a value at a central position located substantially at the center of the Dec shift register 91. More specifically, since the data decoding circuit 92 encodes the communication signal by the DBPSK method, the data decoding circuit 92 calculates the sign bit of the value at the central position (bit at the central position) located substantially at the center of the Dec shift register 91. The decoded data is associated with 1 and 0.
  • the decoding circuit 9 may have the configuration shown in FIG. 5B instead of the configuration shown in FIG. 2 (FIG. 5A). That is, the decoding circuit 9A includes a Dec shift register 91 and a data decoding circuit 92A as shown in FIG.
  • the Dec shift register 91 is connected to the delay correlation calculation circuit 6 of the delay detection circuit S by the output unit SL, and stores the output of the delay correlation calculation circuit 6 for one symbol.
  • the data decoding circuit 92A is connected to the Dec shift register 91, has a value at a central position located substantially in the center of the Dec shift register 91, a value at a preceding position temporally preceding the central position, and the central position.
  • a circuit that decodes data based on a value at a subsequent position that follows later in time for example, each value of a predetermined number of bits (one or more) positioned immediately before and after the central position. More specifically, since the data decoding circuit 92A encodes the communication signal by the DBPSK method, the data decoding circuit 92A has a value at the central position (the value of the bit at the central position) located substantially at the center of the Dec shift register 91; A value at a preceding position temporally preceding the central position and a value at a subsequent position temporally following the central position (for example, a predetermined number (one or more) of bits positioned immediately before and after the central position) The code bits in the sum of these values are associated with 1 and 0 as decoded data.
  • the number of bits before and after the center position is 3 bits before and 3 bits after, but is not limited thereto. There may be a case where the number of bits is 2 bits later, or a case where there is 1 bit before and 1 bit after.
  • the decoding circuit 9A having the configuration shown in FIG. 5B has not only the value at the central position located substantially in the center of the Dec shift register 91, but also the value at the preceding position relative to the central position and the rear position relative to the central position. Since both the value at the row position and each value positioned immediately before and after the central position are used for decoding the data, the data can be decoded more accurately and more accurately.
  • the communication apparatus M of the present embodiment starts its operation by, for example, turning on a power switch (not shown), and further starts a reception operation for receiving a communication signal, regardless of the presence or absence of the communication signal.
  • the received wave is taken into the AFE unit 3 through the bridge diode circuit 1.
  • the captured received wave is input to the limiter amplifier 32 via the capacitor C2, and is converted into a waveform according to the amplitude level of the received wave by the limiter amplifier 32.
  • the received wave after waveform conversion is sent from the limiter amplifier 32.
  • the data is output to the receiving circuit 42 of the communication unit 4.
  • delay detection is performed by the delay detection circuit S. More specifically, first, the waveform-converted received wave is input to each of the I multiplier 61I and the Q multiplier 61Q.
  • the I multiplier 61I multiplies the waveform-converted received wave by the sin ⁇ t, and the I signal component generated by the multiplication is input to the I Nyquist filter 62I.
  • the I signal component is filtered by the filter characteristic that constitutes the Nyquist filter characteristic in the transmission / reception set, and the filtered I signal component is input to the I shift register 63I and the I correlation calculation circuit 64I. Is done. In the I shift register 63I, the filtered I signal component sequentially moves from the input end bit (flip-flop) to the output end bit (flip-flop) in accordance with the clock timing of the operation clock. It is input to the correlation calculation circuit 64I.
  • the filtered I signal component input from the I Nyquist filter 62I and the one symbol input from the I shift register 63I are synchronized with the clock timing of the operation clock.
  • the filtered I signal component is subjected to correlation calculation (multiplication), and the result of the correlation calculation is input to the adder 65.
  • the waveform-converted received wave is multiplied by the ⁇ cos ⁇ t, and the Q signal component generated by the multiplication is input to the Q Nyquist filter 62Q.
  • the Q signal component is filtered by the filter characteristic that constitutes the Nyquist filter characteristic in the transmission / reception set, and the filtered Q signal component is input to the Q shift register 63Q and the Q correlation calculation circuit 64I. Is done.
  • the filtered Q signal component sequentially moves from the input end bit (flip-flop) to the output end bit (flip-flop) in accordance with the clock timing of the operation clock. It is input to the correlation calculation circuit 64Q.
  • the filtered Q signal component input from the Q Nyquist filter 62Q and the one symbol input from the Q shift register 63Q are synchronized with the clock timing of the operation clock.
  • the filtered Q signal component is subjected to correlation calculation (multiplication), and the result of the correlation calculation is input to the adder 65.
  • the adder 65 the correlation calculation result of the I correlation calculation circuit 64I and the correlation calculation result of the Q correlation calculation circuit 64Q are added, and this addition result is output to the output unit SL, and the capture circuit 7 and the decoding circuit are decoded. Input to each of the circuits 9.
  • the received wave is S (i)
  • the real part of the received wave S (i) is I (i)
  • the imaginary part of the received wave S (i) is Q (i)
  • Time T is the time length of one symbol.
  • the addition result (delay correlation value c (i) A) input from the delay correlation calculation circuit 6 to the capture circuit 7 is first input to the square calculation circuit 71.
  • the first threshold value comparator circuit 72 inputs the first threshold comparator circuit 72, the square result a 2 is compared with a predetermined first threshold value Th1, 2 binarization
  • the binarized squared result A 2 ′ is input to the sync shift register 73.
  • the squared result A 2 is smaller than a predetermined first threshold Th1, “0” is set. "it is a, whereas, the squared results when a 2 is a first threshold value Th1 or more predetermined, the" 1 "and the .sync shift register 73 is, the binarized squared result a 2 ', the bit of the input end (flip-flop) to the output of the bit (flip-flop), the operation clock
  • the candidate comparison circuit 74 sequentially moves in accordance with the lock timing, and the shape of one symbol in the sync shift register 73 and a plurality of pattern candidates in the pattern candidate storage circuit 76 are generated at each clock timing of the operation clock. Each shape is compared, and the comparison result is input to the coincidence determination circuit 75.
  • the comparison is executed by comparing each bit corresponding to each other, and the coincidence determination circuit 75 is based on the comparison result.
  • the number of times the shape for one symbol in the sync shift register 73 compared with the candidate comparison circuit 74 matches one of the plurality of pattern candidates in the pattern candidate storage circuit 76 is counted (counted).
  • the matching comparison result is input from the candidate comparison circuit 74 to the matching determination circuit 75, and the matching determination circuit 75 receives the comparison result.
  • the number of coincidence is counted up.
  • the capturing circuit 7 In the determination operation for the first time, the determination is performed at each timing after (n ⁇ 1) sampling, after n sampling, and after (n + 1) sampling from the first determination of coincidence.
  • the capture circuit 7 may be configured to perform the determination after n sampling after the first match determination, but as described above, not only after n sampling but before and after n sampling ( By performing the determination at each timing after (n-1) sampling and (n + 1) sampling, the synchronization pattern can be captured more reliably. Furthermore, in the present embodiment, when the second match is determined, from the same viewpoint, the capture circuit 7 performs (2n ⁇ 2) sampling from the first match determination in the third determination operation ( The determination is performed at each timing after 2n-1) sampling, 2n sampling, (2n + 1) sampling, and (2n + 2) sampling. The capturing circuit 7 may be configured to perform the determination after 2n sampling from the first match determination, or after (n ⁇ 1) sampling, after n sampling, and after the second match determination, and (N + 1) The determination may be performed at each timing after sampling.
  • the coincidence determination circuit 75 of the acquisition circuit 7 causes the tracking circuit 8 to start the tracking operation and causes the decoding circuit 9 to start the decoding operation.
  • the bit is sequentially moved from the end bit (flip-flop) to the output end bit (flip-flop) in accordance with the clock timing of the operation clock.
  • the time adjustment circuit 82 in accordance with the synchronization captured by the delay detection circuit S, the sampling value (mean value) at the central position located substantially in the center of the Tr shift register 81, in terms of time from the central position.
  • a sampling value (early value) at a preceding position preceding one sampling point is compared with a sampling value (late value) at a succeeding position that is temporally one sampling point later than the central position, and according to the comparison result To adjust the time interval. More specifically, as described above with reference to FIG. 4, the interval adjustment circuit 82 maintains the current synchronization timing when the MEAN counter exceeds the predetermined second threshold Th2.
  • the decoding circuit 9 is operated with n cycles as the time interval and the EARLY counter exceeds the predetermined second threshold value Th2, (n + 1) cycles are performed only once to delay the current synchronization timing.
  • the decoding circuit 9 is operated as an interval, and when the LATE counter exceeds the predetermined second threshold value Th2, the (n-1) cycle is performed only once to advance the current synchronization timing.
  • the decoding circuit 9 is operated as follows.
  • the data decoding circuit 92A is an abbreviation of the Dec shift register 91 in accordance with the synchronization established by the delay detection circuit S.
  • the sign bit in the sum of the value at the central position located at the center (the value of the bit at the central position) and each value located immediately before and after the central position (the values of the respective bits before and after the bit at the central position) is 0, Corresponding to 1 is set as decoded data.
  • the acquisition circuit 7 checks the data decoded by the decoding circuit 9 in this way, and detects the bit pattern of the SFD unit 112 of the preamble unit 101, for example, “1010” described above. The end of the preamble part 101 is detected, and thereby synchronization with the transmission signal is established.
  • the communication device M can delay detect this communication signal and decode data from the communication signal.
  • the delay correlation calculation circuit 6 performs a delay correlation calculation on the received wave, and the capture circuit 7 generates the received wave based on the output of the delay correlation calculation circuit 6.
  • a plurality of candidate shapes (pattern candidates) for one symbol are prepared in advance, and the plurality of pattern candidates are stored in the pattern candidate storage circuit 76 in advance. .
  • the communication device M and the delay detection circuit S of the present embodiment when the shape for one symbol in the sync shift register 73 matches one of a plurality of pattern candidates a plurality of times, A communication signal transmitted by another communication device is considered (synchronization acquisition). For this reason, the communication apparatus M and the delay detection circuit S according to the present embodiment can determine that the received wave is a communication signal transmitted by the other communication apparatus, and accurately delay it. Detection can be performed.
  • the communication device M and the delay detection circuit S of the present embodiment at least one of the plurality of pattern candidates has an arbitrary value of at least one of the bits. For this reason, even when the shape of the symbol is different from the transmission waveform of the other communication device during transmission, it is possible to determine that the received wave is a communication signal transmitted by the other communication device. Thus, the communication device M and the delay detection circuit S of the present embodiment can capture the arrival of the received wave more reliably.
  • the communication device M and the delay detection circuit S of the present embodiment include the tracking circuit 8, it is possible to correct the deviation between the clock interval of the other communication device and the clock interval of the communication device M, and more reliably. Delay detection can be performed.
  • the communication device M and the delay detection circuit S of the present embodiment include the decoding circuit 9, it is possible to decode data based on the received wave.
  • an auto gain control amplifier (AGC amplifier) and an analog-digital converter (AD converter) are used as a circuit before input of the receiving circuit, and the received wave taken out from the transmission line PL is used. Is adjusted to an appropriate amplitude by the AGC amplifier, converted from an analog signal to a digital signal by the AD converter, and input to the receiving circuit.
  • the limiter amplifier 32 is used for the circuit before the input of the reception circuit 42 as described above, and the received wave extracted from the transmission line PL is transmitted by the limiter amplifier 32. It is converted into a square wave signal and input to the receiving circuit 42.
  • the limiter amplifier 32 is used instead of the AGC amplifier and the AD converter, which are typical conventional means. Therefore, the circuit scale is reduced.
  • the communication apparatus M can reduce power consumption at a lower cost.
  • the communication apparatus M of this embodiment the communication apparatus by the above-mentioned low-speed DLC transmission system is implement
  • a delay detection circuit is a delay detection circuit that performs a part of a decoding process for decoding data transmitted by a transmission device based on a received two-phase phase modulation received wave.
  • a limiter amplifier that converts and amplifies the signal into a square wave signal, a delay correlation calculation unit that performs a delay correlation calculation on the output of the limiter amplifier, and the received wave is transmitted by the transmission device based on the output of the delay correlation calculation unit
  • a capture unit that checks whether the received signal is a communication signal, and an output unit that outputs the output of the delay correlation calculation unit to a decoding unit that decodes the data based on the output of the delay correlation calculation unit It is characterized by that.
  • the limiter amplifier converts the received signal of the two-phase phase modulation method into a square wave signal and amplifies it
  • the delay correlation calculation unit performs the delay correlation calculation on the output of the limiter amplifier and captures it.
  • the unit detects whether or not the received wave is a communication signal transmitted by the transmission device based on the output of the delay correlation calculation unit, thereby performing delay detection.
  • generated at the process in the middle of this delay detection process is output to a decoding part via an output part.
  • the circuit scale is reduced as compared with the case where a so-called AGC amplifier or AD converter is used in the preceding stage of the delay correlation calculation unit, and further, the received wave is divided into two and delayed detection is performed with one of the received waves.
  • the delay detection circuit since a part of the delay detection circuit is used for the decoding process as compared with the case of decoding with the other received wave, the delay detection circuit having such a configuration can reduce power consumption at a low cost.
  • the output unit may be, for example, a terminal that outputs the output of the delay correlation calculation unit, and for example, a wiring (for example, a lead wire or a board) that connects the delay correlation calculation unit and the decoding unit. Including a wiring pattern and a wiring pattern in an integrated circuit).
  • the limiter amplifier further extracts only a communication band used for communication.
  • the delay detection circuit having such a configuration can remove a signal having a frequency excluding the communication band as noise.
  • the acquisition unit stores a plurality of pattern candidate candidates in advance as pattern candidates, and an output of the delay correlation calculation unit.
  • a shape generation unit that generates a shape for one symbol based on the shape
  • a comparison unit that compares the shape for one symbol of the shape generation unit with each of the plurality of pattern candidates, and the shape compared by the comparison unit
  • a coincidence determining unit that determines that the received wave is a communication signal transmitted by the transmitting device when the shape of one symbol of the generating unit and any of the plurality of pattern candidates match a plurality of times;
  • this delay detection circuit is a communication signal in which the received wave is transmitted by the transmission device when the shape of one symbol of the shape generation unit matches one of a plurality of pattern candidates a plurality of times. Assume there is (synchronization acquisition). For this reason, the delay detection circuit having such a configuration can determine that the received wave is a communication signal transmitted by the transmission device, and can accurately perform delay detection.
  • the shape generation unit includes a square calculation unit that squares the output of the delay correlation calculation unit, an output of the square calculation unit, and a predetermined threshold value.
  • a threshold value comparison unit that binarizes the output of the square calculation unit, and a register unit that stores the output of the threshold value comparison unit for one symbol.
  • the shape generation unit is preferably realized, and the delay detection circuit is preferably realized.
  • the shape for the one symbol is represented by a plurality of bits, and the pattern candidate is formed by predetermined values of the bits.
  • the plurality of pattern candidates are different bit patterns, and at least one of the plurality of pattern candidates has an arbitrary value of at least one of the bits.
  • the delay detection circuit having such a configuration, at least one value of each of the bits is arbitrary for at least one of the plurality of pattern candidates. For this reason, even when the shape of the symbol is different from the transmission waveform by the transmission device during transmission, the reception wave can be regarded as a communication signal transmitted by the transmission device. This delay detection circuit can capture the arrival of the received wave more reliably.
  • predetermined processing is performed at a time interval corresponding to the time length of one symbol so that decoding can be performed at the temporal center position of one symbol.
  • a tracking unit for adjusting the time interval in the case is further provided.
  • the delay detection circuit having such a configuration further includes a tracking unit, it is possible to correct a deviation between the clock interval of the transmission device and the clock interval of the reception device, and to perform delay detection more reliably.
  • the tracking unit stores a second register unit that stores a square result obtained by squaring the output of the delay correlation calculation unit for one symbol; 2 in the square result of one symbol stored in the two register section, the value at the central position that is approximately in the middle of the time, the value at the preceding position that is temporally preceding the central position, and the central position.
  • An interval adjustment unit that compares values at subsequent positions that follow in time and adjusts the time interval according to the comparison result is provided.
  • a tracking unit is preferably realized, and a delay detection circuit is preferably realized.
  • the above-described delay detection circuit further includes a decoding unit that decodes the data based on the output of the delay correlation calculation unit.
  • the delay detection circuit having such a configuration can further decode the data based on the received wave by further including a decoding unit.
  • the decoding unit includes a third register that stores an output of the delay correlation calculation unit for one symbol, and a center that is positioned approximately at the center of the third register.
  • a data decoding unit for decoding data based on the value at the position is provided.
  • a decoding unit is preferably realized, and a delay detection circuit is preferably realized.
  • the decoding unit includes a third register that stores an output of the delay correlation calculation unit for one symbol, and a center that is positioned approximately at the center of the third register.
  • a second data decoding unit that decodes data based on a value at a position, a value at a preceding position temporally preceding the central position, and a value at a subsequent position temporally following the central position; Prepare.
  • the delay detection circuit having such a configuration can decode data more accurately.
  • the communication signal has a frame configuration including a preamble portion and a payload portion, and the acquisition portion is further based on an output of the delay correlation calculation portion. Then, when the received wave captures the communication signal transmitted by the transmitting device, the end of the preamble section is further detected based on the output of the decoding section.
  • the delay detection circuit having such a configuration can establish synchronization with the transmission signal by detecting the end of the preamble section based on the output of the decoding section.
  • a receiving apparatus includes a combining unit that extracts a received wave depending on a communication signal from a transmission path, and a receiving unit that decodes data of the communication signal based on the received wave extracted by the combining unit.
  • a power receiving unit that generates drive power for driving the receiving unit from the power flowing through the transmission path, and the receiving unit includes any of the above-described delay detection circuits.
  • the receiving device having such a configuration includes any of the above-described delay detection circuits in the receiving unit, the power consumption can be reduced at a low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 本発明は、低コストで消費電力を低減することができる遅延検波回路およびこの遅延検波回路を用いた受信装置を提供する。本発明にかかる遅延検波回路は、受信した2相位相変調方式の受信波に基づいて送信装置によって送信されたデータを復号する復号処理の一部を行うものである。そして、本発明にかかる受信装置は、このような遅延検波回路を用いるものである。このため、本発明にかかる遅延検波回路および受信装置は、低コストで消費電力を低減することができる。

Description

遅延検波回路および受信装置
 本発明は、受信した2相位相変調方式の受信波に基づいて送信装置によって送信されたデータを復号する復号処理の一部を行う遅延検波回路およびこの遅延検波回路を用いた受信装置に関する。
 近年、通信技術の進展により様々な技術分野でネットワーク化が進んでおり、建物内の様々な機器がネットワークに接続されつつある。例えば、集合住宅、庁舎、ホール、商業ビルおよびオフィスビル等のビルあるいは戸別住宅の建物内には、照明機器、空調機器、計測機器および防犯機器等の様々な機器が設置されており、これら機器は、所定の伝送路によって相互に接続されることによってネットワーク化され、さらに近年では、監視制御装置がこのネットワークに接続されることによって集中的に監視および/または制御すること(集中的に監視および制御のうちの少なくとも一方を行うこと)が可能となってきている。
 このような複数の機器をネットワーク化することによって集中的に監視および/または制御する監視制御システムでは、主にコマンドデータや監視データ等のデータを送受信する監視制御用の通信プロトコルが用いられる。このような監視制御用の通信プロトコルには、例えば、典型的な通信プロトコルであるRS485規格に従った通信プロトコルや、エシェロン社が開発した知的分散制御ネットワーク技術であるLonWorks(Local Operating Network、LON、ロンワークス)(登録商標)や、パナソニック電工社が提唱するNMAST(登録商標)等がある。このNMASTは、配線トポロジーがフリーであり、伝送路にペア線を用いることができる等の特徴を有している。
 また、このようなネットワークを伝送する通信信号からそれに収容されているデータを取り出すためには、復号する必要がある。この復号には、例えば、ネットワークから受信した通信信号(受信信号)から一定位相の信号を抽出(搬送波再生)し、これを基準(基準位相信号)に復号を行う同期検波方式や、隣り合うシンボル(タイムスロット)の受信波の位相を比較することによって、すなわち1シンボル前の信号を基準にこの信号と同位相である場合にはそのデータの値を“0”(または“1”)とするとともに、この信号と異なる位相である場合にはそのデータの値を“1”(または“0”)とすることによって、復号を行う遅延検波方式等がある。この遅延検波方式は、前記のように復号を行うため、同期検波方式のように搬送波再生を行って基準位相信号を生成する必要がない。
 このような遅延検波方式による回路は、例えば、特許文献1に開示の遅延検波回路がある。この特許文献1に開示の遅延検波回路は、受信した2相PSK変調波の中間周波信号を方形波信号に変換し増幅するリミッタアンプと、該方形波信号の内の立ち上がりエッジのみを取り出すエッジ検出部と、該中間周波信号の周波数による周期を有するノコギリ波信号を発生するノコギリ波発生器と、該立ち上がりエッジにより該ノコギリ波信号をサンプル・ホールドして受信信号の位相を電圧として検出する第1のサンプル・ホールド回路と、該サンプル・ホールドされた信号を1シンボル遅らせたタイミング信号により更にサンプル・ホールドする第2のサンプル・ホールド回路と、両サンプル・ホールドの出力信号間で減算を行うことにより隣り合った2シンボル間の位相差を検出する減算回路と、該減算回路の出力信号に同期したシンボルタイミング信号を生成するタイミング再生回路と、該減算回路の出力信号を該タイミング信号により識別して再生データを出力する識別回路とを備えている。
 ところで、遅延検波回路は、一般的な回路と同様に、低コスト化や低消費電力化が要請されている。
特開平5-183593号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、前記特許文献1に開示の遅延検波回路と異なる構成によって、低コストで消費電力を低減することができる遅延検波回路およびこの遅延検波回路を用いた受信装置を提供することである。
 本発明にかかる遅延検波回路は、受信した2相位相変調方式の受信波に基づいて送信装置によって送信されたデータを復号する復号処理の一部を行うものである。そして、本発明にかかる受信装置は、このような遅延検波回路を用いるものである。このため、本発明にかかる遅延検波回路および受信装置は、低コストで消費電力を低減することができる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態における通信装置の構成を示す図である。 図1に示す通信装置における受信回路の構成を示す図である。 図1に示す通信装置で用いられる通信信号のフレーム構成を示す図である。 図1に示す通信装置におけるトラッキング部の動作を説明するための図である。 図1に示す通信装置における復号回路の構成を示す図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。
 図1は、実施形態における通信装置の構成を示す図である。図2は、実施形態の通信装置における受信回路の構成を示す図である。図3は、実施形態における通信装置で用いられる通信信号のフレーム構成を示す図である。図4は、実施形態の通信装置におけるトラッキング回路の動作を説明するための図である。図5は、実施形態の通信装置における復号回路の構成を示す図である。図5(A)は、復号回路の第1の構成を示し、図5(B)は、復号回路の第2の構成を示す。
 本実施形態の通信装置Mは、ネットワークを介して接続される他の通信装置(不図示)から送信された通信信号を受信する受信装置としての機能と、前記ネットワークを介して前記他の通信装置またはさらに他の通信装置(不図示)へ通信信号を送信する送信装置としての機能とを備える装置である。この通信信号には、本実施形態では、例えば、差動型2相位相変調方式(DBPSK方式)が採用されており、送信すべきデータがDBPSK方式によって符号化(変調)され、通信信号の送信波が生成されている。DBPSK方式では、前記送信すべきデータの値が“0”の場合には互いに隣り合う2個のシンボル間における位相変化量が“0”(または“π”)であり、前記送信すべきデータの値が“1”の場合には前記位相変化量が“π”(または“0”)である。
 このような通信装置Mは、例えば、図1に示すように、ブリッジダイオード回路1によって伝送路PLに接続され、受電部2と、アナログフロントエンド部(AFE部)3と、通信部4と、入出力インタフェース部(入出力IF部)5とを備えて構成される。
 伝送路PLは、通信信号を伝播(伝送)するための媒体であり、前記ネットワークに接続されている、あるいは、前記ネットワークの一部を構成するものである。伝送路PLは、本実施形態では、例えば、一対のペア線である。本実施形態では、通信装置Mは、上述のようにブリッジダイオード回路1を介して一対のペア線に接続されるので、当該通信装置Mをペア線に接続する際の配線極性がペア線に対し無極性であり、ペア線の極性を勘案することなくペア線に接続することができる。すなわち、ブリッジダイオード回路1の1対の入力端における一方端および他方端を、ペア線の電圧ラインおよび接地ラインにそれぞれ接続しても、ペア線の接地ラインおよび電圧ラインにそれぞれ接続しても良い。
 受電部2は、ブリッジダイオード回路1に接続され、ブリッジダイオード回路1を介して伝送路PLを流れる電力から、本通信装置Mを駆動する駆動電力を生成する回路である。受電部2は、本実施形態では、例えば、伝送路PLを伝播する通信信号の通信帯域に対して高インピーダンスになるインピーダンスアッパ回路21と、交流電力から直流電力を生成する電源回路22とを備えて構成される。通信帯域に対して高インピーダンスとは、伝送路PLを伝播する通信信号の伝送距離に与える影響が少ないという意味である。インピーダンスアッパ回路21は、例えば、伝送路PLを伝播する通信信号の通信帯域に対して高インピーダンスになるインダクタを備えて構成される。電源回路22は、例えば、三端子レギュレータとコンデンサとを備えて構成され、交流電力から、所定の定電圧の駆動電力を生成する。
 伝送路PLを流れる電力は、ブリッジダイオード回路1を介して受電部2へ給電される。受電部2は、インピーダンスアッパ回路21を介して給電された前記電力を、電源回路22によって、前記所定の定電圧の駆動電力に変換し、前記所定の定電圧をAFE部3および通信部4等の、通信装置Mにおける駆動電力の必要な各部へ供給する。
 AFE部3は、ブリッジダイオード回路1に接続され、ブリッジダイオード回路1を介して、伝送路PLと通信部4とを互いに結合する回路であり、AFE部3は、ブリッジダイオード回路1を介して、伝送路PLから通信信号に依る受信波を取り出して通信部4へ出力するとともに、通信部4からの通信信号に依る送信波を、ブリッジダイオード回路1を介して、伝送路PLへ送出するものである。AFE部3は、本実施形態では、例えば、コンデンサC1、C2と、増幅器31と、リミッタアンプ32とを備えて構成される。コンデンサC1、C2は、伝送路PLを流れる電力成分の周波数、すなわち、少なくとも通信信号による電力成分を除く電力成分の周波数をカット(遮断)する素子である。コンデンサC1は、その一方端が増幅器31の出力端に接続され、その他方端がブリッジダイオード回路1の電圧ラインに接続され、これによって増幅器31とブリッジダイオード回路1との間に介在されている。コンデンサC2は、その一方端がブリッジダイオード回路1の電圧ラインに接続され、その他方端が後述の増幅器APの入力端に接続され、これによってブリッジダイオード回路1と増幅器APとの間に介在されている。増幅器31は、通信部4から入力された通信信号を所定の増幅率で増幅する回路であり、受電部2から供給された駆動電力によって駆動する。
 リミッタアンプ32は、ブリッジダイオード回路1およびコンデンサC2を介して伝送路PLから受信した受信波の振幅を所定の一定値で制限することによって前記受信波を略方形の波形である方形波信号に変換し、そして増幅する回路である。リミッタアンプ32は、その出力特性がヒステリシスを持っており、所定に閾値以上の電圧値が入力されると、ハイレベルの所定の電圧値を出力し、前記所定の閾値未満の電圧値が入力されると、ローレベルの所定の電圧値を出力する。リミッタアンプ32は、増幅器APへ受電部2から駆動電力が供給されることによって、駆動する。
 伝送路PLを伝播する通信信号による通信波は、ブリッジダイオード回路1を介して受信波として受信され、この受信波は、AFE部3のコンデンサC2を介してリミッタアンプ32へ入力され、受信波の振幅レベルに応じて方形波信号に変換され、増幅される。そして、この増幅された受信波による方形波信号は、AFE部3のリミッタアンプ32から通信部4へ出力される。また、通信部4で生成された通信信号は、通信部4からAFE部3の増幅器31へ入力され、所定の増幅率で増幅され、コンデンサC1およびブリッジダイオード回路1介して伝送路PLへ送出される。
 リミッタアンプ32は、本実施形態では、さらに、通信に使用している通信帯域(伝送帯域)のみを抽出するバンドパスフィルタ(BPF)の機能を兼ね備えたアクティブフィルタとしてもよい。これによって前記通信帯域を除く周波数の信号をノイズとして除去することができる。
 通信部4は、受電部2およびAFE部3のそれぞれに接続され、AFE部3のリミッタアンプ32から入力された方形波信号に基づいて通信信号のデータを復号(復調)するとともに、送信すべきデータを通信信号に符号化(変調)する回路である。通信部4は、本実施形態では、例えば、送信すべきデータを通信信号に符号化(変調)する送信回路41と、AFE部3のリミッタアンプ32の出力に基づいて通信信号のデータを復号(復調)する受信回路42とを備えて構成される。受信回路42の詳細については、後述する。
 入出力IF部5は、通信部4に接続され、本通信装置Mと外部の機器との間でデータを入出力するためのインタフェース回路である。入出力IF部5に前記外部の機器が接続されている場合に、前記外部の機器から入出力IF部5に入力されたデータは、通信部4の送信回路41へ出力され、通信部4の送信回路41によって符号化(変調)され、一方、通信部4の受信回路42で復号(復調)されたデータは、入出力IF部5へ出力され、前記外部の機器へ出力される。
 前記受信回路42は、例えば、図2に示すように、遅延検波回路Sと、トラッキング回路8と、復号回路9とを備えて構成されている。
 遅延検波回路Sは、AFE部3におけるリミッタアンプ32の出力端に接続され、リミッタアンプ32の出力が入力され、受信波が通信信号であるか否かを調べる回路である。より具体的には、遅延検波回路Sは、前記受信波に対し遅延相関演算を行う遅延相関演算回路6と、遅延相関演算回路6の出力に基づいて前記受信波が前記他の通信装置によって送信された通信信号であるか否かを調べる捕捉回路7と、遅延相関演算回路6の出力に基づいてデータの復号を行う復号回路9へ遅延相関演算回路6の出力を出力するための出力部SLとを備えて構成される。本実施形態では、まず、捕捉回路7が動作し、遅延相関演算回路6の出力に基づいて前記他の送信装置によって送信された通信信号を捕捉する。その後、後述の復号回路9が動作し、後述のプリアンブル部の終了を検出する。
 出力部SLは、本実施形態では、遅延相関演算回路6と復号回路9とをつなぐ配線(例えばリード線や基板の配線パターンや集積回路における配線パターン等を含む)である。なお、出力部SLは、この配線に限定されるものではなく、例えば、遅延相関演算回路6の出力を出力するための端子等であってもよい。
 遅延相関演算回路6は、AFE部3のリミッタアンプ32に接続され、例えば、I用乗算器(I用ミキサ)61Iと、I用ナイキストフィルタ62Iと、I用シフトレジスタ63Iと、I用相関演算回路64Iと、Q用乗算器(I用ミキサ)61Qと、Q用ナイキストフィルタ62Qと、Q用シフトレジスタ63Qと、Q用相関演算回路64Qと、加算器65とを備えて構成される。AFE部3のリミッタアンプ32の出力は、所定のサンプリング間隔でサンプリングされて受信回路42に入力され、遅延相関演算回路6に入力される。サンプリング間隔は、いわゆる標本化定理によって決定されるが、本実施形態では、1シンボルの波形を、予め設定された所定の個数nのサンプリング点でサンプリングするように設定されている。
 I用乗算器61Iは、AFE部3のリミッタアンプ32に接続され、リミッタアンプ32の出力とローカル周波数ωのsinωtとを乗算することによってI信号成分を生成する回路である。I用ナイキストフィルタ62Iは、I用乗算器61Iに接続され、I用乗算器61Iから出力されたI信号成分を所定のナイキストフィルタ特性でフィルタリングする回路である。受信用のナイキストフィルタは、送信用のナイキストフィルタとセット(組)で、ナイキストフィルタ特性を持つように構成してある。I用シフトレジスタ63Iは、I用ナイキストフィルタ62Iに接続され、I用ナイキストフィルタ62Iの出力を所定のビット数分で記憶する回路である。本実施形態では、1シンボルの波形を前記n個のサンプリング点でサンプリングするように受信回路42が構成されていることから、I用シフトレジスタ63Iは、1シンボル分のデータを記憶することができるように、nビットで構成されている。シフトレジスタは、1ビットのデータ(値)を記憶するフリップフロップを複数個カスケード接続したディジタル回路であって、前記1ビットのデータがその回路内を順次に移動(シフト)する回路である。I用相関演算回路64Iは、I用ナイキストフィルタ62IおよびI用シフトレジスタ63Iに接続され、I用ナイキストフィルタ62Iの出力とI用シフトレジスタ63Iの出力との相関演算を行う回路である。これによってI信号成分に対し遅延相関演算が行われる。
 また同様に、Q用乗算器61Qは、AFE部3のリミッタアンプ32に接続され、リミッタアンプ32の出力とローカル周波数ωの-cosωtとを乗算することによってQ信号成分を生成する回路である。Q用ナイキストフィルタ62Qは、Q用乗算器61Qに接続され、Q用乗算器61Qから出力されたQ信号成分を所定のナイキストフィルタ特性でフィルタリングする回路である。この受信用のナイキストフィルタは、送信用のナイキストフィルタとセット(組)で、ナイキストフィルタ特性を持つように構成してある。Q用シフトレジスタ63Qは、Q用ナイキストフィルタ62Qに接続され、Q用ナイキストフィルタ62Qの出力を所定のビット数分で記憶する回路である。Q用シフトレジスタ63Qは、1シンボル分のデータを記憶することができるように、nビットで構成されている。Q用相関演算回路64Qは、Q用ナイキストフィルタ62QおよびQ用シフトレジスタ63Qに接続され、Q用ナイキストフィルタ62Qの出力とQ用シフトレジスタ63Qの出力との相関演算を行う回路である。これによってQ信号成分に対し遅延相関演算が行われる。
 加算器65は、I用相関演算回路64IおよびQ用相関演算回路64Qのそれぞれに接続され、I用相関演算回路64Iの出力およびQ用相関演算回路64Qの出力を加算する回路である。この加算結果は、遅延相関演算回路6の出力として、出力部SLによって、捕捉回路7および復号回路9のそれぞれへ出力される。
 捕捉回路7は、遅延相関演算回路6に接続され、例えば、図2に示すように、2乗演算回路71と、第1閾値比較回路72と、sync用シフトレジスタ73と、候補比較回路74と、一致判定回路75と、パターン候補記憶回路76とを備えて構成される。
 2乗演算回路71は、遅延相関演算回路6の加算器65に接続され、遅延相関演算回路6の出力、すなわち、加算器65の出力に対しその2乗を演算する回路である。第1閾値比較回路72は、2乗演算回路71に接続され、2乗演算回路72の出力(2乗結果)と予め設定された所定の第1閾値Th1とを比較することによって2乗演算回路71の出力を2値化する回路である。sync用シフトレジスタ73は、第1閾値比較回路72に接続され、第1閾値比較回路72の出力(第1閾値比較結果)を所定のビット数で記憶する回路である。sync用シフトレジスタ73は、1シンボル分のデータを記憶することができるように、nビットで構成されている。
 遅延相関演算回路6の出力は、2乗演算回路71によってその2乗が演算され、この2乗結果が第1閾値比較回路72によって前記所定の第1閾値Th1と比較され、その第1閾値比較結果がsync用シフトレジスタ73に記憶される。これによって遅延相関演算回路6の出力に基づく1シンボル分の形状が生成され、sync用シフトレジスタには、この遅延相関演算回路6の出力に基づく1シンボル分の形状が記憶される。このように1シンボルの形状は、複数のビットによって表されている。このような2乗演算回路71、第1閾値比較回路72およびsync用シフトレジスタ73は、遅延相関演算回路6の出力に基づく1シンボル分の形状を生成する形状生成部を構成し、この形状生成部の一例に対応する。
 パターン候補記憶回路76は、1シンボル分の形状の候補をパターン候補として複数個予め記憶する回路である。パターン候補は、各ビットの値を予め既定することによって形成された所定のビットパターンであり、複数のパターン候補は、互いに異なるビットパターンであって、複数のパターン候補のうちの少なくとも1つは、各ビットのうちの少なくとも1つの値が任意となっている。
 ここで、通信信号のフレーム100は、例えば、図3に示すように、プリアンブル部101と、送信すべきデータを収容するペイロード部102とを備えて構成され、プリアンブル部101は、受信した受信波からデータを復号するために、復号のタイミングを、受信した受信波に同期させるために使用される同期パターンを収容する同期パターン部111と、同期パターン部111の終了を表すSFD部112とを備えて構成される。SFD部112は、プリアンブル部101の終了を表すものでもあり、さらには、ペイロード部102の開始を表すものでもある。
 本実施形態では、この同期パターン部111には、同期パターンとして、例えば、「111・・・111」が収容され、SFD部112には、例えば、「1010」が収容されている。DBPSK方式では、上述したように、互いに隣接する2個のシンボル間における位相変化量とデータの値とを対応付けている。このようなDBPSK方式の場合では、111・・・111とすると、毎回、位相が反転するので、同期パターンには、「111・・・111」が採用され、同期を容易に取れるようにされている。
 そして、1シンボルをn個のサンプリング点でサンプリングした場合、遅延相関演算を行ってその2乗の第1閾値判定結果は、相関が高い場合であって、受信波にノイズがほとんど乗っていない場合(受信波にノイズがほとんど重畳していない場合)には16個のサンプリング点の中心付近では“1”となってその他では“0”となるパターン、例えば「00・・・01110・・・00」や「00・・・00100・・・00」となる。しかしながら、例えば受信波にノイズが重畳されたり位相がずれたり等すると、前記第1閾値判定結果は、n個のサンプリング点の中心付近ではない処に“1”が現れる場合がある。そこで、本実施形態では、パターン候補記憶回路76に予め記憶される前記パターン候補は、複数とされ、この複数のパターン候補には、n個のサンプリング点の中心付近ではない処に“1”を含むパターンやn個のサンプリング点の中心付近ではない処が不定(データ値が任意、すなわち“0”でも“1”でもよい)であるパターン等が含まれる。この複数のパターン候補は、例えば、この通信装置が用いる伝送路のトポロジーやその伝送特性(例えば位相の崩れ方等)等を考慮することによって予め既定され、「00・・・01110・・・00」や「00・・・00100・・・00」の2パターンにさらに「00・・・011110・・・00」や「00・・・1XX1111XXX1・・・00」等のパターンを含んでいる。Xは、“0”および“1”であることを表している。このようにパターン候補は、各ビットの値を予め既定することによって形成された所定のビットパターンであり、複数のパターン候補は、互いに異なるビットパターンであって、複数のパターン候補のうちの少なくとも1つは、各ビットのうちの少なくとも1つの値が任意である。
 候補比較回路74は、sync用シフトレジスタ73およびパターン候補記憶回路76のそれぞれに接続され、sync用シフトレジスタ73に記憶されている1シンボル分の形状とパターン候補記憶回路76に記憶されている複数のパターン候補のそれぞれの形状とを比較する回路である。sync用シフトレジスタ73に記憶されている1シンボル分の形状とパターン候補記憶回路76に記憶されている複数のパターン候補のそれぞれの形状との比較において、候補比較回路74は、sync用シフトレジスタ73の各ビットに記憶されている各値と、パターン候補の各ビットの各値とを比較する。
 一致判定回路75は、候補比較回路74に接続され、候補比較回路74より入力されたその比較結果に基づいて、候補比較回路74によって比較されたsync用シフトレジスタ73の1シンボル分の形状と複数のパターン候補のいずれかとがnサンプル間隔(1シンボル間隔)で複数回一致した場合に、受信波が前記他の通信装置によって送信された通信信号であるとみなす回路である。前記一致回数は、例えば、2回、3回および4回等でよい。この一致回数が多ければその判定精度は上がるが、その一方で判定時間が長くなる。
 トラッキング回路8は、遅延検波回路Sに接続され、1シンボルにおける時間的な中央位置で復号を行うことができるように、1シンボルの時間長に対応する時間間隔で所定の処理を行う場合における前記時間間隔を調整する回路である。前記所定の処理は、本実施形態では、復号回路9のDec用シフトレジスタ91に対するデータ復号回路92による復号処理が挙げられる。より具体的には、トラッキング回路8は、例えば、図2に示すように、Tr用シフトレジスタ81と、間隔調整回路82とを備えて構成される。
 Tr用シフトレジスタ81は、遅延検波回路Sの2乗演算回路71に接続され、1シンボル分の、遅延相関演算回路6の出力を2乗演算回路71で2乗した2乗結果を記憶する回路である。間隔調整回路82は、Tr用シフトレジスタ81に接続され、Tr用シフトレジスタ81に記憶された1シンボル分の2乗結果において、その時間的に略中央に位置する中央位置におけるサンプリング値(mean値)、前記中央位置よりも時間的に1サンプリング点先行する先行位置におけるサンプリング値(early値)および前記中央位置よりも時間的に1サンプリング点後行する後行位置におけるサンプリング値(late値)のそれぞれを比較し、その比較結果に応じて前記時間間隔を調整する回路である。より具体的には、まず、nサイクルごとに、前記mean値、前記early値、前記late値を比較し、前記3値にそれぞれ対応するMEANカウンタ、EARLYカウンタおよびLATEカウンタに対し、前記比較結果の最大値のカウンタに1ポイントを加算する。そして、前記MEANカウンタが前記所定の第2閾値Th2を越えた場合には、時間調整回路82は、現在の前記時間間隔を維持するように復号回路9を動作させ、前記EARLYカウンタが前記所定の第2閾値Th2を越えた場合には、時間調整回路82は、現在の前記時間間隔を1サンプリング長だけ長くするように復号回路9を動作させ、そして、前記LATEカウンタが前記所定の第2閾値Th2を越えた場合には、時間調整回路82は、現在の前記時間間隔を1サンプリング長だけ短くするように復号回路9を動作させる。
 本実施形態では、各回路が動作クロックのクロックタイミングに合わせて動作し、1シンボルがn個のサンプリング点でサンプリングされているので、図4に示すように、前記MEANカウンタが前記所定の第2閾値Th2を越えた場合には、シンボルの時間的な略中央位置と復号回路9でデータを復号するタイミングとが一致している場合であるから(図4(I)参照)、時間調整回路82は、現在の同期タイミングを維持するように、nサイクルの前記時間間隔で復号回路9を動作させ(図4(A)、(B)、(C)および(E)参照)、前記EARLYカウンタが前記所定の第2閾値Th2を越えた場合には、シンボルの時間的な略中央の位置より復号回路9でデータを復号するタイミングが時間的に先行している場合であるから(図4(I)参照)、時間調整回路82は、現在の同期タイミングを遅らせるように、early_out信号を出力することによって1回だけ(n+1)サイクルの前記時間間隔で復号回路9を動作させ(図4(A)、(B)、(C)、(D)および(G)参照)、そして、前記LATEカウンタが前記所定の第2閾値Th2を越えた場合には、シンボルの時間的な略中央の位置より復号回路9でデータを復号するタイミングが時間的に後行している場合であるから(図4(I)参照)、時間調整回路82は、現在の同期タイミングを早めるように、late_out信号を出力することによって1回だけ(n-1)サイクルの前記時間間隔で復号回路9を動作させる(図4(A)、(B)、(C)、(F)および(H)参照)。
 なお、図4(A)は、通信部4における各回路の動作タイミングを同期させるためのクロックを表し、図4(B)は、Tr用シフトレジスタ81の各ビット値(相関信号)を表し、図4(C)は、遅延検波回路Sによって確立された同期タイミングを表し、図4(D)は、EARLYカウンタを表し、図4(E)は、MEANカウンタを表し、図4(F)は、LATEカウンタを表し、図4(G)は、early_out信号を表し、図4(H)は、late_out信号を表し、そして、図4(I)は、図4(B)および図4(C)の部分拡大図である。
 復号回路9は、遅延検波回路Sの遅延相関演算回路6に前記出力部SLによって接続され、遅延相関演算回路6の出力に基づいてデータの復号を行う回路である。より具体的には、復号回路9は、例えば、図2(図5(A))に示すように、Dec用シフトレジスタ91と、データ復号回路92とを備えて構成される。
 Dec用シフトレジスタ91は、遅延検波回路Sの遅延相関演算回路6に前記出力部SLによって接続され、1シンボル分の遅延相関演算回路6の出力を記憶する回路である。データ復号回路92は、Dec用シフトレジスタ91に接続され、Dec用シフトレジスタ91の略中央に位置する中央位置における値に基づいてデータを復号する回路である。より具体的には、データ復号回路92は、通信信号がDBPSK方式で符号化されているので、Dec用シフトレジスタ91の略中央に位置する中央位置(中央位置のビット)における値の符号ビットを1、0に対応付けて復号データとする。
 なお、復号回路9は、図2(図5(A))に示す構成に代え、図5(B)に示す構成であってもよい。すなわち、この復号回路9Aは、図5(B)に示すように、Dec用シフトレジスタ91と、データ復号回路92Aとを備えて構成される。Dec用シフトレジスタ91は、遅延検波回路Sの遅延相関演算回路6に前記出力部SLによって接続され、1シンボル分の遅延相関演算回路6の出力を記憶する回路である。データ復号回路92Aは、Dec用シフトレジスタ91に接続され、Dec用シフトレジスタ91の略中央に位置する中央位置における値と、前記中央位置よりも時間的に先行する先行位置における値および前記中央位置よりも時間的に後行する後行位置における値(例えば前記中央位置に対する直前直後に位置する所定ビット数(1または複数)の各値)と、に基づいてデータを復号する回路である。より具体的には、データ復号回路92Aは、通信信号がDBPSK方式で符号化されているので、Dec用シフトレジスタ91の略中央に位置する中央位置における値(中央位置のビットの値)と、前記中央位置よりも時間的に先行する先行位置における値および前記中央位置よりも時間的に後行する後行位置における値(例えば前記中央位置に対する直前直後に位置する所定ビット数(1または複数)の各値)と、の総和における符号ビットを1,0に対応付けて復号データとする。前記中央位置に対する前後のビットのビット数は、図5(B)に示す例では、前に3ビットであって後に3ビットであるが、これに限定されるものではなく、例えば、前に2ビットであって後に2ビットである場合や前に1ビットであって後に1ビットである場合等であってもよい。このように図5(B)に示す構成の復号回路9Aは、Dec用シフトレジスタ91の略中央に位置する中央位置における値だけでなく、前記中央位置に対する先行位置における値および前記中央位置に対する後行位置における値も、例えば前記中央位置に対する直前直後に位置する各値も、データの復号に用いるので、より精度よくより正確にデータを復号することができる。
 次に、本実施形態の通信装置Mについて、その受信動作について説明する。本実施形態の通信装置Mは、例えば、図略の電源スイッチ等の投入によってその動作を開始し、さらに、通信信号を受信する受信動作を開始すると、通信信号の有無に関わらず、伝送路PLからブリッジダイオード回路1を介して受信波をAFE部3に取り込む。この取り込まれた受信波は、コンデンサC2を介してリミッタアンプ32に入力され、リミッタアンプ32によって受信波の振幅レベルに応じた波形に変換され、この波形変換された受信波は、リミッタアンプ32から通信部4の受信回路42へ出力される。
 受信回路42では、遅延検波回路Sによって遅延検波される。より具体的には、まず、この波形変換された受信波は、I用乗算器61IおよびQ用乗算器61Qのそれぞれに入力される。
 I用乗算器61Iでは、この波形変換された受信波と前記sinωtとが乗算され、その乗算によって生成されたI信号成分は、I用ナイキストフィルタ62Iに入力される。I用ナイキストフィルタでは、I信号成分は、送受信のセットでナイキストフィルタ特性を構成したフィルタ特性によってフィルタリングされ、そのフィルタリングされたI信号成分は、I用シフトレジスタ63IおよびI用相関演算回路64Iに入力される。I用シフトレジスタ63Iでは、前記フィルタリングされたI信号成分は、入力端のビット(フリップフロップ)から出力端のビット(フリップフロップ)へ、動作クロックのクロックタイミングに合わせて順次に移動し、I用相関演算回路64Iに入力される。I用相関演算回路64Iでは、前記動作クロックのクロックタイミングに合わせて、I用ナイキストフィルタ62Iから入力された前記フィルタリングされたI信号成分とI用シフトレジスタ63Iから入力された1シンボル分だけ前の前記フィルタリングされたI信号成分とが相関演算(乗算)され、その相関演算の結果が加算器65に入力される。
 また同様に、Q用乗算器61Qでは、この波形変換された受信波と前記-cosωtとが乗算され、その乗算によって生成されたQ信号成分は、Q用ナイキストフィルタ62Qに入力される。Q用ナイキストフィルタでは、Q信号成分は、送受信のセットでナイキストフィルタ特性を構成したフィルタ特性によってフィルタリングされ、そのフィルタリングされたQ信号成分は、Q用シフトレジスタ63QおよびQ用相関演算回路64Iに入力される。Q用シフトレジスタ63Qでは、前記フィルタリングされたQ信号成分は、入力端のビット(フリップフロップ)から出力端のビット(フリップフロップ)へ、動作クロックのクロックタイミングに合わせて順次に移動し、Q用相関演算回路64Qに入力される。Q用相関演算回路64Qでは、前記動作クロックのクロックタイミングに合わせて、Q用ナイキストフィルタ62Qから入力された前記フィルタリングされたQ信号成分とQ用シフトレジスタ63Qから入力された1シンボル分だけ前の前記フィルタリングされたQ信号成分とが相関演算(乗算)され、その相関演算の結果が加算器65に入力される。
 加算器65では、I用相関演算回路64Iの相関演算の結果とQ用相関演算回路64Qの相関演算の結果とが加算され、この加算結果は、出力部SLに出力され、捕捉回路7および復号回路9のそれぞれに入力される。
 ここで、受信波をS(i)とし、受信波S(i)の実部をI(i)とし、受信波S(i)の虚部をQ(i)とし、虚数単位をj(j=-1)とする場合には、受信波S(i)は、S(i)=I(i)+jQ(i)と表され、1シンボル前の受信波S(i-T)は、S(i-T)=I(i-T)+jQ(i-T)と表される。時間Tは、1個のシンボルの時間的な長さである。本実施形態の通信装置Mでは、1シンボルの波形をn個のサンプリング点でサンプリングしているので、T=n×サンプリング間隔となる。iは、動作クロックのクロック番号である。このように定義すると、遅延相関値c(i)は、c(i)=(I(i)+jQ(i))・(I(i-T)-jQ(i-T))=[I(i)I(i-T)+Q(i)Q(i-T)]+j[Q(i)I(i-T)-I(i)Q(i-T)]=A+jB、A=I(i)I(i-T)+Q(i)Q(i-T),B=Q(i)I(i-T)-I(i)Q(i-T)となる。本実施形態の通信装置Mでは、DBPSKであるため、虚部Bを無視し、上述の構成によって上述のように動作し、この実部Aのみを復号回路に用いればよい。
 捕捉回路7では、遅延相関演算回路6から捕捉回路7に入力された前記加算結果(遅延相関値c(i)=A)は、まず、2乗演算回路71に入力される。2乗演算回路71では、遅延相関値Aの2乗が演算され、その2乗結果(e(i)=A=((I(i)I(i-T))+(Q(i)Q(i-T)))は、第1閾値比較回路72に入力される。第1閾値比較回路72では、前記2乗結果Aが所定の第1閾値Th1と比較され、2値化され、この2値化された2乗結果A’は、sync用シフトレジスタ73に入力される。すなわち、前記2乗結果Aが所定の第1閾値Th1よりも小さい場合には、“0”とされ、一方、前記2乗結果Aが所定の第1閾値Th1以上である場合には、“1”とされる。sync用シフトレジスタ73では、この2値化された2乗結果A’は、入力端のビット(フリップフロップ)から出力端のビット(フリップフロップ)へ、動作クロックのクロックタイミングに合わせて順次に移動される。そして、候補比較回路74は、動作クロックのクロックタイミングごとに、sync用シフトレジスタ73における1シンボル分の形状とパターン候補記憶回路76における複数のパターン候補のそれぞれの形状とを比較し、その比較結果は、一致判定回路75に入力される。前記比較は、互いに対応するビットごとに較べることによって実行される。一致判定回路75では、前記比較結果に基づいて、候補比較回路74によって比較されたsync用シフトレジスタ73における1シンボル分の形状とパターン候補記憶回路76における複数のパターン候補のいずれかとが一致した回数が計数(カウント)される。
 そして、同期パターンの各ビットが次々に受信されることによって、受信回路42では、候補比較回路74から一致判定回路75に、前記一致した比較結果が入力され、一致判定回路75では、前記比較結果に基づいて、前記一致した回数がカウントアップされる。ここで、本実施形態では、1シンボルがn個のサンプリング点によってサンプリングされていることから、効率的に前記判定を行うために、1回目の一致が判定されると、捕捉回路7は、2回目の判定動作では、1回目の一致の判定から(n-1)サンプリング後、nサンプリング後および(n+1)サンプリング後の各タイミングで、前記判定を行う。なお、捕捉回路7は、1回目の一致判定からnサンプリング後で前記判定を行うように構成されてもよいが、上述のように、nサンプリング後だけでなく、nサンプリング後の前後である(n-1)サンプリング後および(n+1)サンプリング後の各タイミングで前記判定を行うことで、より確実に同期パターンを捉えることができる。さらに、本実施形態では、2回目の一致が判定されると、同様の観点から、捕捉回路7は、3回目の判定動作では、1回目の一致の判定から(2n-2)サンプリング後、(2n-1)サンプリング後、2nサンプリング後、(2n+1)サンプリング後および(2n+2)サンプリング後の各タイミングで、前記判定を行う。なお、捕捉回路7は、1回目の一致判定から2nサンプリング後で前記判定を行うように構成されてもよく、あるいは、2回目の一致の判定から(n-1)サンプリング後、nサンプリング後および(n+1)サンプリング後の各タイミングで前記判定を行うように構成されてもよい。
 そして、前記一致した回数が3回となった場合に、プリアンブル部101の検出と判定され、遅延検波による同期が捕捉される。この同期捕捉の後に、捕捉回路7の一致判定回路75は、トラッキング回路8にトラッキング動作を開始させ、復号回路9に復号動作を開始させる。
 トラッキング回路8では、そのトラッキング動作が開始されると、Tr用シフトレジスタ81では、捕捉回路7の2乗演算回路71から入力された前記2乗結果(e(i)=A)が、入力端のビット(フリップフロップ)から出力端のビット(フリップフロップ)へ、動作クロックのクロックタイミングに合わせて順次に移動される。そして、時間調整回路82は、遅延検波回路Sによって捕捉された同期に応じて、Tr用シフトレジスタ81における略中央に位置する中央位置におけるサンプリング値(mean値)、前記中央位置よりも時間的に1サンプリング点先行する先行位置におけるサンプリング値(early値)および前記中央位置よりも時間的に1サンプリング点後行する後行位置におけるサンプリング値(late値)のそれぞれを比較し、その比較結果に応じて前記時間間隔を調整する。より具体的には、図4を用いて上述したように、間隔調整回路82は、前記MEANカウンタが前記所定の第2閾値Th2を越えた場合には、現在の同期タイミングを維持するように、nサイクルを前記時間間隔として復号回路9を動作させ、前記EARLYカウンタが前記所定の第2閾値Th2を越えた場合には、現在の同期タイミングを遅らせるように1回だけ(n+1)サイクルを前記時間間隔として復号回路9を動作させ、そして、前記LATEカウンタが前記所定の第2閾値Th2を越えた場合には、現在の同期タイミングを早めるように1回だけ(n-1)サイクルを前記時間間隔として復号回路9を動作させる。
 また、復号回路9では、その復号動作が開始されると、Dec用シフトレジスタ91では、遅延検波回路Sの遅延相関演算回路6から入力された前記遅延相関値c(i)(=A)が、入力端のビット(フリップフロップ)から出力端のビット(フリップフロップ)へ、動作クロックのクロックタイミングに合わせて順次に移動される。そして、データ復号回路92は、遅延検波回路Sによって捕捉された同期に応じて、Dec用シフトレジスタ91の略中央に位置する中央位置(中央位置のビット)における値の符号ビットを0、1に対応付けて復号データとする。
 あるいは、データ復号回路92に代え、図5(B)に示すデータ復号回路92Aの場合では、データ復号回路92Aは、遅延検波回路Sによって確立された同期に応じて、Dec用シフトレジスタ91の略中央に位置する中央位置における値(中央位置のビットの値)および前記中央位置に対する直前直後に位置する各値(中央位置のビットに対する前後の各ビットの各値)の総和における符号ビットを0、1に対応付けて復号データとする。
 そして、捕捉回路7は、前記同期捕捉の後に、このように復号回路9で復号されたデータを調べ、プリアンブル部101のSFD部112のビットパターン、例えば、上述の「1010」を検出することによってプリアンブル部101の終了を検出し、これによって送信信号との同期が確立される。
 このように動作することによって、通信装置Mは、通信信号が伝送路PLを伝播してくると、この通信信号を遅延検波し、通信信号からデータを復号することができる。
 そして、本実施形態の通信装置Mおよび遅延検波回路Sでは、遅延相関演算回路6が受信波に対し遅延相関演算を行い、捕捉回路7が遅延相関演算回路6の出力に基づいて前記受信波が送信装置によって送信された通信信号であるか否かを判定することで、遅延検波が行われる。そして、この遅延検波処理の途中の工程で生成された遅延相関演算の結果(遅延相関値c(i)(=A))が復号回路9へ出力部SLを介して出力される。このため、受信波を2つに分配し、その一方の受信波で遅延検波を行うとともに他方の受信波で復号を行う典型的な受信装置の場合に較べて、復号処理に遅延検波回路の一部が用いられるので、このような本実施形態の通信装置Mおよび遅延検波回路Sは、低コストで消費電力を低減することができる。
 また、本実施形態の通信装置Mおよび遅延検波回路Sでは、1シンボル分の形状の候補(パターン候補)が予め複数個用意され、複数個のパターン候補がパターン候補記憶回路76に予め記憶される。このため、前記受信波が前記他の通信装置によって送信された通信信号であると判定され易くなり、このような本実施形態の通信装置Mおよび遅延検波回路Sは、受信波の到来を確実に捉えることができる。その一方で、本実施形態の通信装置Mおよび遅延検波回路Sは、sync用シフトレジスタ73における1シンボル分の形状と複数のパターン候補のいずれかとが複数回一致した場合に、前記受信波が前記他の通信装置によって送信された通信信号であるとみなす(同期捕捉)。このため、このような本実施形態の通信装置Mおよび遅延検波回路Sは、前記受信波が前記他の通信装置によって送信された通信信号であるとの判定を行うことが可能となり、的確に遅延検波を行うことができる。
 また、本実施形態の通信装置Mおよび遅延検波回路Sでは、前記複数のパターン候補のうちの少なくとも1つは、前記各ビットのうちの少なくとも1つの値が任意である。このため、伝送中にシンボルの形状が前記他の通信装置による送信波形と異なってしまった場合でも、前記受信波が前記他の通信装置によって送信された通信信号であると判定することが可能となり、このような本実施形態の通信装置Mおよび遅延検波回路Sは、受信波の到来をより確実に捉えることができる。
 また、本実施形態の通信装置Mおよび遅延検波回路Sでは、トラッキング回路8を備えるので、前記他の通信装置のクロック間隔と通信装置Mのクロック間隔とのズレを補正することができ、より確実に遅延検波を行うことができる。
 また、本実施形態の通信装置Mおよび遅延検波回路Sでは、復号回路9を備えるので、受信波に基づいてデータの復号を行うことができる。
 また、典型的な常套手段では、受信回路の入力前の回路には、オートゲインコントロールアンプ(AGCアンプ)とアナログ-ディジタルコンバータ(ADコンバータ)とが用いられ、伝送路PLから取り出された受信波は、前記AGCアンプによって適正な振幅に調整され、前記ADコンバータによってアナログ信号からディジタル信号へ変換され、受信回路へ入力される。一方、本実施形態の通信装置Mでは、受信回路42の入力前の回路には、上述したように、リミッタアンプ32が用いられ、伝送路PLから取り出された受信波は、このリミッタアンプ32によって方形波信号に変換され、受信回路42へ入力される。このように本実施形態の通信装置Mでは、典型的な常套手段であるAGCアンプとADコンバータに代え、リミッタアンプ32が用いられているので、回路規模が小さくなるから、この結果、本実施形態の通信装置Mは、より低コストで消費電力をより低減することができる。
 そして、本実施形態の通信装置Mでは、上述の低速DLC伝送方式による通信装置が低コストであって低消費電力で実現されている。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる遅延検波回路は、受信した2相位相変調方式の受信波に基づいて送信装置によって送信されたデータを復号する復号処理の一部を行う遅延検波回路であって、前記受信波を方形波信号に変換し増幅するリミッタアンプと、前記リミッタアンプの出力に対し遅延相関演算を行う遅延相関演算部と、前記遅延相関演算部の出力に基づいて前記受信波が前記送信装置によって送信された通信信号であるか否かを調べる捕捉部と、前記遅延相関演算部の出力に基づいて前記データの復号を行う復号部へ前記遅延相関演算部の出力を出力するための出力部とを備えることを特徴とする。
 このような構成の遅延検波回路では、リミッタアンプが2相位相変調方式の受信波を方形波信号に変換して増幅し、遅延相関演算部がリミッタアンプの出力に対し遅延相関演算を行い、捕捉部が遅延相関演算部の出力に基づいて前記受信波が送信装置によって送信された通信信号であるか否かを調べることで、遅延検波が行われる。そして、この遅延検波処理の途中の工程で生成された遅延相関演算の結果が復号部へ出力部を介して出力される。このため、遅延相関演算部の前段にいわゆるAGCアンプやADコンバータを用いる場合に較べて、回路規模が小さくなり、さらに、受信波を2つに分配し、その一方の受信波で遅延検波を行うとともに他方の受信波で復号を行う場合に較べて、復号処理に遅延検波回路の一部が用いられるので、このような構成の遅延検波回路は、低コストで消費電力を低減することができる。
 ここで、前記出力部は、例えば、前記遅延相関演算部の出力を出力する端子であってもよく、また例えば、前記遅延相関演算部と前記復号部とをつなぐ配線(例えばリード線や基板の配線パターンや集積回路における配線パターン等を含む)等であってもよい。
 また、他の一態様では、上述の遅延検波回路において、前記リミッタアンプは、さらに、通信に使用している通信帯域のみを抽出することを特徴とする。
 このような構成の遅延検波回路は、前記通信帯域を除く周波数の信号をノイズとして除去することができる。
 また、これら他の一態様では、上述の遅延検波回路において、前記捕捉部は、1シンボル分の形状の候補をパターン候補として複数個予め記憶するパターン候補記憶部と、前記遅延相関演算部の出力に基づく1シンボル分の形状を生成する形状生成部と、前記形状生成部の1シンボル分の形状と前記複数のパターン候補のそれぞれとを比較する比較部と、前記比較部によって比較された前記形状生成部の1シンボル分の形状と複数のパターン候補のいずれかとが複数回一致した場合に、前記受信波が前記送信装置によって送信された通信信号であると判定する一致判定部とを備える。
 このような構成の遅延検波回路では、1シンボル分の形状の候補が予め複数個用意される。このため、前記受信波が前記送信装置によって送信された通信信号であると判定され易くなり、このような構成の遅延検波回路は、受信波の到来を確実に捉えることができる。その一方で、この遅延検波回路は、前記形状生成部の1シンボル分の形状と複数のパターン候補のいずれかとが複数回一致した場合に、前記受信波が前記送信装置によって送信された通信信号であるとみなす(同期の捕捉)。このため、このような構成の遅延検波回路は、前記受信波が前記送信装置によって送信された通信信号であるとの判定を行うことが可能となり、的確に遅延検波を行うことができる。
 また、他の一態様では、上述の遅延検波回路において、前記形状生成部は、前記遅延相関演算部の出力を2乗する2乗演算部と、前記2乗演算部の出力と所定の閾値とを比較することによって前記2乗演算部の出力を2値化する閾値比較部と、1シンボル分の前記閾値比較部の出力を記憶するレジスタ部とを備える。
 この構成によれば、好適に形状生成部が実現され、好適に遅延検波回路が実現される。
 また、他の一態様では、上述の遅延検波回路において、前記1シンボル分の形状は、複数のビットによって表され、前記パターン候補は、前記各ビットの値を予め既定することによって形成された所定のビットパターンであり、前記複数のパターン候補は、互いに異なるビットパターンであって、前記複数のパターン候補のうちの少なくとも1つは、前記各ビットのうちの少なくとも1つの値が任意である。
 このような構成の遅延検波回路では、前記複数のパターン候補のうちの少なくとも1つは、前記各ビットのうちの少なくとも1つの値が任意である。このため、伝送中にシンボルの形状が前記送信装置による送信波形と異なってしまった場合でも、前記受信波が前記送信装置によって送信された通信信号であるとみなすことが可能となり、このような構成の遅延検波回路は、受信波の到来をより確実に捉えることができる。
 また、他の一態様では、これら上述の遅延検波回路において、1シンボルにおける時間的な中央位置で復号を行うことができるように、1シンボルの時間長に対応する時間間隔で所定の処理を行う場合における前記時間間隔を調整するトラッキング部をさらに備える。
 このような構成の遅延検波回路は、トラッキング部をさらに備えるので、送信装置のクロック間隔と受信装置のクロック間隔とのズレを補正することができ、より確実に遅延検波を行うことができる。
 また、他の一態様では、上述の遅延検波回路において、前記トラッキング部は、1シンボル分の、前記遅延相関演算部の出力を2乗した2乗結果を記憶する第2レジスタ部と、前記第2レジスタ部に記憶された1シンボル分の2乗結果において、その時間的に略中央に位置する中央位置における値、前記中央位置よりも時間的に先行する先行位置における値および前記中央位置よりも時間的に後行する後行位置における値のそれぞれを比較し、その比較結果に応じて前記時間間隔を調整する間隔調整部とを備える。
 この構成によれば、好適にトラッキング部が実現され、好適に、遅延検波回路が実現される。
 また、他の一態様では、これら上述の遅延検波回路において、前記遅延相関演算部の出力に基づいて前記データの復号を行う復号部をさらに備える。
 このような構成の遅延検波回路は、復号部をさらに備えることにより、受信波に基づいてデータの復号を行うことができる。
 また、他の一態様では、上述の遅延検波回路において、前記復号部は、1シンボル分の前記遅延相関演算部の出力を記憶する第3レジスタと、前記第3レジスタの略中央に位置する中央位置における値に基づいてデータを復号するデータ復号部を備える。
 この構成によれば、好適に復号部が実現され、好適に遅延検波回路が実現される。
 また、他の一態様では、上述の遅延検波回路において、前記復号部は、1シンボル分の前記遅延相関演算部の出力を記憶する第3レジスタと、前記第3レジスタの略中央に位置する中央位置における値と、前記中央位置よりも時間的に先行する先行位置における値および前記中央位置よりも時間的に後行する後行位置における値とに基づいてデータを復号する第2データ復号部を備える。
 この構成によれば、第3レジスタの略中央に位置する中央位置における値だけでなく、前記中央位置に対する前記先行位置における値および前記中央位置に対する前記後行位置における値も、例えば前記中央位置に対する直前直後に位置する所定のビット数(1または複数)の各値も、考慮した復号が行われるので、このような構成の遅延検波回路は、より正確にデータの復号を行うことができる。
 また、他の一態様では、これら上述の遅延検波回路において、前記通信信号は、プリアンブル部とペイロード部とを備えるフレーム構成であり、前記捕捉部は、さらに、前記遅延相関演算部の出力に基づいて前記受信波が前記送信装置によって送信された通信信号を捕捉した場合に、さらに、前記復号部の出力に基づいて前記プリアンブル部の終了を検出する。
 このような構成の遅延検波回路は、復号部の出力に基づいてプリアンブル部の終了を検出することによって、送信信号との同期を確立することができる。
 そして、他の一態様にかかる受信装置は、伝送路から通信信号に依る受信波を取り出す結合部と、前記結合部で取り出された受信波に基づいて前記通信信号のデータを復号する受信部と、前記伝送路を流れる電力から、前記受信部を駆動する駆動電力を生成する受電部とを備え、前記受信部は、これら上述のいずれかの遅延検波回路を備える。
 このような構成の受信装置は、これら上述のいずれかの遅延検波回路を受信部に備えるので、低コストで消費電力を低減することができる。
 この出願は、2010年2月4日に出願された日本国特許出願特願2010-022671を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、遅延検波回路およびそれを用いた受信装置を提供することができる。

Claims (12)

  1.  受信した2相位相変調方式の受信波に基づいて送信装置によって送信されたデータを復号する復号処理の一部を行う遅延検波回路であって、
     前記受信波を方形波信号に変換し増幅するリミッタアンプと、
     前記リミッタアンプの出力に対し遅延相関演算を行う遅延相関演算部と、
     前記遅延相関演算部の出力に基づいて前記受信波が前記送信装置によって送信された通信信号であるか否かを調べる捕捉部と、
     前記遅延相関演算部の出力に基づいて前記データの復号を行う復号部へ前記遅延相関演算部の出力を出力するための出力部とを備えること
     を特徴とする遅延検波回路。
  2.  前記リミッタアンプは、さらに、通信に使用している通信帯域のみを抽出すること
     を特徴とする請求項1に記載の遅延検波回路。
  3.  前記捕捉部は、
     1シンボル分の形状の候補をパターン候補として複数個予め記憶するパターン候補記憶部と、
     前記遅延相関演算部の出力に基づく1シンボル分の形状を生成する形状生成部と、
     前記形状生成部の1シンボル分の形状と前記複数のパターン候補のそれぞれとを比較する比較部と、
     前記比較部によって比較された前記形状生成部の1シンボル分の形状と複数のパターン候補のいずれかとが複数回一致した場合に、前記受信波が前記送信装置によって送信された通信信号であると判定する一致判定部とを備えること
     を特徴とする請求項1または請求項2に記載の遅延検波回路。
  4.  前記形状生成部は、
     前記遅延相関演算部の出力を2乗する2乗演算部と、
     前記2乗演算部の出力と所定の閾値とを比較することによって前記2乗演算部の出力を2値化する閾値比較部と、
     1シンボル分の前記閾値比較部の出力を記憶するレジスタ部とを備えること
     を特徴とする請求項3に記載の遅延検波回路。
  5.  前記1シンボル分の形状は、複数のビットによって表され、
     前記パターン候補は、前記各ビットの値を予め既定することによって形成された所定のビットパターンであり、
     前記複数のパターン候補は、互いに異なるビットパターンであって、前記複数のパターン候補のうちの少なくとも1つは、前記各ビットのうちの少なくとも1つの値が任意であること
     を特徴とする請求項3に記載の遅延検波回路。
  6.  1シンボルにおける時間的な中央位置で復号を行うことができるように、1シンボルの時間長に対応する時間間隔で所定の処理を行う場合における前記時間間隔を調整するトラッキング部をさらに備えること
     を特徴とする請求項1ないし請求項5のいずれか1項に記載の遅延検波回路。
  7.  前記トラッキング部は、
     1シンボル分の、前記遅延相関演算部の出力を2乗した2乗結果を記憶する第2レジスタ部と、
     前記第2レジスタ部に記憶された1シンボル分の2乗結果において、その時間的に略中央に位置する中央位置における値、前記中央位置よりも時間的に先行する先行位置における値および前記中央位置よりも時間的に後行する後行位置における値のそれぞれを比較し、その比較結果に応じて前記時間間隔を調整する間隔調整部とを備えること
     を特徴とする請求項6に記載の遅延検波回路。
  8.  前記遅延相関演算部の出力に基づいて前記データの復号を行う復号部をさらに備えること
     を特徴とする請求項1ないし請求項7のいずれか1項に記載の遅延検波回路。
  9.  前記復号部は、
     1シンボル分の前記遅延相関演算部の出力を記憶する第3レジスタと、
     前記第3レジスタの略中央に位置する中央位置における値に基づいてデータを復号するデータ復号部を備えること
     を特徴とする請求項8に記載の遅延検波回路。
  10.  前記復号部は、
     1シンボル分の前記遅延相関演算部の出力を記憶する第3レジスタと、
     前記第3レジスタの略中央に位置する中央位置における値と、前記中央位置よりも時間的に先行する先行位置における値および前記中央位置よりも時間的に後行する後行位置における値とに基づいてデータを復号する第2データ復号部を備えること
     を特徴とする請求項8に記載の遅延検波回路。
  11.  前記通信信号は、プリアンブル部とペイロード部とを備えるフレーム構成であり、
     前記捕捉部は、前記遅延相関演算部の出力に基づいて前記受信波が前記送信装置によって送信された通信信号を捕捉した場合に、さらに、前記復号部の出力に基づいて前記プリアンブル部の終了を検出すること
     を特徴とする請求項8ないし請求項10のいずれか1項に記載の遅延検波回路。
  12.  伝送路から通信信号に依る受信波を取り出す結合部と、
     前記結合部で取り出された受信波に基づいて前記通信信号のデータを復号する受信部と、
     前記伝送路を流れる電力から、前記受信部を駆動する駆動電力を生成する受電部とを備え、
     前記受信部は、請求項1ないし請求項11のいずれか1項に記載の遅延検波回路を備えること
     を特徴とする受信装置。
PCT/JP2010/004451 2010-02-04 2010-07-08 遅延検波回路および受信装置 WO2011096025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/576,809 US8831152B2 (en) 2010-02-04 2010-07-08 Delay detector circuit and receiver apparatus
JP2011552587A JP5480302B2 (ja) 2010-02-04 2010-07-08 遅延検波回路および受信装置
KR1020127022515A KR101390597B1 (ko) 2010-02-04 2010-07-08 지연 검파 회로 및 수신 장치
CN201080063119.3A CN102763390B (zh) 2010-02-04 2010-07-08 延迟检波电路以及接收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-022671 2010-02-04
JP2010022671 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096025A1 true WO2011096025A1 (ja) 2011-08-11

Family

ID=44355054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004451 WO2011096025A1 (ja) 2010-02-04 2010-07-08 遅延検波回路および受信装置

Country Status (5)

Country Link
US (1) US8831152B2 (ja)
JP (1) JP5480302B2 (ja)
KR (1) KR101390597B1 (ja)
CN (1) CN102763390B (ja)
WO (1) WO2011096025A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239740A (ja) * 1985-04-17 1986-10-25 Hitachi Ltd 同期信号検出装置
JPH03117142A (ja) * 1989-09-29 1991-05-17 Ricoh Co Ltd 位相変調復調方式
JPH05183593A (ja) * 1992-01-06 1993-07-23 Fujitsu Ltd 遅延検波回路
JPH06232930A (ja) * 1993-02-01 1994-08-19 Toyo Commun Equip Co Ltd クロック再生回路
JPH06261030A (ja) * 1993-03-02 1994-09-16 Hitachi Denshi Ltd フレーム同期検出回路
JPH0787149A (ja) * 1993-09-14 1995-03-31 Nec Corp 復調装置
JPH07264091A (ja) * 1994-03-18 1995-10-13 Toshiba Corp 無線カード用通信装置
JPH07273823A (ja) * 1994-03-31 1995-10-20 Mitsubishi Electric Corp 自動周波数制御装置
JP2003218969A (ja) * 2002-01-25 2003-07-31 Hitachi Kokusai Electric Inc 復調装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231030A (ja) * 1993-01-29 1994-08-19 Hitachi Ltd マルチメディアオーサリングシステム
US5654991A (en) * 1995-07-31 1997-08-05 Harris Corporation Fast acquisition bit timing loop method and apparatus
WO1999031850A1 (fr) * 1997-12-17 1999-06-24 Kabushiki Kaisha Kenwood Appareil permettant de generer la phase absolue d'un signal reçu par un recepteur
US7684473B2 (en) * 2005-06-01 2010-03-23 Qualcomm Incorporated Receiver for wireless communication network with extended range
JP4837403B2 (ja) * 2006-03-08 2011-12-14 ルネサスエレクトロニクス株式会社 同期タイミング検出装置、受信装置、及び同期タイミング検出方法
JP4572970B2 (ja) * 2008-08-07 2010-11-04 ソニー株式会社 通信装置、伝送線通信用チップ及び通信方法
US8138969B2 (en) * 2008-10-22 2012-03-20 Bae Systems Information And Electronic Systems Integration Inc. Monobit based low cost high performance radar warning receiver

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239740A (ja) * 1985-04-17 1986-10-25 Hitachi Ltd 同期信号検出装置
JPH03117142A (ja) * 1989-09-29 1991-05-17 Ricoh Co Ltd 位相変調復調方式
JPH05183593A (ja) * 1992-01-06 1993-07-23 Fujitsu Ltd 遅延検波回路
JPH06232930A (ja) * 1993-02-01 1994-08-19 Toyo Commun Equip Co Ltd クロック再生回路
JPH06261030A (ja) * 1993-03-02 1994-09-16 Hitachi Denshi Ltd フレーム同期検出回路
JPH0787149A (ja) * 1993-09-14 1995-03-31 Nec Corp 復調装置
JPH07264091A (ja) * 1994-03-18 1995-10-13 Toshiba Corp 無線カード用通信装置
JPH07273823A (ja) * 1994-03-31 1995-10-20 Mitsubishi Electric Corp 自動周波数制御装置
JP2003218969A (ja) * 2002-01-25 2003-07-31 Hitachi Kokusai Electric Inc 復調装置

Also Published As

Publication number Publication date
US20120294394A1 (en) 2012-11-22
KR20120112837A (ko) 2012-10-11
US8831152B2 (en) 2014-09-09
JPWO2011096025A1 (ja) 2013-06-06
JP5480302B2 (ja) 2014-04-23
CN102763390B (zh) 2015-01-21
KR101390597B1 (ko) 2014-04-30
CN102763390A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5461589B2 (ja) 遅延検波回路および受信装置
CA2152781C (en) Digital demodulator with frequency and timing control
US20170195152A1 (en) Bluetooth signal receiving method and device using improved packet detection and symbol timing acquisition
US7457378B1 (en) Apparatus and method for RF packet detection and symbol timing recovery
WO2000041521A3 (en) Psk burst receiver with phase adjustment and timing and data recovery
WO2011101925A1 (ja) 受信回路及び受信装置
US20100040168A1 (en) Transmitting apparatus, receiving apparatus and communication system
JP2007274678A (ja) パルス無線受信装置
JPH08163187A (ja) 受信信号変調方式識別回路
JP2008154285A (ja) シンボルタイミング検出装置及び無線端末装置
JP5480302B2 (ja) 遅延検波回路および受信装置
US5949829A (en) Central error detecting circuit for FSK receiver
JP4268180B2 (ja) シンボルタイミング検出装置及び無線端末装置
JPH11298541A (ja) 中心レベル誤差検出補正回路
JP3918969B2 (ja) Ofdm復調装置及びofdm復調方法
JP4808017B2 (ja) 列車検知装置
JP2001086042A (ja) 配電線搬送通信装置
JP4926157B2 (ja) 復調装置
JP4180967B2 (ja) 信号復調装置
JP2009044363A (ja) 無線機
KR20190075272A (ko) 구간합 궤환을 이용하는 반송파 주파수 오프셋 추정 방법 및 그 수신 장치
JPH06141020A (ja) スペクトル拡散信号の復調方法及び装置
JPH06276246A (ja) 位相差検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063119.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13576809

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6976/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127022515

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10845163

Country of ref document: EP

Kind code of ref document: A1