WO2011093394A1 - 新規アゾメチンオリゴマー - Google Patents

新規アゾメチンオリゴマー Download PDF

Info

Publication number
WO2011093394A1
WO2011093394A1 PCT/JP2011/051637 JP2011051637W WO2011093394A1 WO 2011093394 A1 WO2011093394 A1 WO 2011093394A1 JP 2011051637 W JP2011051637 W JP 2011051637W WO 2011093394 A1 WO2011093394 A1 WO 2011093394A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
azomethine
carbon atoms
azomethine oligomer
formula
Prior art date
Application number
PCT/JP2011/051637
Other languages
English (en)
French (fr)
Inventor
秀二 岡本
晃 目黒
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2011551908A priority Critical patent/JP5665772B2/ja
Priority to CN2011800072305A priority patent/CN102781908A/zh
Priority to KR1020127017989A priority patent/KR101429651B1/ko
Publication of WO2011093394A1 publication Critical patent/WO2011093394A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/36Nitrogen atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers

Definitions

  • the present invention relates to a novel azomethine oligomer.
  • a conventional polyazomethine has an aromatic ring, a hetero ring, or an aromatic ring and a hetero ring in the main chain, and these aromatic rings and / or hetero rings connected by an azomethine group are connected. It has a conjugated polymer structure.
  • polyazomethine As an organic semiconductor material, in order to form the semiconductor layer on the substrate, a method of dissolving polyazomethine in a solvent and applying the obtained solution on the substrate is simple and costly. Low.
  • the polyazomethine is a compound having a conjugated system, high planarity and a rigid structure as described above, and therefore has poor solubility in an organic solvent. For this reason, the polyazomethine cannot be dissolved in an organic solvent and applied onto the substrate.
  • Patent Document 1 Regarding the solvent solubility of polyazomethine disclosed in Patent Document 1, in a protonic acid such as m-cresol or an organic solvent containing the same, the polyazomethine forms a reversible Lewis acid-base pair, It has been found that it exhibits solubility in a solvent in this state (see Non-Patent Documents 1 to 4).
  • Patent Document 2 discloses an invention relating to an organic LED element containing polyazomethine, and the polyazomethine is represented by the following general formula (I).
  • Patent Document 2 such polyazomethine is polymerized in m-cresol or benzene, and the obtained polyazomethine solution is subjected to a substrate (anode) by a wet film formation method such as spin coating or dip coating. ) To form a polyazomethine layer by heating in an inert gas atmosphere.
  • Patent Document 2 does not describe at all whether the polyazomethine represented by the above general formula (I) was actually synthesized.
  • m-cresol and benzene in which polyazomethine disclosed in Patent Document 2 is dissolved are versatile. As described above, m-cresol is corrosive, and benzene is carcinogenic, both of which are harmful to the human body.
  • Patent Document 2 neither describes nor suggests whether or not the polyazomethine is dissolved in another versatile solvent (for example, alcohol).
  • polyazomethine having low solubility in organic solvents
  • polyazomethine can be converted into chloroform by introducing an alkyl group or alkoxy group into the aromatic ring, hetero ring or aromatic ring and hetero ring in the main chain.
  • THF, DMF, DMSO, NMP, m-cresol and the like have been reported to be soluble (see Non-Patent Document 5).
  • the solvent species used may have a halogen-containing structure, in which case the solvent species exhibits a high boiling point. For this reason, it is difficult to say that it is preferable to use the solvent for industrial reasons because of high health requirements for the health management of the handler and the drying process of the solvent.
  • the present invention secures sufficient carrier mobility as a semiconductor material, and furthermore, a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or an ester such as methyl lactate. It is an object of the present invention to provide a novel azomethine oligomer that is soluble in a relatively versatile organic solvent such as a system solvent.
  • the present invention has a divalent hydrocarbon group which may have a group having an oxygen atom, a sulfur atom or a cycloalkylene group in the main skeleton, and azomethine groups at both ends of the hydrocarbon group.
  • the azomethine oligomer is characterized in that the aromatic group and the aromatic ring-containing conjugated group are not reactive with an aldehyde group and an amino group.
  • polyazomethine has an aromatic ring, a heterocycle, or an aromatic ring and a heterocycle in the main chain, and these aromatic rings and / or heterocycles are connected by an azomethine group.
  • the conjugated polymer structure was connected. This is because carriers are moved within one molecule of polyazomethine.
  • the conjugated polymer structure has caused low solubility of polyazomethine in organic solvents.
  • it has also been proposed to introduce an alkyl group or an alkoxy group into the aromatic ring and / or hetero ring as a side chain Non-patent Document 5
  • this proposed method has a problem in that raw material monomers for synthesizing such polyazomethine are not commercially available.
  • the present inventor can not only dissolve in a highly versatile solvent by changing the idea of the following two points, but also enables easy and industrial production, and is sufficient as a semiconductor.
  • the inventors invented an azomethine oligomer that ensures carrier mobility. (1) Rather than move the carrier within one molecule, the conjugated system (aromatic ring) of the compound is stacked between the compound molecules (orienting the conjugated structure portion between the molecules), so that the carrier is a molecule. (2) Instead of introducing an alkyl group or the like as a side chain of a polymer, it is introduced as a part of the main chain of an oligomer (that is, a conjugated structure is linked by a non-conjugated spacer). thing.
  • the hydrocarbon group may have a branch and may be substituted with a halogen atom, an alkylene group having 2 to 1024 carbon atoms, an ether bond and / or a thioether bond in the group
  • the molecular weight of the azomethine oligomer of the present invention is preferably in the range of 150 to 15000.
  • the azomethine oligomer is usually cresol, toluene, THF, cyclopentyl methyl ether, acetone, MEK, MIBK, cyclopentanone, chloroform, Dichloromethane, carbon tetrachloride, chlorobenzene, carbon disulfide, ethyl acetate, butyl acetate, methyl lactate, methanol, ethanol, isopropyl alcohol, benzyl alcohol, n-butanol, t-butanol, pentyl alcohol, ethylene glycol, propylene glycol, propylene glycol Any solvent selected from monomethyl ether, pyridine, NMP, sulfuric acid, formic acid, acetic acid, hydrochloric acid, lactic acid, triethylamine, dibutylamine, or two or more kinds
  • the azomethine oligomer of the present invention can be represented by the following general formula (I), for example.
  • two Ars independently represent a monovalent aromatic group which may have a substituent, or an azomethine group and a divalent aromatic group which may have a substituent.
  • A is an azomethine group,
  • R is an alkylene group having 2 to 1024 carbon atoms which may have a branch and may be substituted with a halogen atom, and has an ether bond and / or a thioether bond in the group, and is substituted with a halogen atom.
  • the divalent hydrocarbon group having 2 to 1024 carbon atoms may be used.
  • the azomethine oligomer of the present invention is suitable for semiconductor applications, and can be formed on an electrode by a coating method to produce a pn junction element.
  • a positive electrode terminal is connected to an electrode on the P-type semiconductor side
  • a negative electrode terminal is connected to an electrode on the N-type semiconductor side. It is a feature of the azomethine oligomer of the present invention that a voltage can be applied within the range of ⁇ 5 V to +5 V, and the forward electric energy / reverse electric energy> 1.0.
  • the method for producing an azomethine oligomer of the present invention includes a step of reacting 2 equivalents of an aromatic ring-containing compound represented by the following general formula (III) with 1 equivalent of a hydrocarbon compound represented by the following general formula (II). It is characterized by that.
  • two Xs are both an aldehyde group or an amino group
  • Two Ar are independently a divalent aromatic group which may have a substituent
  • A is an azomethine group
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom or a carboxyl group
  • Z is a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group
  • m and n are independently 0 or 1
  • i is 0 or 1
  • h and j are each independently an integer of 0 to 12 (provided that when Z is an oxygen atom or a sulfur atom, h and j are both 1 or more)
  • k is an integer from 1 to 10, when h is 2 or more, a plurality of R 1 may be the same or different; when j is 2 or more, a plurality of R 2 may be the same or different; When k is 2 or more, a
  • Y is an amino group when X in the above formula (II) is an aldehyde group, and is an aldehyde group when X is an amino group
  • Ar 1 is a monovalent aromatic group which may have a substituent
  • Ar 2 is a divalent aromatic group which may have a substituent
  • A is an azomethine group
  • p is an integer from 0 to 5
  • p is 2 or more, a plurality of Ar 2 may be the same or different.
  • aromatic ring-containing compound examples include compounds represented by the following formula.
  • hydrocarbon compound examples include compounds represented by the following formula.
  • both X are amino groups or aldehyde groups, and t is an integer of 6-12.
  • the azomethine oligomer of the present invention ensures sufficient carrier mobility as a semiconductor material, and furthermore, a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or methyl lactate High solubility in highly versatile organic solvents such as ester solvents.
  • a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or methyl lactate
  • the azomethine oligomer of the present invention it is possible to form a semiconductor layer on a substrate by a coating method, instead of orienting polyazomethine on the substrate by vacuum deposition as in the case of a conventional conjugated polymer. .
  • the said hydrocarbon group which comprises the azomethine oligomer of this invention may have group which has an oxygen atom, a sulfur atom, or a cycloalkylene group, and if the valence is 2, it will not specifically limit.
  • This hydrocarbon group contributes to the high solubility of the azomethine oligomer of the present invention in an organic solvent.
  • hydrocarbon group examples include an alkylene group having 2 to 1024 carbon atoms which may be branched or substituted with a halogen atom, an ether bond and / or a thioether bond in the group, A divalent hydrocarbon group having 2 to 1024 carbon atoms which may be substituted with an atom, a cycloalkylene group having 3 to 50 carbon atoms which may have a substituent, and a carboxyl group in the group; And a divalent hydrocarbon group having 2 to 1024 carbon atoms which may be substituted with a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the substituent in the cycloalkylene group include a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • the cycloalkylene group may have a plurality of cyclic structures, and the cyclic structures may be further linked by an alkylene group.
  • the number of carbon atoms of the alkylene group is preferably from 3 to 20, and preferably from 4 to 12, from the viewpoint of compatibility between the affinity of the azomethine oligomer of the present invention for an organic solvent and intermolecular crystallinity in the solid state. More preferably, it is 6-12.
  • the number of carbon atoms of the divalent hydrocarbon group which has an ether bond and / or a thioether bond in the group and may be substituted with a halogen atom depends on the affinity of the azomethine oligomer of the present invention for the organic solvent and the solid state. From the standpoint of achieving intermolecular crystallinity, it is preferably 3-20, more preferably 4-12, and even more preferably 6-12.
  • the number of carbon atoms of the cycloalkylene group which may have a substituent is 3 to 30 from the viewpoint of compatibility of the azomethine oligomer of the present invention with an organic solvent and crystallinity between molecules in a solid state. It is preferably 6 to 15.
  • the number of carbon atoms of the divalent hydrocarbon group which has a carboxyl group in the group and may be substituted with a halogen atom depends on the affinity of the azomethine oligomer of the present invention for the organic solvent and the intermolecular crystal in the solid state. From the viewpoint of coexistence of properties, it is preferably 3 to 20, more preferably 4 to 12, and still more preferably 6 to 12.
  • the divalent hydrocarbon group constituting the azomethine oligomer of the present invention has a relatively low polarity such as toluene and exhibits solubility in a highly hydrophobic solvent from the viewpoint of affinity with an organic solvent.
  • the divalent hydrocarbon group preferably has a structure having an ether bond in the group.
  • the divalent hydrocarbon group in order to develop solubility in a halogen-containing solvent, preferably has a structure having a halogen atom in the group (substituted with a halogen atom).
  • the aromatic group which has an azomethine group and may have a substituent constituting the azomethine oligomer of the present invention has a structure in which an azomethine group and a monovalent aromatic group are bonded and conjugated, If there is no reactivity with an aldehyde group and an amino group, it will not specifically limit. The significance of having no reactivity with aldehyde groups and amino groups will be described in the section of the method for producing an azomethine oligomer of the present invention described later.
  • the azomethine oligomer of the present invention Due to the conjugated structure of the monovalent aromatic group and azomethine group, the azomethine oligomer of the present invention has a carrier transport function between molecules.
  • a monovalent aromatic group is bonded to the end of the hydrocarbon group by the azomethine group.
  • Examples of the monovalent aromatic group in the aromatic group which has an azomethine group and may have a substituent include groups represented by the following formulas A-1 to A-23.
  • Ra is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group.
  • the halogen atom include F, Cl and Br. The same applies to the following formulas A-2 to A-23.
  • Ra is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sa is an integer of 1 to 5, and when Sa is 2 or more, a plurality of Ras may be the same or different.
  • Sa is preferably 4 or 5, more preferably 4 from the viewpoint of further reducing electron localization in the aromatic ring.
  • Or 5 and the aromatic group is substituted so as to have a symmetrical element as a whole.
  • the symmetrical element refers to the symmetry of the structural part of the aromatic group, not the entire azomethine oligomer molecule.
  • Sd is 2 or more, a plurality of Rd may be the same or different.
  • Sd is preferably 6 or 7, and more preferably 7, from the viewpoint of reducing electron localization in the aromatic ring.
  • Xc is selected from CH 2 , O, S, NH, N (C x H 2x + 1 ) (X is an integer of 1 to 20) and N (Ph), and the azomethine oligomer of the present invention From the viewpoint of high crystallization between molecules, CH 2 , O, S and NH are preferable because they have small steric hindrance and high planarity.
  • Ya is selected from CH and N, and all are preferable from the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention.
  • Se is an integer of 1 to 11, and when Se is 2 or more, a plurality of Re may be the same or different.
  • Se is preferably an integer of 9 to 11, preferably 9 or 10, from the viewpoint of reducing localization of electrons in the aromatic ring in order to achieve high crystallization between molecules of the azomethine oligomer of the present invention. More preferably.
  • Rf is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rf is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sf is an integer of 1 to 9 when Xd is CH.
  • Sf is preferably 8 or 9, more preferably 9, from the viewpoint of reducing electron localization in the aromatic ring. .
  • Sf is an integer of 1 to 7, and Sf is preferably 6 or 7, more preferably 7, from the same viewpoint as described above.
  • a plurality of Rf may be the same or different.
  • Rk is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, it is preferable that Rk is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a small van der Waals radius. More preferably it is an atom.
  • Xg is selected from O, S, NH, N (CH 3 ), N (C 2 H 5 ) and N (Ph).
  • Xg is preferably S or NH from the viewpoint of high planarity of the intramolecular conjugated system of the azomethine oligomer of the present invention.
  • Rm is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rm is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Sn is an integer of 1 to 17.
  • Sn is preferably an integer of 10 to 17, and preferably 17 from the viewpoint of reducing electron localization in the aromatic ring. Further preferred.
  • Sn is an integer of 1 to 9. From the same viewpoint as described above, Sn is preferably an integer of 7 to 9, and more preferably 9.
  • Xi is selected from CH and N, and is preferably CH from the viewpoint of commercial availability of the raw material of the azomethine oligomer of the present invention.
  • So when Xi is CH, So is an integer of 1 to 3. When So is 2 or more, a plurality of Ro may be the same or different. In order to achieve high crystallization between molecules of the azomethine oligomer of the present invention, it is more preferable that So is 3 from the viewpoint of reducing the localization of electrons in the aromatic ring.
  • Xj is selected from S and O, and is preferably S from the viewpoint of commercial availability of the raw material of the azomethine oligomer of the present invention.
  • Sp is an integer of 1 to 5.
  • a plurality of Rp may be the same or different.
  • Sp is preferably 4 or 5, and more preferably 5, from the viewpoint of reducing electron localization in the aromatic ring. .
  • Rq is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, it is preferable that Rq is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and a small van der Waals radius. More preferably it is an atom.
  • Sq is an integer of 1 to 3.
  • a plurality of Rq may be the same or different.
  • Sq is preferably an odd number from the viewpoint of reducing the localization of electrons in the aromatic ring, and a symmetric element as a whole of the aromatic group. More preferably, it is substituted to have.
  • Rr is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rr is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Sr is an integer of 1 to 5.
  • a plurality of Rr may be the same or different.
  • Sr is preferably an odd number from the viewpoint of reducing electron localization in the aromatic ring, and the aromatic group as a whole has a symmetric element. More preferably, the substitution is as follows.
  • Rs is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, it is preferable that Rs is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Ss is an integer of 1 to 3.
  • a plurality of Rs may be the same or different.
  • Ss is preferably 2 or 3, and more preferably 3, from the viewpoint of reducing electron localization in the aromatic ring. .
  • St is an integer of 1 to 7. When St is 2 or more, a plurality of Rt may be the same or different. In order to achieve high crystallization between the molecules of the azomethine oligomer of the present invention, St is an odd number from the viewpoint of reducing electron localization in the aromatic ring, and has a symmetrical element as a whole aromatic group. More preferably it is substituted.
  • Su is an integer of 1 to 3.
  • a plurality of Ru may be the same or different.
  • Su is 2 from the viewpoint of further reducing the localization of electrons in the aromatic ring.
  • Rv is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rv is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and having a small van der Waals radius. More preferably it is an atom.
  • Sv is an integer of 1 to 5.
  • a plurality of Rv may be the same or different.
  • Sv is an odd number from the viewpoint of reducing the localization of electrons in the aromatic ring, and the aromatic group as a whole has a symmetrical element. More preferably it is substituted.
  • Rw is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, it is preferable that Rw is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a small van der Waals radius. More preferably it is an atom.
  • Sw is an integer of 1 to 7.
  • a plurality of Rw may be the same or different.
  • Sw is an odd number from the viewpoint of reducing electron localization in the aromatic ring, and has a symmetrical element as a whole aromatic group. More preferably it is substituted.
  • Rx is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rx is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Sx is an integer of 1 to 7.
  • a plurality of Rx may be the same or different.
  • Sx is an odd number from the viewpoint of reducing electron localization in the aromatic ring, and has a symmetrical element as a whole aromatic group. More preferably it is substituted.
  • the aromatic ring-containing conjugated group is bonded to the end of the hydrocarbon group by the azomethine group.
  • Ra is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group.
  • the halogen atom include F, Cl and Br. The same applies to the following formulas B-2 to B-24.
  • Sa is an integer of 1 to 4, and from the viewpoint of further reducing the localization of electrons in the aromatic ring for high crystallization between molecules of the azomethine oligomer of the present invention, Sa is It is preferable that the number is even, and it is more preferable that Sa is an even number and is substituted so as to have a symmetrical element as a whole aromatic group.
  • a plurality of Ras may be the same or different.
  • Rb is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rb is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sb is an integer of 1 to 3, and Sb is preferably an odd number from the viewpoint of reducing the localization of electrons in the aromatic ring for high crystallization between molecules. More preferably, Sb is an odd number and is substituted so as to have a symmetric element as a whole aromatic group.
  • Sb is 2 or more, a plurality of Rb may be the same or different.
  • Sc when Yb is CH, Sc is 1 or 2.
  • Sc is preferably 2
  • Sc is 2, and aromatic from the viewpoint of further reducing the localization of electrons in the aromatic ring. More preferably, the entire ring-containing group is substituted with a symmetric element.
  • two Rc may be the same or different.
  • Xb is CH 2 , C (C x H 2x + 1 ) 2 (X is an integer of 2 to 20), NH, N (C x H 2x + 1 ) (X is an integer of 2 to 20) ), N (Ph) and S. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, as Xb, C and NH having small steric hindrance and high planarity are preferable.
  • Sd is preferably an even number, Sd is an even number, and aromatics from the viewpoint of reducing the localization of electrons in the aromatic ring. It is preferred that the whole group is substituted to have a symmetric element.
  • Sd is 2 or more, a plurality of Rd may be the same or different.
  • Xc is selected from O, S, NH, N (C x H 2x + 1 ) (X is an integer of 1 to 20) and N (Ph). From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, Xc is preferably O, S, and NH having low steric hindrance and high planarity.
  • Ya is selected from CH and N, and both are preferable from the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention.
  • Re is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Re is a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Se is an integer of 1 to 10.
  • Se is preferably an even number
  • Se is an even number
  • aromatic from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • Se is an integer from 1 to 8. From the same viewpoint as described above, Se is preferably an even number, and more preferably, Se is an even number, and the aromatic group is substituted so as to have a symmetrical element as a whole.
  • a plurality of Re may be the same or different.
  • Xd is selected from CH and N, and all are preferable from the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention.
  • Rf is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rf is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sf is an integer of 1 to 8 when Xd is CH.
  • Sf is preferably an even number, Sf is an even number, and aromatics from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • Sf is an integer of 1 to 6, and from the same viewpoint as above, Sf is preferably an even number, Sf is an even number, and the symmetric element as a whole aromatic group is selected. More preferably, it is substituted to have.
  • a plurality of Rf may be the same or different.
  • Rg is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rg is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sg is an integer of 1 to 10
  • Rg may be bonded onto an ethenylene group connecting two benzene rings.
  • Sg is preferably an even number
  • Sg is an even number
  • aromatics from the viewpoint of reducing the localization of electrons in the aromatic ring. It is preferred that the whole group is substituted to have a symmetric element.
  • Sg is 2 or more, a plurality of Rg may be the same or different.
  • Rh is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rh is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sh is an integer of 1-6.
  • Sh is preferably an even number, Sh is an even number, and is aromatic from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • a plurality of Rh may be the same or different.
  • Ri is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, Ri is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Si is an integer of 1 to 8 when Xe is CH.
  • Si is preferably an even number, Si is an even number, and aromatics from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • Si is an integer of 1 to 6 when Xe is N. From the same viewpoint as described above, Si is preferably an even number, Si is an even number, and the aromatic group as a whole has a symmetrical element. More preferably, it is substituted to have.
  • a plurality of Ri may be the same or different.
  • Rj is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rj is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sj is an integer of 1 to 8.
  • Sj is preferably an even number, Sj is an even number, and aromatic, from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • a plurality of Rj may be the same or different.
  • Xf is selected from CH and N. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, Xf is preferably N.
  • Rk is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rk is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sk is an integer of 1 to 8 when Xf is CH.
  • Sk is preferably an even number, Sk is an even number, and aromatic, from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • a plurality of Rk may be the same or different.
  • Xg is selected from CH and N. From the viewpoint of high crystallization between molecules of the azomethine oligomer of the present invention, Xg is preferably N.
  • Rm is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rm is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sm is an integer of 1 to 8 when Xg is CH.
  • Sm is preferably an even number, Sm is an even number, and aromatics from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • Sm is an integer of 1 to 6 when Xg is N. From the same viewpoint as described above, Sm is preferably an even number, Sm is an even number, and the aromatic group as a whole has a symmetrical element. More preferably, it is substituted to have.
  • Xh is selected from O, S, NH, N (CH 3 ), N (C 2 H 5 ) and N (Ph). From the viewpoint of high planarity of the intramolecular conjugated system of the azomethine oligomer of the present invention, Xh is preferably S or NH.
  • Sn is an integer of 1 to 4.
  • a plurality of Rn may be the same or different.
  • Sn is preferably an integer of 2 to 4, and is preferably an integer of 2 to 4, from the viewpoint of reducing electron localization in the aromatic ring. More preferably.
  • Xi is selected from O, S, NH, N (CH 3 ), N (C 2 H 5 ) and N (Ph). From the viewpoint of high planarity of the intramolecular conjugated system of the azomethine oligomer of the present invention, Xi is preferably S or NH.
  • Rp is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rp is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Sp is an integer of 1 to 8.
  • a plurality of Rp may be the same or different.
  • Sp is preferably an integer of 4 to 8, preferably 4 or 8, from the viewpoint of reducing electron localization in the aromatic ring. More preferably.
  • Xj is selected from CH and N, and is preferably CH from the viewpoint of commercial availability of the raw material of the azomethine oligomer of the present invention.
  • Rq is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rq is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Xk is selected from S and O, and is preferably S from the viewpoint of commercial availability of the raw material of the azomethine oligomer of the present invention.
  • Rr is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rr is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Sr is an integer of 1 to 4. When Sr is 2 or more, a plurality of Rr may be the same or different. In order to achieve high crystallization between molecules of the azomethine oligomer of the present invention, Sr is preferably 3 or 4, and more preferably 4, from the viewpoint of reducing electron localization in the aromatic ring. .
  • Rs is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rs is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Ru is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Ru is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Su is 1 or 2.
  • two Rus may be the same or different.
  • Su is 2 and the aromatic group as a whole has a symmetric element. It is preferably substituted.
  • Rv is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the azomethine oligomer of the present invention, it is preferable that Rv is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and having a small van der Waals radius. More preferably it is an atom.
  • Sx is 1 or 2.
  • two Rx may be the same or different.
  • Sx is preferably 2 from the viewpoint of further reducing the localization of electrons in the aromatic ring.
  • Sz is an integer of 1 to 6.
  • a plurality of Rz may be the same or different.
  • Sz is an even number and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • Raa is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Raa is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Saa is an integer of 1 to 6.
  • a plurality of Raa may be the same or different.
  • Saa is an even number from the viewpoint of reducing electron localization in the aromatic ring, and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • the conjugated state may affect the crystallinity between molecules depending on the direction of the azomethine group. That is, the direction of the azomethine group is the direction in which N is closer to the heterocycle among N and C constituting the azomethine group, and the heteroatom of the heterocycle is near N constituting the azomethine group.
  • the expansion of the intramolecular conjugated system in the solid state of the azomethine oligomer of the present invention occurs, and the electronic structure in the conjugated system may be greatly affected, which is preferable.
  • the azomethine oligomer of the present invention has the above-described hydrocarbon group in its structure, and since this portion does not have crystallinity, various versatile organic solvents such as hydrophobic solvents, alcohol solvents, glycols High solubility in system solvents or ester solvents.
  • the azomethine oligomer is usually cresol, toluene, THF, cyclopentyl methyl ether, acetone, MEK, MIBK, cyclopentanone, chloroform, dichloromethane, carbon tetrachloride, chlorobenzene, carbon disulfide, ethyl acetate, acetic acid.
  • cresol, chlorobenzene and the like are corrosive or harmful to the human body. In the present invention, these are usually mixed in a small amount with other versatile solvents such as toluene and used as a co-solvent.
  • the azomethine oligomer of the present invention having high versatility and high solubility in a variety of organic solvents does not have a polymer structure like conventional polyazomethine, but has electrons and holes. It has a high function of transporting the carrier and is suitable for semiconductor applications.
  • azomethine oligomers are molecules with high affinity (that is, hydrocarbon groups are hydrocarbon groups, aromatic groups and aromatic ring-containing conjugated groups are aromatic groups and aromatic ring-containing conjugated groups). overlap. And in the location where the aromatic group or aromatic ring containing conjugated group is stacked, the carrier can move freely. That is, the conventional polyazomethine secures the carrier mobility by a specific structure in the molecule, whereas in the present invention, the carrier mobility is secured by the stack between molecules.
  • the azomethine oligomer of the present invention has a high carrier transport function, is suitable for semiconductor applications, and exhibits high solubility in highly versatile organic solvents. Therefore, the azomethine oligomer can be dissolved in a highly versatile organic solvent, and the obtained azomethine oligomer solution can be used to form a semiconductor layer safely and easily on the substrate by a coating method such as spin coating or dip coating. it can.
  • a solution of the azomethine oligomer of the present invention having such a carrier transport function can be applied on an electrode and formed into a film to produce a pn junction element.
  • the N-type semiconductor layer uses a semiconductor material (eg, fullerene) that exhibits an electron affinity (eV) that is larger than the ionization potential (eV) of azomethine.
  • the P-type semiconductor layer is a semiconductor material having an ionization potential that is smaller than the electron affinity (eV) of the azomethine oligomer (for example, poly (3- Hexylthiophene)).
  • a film is prepared by applying an azomethine oligomer solution on a negative electrode substrate and drying.
  • a p-n junction element can be fabricated by depositing a P-type semiconductor material on the film by coating or vapor deposition, and vapor-depositing the positive electrode on the obtained P-type semiconductor layer.
  • an N-type semiconductor material is formed on the negative electrode substrate by coating or vapor deposition, and an azomethine oligomer solution is formed on the film.
  • a pn junction element can be produced by forming a P-type semiconductor layer by coating and drying, and further depositing a positive electrode on the P-type semiconductor layer.
  • the thickness of the bonded layer of these P-type and N-type semiconductor materials is usually 10 to 900 nm.
  • the p-n junction element thus produced can be applied to the organic electronics field such as a diode, an organic EL, an organic thin film solar cell, an organic thin film transistor, and a thermoelectric power generation element.
  • the ionization potential and the electron affinity can be experimentally obtained as HOMO (highest occupied orbit) and LUMO (lowest unoccupied orbit), respectively.
  • LUMO can be determined by calculating the electrochemical reduction level and converting it to LUMO, as well as calculating the LUMO from the absorption start wavelength of the UV-visible light absorption spectrum of the sample and the HOMO value obtained above.
  • the method of converting is mentioned.
  • the N-type semiconductor characteristics of the azomethine oligomer of the present invention can be improved by adjusting the electron affinity of the molecule.
  • the electron affinity of a molecule can be increased by the following two methods. (1) Select heterocycles such as pyridine, bipyridine, phenanthroline, etc. that tend to lack electrons as conjugated systems (aromatic groups or aromatic ring-containing conjugated groups) (2) Electron withdrawing properties such as F and CF 3 By introducing the substituent of ## STR3 ## into the conjugated system, the electron density in the conjugated system is lowered and the electrons are localized.
  • a pn junction element can be prepared from the azomethine oligomer of the present invention having excellent semiconductor characteristics as described above.
  • a positive electrode terminal is connected to an electrode on the P-type semiconductor side
  • a negative electrode terminal is connected to an electrode on the N-type semiconductor side
  • a voltage can be applied within the range of ⁇ 5V to + 5V, and the forward power amount / reverse power amount> 1.0.
  • the azomethine oligomer of the present invention can be used as, for example, p-type and n-type semiconductors.
  • a hole injection phase and an electron injection layer may be separately provided between the P-type semiconductor layer and the electrode and between the N-type semiconductor layer and the electrode, respectively.
  • azomethine oligomers Specific examples of the azomethine oligomer of the present invention described above include compounds represented by the following general formula (I).
  • Examples of the monovalent aromatic group include groups represented by the following formula. Note that, in the following formula, the part enclosed in half brackets is a bond.
  • divalent aromatic groups exemplified below are preferred from the viewpoint of high intermolecular crystallinity when the azomethine oligomer of the present invention is in a solid state.
  • the azomethine oligomer of the present invention described above is suitable for semiconductor applications because carriers can be freely moved at positions where aromatic groups or aromatic ring-containing conjugated groups are stacked between molecules.
  • the azomethine oligomer is used for a highly versatile organic solvent such as a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or an ester solvent such as methyl lactate. And has high solubility. Therefore, the semiconductor layer can be easily formed on the substrate by a coating method using the azomethine oligomer solution obtained by dissolving the azomethine oligomer of the present invention in the organic solvent.
  • the azomethine oligomer of the present invention can be obtained by reacting two molecules of an aromatic ring-containing compound with one molecule of a hydrocarbon compound utilizing a reaction between an aldehyde group and an amino group.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom or a carboxyl group.
  • R 1 and R 2 are preferably a hydrogen atom and an alkyl group having 5 to 12 carbon atoms from the viewpoint of solubility in an organic solvent and crystallinity of the film during film formation.
  • Z is a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group, and is preferably an oxygen atom from the viewpoint that the raw material is relatively commercially available.
  • h and j are each independently an integer of 0 to 12, and preferably an integer of 0 to 3. However, when Z is an oxygen atom or a sulfur atom, h and j are both 1 or more.
  • a hydrocarbon compound in which m or n is 1 and the other is 0 can be easily obtained by reacting a commercially available compound.
  • a hydrocarbon compound in which both m and n are 1 can be obtained by repeating the above reaction (reacting the compound obtained by the above reaction with p-aminobenzaldehyde), and also as described below. It is also possible to obtain it by a one-step reaction.
  • the one-step reaction as described above becomes possible.
  • a hydrocarbon compound having an amino group as X can be obtained.
  • X has an aldehyde group and an azomethine group.
  • a hydrocarbon compound having the opposite direction is obtained.
  • Such a reaction can be carried out under known and usual reaction conditions for reacting an amino group and an aldehyde group.
  • the reaction temperature is 30 to 120 ° C.
  • the reaction time is usually 2 to 48 hours.
  • reaction solvent examples include ester solvents such as ethyl acetate and butyl acetate, aromatic solvents such as toluene and xylene, ether solvents such as THF and cyclopentylmethyl ether, ketone solvents such as MEK and cyclopentanone, m -Proton donor aromatic solvents such as cresol and phenol (preferably used in acid catalyzed reaction conditions), halogen-containing solvents such as chloroform, methylene chloride, tetrachloroethane, and benzene chloride, NMP, DMF, pyridine, Examples include proton-accepting solvents such as piperidine (preferably used under reaction conditions catalyzed by base catalysis), and nitrile solvents such as acetonitrile and benzonitrile.
  • ester solvents such as ethyl acetate and butyl acetate
  • aromatic solvents such as toluene and xylene
  • the hydrocarbon compound which is a raw material for producing the azomethine oligomer of the present invention is commercially available or can be easily obtained by reacting a commercially available product.
  • both X are amino groups or aldehyde groups, and t is an integer of 6-12.
  • Y is an amino group when X in the formula (II) is an aldehyde group, and is an aldehyde group when X is an amino group.
  • Ar 1 is a condensed ring system such as fluorene and phenanthrolin, or an aromatic ring such as biphenyl, bipyridine, and terthiophene, from the viewpoint of achieving both expansion of the conjugated system of the azomethine oligomer of the present invention and solubility in a solvent.
  • Ar 2 is a divalent aromatic group which may have a substituent.
  • Specific examples thereof include groups represented by the above formulas B-1 to B-24. Is mentioned.
  • A is an azomethine group, and its direction varies depending on the selection of a compound used as a raw material substrate for producing an aromatic ring-containing compound, as will be described later.
  • p is an integer of 0 to 5, and is preferably an integer of 1 to 3 from the viewpoint of coexistence of expansion of the conjugated system of the azomethine oligomer of the present invention and solubility in a solvent.
  • p is 2 or more, a plurality of Ar 2 may be the same or different.
  • Y is an aldehyde group or an amino group.
  • the two amino groups or aldehyde groups of the hydrocarbon compound react with the aldehyde group or amino group of the aromatic ring-containing compound to form an azomethine group, and the azomethine group and aromatic group (alternately To form a conjugated structure (the above aromatic group or aromatic ring-containing conjugated group).
  • the aromatic ring-containing compound since the aromatic ring-containing compound has no portion reactive with the aldehyde group or amino group other than the aldehyde group or amino group involved in the reaction with the hydrocarbon compound, the aromatic ring is further added after the reaction. A reaction with the contained compound or hydrocarbon compound does not occur, and an azomethine oligomer is obtained instead of polyazomethine.
  • the reaction temperature in the above reaction is usually 30 to 120 ° C., and preferably 60 to 100 ° C. from the viewpoint of reaction efficiency.
  • a 100 mL Schlenk tube purged with nitrogen was charged with 10.0 g (74.4 mmol) of terephthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution obtained by dissolving 2.30 g (24.8 mmol) of aniline in 30 g of toluene was dropped into the above solution over 3 hours, followed by stirring for 3 hours, and then the reaction was completed. After evaporation of the volatile solvent in the reaction solution, the concentrated solution was vacuum-dried and washed with hot hexane and acetonitrile.
  • Monoamine body (raw material 10) 1.14 g (3.99 mmol)
  • monoamine body (raw material 4) 0.78 g (3.99 mmol)
  • m-cresol 20 g obtained by synthesizing into a nitrogen-substituted 50 mL Schlenk tube were added and stirred.
  • the reaction solution was heated to 70 ° C. while Thereafter, a solution obtained by dissolving 2.11 g (2.66 mmol) of the dialdehyde body (starting material 22) of the above scheme obtained by synthesis in 10 g of m-cresol was dropped into the solution over 3 hours, and then stirred for 6 hours. After the completion of the reaction, the reaction was terminated.
  • the azomethine oligomer of the present invention having a flexible hydrocarbon group and a rigid aromatic group or aromatic ring-containing conjugated group is methanol, ethanol, acetonitrile, acetone, IPA, THF. It can be seen that it is soluble in at least one solvent of MEK and toluene. On the other hand, it can also be seen that an azomethine oligomer consisting only of an aromatic ring-containing conjugated group having a rigid structure does not exhibit any solubility in the solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Pyridine Compounds (AREA)
  • Indole Compounds (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 本発明は、半導体材料として十分なキャリア移動度を確保し、しかもトルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒など比較的に汎用性の高い有機溶媒に溶解する新規化合物を提供することを目的としている。 本発明は、主骨格中に、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよい二価の炭化水素基を有し、前記炭化水素基の両末端に、アゾメチン基を有し置換基を有していてもよい芳香族基、または、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した芳香族環含有共役基が、該アゾメチン基により結合してなり、該芳香族基及び芳香族環含有共役基は、アルデヒド基及びアミノ基と反応性を有しないことを特徴とするアゾメチンオリゴマーに関する。

Description

新規アゾメチンオリゴマー
 本発明は、新規なアゾメチンオリゴマーに関する。
 直鎖状に発達した共役構造を有するポリアゾメチンの用途に関しては、LED、薄膜トランジスタ、太陽電池等の電子及び光学デバイス材料用の有機半導体材料といった用途が幅広く研究されてきた。
 一般的に従来のポリアゾメチンは、主鎖中に芳香環、ヘテロ環、または芳香環及びヘテロ環を有し、これらがアゾメチン基で連結された、複数の芳香環および/またはヘテロ環が繋がった共役系ポリマー構造をとっている。
 ポリアゾメチンを有機半導体材料として利用する場合、基板上に前記半導体層を形成するためには、ポリアゾメチンを溶媒に溶解し、得られた溶液を基板上に塗布する方法が簡便であり、コストも低い。しかしながら、上記ポリアゾメチンは、上記のごとく共役系で、平面性が高く剛直な構造の化合物であり、そのため有機溶媒に対して溶解性が悪い。そのため前記ポリアゾメチンを有機溶媒に溶解させて基板上に塗布するということができない。
 このため、モノマーをターゲット基板へ真空蒸着しながらポリアゾメチンを重合し、かつ半導体層を形成する方法が提案されているが(特許文献1参照)、当該方法は、プロセスの煩雑さ及びポリアゾメチンの収率が低いことから好ましい方法とはいえない。
 また特許文献1に開示されたポリアゾメチンの溶媒溶解性については、m-クレゾール等のプロトン酸又はそれを含む有機溶媒中においては、前記ポリアゾメチンが可逆的なLewis酸-塩基対を形成し、この状態で溶媒に対して溶解性を示すことが知見されている(非特許文献1~4参照)。
 しかしながら、これらのプロトン酸またはプロトン酸を含む有機溶媒は汎用性があるとは言い難い。さらに、前記有機溶媒は腐食性を示すため、前記ポリアゾメチンをこれらの溶媒に溶解したポリアゾメチン溶液については、工業的な使用は制限される。
 また、特許文献2は、ポリアゾメチンを含有する有機LED素子に関する発明を開示しており、そのポリアゾメチンは、下記一般式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000013
上記の選択肢の中には、芳香環共役構造だけでなく、-(CH2m-やシクロヘキシレン基などの非共役構造もある。
 そして特許文献2の[0013]には、このようなポリアゾメチンをm-クレゾールまたはベンゼン中で重合し、得られたポリアゾメチン溶液をスピンコート、ディップコートなどの湿式による成膜法で基板(陽極)上に成膜し、その後に不活性ガスの雰囲気中で加熱することによりポリアゾメチン層を作製することが記載されている。
 しかしながら、特許文献2には、上記の一般式(I)で表わされるポリアゾメチンを実際に合成したかどうかについては何ら記載されていない。また特許文献2のポリアゾメチンが溶解するとされているm-クレゾールおよびベンゼンは、汎用性があるとは言い難い。またm-クレゾールについては上記のように腐食性があり、ベンゼンは発癌性を有しており、両者ともに人体に有害である。
 このため、特許文献2のポリアゾメチンをこれらm-クレゾールまたはベンゼンに溶解したポリアゾメチン溶液は、工業的利用が制限される。さらに、特許文献2には、前記ポリアゾメチンが汎用性の高い他の溶媒(たとえばアルコール)に溶解するかどうかについては、記載も示唆もない。
 一方、このように有機溶媒への溶解性の低いポリアゾメチンについて、その主鎖中の芳香環、ヘテロ環または芳香環及びヘテロ環にアルキル基またはアルコキシ基などを導入することにより、ポリアゾメチンがクロロホルム、THF、DMF、DMSO、NMP、m-クレゾールなどの単独の溶媒に対して溶解性を示すようになることが報告されている(非特許文献5参照)。
 しかしながら、このような芳香環および/またはヘテロ環にアルキル基またはアルコキシ基が導入された原料モノマーは、商業的に入手できないため、前記ポリアゾメチンの製造を工業化することは困難であると考えられる。また、使用する溶媒種は、含ハロゲン構造であることがあり、その場合、前記溶媒種は高沸点を示す。そのため、取扱者の健康管理や、溶媒の乾燥工程において高いエネルギーが要求されるなどの理由から、前記溶媒を工業用に使用することは、好ましいとは言い難い。さらに、化学構造上、こうした共役系内への置換基の導入は、その化合物の有する立体障害により本来の共役系内における平面性の低下を招き、ポリアゾメチン分子内および分子間の結晶性が低くなり、有機半導体材料に必要とされるキャリア移動度が悪くなると考えられる。但し、立体規則性の高いポリ(3-ヘキシルチオフェン)(P3HT)のヘキシル基にみられるように、前記置換基が、共役系分子内の結晶性を誘起させる効果があるアルキル基等である場合は、この限りではない。
特開平8-113622号公報 特開平9-194832号公報
Chem.Mater.1991, 3, 878 Chem. Mater. 1994, 6, 196 Chem. Mater. 1995, 7, 1276 Macromolecules 1995, 28, 1180 Macromolecules, vol. 38, No. 5, p1958-1966, 2005
 そこで本発明は、半導体材料として十分なキャリア移動度を確保し、しかもトルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒など比較的に汎用性の高い有機溶媒に溶解する新規なアゾメチンオリゴマーを提供することを目的とする。
 本発明は、主骨格中に、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよい二価の炭化水素基を有し、前記炭化水素基の両末端に、アゾメチン基を有し置換基を有してもよい芳香族基、または、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した芳香族環含有共役基が、該アゾメチン基により結合してなり、該芳香族基および芳香族環含有共役基は、アルデヒド基及びアミノ基と反応性を有しないことを特徴とするアゾメチンオリゴマーである。
 従来のポリアゾメチンにおいては、ポリアゾメチンが、その主鎖中に芳香環、ヘテロ環、または芳香環及びヘテロ環を有し、これらがアゾメチン基で連結された、複数の芳香環および/またはヘテロ環が繋がった共役系ポリマー構造をとっていた。これは、ポリアゾメチン1分子内においてキャリアを移動させるためである。そして共役系ポリマー構造をとっていることが、ポリアゾメチンの有機溶媒への低い溶解性の原因となっていた。溶解性を上げるため、上記芳香環および/またはヘテロ環にアルキル基またはアルコキシ基を、いわば側鎖として導入することも提案されている(非特許文献5)。しかし、この提案された方法には、そのようなポリアゾメチンを合成するための原料モノマーが商業的に入手できないという問題点がある。
 これに対して本発明者は、以下の2点の発想の転換により、汎用性の高い溶媒への溶解が可能なだけでなく、容易で工業的な製造が可能であり、しかも半導体として十分なキャリア移動度を確保したアゾメチンオリゴマーを発明したのである。
(1)キャリアを1分子内において移動させるのではなく、化合物が有する共役系(芳香環)を、化合物分子間でスタックさせること(分子間で共役構造部分を配向させること)により、キャリアが分子間で移動するようにさせること
(2)アルキル基等をポリマーの側鎖として導入するのではなく、オリゴマーの主鎖の一部として導入する(すなわち、共役系構造を非共役スペーサーで連結する)こと。
 本発明のアゾメチンオリゴマーにおいては、前記炭化水素基が、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~1024のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基、置換基を有していてもよい炭素数3~50のシクロアルキレン基、および、基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基からなる群より選ばれるいずれかの基であることが好ましい。
 また、本発明のアゾメチンオリゴマーの分子量が150~15000の範囲内にあることが好ましく、前記アゾメチンオリゴマーは、通常クレゾール、トルエン、THF、シクロペンチルメチルエーテル、アセトン、MEK、MIBK、シクロペンタノン、クロロホルム、ジクロロメタン、四塩化炭素、クロロベンゼン、二硫化炭素、酢酸エチル、酢酸ブチル、乳酸メチル、メタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、n-ブタノール、t-ブタノール、ペンチルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、ピリジン、NMP、硫酸、蟻酸、酢酸、塩酸、乳酸、トリエチルアミン、ジブチルアミンの中から選択されるいずれかの溶媒、または二種以上の共溶媒100gに対し、25℃において0.1g以上の溶解性を有している。
 本発明のアゾメチンオリゴマーは、例えば、下記一般式(I)で表わすことができる。
Figure JPOXMLDOC01-appb-C000014
 上記式において、二つ存在するArは独立に、置換基を有していてもよい一価の芳香族基、またはアゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した芳香族環含有共役基であり、
 Aはアゾメチン基であり、
 Rは、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~1024のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基、置換基を有していてもよい炭素数3~50のシクロアルキレン基、または基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基である。
 前記一価の芳香族基および二価の芳香族基の例としては、下記式で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 上記式において、半カッコでくくられた部位は結合手を示す。
 本発明のアゾメチンオリゴマーは半導体用途に好適であり、塗布法により電極上に成膜し、p-n接合素子の作製が可能である。アゾメチンオリゴマーをP型半導体層またはN型半導体層の形成材料として使用して作製したp-n接合素子について、P型半導体側の電極に正極端子を、N型半導体側の電極に負極端子を接続し、-5V~+5Vの範囲以内において電圧を印可することができ、順方向の電力量/逆方向の電力量>1.0となることが本発明のアゾメチンオリゴマーの特徴である。
 本発明のアゾメチンオリゴマーの製造方法は、下記一般式(II)で表わされる炭化水素化合物1当量に対して、下記一般式(III)で表わされる芳香族環含有化合物2当量を反応させる工程を有することを特徴としている。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式(II)において、二つのXはともにアルデヒド基またはアミノ基であり、
 二つのArは独立に置換基を有していてもよい二価の芳香族基であり、
 Aはアゾメチン基であり、
 R1およびR2は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
 Zは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
 mおよびnは独立に0または1であり、
 iは0または1であり、
 hおよびjは独立に0~12の整数であり(ただし、Zが酸素原子または硫黄原子である場合には、hおよびjはともに1以上である)、
 kは1~10の整数であり、
 hが2以上の場合、複数存在するR1は同一でも異なっていてもよく、
 jが2以上の場合、複数存在するR2は同一でも異なっていてもよく、
 kが2以上の場合、複数存在する(-(CHR1h-(O)i-(CHR2j-)は、同一でも異なっていてもよく、(-(CHR1h-(Z)i-(CHR2j-)kで表わされる構造中の炭素原子数は、2~1024である。
 上記式(III)において、Yは、上記式(II)におけるXがアルデヒド基の場合にはアミノ基であり、Xがアミノ基の場合にはアルデヒド基であり、
 Ar1は置換基を有していてもよい一価の芳香族基であり、
 Ar2は置換基を有していてもよい二価の芳香族基であり、
 Aはアゾメチン基であり、
 pは0~5の整数であり、
 pが2以上の場合には、複数存在するAr2は同一でも異なっていてもよい。
 前記芳香族環含有化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記式において、Yはアルデヒド基またはアミノ基である。
 前記炭化水素化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記式において、二つのXはともにアミノ基またはアルデヒド基であり、tは6~12の整数である。
 本発明のアゾメチンオリゴマーは、半導体材料として十分なキャリア移動度を確保し、しかもトルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒などの汎用性の高い有機溶媒に対して高い溶解性を示す。
 そのため、本発明のアゾメチンオリゴマーによれば、従来の共役系高分子のように、真空蒸着により基板上にポリアゾメチンを配向させるのではなく、塗布法により基板上に半導体層を形成することができる。
 [アゾメチンオリゴマー]
 以下、本発明のアゾメチンオリゴマーが有する、上記二価の炭化水素基、芳香族基及び芳香族環含有共役基について詳細に説明する。
 <二価の炭化水素基>
 本発明のアゾメチンオリゴマーを構成する上記炭化水素基は、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよく、その価数が2であれば特に限定されない。
 この炭化水素基が、本発明のアゾメチンオリゴマーの有機溶媒への高い溶解性に寄与している。
 前記炭化水素基の例としては、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~1024のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基、置換基を有していてもよい炭素数3~50のシクロアルキレン基、および、基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基が挙げられる。
 前記ハロゲン原子の例としては、フッ素原子、塩素原子および臭素原子が挙げられる。
 前記シクロアルキレン基における置換基の例としては、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が挙げられる。またシクロアルキレン基は、環状構造を複数有していてもよく、さらにその環状構造が、アルキレン基によって連結されていてもよい。
 前記アルキレン基の炭素数は、本発明のアゾメチンオリゴマーの有機溶媒への親和性と固体状態における分子間結晶性の両立の観点から、3~20であることが好ましく、4~12であることがより好ましく、6~12であることがさらに好ましい。
 前記基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい二価の炭化水素基の炭素数は、本発明のアゾメチンオリゴマーの有機溶媒への親和性と固体状態における分子間の結晶性の両立の観点から、3~20であることが好ましく、4~12であることがより好ましく、6~12であることがさらに好ましい。
 前記置換基を有していてもよいシクロアルキレン基の炭素数は、本発明のアゾメチンオリゴマーの有機溶媒への親和性と固体状態における分子間の結晶性の両立の観点から、3~30であることが好ましく、6~15であることが好ましい。
 前記基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい二価の炭化水素基の炭素数は、本発明のアゾメチンオリゴマーの有機溶媒への親和性と固体状態における分子間の結晶性の両立の観点から、3~20であることが好ましく、4~12であることがより好ましく、6~12であることがさらに好ましい。
 本発明のアゾメチンオリゴマーを構成する二価の炭化水素基は、有機溶媒への親和性の観点から、トルエンなどの比較的に低極性であり、疎水性が高い溶媒への溶解性を発現させる為にはアルキレン基を有する構造であることが好ましい。また、アルコール系、グリコール系、エステル系溶媒に対する溶解性を発現させるためには、前記二価の炭化水素基は、基中にエーテル結合を有する構造であることが好ましい。さらに含ハロゲン系溶媒に対する溶解性を発現させるためには、前記二価の炭化水素基は、基中にハロゲン原子を有する(ハロゲン原子で置換された)構造であることが好ましい。
 <アゾメチン基を有し置換基を有していてもよい芳香族基>
 本発明のアゾメチンオリゴマーを構成する、アゾメチン基を有し置換基を有していてもよい芳香族基は、アゾメチン基と一価の芳香族基とが結合して共役した構造をとっており、アルデヒド基及びアミノ基と反応性を有しなければ特に限定されない。アルデヒド基及びアミノ基と反応性を有しないことの意義については、後記の本発明のアゾメチンオリゴマーの製造方法の項にて説明する。
 前記一価の芳香族基およびアゾメチン基の共役構造によって、本発明のアゾメチンオリゴマーは、分子間におけるキャリア輸送機能を有するようになる。
 また前記アゾメチン基によって、一価の芳香族基が上記炭化水素基の末端に結合している。
 前記アゾメチン基を有し置換基を有していてもよい芳香族基における一価の芳香族基の例としては、下記式A-1~A-23で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式A―1において、Raは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。前記ハロゲン原子としては、F、ClおよびBrが挙げられる。以下の式A-2~A-23においても同様である。
 本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRaが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-1において、Saは1~5の整数であり、Saが2以上の場合には、複数存在するRaは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Saは4または5であることが好ましく、さらに好ましくは、Saが4または5であり、かつ芳香族基が全体として対称要素を有するように置換されている。前記対称要素とは、アゾメチンオリゴマー分子全体ではなく、芳香族基の構造部分の対称性を指す。また前記対称性とは、紙面上で描いた構造から推察される対称性であり、実際に測定したX線構造解析及び分子軌道計算による最適化された構造から判断される対称性ではない。以下同様である。なお、Saが5の場合は、必ず対称要素を有するようにRaが選択される、すなわち5つのRaは同一となる。
 また、式A-1において、「*」は結合手であり、これがアゾメチン基に結合している。以下の式A-2~A-23においても同様である。
Figure JPOXMLDOC01-appb-C000027
 式A-2において、Rbは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。
 本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRbは好ましくは水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-2において、Sbは1~4の整数であり、Sbが2以上の場合には、複数存在するRbは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sbは偶数であることが好ましく、さらに好ましくは、Sbが偶数であり、かつ芳香族基が全体として対称要素を有するように置換されている。
Figure JPOXMLDOC01-appb-C000028
 式A-3において、XaはS、O、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される(Phはフェニル基である。以下同じ)。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、Xaは、立体障害性が小さく、平面性が高いSおよびNHであることが好ましい。
 式A-3において、YbはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、いずれも好ましい。
 式A-3において、Rcは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。
 本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRcが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-3において、YbがCHの場合には、Scは1~3の整数であり、Scが2以上の場合には、複数存在するRcは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Scは2または3であることが好ましく、3であることがさらに好ましい。
 式A-3において、YbがNの場合には、Scは1である。
Figure JPOXMLDOC01-appb-C000029
 式A-4において、XbはCH2、C(CxH2x+1)2(Xは2~20の整数)、NH、 N(CxH2x+1)(Xは2~20の整数)、N(Ph)およびSから選択される。本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点から、Xbは、立体障害性が小さく、平面性が高いCH2またはNHであることが好ましい。
 式A-4において、Rdは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRdが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-4において、Sdは1~7の整数である。すなわち、Rdは、式A-4においては右側のベンゼン環に結合しているように図示したが、Rdは、式A-4において、結合し得るすべての炭素に結合する。すなわち、Rdは式A-4における右側のベンゼン環だけでなく、左側のベンゼン環に結合してもよい。結合手に関しても同様である。以下の式A-5~A-23においても同様である。
 Sdが2以上の場合には、複数存在するRdは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sdは6または7が好ましく、7であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000030
式A-5において、XcはCH2、O、S、NH、N(CxH2x+1)(Xは1~20の整数)およびN(Ph)から選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点から、立体障害性が小さく、平面性が高いCH2、O、SおよびNHであることが好ましい。
 式A-5において、YaはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、いずれも好ましい。
 式A-5において、Reは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはReが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-5において、YaがCHの場合には、Seは1~11の整数であり、Seが2以上の場合には、複数存在するReは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Seは9~11の整数であることが好ましく、9または10であることがさらに好ましい。
 式A-5において、YaがNの場合には、Seは1~9の整数であり、Seが2以上の場合には、複数存在するReは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Seは7~9の整数であることが好ましく、9であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000031
 式A-6において、XdはCHまたはNであり、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、いずれも好ましい。
 式A-6においてRfは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRfが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-6において、Sfは、XdがCHの場合は1~9の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sfは8または9であることが好ましく、さらに好ましくは、9である。
 また、XdがNの場合は、Sfは1~7の整数であり、前記と同様の観点から、Sfは6または7であることが好ましく、さらに好ましくは7である。
 なお、Sfが2以上の場合には、複数存在するRfは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000032
 式A-7において、Rgは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRgが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-7において、Sgは1~11の整数である。すなわち、Rgは式A-7における二つのベンゼン環をつなげているエテニレン基上に結合していてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sgは10または11であることが好ましく、さらに好ましくは、Sgは11である。なお、Sgが2以上の場合には、複数存在するRgは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000033
 式A-8において、Rhは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRhが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-8において、Shは1~7の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Shは6または7であることが好ましく、さらに好ましくは、Shは7である。なお、Shが2以上の場合には、複数存在するRhは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000034
 式A-9において、XeはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点から、XeはCHであることが好ましい。
 式A-9において、Riは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRiが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-9において、XeがCHの場合は、Siは1~9の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Siは奇数であることが好ましく、Siが奇数であり、かつ芳香族基が全体として対称要素を有するように置換されていることがさらに好ましい。
 また、XeがNの場合は、Siは1~7の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Siは6または7であることが好ましく、さらに好ましくは7である。
 なお、Siが2以上の場合には、複数存在するRiは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000035
 式A-10において、Rjは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRjが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-10において、Sjは1~9の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sjは8または9であることが好ましく、さらに好ましくは、Sjは9である。なお、Sjが2以上の場合には、複数存在するRjは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000036
 式A-11において、XfはO、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される。Xfは、本発明のアゾメチンオリゴマーの分子内共役系の平面性の高さの観点から、SまたはNHであることが好ましい。
 式A-11において、Rkは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRkが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-11において、Skは1~5の整数である。Skが2以上の場合には、複数存在するRkは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Skは3~5の整数であることが好ましく、3または5であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000037
 式A-12において、XgはO、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される。Xgは、本発明のアゾメチンオリゴマーの分子内共役系の平面性の高さの観点から、SまたはNHであることが好ましい。
 式A-12において、Rmは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRmが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-12において、Smは1~7の整数である。Smが2以上の場合には、複数存在するRmは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Smは4~7の整数であることが好ましく、4または7であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000038
 式A-13において、XhはCH2、O、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される。Xhは、本発明のアゾメチンオリゴマーの分子内共役系の平面性の高さの観点から、CH2、SまたはNHであることが好ましい。
 式A-13において、Rnは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRnが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-13において、XhがCH2の場合には、Snは1~17の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Snは10~17の整数であることが好ましく、17であることがさらに好ましい。
 式A-13において、XhがCH2以外である場合には、Snは1~9の整数である。前記と同様な観点から、Snは7~9の整数であることが好ましく、9であることがさらに好ましい。
 なお、Snが2以上の場合には、複数存在するRnは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000039
 式A-14において、XiはCH及びNから選択され、本発明のアゾメチンオリゴマーの原料の商業的な入手のしやすさの観点から、CHであることが好ましい。
 式A-14において、Roは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRoが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-14において、XiがCHの場合には、Soは1~3の整数である。Soが2以上の場合には、複数存在するRoは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Soは3であることがさらに好ましい。
 なお、XiがNの場合には、Soは1である。
Figure JPOXMLDOC01-appb-C000040
 式A-15において、XjはS及びOから選択され、本発明のアゾメチンオリゴマーの原料の商業的な入手のしやすさの観点から、Sであることが好ましい。
 式A-15において、Rpは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRpが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-15において、Spは1~5の整数である。Spが2以上の場合には、複数存在するRpは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Spは4または5であることが好ましく、5であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000041
 式A-16において、Rqは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRqが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-16において、Sqは1~3の整数である。Sqが2以上の場合には、複数存在するRqは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sqは奇数であることが好ましく、かつ芳香族基全体として対称要素を有するように置換されることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000042
 式A-17において、Rrは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRrが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-17において、Srは1~5の整数である。Srが2以上の場合には、複数存在するRrは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Srは奇数であることが好ましく、芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000043
 式A-18において、Rsは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRsが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-18において、Ssは1~3の整数である。Ssが2以上の場合には、複数存在するRsは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Ssは2または3であることが好ましく、3であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000044
 式A-19において、Rtは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRtが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-19において、Stは1~7の整数である。Stが2以上の場合には、複数存在するRtは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Stは奇数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000045
 式A-20において、Ruは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRuが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-20において、Suは1~3の整数である。Suが2以上の場合には、複数存在するRuは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Suは2であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 式A-21において、Rvは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRvが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-21において、Svは1~5の整数である。Svが2以上の場合には、複数存在するRvは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Svは奇数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000047
 式A-22において、Rwは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRwが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-22において、Swは1~7の整数である。Swが2以上の場合には、複数存在するRwは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Swは奇数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000048
 式A-23において、Rxは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRxが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-23において、Sxは1~7の整数である。Sxが2以上の場合には、複数存在するRxは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sxは奇数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 <芳香族環含有共役基>
 本発明のアゾメチンオリゴマーを構成する芳香族環含有共役基は、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した構造をとっており、アルデヒド基及びアミノ基と反応性を有しなければ特に限定されない。アルデヒド基及びアミノ基と反応性を有しないことの意義については、後記の本発明のアゾメチンオリゴマーの製造方法の項にて説明する。なお、芳香族環含有共役基を構成する芳香族基のうち、本発明のアゾメチンオリゴマーの分子末端となる芳香族基は、二価ではなく一価である。
 前記芳香族環含有共役基の共役構造によって、本発明のアゾメチンオリゴマーはキャリア輸送機能を発揮する。
 また前記アゾメチン基によって、芳香族環含有共役基が上記炭化水素基の末端に結合している。
 前記置換基を有していてもよい二価の芳香族基の例としては、下記式B-1~B-24で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-C000049
 式B―1において、Raは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。前記ハロゲン原子としては、F、ClおよびBrが挙げられる。以下の式B-2~B-24においても同様である。
 本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRaが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-1において、Saは1~4の整数であり、本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Saは偶数であることが好ましく、Saが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Saが2以上の場合には、複数存在するRaは同一でも異なっていてもよい。
 また、式B-1において、「*」は結合手であり、これがアゾメチン基に結合している。以下の式B-2~B-24においても同様である。
Figure JPOXMLDOC01-appb-C000050
 式B-2において、Rbは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRbが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-2において、Sbは1~3の整数であり、分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sbは奇数であることが好ましく、Sbが奇数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Sbが2以上の場合には、複数存在するRbは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000051
 式B-3において、XaはS、O、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、Xaとしては、立体障害性が小さく、平面性が高いSおよびNHが好ましい。
 式B-5において、YbはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、いずれも好ましい。
 式B-3において、Rcは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRbが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-3において、YbがCHの場合には、Scは1または2である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Scは2であることが好ましく、Scが2であり、かつ芳香族環含有基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Scが2の場合には、二つのRcは同一でも異なっていてもよい。
 式B-3において、YbがNの場合には、Scは1である。
Figure JPOXMLDOC01-appb-C000052
 式B-4において、XbはCH2、C(CxH2x+1)2(Xは2~20の整数)、NH、 N(CxH2x+1)(Xは2~20の整数)、N(Ph)およびSから選択される。本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点から、Xbとしては、立体障害性が小さく、平面性が高いCおよびNHが好ましい。
 式B-4において、Rdは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRdが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-4において、Sdは1~6の整数である。すなわち、Rdは、式B-4においては右側のベンゼン環に結合しているように図示したが、Rdは、式B-4において、結合し得るすべての炭素に結合する。すなわち、Rdは式B-4における右側のベンゼン環だけでなく、左側のベンゼン環に結合してもよい。結合手に関しても同様である。以下の式B-5~B-24においても同様である。
 本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sdは偶数であることが好ましく、Sdが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。なお、Sdが2以上の場合には、複数存在するRdは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000053
 式B-5において、XcはO、S、NH、 N(CxH2x+1)  (Xは1~20の整数)およびN(Ph)から選択される。本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点から、Xcとしては、立体障害性が小さく、平面性が高いO、SおよびNHが好ましい。
 式B-5において、YaはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、いずれも好ましい。
 式B-5において、Reは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはReが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-5において、YaがCHの場合には、Seは1~10の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Seは偶数であることが好ましく、Seが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 YaがNの場合には、Seは1~8の整数である。前記と同様な観点から、Seは偶数であることが好ましく、Seが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Seが2以上の場合には、複数存在するReは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000054
 式B-6において、XdはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、いずれも好ましい。
 式B-6において、Rfは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRfが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-6において、Sfは、XdがCHの場合は1~8の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sfは偶数であることが好ましく、Sfが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 また、XdがNの場合は、Sfは1~6の整数であり、前記と同様の観点から、Sfは偶数であることが好ましく、Sfが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Sfが2以上の場合には、複数存在するRfは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000055
 式B-7において、Rgは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRgが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-7において、Sgは1~10の整数であり、Rgは、二つのベンゼン環をつなげているエテニレン基上に結合していてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sgは偶数であることが好ましく、Sgが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。なお、Sgが2以上の場合には、複数存在するRgは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000056
 式B-8において、Rhは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRhが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-8において、Shは1~6の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Shは偶数であることが好ましく、Shが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Shが2以上の場合には、複数存在するRhは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000057
 式B-9において、XeはCHおよびNから選択され、本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、XeはCHであることが好ましい。
 式B-9において、Riは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRiが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-9において、Siは、XeがCHの場合は1~8の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Siは偶数であることが好ましく、Siが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 またSiは、XeがNの場合は、1~6の整数であり、前記と同様の観点から、Siは偶数であることが好ましく、Siが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Siが2以上の場合には、複数存在するRiは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000058
 式B-10において、Rjは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRjが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-10において、Sjは1~8の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sjは偶数であることが好ましく、Sjが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Sjが2以上の場合には、複数存在するRjは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000059
 式B-11において、XfはCHおよびNから選択される。本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、XfはNであることが好ましい。
 式B-11において、Rkは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRkが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-11において、Skは、XfがCHの場合は1~8の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Skは偶数であることが好ましく、Skが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 またSkは、XfがNの場合は、1~6の整数であり、前記と同様の観点から、Skは偶数であることが好ましく、Skが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Skが2以上の場合には、複数存在するRkは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000060
 式B-12において、XgはCHおよびNから選択される。本発明のアゾメチンオリゴマーの分子間における高い結晶化の観点からは、XgはNであることが好ましい。
 式B-12において、Rmは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRmが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-12において、Smは、XgがCHの場合は1~8の整数である。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Smは偶数であることが好ましく、Smが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 またSmは、XgがNの場合は、1~6の整数であり、前記と同様の観点から、Smは偶数であることが好ましく、Smが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Smが2以上の場合には、複数存在するRmは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000061
 式B-13において、XhはO、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される。本発明のアゾメチンオリゴマーの分子内共役系の平面性の高さの観点から、Xhは、SまたはNHであることが好ましい。
 式B-13において、Rnは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRnが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-13において、Snは1~4の整数である。Snが2以上の場合には、複数存在するRnは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Snは2~4の整数であることが好ましく、2または4であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000062
 式B-14において、XiはO、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択される。本発明のアゾメチンオリゴマーの分子内共役系の平面性の高さの観点から、Xiは、SまたはNHであることが好ましい。
 式B-14において、Rpは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRpが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-14において、Spは1~8の整数である。Spが2以上の場合には、複数存在するRpは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Spは4~8の整数であることが好ましく、4または8であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000063
 式B-15において、XjはCH及びNから選択され、本発明のアゾメチンオリゴマーの原料の商業的な入手のしやすさの観点から、CHであることが好ましい。
 式B-15において、Rqは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRqが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-15において、XjがCHの場合はSqは1または2である。Sqが2の場合には、二つ存在するRqは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sqは2であることが好ましい。なお、XjがNの場合はSqは0である。
Figure JPOXMLDOC01-appb-C000064
 式B-16において、XkはS及びOから選択され、本発明のアゾメチンオリゴマーの原料の商業的な入手のしやすさの観点から、Sであることが好ましい。
 式B-16において、Rrは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRrが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-16において、Srは1~4の整数である。Srが2以上の場合には、複数存在するRrは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Srは3または4であることが好ましく、4であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000065
 式B-17において、Rsは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRsが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-17において、Ssは1または2である。Ssが2の場合には、二つ存在するRsは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Ssは2であることが好ましい。
Figure JPOXMLDOC01-appb-C000066
 式B-18において、Rtは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRtが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-18において、Stは1~4の整数である。Stが2以上の場合には、複数存在するRtは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Stは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000067
 式B-19において、Ruは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRuが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-19において、Suは1または2である。Suが2の場合には、二つ存在するRuは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Suは2であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000068
 式B-20において、Rvは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRvが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-20において、Svは1~6の整数である。Svが2以上の場合には、複数存在するRvは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Svは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000069
 式B-21において、Rxは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRxが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-21において、Sxは1または2である。Sxが2の場合には、二つ存在するRxは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sxは2であることが好ましい。
Figure JPOXMLDOC01-appb-C000070
 式B-22において、Ryは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRyが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-22において、Syは1~4の整数である。Syが2以上の場合には、複数存在するRyは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Syは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000071
 式B-23において、Rzは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRzが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-23において、Szは1~6の整数である。Szが2以上の場合には、複数存在するRzは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Szは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000072
 式B-24において、Raaは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のアゾメチンオリゴマーの分子間における高結晶化の観点から、好ましくはRaaが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式B-24において、Saaは1~6の整数である。Saaが2以上の場合には、複数存在するRaaは同一でも異なっていてもよい。本発明のアゾメチンオリゴマーの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Saaは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
 上記芳香族環含有共役基においては、これらの二価の芳香族基がアゾメチン基によって連結されており、アゾメチン基と二価の芳香族基とが交互に結合して共役した構造をとっている。
 芳香族環含有共役基中の芳香族基は通常5個以下であり、本発明のアゾメチンオリゴマーの溶媒への溶解性、分子内共役、分子間における結晶性の観点から、3~5個であることが好ましい。アゾメチン基と二価の芳香族基とを交互に結合させる方法については、後記の本発明のアゾメチンオリゴマーの製造方法の項にて説明する。
 <アゾメチンオリゴマー>
 本発明のアゾメチンオリゴマーにおいては、以上説明した炭化水素基の両末端に、上記芳香族基または芳香族環含有共役基が、アゾメチン基を介して結合している。
 このような構造の例を以下に示す。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 この構造は、二価の炭化水素基がオクチレン基であり、芳香族基が、アゾメチン基を有するフェニル基である場合の構造である。C=Nがアゾメチン基であり、この向きによって共役系内での共役状態は異なるが、前記共役状態は、フェニル基等の非ヘテロ原子含有芳香環においては分子間における結晶性には大きな影響は及ぼさないと考えられる。
 一方、芳香環がピリジン基等のヘテロ環である場合においては、アゾメチン基の向きによって、前記共役状態が分子間における結晶性に影響を与えることが考えられる。すなわち、アゾメチン基の向きが、アゾメチン基を構成するNおよびCのうち、Nのほうがヘテロ環に近い位置にある向きであり、かつヘテロ環のヘテロ原子がアゾメチン基を構成するNの近くにあるときには、本発明のアゾメチンオリゴマーの固体状態における分子内共役系の拡張がおこり、また共役系内の電子構造が大きく影響を受ける場合があるので、好ましい。本発明のアゾメチンオリゴマーが、溶液状態で、前記アゾメチン基中のNおよびヘテロ環のヘテロ原子に基づく、金属イオンに対するメタレーション効果、およびカチオン認識効果等を示すことが期待され、前記効果の相互作用によりアゾメチンオリゴマーがテンプレートされるからである。
 本発明のアゾメチンオリゴマーは、その構造中に上記炭化水素基を有し、この部分は結晶性を有していないため、汎用性の高い多様な有機溶媒、例えば疎水性溶媒、アルコール系溶媒、グリコール系溶媒またはエステル系溶媒に対して高い溶解性を示す。
 より具体的には、前記アゾメチンオリゴマーは、通常クレゾール、トルエン、THF、シクロペンチルメチルエーテル、アセトン、MEK、MIBK、シクロペンタノン、クロロホルム、ジクロロメタン、四塩化炭素、クロロベンゼン、二硫化炭素、酢酸エチル、酢酸ブチル、乳酸メチル、メタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、n-ブタノール、t-ブタノール、ペンチルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、ピリジン、NMP、硫酸、蟻酸、酢酸、塩酸、乳酸、トリエチルアミン、ジブチルアミンの中から選択されるいずれかの溶媒乃至、二種以上の共溶媒100gに対し、25℃において通常0.1g以上、好ましくは1~10gの溶解性を有する。なお、[背景技術]でも述べたように、クレゾールやクロロベンゼンなどは、腐食性を有する、あるいは人体に有害である。本発明においては、これらは通常他のトルエンなどの汎用性の高い溶媒に少量混合して共溶媒として用いる。
 このように、汎用性の高い、多種多様な有機溶媒に対する溶解性の高い本発明のアゾメチンオリゴマーは、従来のポリアゾメチンのようなポリマー構造を有していないにもかかわらず、電子および正孔などのキャリアを輸送する機能が高く、半導体用途に好適である。
 高いキャリア輸送機能を有するのは、以下の理由による。すなわち、アゾメチンオリゴマーが分子同士で、親和性の高いもの同士(すなわち炭化水素基は炭化水素基同士、芳香族基及び芳香族環含有共役基は芳香族基及び芳香族環含有共役基同士)が重なり合う。そして、芳香族基または芳香族環含有共役基がスタックしている箇所において、キャリアが自由に移動できるのである。つまり、従来のポリアゾメチンは、分子内の特定の構造によってキャリア移動度を確保していたのに対し、本発明においては、分子間のスタックによってキャリア移動度を確保しているのである。
 以上説明したように、本発明のアゾメチンオリゴマーは高いキャリア輸送機能を有し、半導体用途に好適であり、しかも汎用性の高い有機溶媒に対して高い溶解性を示す。したがって、前記アゾメチンオリゴマーを汎用性の高い有機溶媒に溶解させ、得られたアゾメチンオリゴマー溶液を使用し、スピンコートやディップコートといった塗布法によって、基板上に安全かつ容易に半導体層を形成することができる。
 このようなキャリア輸送機能を有する本発明のアゾメチンオリゴマーの溶液を、電極上に塗布して成膜し、p-n接合素子を作製することができる。アゾメチンオリゴマーをP型半導体層形成材料として用いた場合は、N型半導体層は、アゾメチンのイオン化ポテンシャル(eV)よりも大きい値である電子親和力(eV)を示す半導体材料(例:フラーレン)を用いて作製する。又、アゾメチンオリゴマーをN型半導体層形成材料として用いた場合は、P型半導体層は、アゾメチンオリゴマーの電子親和力(eV)よりも小さい値であるイオン化ポテンシャルを示す半導体材料(例:ポリ(3-ヘキシルチオフェン))を用いて作製する。
 より具体的には、本発明のアゾメチンオリゴマーをN型半導体層の形成材料として使用する場合には、負側電極基板上にアゾメチンオリゴマー溶液を塗布、乾燥することにより、膜を作製する。その膜上にP型半導体材料を塗布もしくは蒸着などで成膜し、得られたP型半導体層上に正側の電極を蒸着することにより、p-n接合素子を作製することができる。また、本発明のアゾメチンオリゴマーをP型半導体層の形成材料として使用する場合には、負側電極基板上にN型半導体材料を塗布もしくは蒸着などで成膜し、その膜上にアゾメチンオリゴマー溶液を塗布、乾燥することでP型半導体層を形成し、さらに前記P型半導体層に正極の電極を蒸着することでp-n接合素子を作製することができる。これらのP型及びN型半導体材料の接合体層の厚みは、通常10~900nmである。
 例えばこのようにして作成されるp-n接合素子は、例えばダイオード、有機EL、有機薄膜太陽電池、有機薄膜トランジスタ、熱電発電素子等の有機エレクトロニクス分野への応用が可能である。
 ここで、前記イオン化ポテンシャルおよび電子親和力は、それぞれHOMO(最高占有軌道)とLUMO(最低非占有軌道)として実験的に求めることができる。
 HOMOは、日本国特許第1124703号公報に記載の光電子分光法により、理研計器社製のAC-2を使用して求めることができる。
 また電気化学的な酸化電位を求めてHOMOに換算する方法としては、具体的に試料の酸化開始電位を求めて換算する方法が例示される。
 酸化開始電位は、目的の試料に関してサイクリックボルタンメトリー(CV)の測定を行い、得られた測定結果において、ベースラインから酸化電流が流れ始めるときの電位として求められる。必要に応じて、測定に用いた参照電極から標準水素電極基準への換算を行い、さらに、この値に真空準位に対する標準水素電極の値(定数)4.5を加えることにより、HOMO(eV)を求めることができる。
 次に、LUMOを求める方法としては、電気化学的な還元準位を求めてLUMOに換算する方法、ならびに試料の紫外-可視光吸収スペクトルの吸収開始波長と上記で求めたHOMOの値からLUMOに換算する方法が挙げられる。
 電気化学的な測定によりLUMOを求める場合は、上記のHOMOを求める場合と同様にCVで試料の還元電位の測定を行い、同様に換算をすることによりLUMOが求められる。
 吸収開始波長からLUMOを求める場合には、試料をガラス基板上に数十ナノメートル程度の厚みになるようにスピンコートにより製膜し、形成された膜について紫外-可視光吸収スペクトルの測定を行い、得られた測定結果において、ベースラインから吸収が開始するときの波長λ(nm)として吸収開始波長を求めることができる。この値を電子ボルト(eV)へ換算して得られた値をバンドギャップエネルギーE(eV)とする。さらに上記のようにして求められるHOMO(eV)を、このバンドギャップエネルギーE(eV)で除することにより、LUMOを求めることができる。
 アゾメチンオリゴマーの半導体特性の調整に関しては、一般的な共役系ポリマーについての知見を参照することができ、一般的な調整法と同様の方法で前記半導体特性の調整が可能である。
 本発明のアゾメチンオリゴマーのP型半導体特性は、分子のイオン化ポテンシャル調整により向上させることができる。例えば以下の2つの方法により、分子のイオン化ポテンシャルを大きくすることが可能である。
(1)共役系(芳香族基または芳香族環含有共役基)として、電子豊富なナフタレン、アントラセン等の縮環系ユニットを選択すること
(2)メチル基、フェニル基等の電子供与性の置換基を共役系に導入することにより、共役系内の電子密度を大きくし、電子を非局在化させること。
 一方、本発明のアゾメチンオリゴマーのN型半導体特性は、分子の電子親和力の調整により向上させることができる。例えば以下の2つの方法により、分子の電子親和力を大きくすることが可能である。
(1)共役系(芳香族基または芳香族環含有共役基)として、電子不足の傾向をもつピリジン、ビピリジン、フェナントロリン等の複素環を選択すること
(2)F、CF3等の電子吸引性の置換基を共役系に導入することにより、共役系内の電子密度を低くし、電子を局在化させること。
 前記のごとく優れた半導体特性を有する本発明のアゾメチンオリゴマーからは、p-n接合素子を調製することができる。該アゾメチンオリゴマーをP型半導体層またはN型半導体層の形成材料として使用して作製したp-n接合素子については、P型半導体側の電極に正極端子を、N型半導体側の電極に負極端子を接続し、-5V~+5Vの範囲内において電圧を印可することができ、順方向の電力量/逆方向の電力量>1.0となる。
 この特性を利用して、本発明のアゾメチンオリゴマーは、例えばp及びn型半導体として使用可能である。なお、前記P型半導体層と電極との間、前記N型半導体層と電極との間には、それぞれ正孔注入相、電子注入層を別途設けることも可能である。
 また、本発明のアゾメチンオリゴマーの分子量は、溶媒溶解性と分子内結晶性の両立の観点から、150~15000の範囲内にあることが好ましく、1500~10000の範囲内にあることがより好ましい。分子量の調整方法については、後記の本発明のアゾメチンオリゴマーの製造方法の項にて説明する。
 (アゾメチンオリゴマーの具体例)
 以上説明した本発明のアゾメチンオリゴマーの具体例としては、下記一般式(I)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000075
 上記式において、二つ存在するArは独立に、置換基を有していてもよい一価の芳香族基、またはアゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した芳香族環含有共役基である。
 前記一価の芳香族基の例としては、下記式で表わされる基が挙げられる。なお、下記式においては、半カッコでくくられた部位が結合手である。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 これらの中でも、本発明のアゾメチンオリゴマーが固体の状態における、分子間の高い結晶性の観点から、以下に例示される一価の芳香族基が好ましい。
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 さらに、単位共役構造内における共役性を拡張する観点から、以下に例示される一価の芳香族基がより好ましい。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 また、上記二価の芳香族基の具体的な例としては、以下の基が挙げられる。なお、下記式においては、半カッコでくくられた部位が結合手である。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 これらの中でも、本発明のアゾメチンオリゴマーが固体の状態における、分子間の高い結晶性の観点から、以下に例示される二価の芳香族基が好ましい。
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
 上記式(I)において、Aはアゾメチン基(C=NまたはN=C)であり、本発明のアゾメチンオリゴマーを製造するための原料基質として用いる、後述する炭化水素化合物および芳香族環含有化合物を、ジアミン体及びジアルデヒド体のいずれとするかの選択により、その向きは異なる。なお、一般式(I)中のAr-Aにおいて、二つのアゾメチン基が隣接することはない。
 式(I)において、Rは、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~1024のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基、置換基を有していてもよい炭素数3~50のシクロアルキレン基、または基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基である。Rとして好ましいものは、上記<二価の炭化水素基>の説明で、炭化水素基として好ましいものとして挙げたものと同様である。
 以上説明した本発明のアゾメチンオリゴマーは、分子間で芳香族基または芳香族環含有共役基がスタックしている箇所において、キャリアを自由に移動させることができるため、半導体用途に好適である。また前記アゾメチンオリゴマーは、トルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒などの汎用性の高い有機溶媒に対して高い溶解性を有している。そのため、本発明のアゾメチンオリゴマーを前記有機溶媒に溶解して、得られたアゾメチンオリゴマー溶液を使用して、塗布法によって基板上に容易に半導体層を形成することができる。
 次に、本発明のアゾメチンオリゴマーの製造方法について説明する。
 [本発明のアゾメチンオリゴマーの製造方法]
 本発明のアゾメチンオリゴマーの製造方法は、下記一般式(II)で表わされる炭化水素化合物1当量に対して、下記一般式(III)で表わされる芳香族環含有化合物2当量を反応させる工程を有している。
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
 式(II)において、二つのXはともにアルデヒド基またはアミノ基であり、式(III)においてYは、式(II)におけるXがアルデヒド基の場合にはアミノ基であり、Xがアミノ基の場合にはアルデヒド基である。
 すなわち、アルデヒド基とアミノ基との反応を利用し、炭化水素化合物1分子に対して芳香族環含有化合物2分子を反応させることによって、本発明のアゾメチンオリゴマーが得られる。
 <一般式(II)で表わされる炭化水素化合物>
 上記式(II)において、二つのXは、前述のようにともにアルデヒド基またはアミノ基である。二つのArは独立に置換基を有していてもよい二価の芳香族基であり、その具体例としては、上記式B-1~B-24で表わされる基が挙げられる。
 上記式(II)において、Aはアゾメチン基であり、後述するように、炭化水素化合物を製造するための原料基質として用いる化合物の選択により、その向きは異なる。
 式(II)において、mおよびnは独立に0または1である。mが1である場合には、mの添え字が付けられたカッコでくくられたAr-AおよびArに結合したXが(Xはアゾメチン基となるが)、本発明のアゾメチンオリゴマーにおける芳香族環含有共役基の一部を構成する。nについても同様である。
 式(II)において、R1およびR2は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基である。R1およびR2としては、有機溶媒に対する溶解性と成膜時の膜の結晶性の観点から、水素原子および炭素数5~12のアルキル基が好ましい。
 式(II)において、Zは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、原料が比較的に商業的に入手可能な点から、酸素原子であることが好ましい。
 式(II)において、iは0または1であり、iが1の場合には、炭化水素化合物がエーテル結合(酸素原子)、チオエーテル結合(硫黄原子)またはシクロアルキレン基を有することになる。
 式(II)において、hおよびjは独立に0~12の整数であり、0~3の整数であることが好ましい。ただし、Zが酸素原子または硫黄原子である場合は、hおよびjはともに1以上である。
 式(II)において、kは1~10の整数であり、2~5の整数であることが好ましい。
 また式(II)において、hが2以上の場合には、複数存在するR1は同一でも異なっていてもよく、jが2以上の場合には、複数存在するR2は同一でも異なっていてもよい。
 式(II)において、kが2以上の場合は、複数存在する(-(CHR1h-(Z)i-(CHR2j-)は、同一でも異なっていてもよい。
 さらに、(-(CHR1h-(Z)i-(CHR2j-)kで表わされる構造中の炭素原子数は、2~1024であり、好ましくは6~512である。
 (一般式(II)で表わされる炭化水素化合物の入手方法)
 一般式(II)において、mおよびnが0である炭化水素化合物は、市販されており、容易に入手可能である。
 mまたはnが1で、他方が0の場合の炭化水素化合物は、市販されている化合物を反応させることにより、容易に入手することができる。
 Arがフェニレン基であり、mが1であり、nが0であり、(-(CHR1h-(Z)i-(CHR2j-)kがオクチレン基であり、Xがアミノ基である場合を例とすると、たとえば以下の反応によって、一般式(II)の炭化水素化合物が得られる。
Figure JPOXMLDOC01-appb-C000088
 このようなp-アミノベンズアルデヒド1分子が1,8-ジアミノオクタン1分子と反応し、一般式(II)の炭化水素化合物が得られる反応の反応条件の詳細は、実施例の原料1の合成の項で示す。
 以上の反応では、Xとしてアミノ基を有する炭化水素化合物が得られるが、使用する反応原料をp-アミノベンズアルデヒドと1,8-ジホルミルオクタンに変更すれば、Xとしてアルデヒド基を有し、アゾメチン基の向きが反対となった炭化水素化合物が得られる。
 次に、mおよびnがともに1である炭化水素化合物は、上記の反応を繰り返す(上記反応で得られた化合物に、p-アミノベンズアルデヒドを反応させる)ことによって得られるし、また下記のようにして、一段階の反応で得ることも可能である。
Figure JPOXMLDOC01-appb-C000089
 1,8-ジアミノオクタンに対して、p-アミノベンズアルデヒドを過剰量使用することによって、上記のような一段階の反応が可能となる。以上の反応では、Xとしてアミノ基を有する炭化水素化合物が得られるが、使用する原料を1,8-ジホルミルオクタンとp-アミノベンズアルデヒドに変更すれば、Xとしてアルデヒド基を有し、アゾメチン基の向きが反対となった炭化水素化合物が得られる。
 アミノ基とアルデヒド基とは反応性が高いため、上記反応は、原料成分を接触混合することなどにより、容易に進行する。
 このような反応は、アミノ基とアルデヒド基とを反応させる公知慣用の反応条件によって実施可能である。通常反応温度は30~120℃であり、反応時間は通常2~48時間である。
 また反応溶媒としては、酢酸エチル、酢酸ブチル等のエステル系溶媒、トルエン、キシレン等の芳香族性溶媒、THF、シクロペンチルメチルエーテル等のエーテル系溶媒、MEK、シクロペンタノン等のケトン系溶媒、m-クレゾール、フェノール等のプロトンドナー性の芳香族溶媒(酸触媒化された反応条件においての使用が好ましい)、クロロホルム、塩化メチレン、テトラクロロエタン、塩化ベンゼンなどの含ハロゲン溶媒、NMP、DMF、ピリジン、ピペリジン等のプロトン受容性溶媒(塩基触媒化された反応条件においての使用が好ましい)、アセトニトリル、ベンゾニトリル等のニトリル系溶媒が挙げられる。
 以上説明したように、本発明のアゾメチンオリゴマーの製造原料たる炭化水素化合物は、市販されているか、あるいは市販されているものを反応させることによって、容易に入手可能である。
 (炭化水素化合物の具体例)
 以上説明した一般式(II)で表わされる炭化水素化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000090
 上記式において、二つのXはともにアミノ基またはアルデヒド基であり、tは6~12の整数である。
 <一般式(III)で表わされる芳香族環含有化合物>
 一般式(III)を再度示す。
Figure JPOXMLDOC01-appb-C000091
 上記式において、Yは前述のように、式(II)におけるXがアルデヒド基の場合にはアミノ基であり、Xがアミノ基の場合にはアルデヒド基である。
 式(III)において、Ar1は置換基を有していてもよい一価の芳香族基であり、その具体例としては、上記式A-1~A-23で表わされる基が挙げられる。
 これらの中でも、Ar1としては、本発明のアゾメチンオリゴマーの共役系の拡張と溶媒に対する溶解性の両立の観点から、フルオレン、フェナンソロリン等の縮環系、またはビフェニル、ビピリジン、ターチオフェン等の芳香環が2~5ユニット連結した共役系が好ましい。
 次に、上記式(III)において、Ar2は置換基を有していてもよい二価の芳香族基であり、その具体例としては、上記式B-1~B-24で表わされる基が挙げられる。
 これらの中でも、Ar2としては、共役系の拡張と溶媒に対する溶解性の両立の観点から、フルオレン、フェナンソロリン等の縮環系、またはビフェニル、ビピリジン、ターチオフェン等の芳香環が2~5ユニット連結した共役系が好ましい。
 式(III)において、Aはアゾメチン基であり、後述するように、芳香族環含有化合物を製造するための原料基質として用いる化合物の選択により、その向きは異なる。
 式(III)において、pは0~5の整数であり、本発明のアゾメチンオリゴマーの共役系の拡張と溶媒に対する溶解性の両立の観点から、1~3の整数であることが好ましい。また、pが2以上の場合には、複数存在するAr2は同一でも異なっていてもよい。
 (一般式(III)で表わされる芳香族環含有化合物の入手方法)
 一般式(III)において、pが0である芳香族環含有化合物は市販されており、容易に入手可能である。
 pが1以上の場合の芳香族環含有化合物は、市販されている化合物を反応させることにより、容易に入手することができる。
 一般式(III)において、Ar1がフェニル基であり、Ar2がフェニレン基の場合を例とすると、たとえば以下の反応によって、pが1である芳香族環含有化合物が得られる。
Figure JPOXMLDOC01-appb-C000092
 このように、ベンズアルデヒド1分子が1,4-ジアミノベンゼン1分子と反応し、一般式(III)で表わされる芳香族環含有化合物が得られる反応の反応条件の詳細は、実施例の原料4の合成の項で示す。
 以上の反応では、Yとしてアミノ基を有する芳香族環含有化合物が得られるが、使用する反応原料をp-アミノベンズアルデヒドと1,4-ジホルミルベンゼンに変更すれば、Yとしてアルデヒド基を有し、アゾメチン基の向きが反対となった芳香族環含有化合物が得られる。
 さらに、pが2以上である芳香族環含有化合物は、上記反応を繰り返す(上記反応で得られたアゾメチン化合物に、p-アミノベンズアルデヒドを反応させる)ことによって得られる。
 アミノ基とアルデヒド基とは反応性が高いため、上記反応は容易に進行する。
 このような反応は、アミノ基とアルデヒド基とを反応させる公知慣用の反応条件によって実施可能である。通常反応温度は30~120℃であり、反応時間は通常2~48時間である。
 また反応溶媒としては、酢酸エチル、酢酸ブチル等のエステル系溶媒、トルエン、キシレン等の芳香族性溶媒、THF、シクロペンチルメチルエーテル等のエーテル系溶媒、MEK、シクロペンタノン等のケトン系溶媒、m-クレゾール、フェノール等のプロトンドナー性の芳香族溶媒(酸触媒化された反応条件においての使用が好ましい)、クロロホルム、塩化メチレン、テトラクロロエタン、塩化ベンゼンなどの含ハロゲン溶媒、NMP、DMF、ピリジン、ピペリジン等のプロトン受容性溶媒(塩基触媒化された反応条件においての使用が好ましい)、アセトニトリル、ベンゾニトリル等のニトリル系溶媒が挙げられる。
 以上説明したように、本発明のアゾメチンオリゴマーの製造原料たる芳香族環含有化合物は、市販されているか、あるいは市販されているものを反応させることによって、容易に入手可能である。
 (芳香族環含有化合物の具体例)
 以上説明した芳香族環含有化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
 上記式において、Yはアルデヒド基またはアミノ基である。
 <反応>
 本発明のアゾメチンオリゴマーの製造方法においては、上記一般式(II)で表わされる炭化水素化合物1当量に対して、上記一般式(III)で表わされる芳香族環含有化合物2当量を反応させる。炭化水素化合物および芳香族環含有化合物の分子量を適宜選択(調節)することにより、得られる本発明のアゾメチンオリゴマーの分子量を調節することができる。
 この反応において、炭化水素化合物が有する2つのアミノ基またはアルデヒド基が、芳香族環含有化合物が有するアルデヒド基またはアミノ基と反応してアゾメチン基を形成し、アゾメチン基と芳香族基とが(交互に)結合して共役した構造(上記芳香族基または芳香族環含有共役基)が形成される。また芳香族環含有化合物には、炭化水素化合物との反応に関与するアルデヒド基またはアミノ基以外に、アルデヒド基またはアミノ基と反応性を有する部位がないため、前記反応ののち、さらに芳香族環含有化合物または炭化水素化合物との反応がおこることがなく、ポリアゾメチンではなく、アゾメチンオリゴマーが得られる。
 上記反応における反応温度は、通常30~120℃、反応効率の観点から、好ましくは60~100℃である。
 上記反応における反応時間は、通常2~48時間、反応効率の観点から、好ましくは6~24時間である。
 また、上記反応においては、m-クレゾール、ジメチルフェノール、フェノール、カンファースルホン酸、ナフトール、蟻酸、酢酸、プロピオン酸、塩酸、硫酸、といった一般的な酸に触媒化された付加反応に使用される触媒が使用可能である。また、一般的な塩基に触媒化された付加反応に使用されるのと同様の塩基も、上記反応における触媒としての使用が可能である。
 さらに、上記反応の反応溶媒としては、酢酸エチル、酢酸ブチル等のエステル系溶媒、トルエン、キシレン等の芳香族性溶媒、THF、シクロペンチルメチルエーテル等のエーテル系溶媒、MEK、シクロペンタノン等のケトン系溶媒、m-クレゾール、フェノール等のプロトンドナー性の芳香族溶媒(酸触媒化された反応条件においての使用が好ましい)、クロロホルム、塩化メチレン、テトラクロロエタン、塩化ベンゼンなどの含ハロゲン溶媒、NMP、DMF、ピリジン、ピペリジン等のプロトン受容性溶媒(塩基触媒化された反応条件においての使用が好ましい)、アセトニトリル、ベンゾニトリル等のニトリル系溶媒が挙げられる。これらの中でも、反応効率の観点から、m-クレゾール、トルエン-m-クレゾール共溶媒、THF、シクロペンチルメチルエーテル、シクロペンタノンが好ましい。
 アルデヒド基とアミノ基との反応性は高いため、上記反応は容易に進行する。したがって、本発明のアゾメチンオリゴマーは、入手の容易な原料から容易に製造することができる。また前記アゾメチンオリゴマーは、非特許文献5に記載の、主鎖中の芳香環、ヘテロ環または芳香環及びヘテロ環にアルキル基またはアルコキシ基などを導入したポリアゾメチンが有する、原料モノマーが商業的に入手できないために工業化が困難であるといった問題点を有していない。
 <原料1の合成>
Figure JPOXMLDOC01-appb-C000097
 窒素置換した100mLシュレンク管に1,8-ジアミノオクタン3.57g(24.8mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、p-アミノベンズアルデヒド2g(16.5mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、エタノールで洗浄した。これにより淡黄色オイルとして4.08g(収率:95%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=248[M+H] +
 <原料2の合成>
Figure JPOXMLDOC01-appb-C000098
 窒素置換した100mLシュレンク管に1,2-ビス(2-アミノエトキシ)エタン3.68g(24.8mmol)、m-クレゾール5g、THF  30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、p-アミノベンズアルデヒド2g(16.5mmol)をトルエン 30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより淡黄色オイルとして3.22g(収率:51%)の一般式(II)で表わされる炭化水素化合物が得られた。
FAB-MS:m/z=252[M+H]+
 <原料3の合成>
Figure JPOXMLDOC01-appb-C000099
 窒素置換した100mLシュレンク管にジエチレングリコールビス(3-アミノプロピル)エーテル5.46g(24.8mmol)、m-クレゾール5g、THF  30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、p-アミノベンズアルデヒド2g(16.5mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより赤色オイルとして4.89g(収率:88%)の一般式(II)で表わされる炭化水素化合物が得られた。
FAB-MS:m/z=324[M+H]+ 。
 <原料4の合成>
Figure JPOXMLDOC01-appb-C000100
 窒素置換した100mLシュレンク管に1,4-フェニレンジアミン8.05g(74.4mmol)、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ベンズアルデヒド2.63g (24.8mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリルで洗浄した。これにより淡黄色固体として4.00g(収率:82%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=197[M+H]+
 <原料5の合成>
Figure JPOXMLDOC01-appb-C000101
 窒素置換した100mLシュレンク管に2,5-ジアミノピリジン8.12g(74.4mmol)、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ベンズアルデヒド2.63g (24.8mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として4.33g(収率:89%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=198[M+H]+
 <原料6の合成>
Figure JPOXMLDOC01-appb-C000102
 窒素置換した100mLシュレンク管に2,6-ジアミノピリジン8.12g(74.4mmol)、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ベンズアルデヒド2.63g (24.8mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として3.51g(収率:89%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=198[M+H]+
 <原料7の合成>
Figure JPOXMLDOC01-appb-C000103
 窒素置換した100mLシュレンク管に2,3,5,6-テトラメチル-1,4-フェニレンジアミン12.2g(74.4mmol)、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ベンズアルデヒド2.63g (24.8mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として5.65g(収率:90%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=253[M+H]+
 <原料8の合成>
Figure JPOXMLDOC01-appb-C000104
 窒素置換した100mLシュレンク管に1,4-フェニレンジアミン8.05g(74.4mmol) 、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、2-チオフェンアルデヒド2.78g (24.8mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下を行い、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として4.50g(収率:90%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=203[M+H]+
 <原料9の合成>
Figure JPOXMLDOC01-appb-C000105
 窒素置換した100mLシュレンク管に1,4-フェニレンジアミン8.05g(74.4mmol) 、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、4-フェニルベンズアルデヒド4.52g (24.8mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下を行い、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリルで洗浄した。これにより淡黄色固体として6.63g(収率:98%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=273[M+H]+
 <原料10の合成>
Figure JPOXMLDOC01-appb-C000106
 窒素置換した50mLシュレンク管に1,4-フェニレンジアミン8.05g(74.4mmol) 、 m-クレゾール5g、THF 15gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ペンタフルオロベンズアルデヒド4.86g (24.8mmol)をTHF 15gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリルで洗浄した。これにより淡黄色固体として3.20g(収率:45%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=287[M+H]+
 <原料11の合成>
Figure JPOXMLDOC01-appb-C000107
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol) 、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、アニリン2.30g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリルで洗浄した。これにより淡黄色固体として3.63g(収率:77%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=210[M+H]+
 <原料12の合成>
Figure JPOXMLDOC01-appb-C000108
 窒素置換した100mLシュレンク管にイソフタルアルデヒド10.0g(74.4mmol) 、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、アニリン2.30g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリルで洗浄した。これにより淡黄色固体として2.50g(収率:48%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=210[M+H]+
 <原料13の合成>
Figure JPOXMLDOC01-appb-C000109
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol) 、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、2-アミノフルオレン4.49g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として3.47g(収率:47%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=298[M+H]+
 <原料14の合成>
Figure JPOXMLDOC01-appb-C000110
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol)、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,8-ジアミノオクタン3.57g(24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として6.59g(収率:71%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=377[M+H]+
 <原料15の合成>
Figure JPOXMLDOC01-appb-C000111
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol)、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,2-ビス(2-アミノエトキシ)エタン3.68g(24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として7.02g(収率:74%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=381[M+H]+
 <原料16の合成>
Figure JPOXMLDOC01-appb-C000112
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol)、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル5.46g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として8.22g(収率:73%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=453[M+H]+
 <原料17の合成>
Figure JPOXMLDOC01-appb-C000113
 窒素置換した100mLシュレンク管に2,5-チオフェンジカルボアルデヒド10.4g(74.4mmol)、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル5.46g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下を行い、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として6.20g(収率:54%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=465[M+H]+
 <原料18の合成>
Figure JPOXMLDOC01-appb-C000114
 窒素置換した100mLシュレンク管に2,6-ピリジンジカルボアルデヒド10.1g(74.4mmol)、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル5.46g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として3.73g(収率:33%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=455[M+H]+
 <原料19の合成>
Figure JPOXMLDOC01-appb-C000115
 窒素置換した100mLシュレンク管に4,4'-ビフェニルジカルボアルデヒド15.6g(74.4mmol)、 m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル5.46g (24.8mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後3時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として9.50g(収率:63%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=605[M+H]+
 <原料20の合成>
Figure JPOXMLDOC01-appb-C000116
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol)、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、4,4'-メチレンビス(シクロヘキシルアミン)5.22g (24.8mmol)をTHF30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサンで洗浄した。これにより白色固体として7.82g(収率:71%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=443[M+H]+
 <原料21の合成>
Figure JPOXMLDOC01-appb-C000117
 窒素置換した100mLシュレンク管にテレフタルアルデヒド10.0g(74.4mmol)、 m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、4,4'-メチレンビス(2-メチルシクロヘキシルアミン)5.90g (24.8mmol)、を THF30gに溶解した溶液を3時間かけて上記溶液に滴下し、その後24時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥した後、熱ヘキサンで洗浄した。これにより白色固体として8.17g(収率:70%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=471[M+H]+
 <原料22の合成>
Figure JPOXMLDOC01-appb-C000118
 窒素置換した20mLシュレンク管に2,2':5',2''-ターチオフェン-5,5''-ジカルボアルデヒド1g(3.3mmol)、 m-クレゾール1g、THF 10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル0.242.g (1.1mmol)をTHF 6gに溶解した溶液を1時間かけて上記溶液に滴下し、その後12時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥した後、熱ヘキサン、熱アセトニトリルで洗浄した。これにより白色固体として0.50g(収率:57%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=794[M+H]+
 <原料23の合成>
 3-ヘキシルチオフェン-2,5-ジカルボアルデヒド(原料)の合成
Figure JPOXMLDOC01-appb-C000119
 窒素置換した300mLシュレンク管に3-ヘキシルチオフェン10g(59.4mmol)、THF 200gを投入し、攪拌を行いながら反応溶液を-78℃まで冷却した。その後、LDA/ヘキサン溶液(1.6M)10.7mLを1時間かけて上記溶液に滴下し、その後2時間攪拌を行った後、DMF 20g投入し、さらに6時間攪拌した後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液に水100g、クロロホルム100gを投入し、得られた混合液を分液し、クロロホルム抽出を行った。得られた抽出液について、硫酸マグネシウムによる乾燥を行った後、再びエバポレーションを行った。さらにカラムクロマトグラフィーにより(展開溶媒:ヘキサン)濃縮液の精製を行い、白色固体として11.57g(収率:87%)の3-ヘキシルチオフェン-2,5-ジカルボアルデヒドが得られた。FAB-MS:m/z=225[M+H]+
 <原料24の合成>
Figure JPOXMLDOC01-appb-C000120
 窒素置換した50mLシュレンク管に3-ヘキシルチオフェン-2,5-ジカルボアルデヒド 5g(22.3mmol)、 m-クレゾール1g、THF 20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル1.64g (7.4mmol)をTHF 10gに溶解した溶液を1時間かけて上記溶液に滴下し、その後12時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、熱アセトニトリルで洗浄した。これにより白色固体として3.77g(収率:81%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=693[M+H]+
 [実施例1]
Figure JPOXMLDOC01-appb-C000121
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にベンズアルデヒド0.85g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアミン体(原料1)0.66g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄褐色固体として0.62g(収率:55%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=424[M+H]+
 [実施例2]
Figure JPOXMLDOC01-appb-C000122
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にベンズアルデヒド0.85g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアミン体(原料2)0.67g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄褐色固体として0.70g(収率:62%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=428[M+H]+
 [実施例3]
Figure JPOXMLDOC01-appb-C000123
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にパーフルオロベンズアルデヒド1.56g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアミン体(原料3)0.86g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより赤色固体として0.97g(収率:53%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=680[M+H]+
 [実施例4]
Figure JPOXMLDOC01-appb-C000124
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料4)1.57g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料14)1.00g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.03g(収率:53%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=733[M+H]+
 [実施例5]
Figure JPOXMLDOC01-appb-C000125
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料5)1.57g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料15)1.01g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.37g(収率:70%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=737[M+H]+
 [実施例6]
Figure JPOXMLDOC01-appb-C000126
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料6)1.57g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料16)1.21g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡赤色固体として1.55g(収率:72%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=813[M+H]+
 [実施例7]
Figure JPOXMLDOC01-appb-C000127
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料7)2.01g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料16)1.20g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.98g(収率:81%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=922[M+H]+
 [実施例8]
Figure JPOXMLDOC01-appb-C000128
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料8)1.61g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料16)1.20g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.77g(収率:81%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=822[M+H]+
 [実施例9]
Figure JPOXMLDOC01-appb-C000129
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料9)2.17g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料16)1.20g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として2.05g(収率:80%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=962[M+H]+
 [実施例10]
Figure JPOXMLDOC01-appb-C000130
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアミン体(原料10)2.28g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料17)1.24g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.55g(収率:58%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=1001[M+H]+
 [実施例11]
Figure JPOXMLDOC01-appb-C000131
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアルデヒド体(原料11)1.67g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,12-ジアミノドデカン0.53g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥した後、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として0.77g(収率:50%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=583[M+H]+
 [実施例12]
Figure JPOXMLDOC01-appb-C000132
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアルデヒド体(原料12)1.67g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,12-ジアミノドデカン0.53g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として0.59g(収率:38%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=583[M+H]+
 [実施例13]
Figure JPOXMLDOC01-appb-C000133
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に合成して得られたモノアルデヒド体(原料13)2.37g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(3-アミノプロピル)エーテル0.59g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.09g(収率:53%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=779[M+H]+
 [実施例14]
Figure JPOXMLDOC01-appb-C000134
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にアニリン0.74g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料19)1.61g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.11g(収率:55%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=755[M+H]+
 [実施例15]
Figure JPOXMLDOC01-appb-C000135
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にアニリン0.74g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料20)1.18g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.19g(収率:75%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=593[M+H]+
 [実施例16]
Figure JPOXMLDOC01-appb-C000136
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にアニリン0.74g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料21)1.25g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.31g(収率:79%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=621[M+H]+
 [実施例17]
Figure JPOXMLDOC01-appb-C000137
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管にアニリン0.74g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料22)2.11g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.49g(収率:59%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=944[M+H]+
 [実施例18]
Figure JPOXMLDOC01-appb-C000138
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に2-アミノフルオレン1.45g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料24)1.68g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥した後、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡黄色固体として1.76g(収率:69%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=960[M+H]+
 [実施例19]
Figure JPOXMLDOC01-appb-C000139
 窒素置換した50mLシュレンク管に合成して得られた上記スキームのモノアミン体(原料10)2.28g (7.98mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られた上記スキームのジアルデヒド体(原料22)2.11g(2.66mmol)をm-クレゾール10gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより赤紫色固体として2.89g(収率:96%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=1330[M+H]+
 [実施例20]
Figure JPOXMLDOC01-appb-C000140
 窒素置換した50mLシュレンク管に合成して得られたモノアミン体(原料10)1.14g (3.99mmol)、モノアミン体(原料4)0.78g(3.99mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られた上記スキームのジアルデヒド体(原料22)2.11g(2.66mmol)をm-クレゾール10gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより上記の3種類のアゾメチンオリゴマーの混合物として、赤紫色固体として2.89gのアゾメチンオリゴマーが得られた。FAB-MS:m/z=1150[M+H]+、1330[M+H]+、1240[M+H]+
 [実施例21]
Figure JPOXMLDOC01-appb-C000141
 上記スキームに示すようにしてアゾメチンオリゴマーを得た。
 具体的には窒素置換した20mLシュレンク管に3-アミノ-9-エチルカルバゾール1.68g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたジアルデヒド体(原料16)1.20g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより淡赤色固体として1.45g(収率:65%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=838[M+H]+
 [比較例1]
Figure JPOXMLDOC01-appb-C000142
 窒素置換した20mLシュレンク管にベンズアルデヒド0.85g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られた2,7-ジアミノフルオレン0.52g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄色固体として0.65g(収率:61%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=373[M+H]+
 [比較例2]
Figure JPOXMLDOC01-appb-C000143
 窒素置換した20mLシュレンク管にパーフルオロベンズアルデヒド1.56g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られた2,7-ジアミノフルオレン0.52g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄色固体として0.52g(収率:35%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=553[M+H]+
 [比較例3]
Figure JPOXMLDOC01-appb-C000144
 窒素置換した20mLシュレンク管にベンズアルデヒド0.85g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られた1,5-ジアミノナフタレン0.42g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄色固体として0.43g(収率:48%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=335[M+H]+
 [比較例4]
Figure JPOXMLDOC01-appb-C000145
 窒素置換した20mLシュレンク管にベンズアルデヒド0.85g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られた2,3,5,6-テトラメチル-1,4-フェニレンジアミン0.44g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄色固体として0.58g(収率:64%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=341[M+H]+
 [比較例5]
Figure JPOXMLDOC01-appb-C000146
 窒素置換した20mLシュレンク管に2-アミノフルオレン1.45g (7.98mmol)、 m-クレゾール10gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、合成して得られたテレフタルアルデヒド0.36g(2.66mmol)をm-クレゾール5gに溶解した溶液を3時間かけて上記溶液に滴下し、その後6時間攪拌を行った後、反応終了とした。反応溶液中の揮発性溶媒をエバポレーションした後、濃縮液を真空乾燥し、熱ヘキサン、アセトニトリル、メタノールで洗浄した。これにより黄色固体として0.41g(収率:33%)のアゾメチンオリゴマーが得られた。FAB-MS:m/z=461[M+H]+
 <溶解性の評価>
 実施例1~21および比較例1~5で得られたアゾメチンオリゴマーの、下記表1に示す溶媒への溶解性を評価した。
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
 表1より、柔軟な構造である炭化水素基と、剛直な構造である芳香族基もしくは芳香族環含有共役基とを有する本発明のアゾメチンオリゴマーは、メタノール、エタノール、アセトニトリル、アセトン、IPA、THF、MEKおよびトルエンのいずれか少なくとも一種の溶媒に溶解することがわかる。一方剛直な構造である芳香族環含有共役基のみからなるアゾメチンオリゴマーは、上記溶媒に対して全く溶解性を示さないことも分かる。

Claims (10)

  1.  主骨格中に、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよい二価の炭化水素基を有し、
     前記炭化水素基の両末端に、アゾメチン基を有し置換基を有していてもよい芳香族基、または、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した芳香族環含有共役基が、該アゾメチン基により結合してなり、
     該芳香族基および芳香族環含有共役基は、アルデヒド基及びアミノ基と反応性を有しないことを特徴とするアゾメチンオリゴマー。
  2.  前記炭化水素基が、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~1024のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基、置換基を有していてもよい炭素数3~50のシクロアルキレン基、および、基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基からなる群より選ばれるいずれかの基であることを特徴とする請求項1に記載のアゾメチンオリゴマー。
  3.  前記アゾメチンオリゴマーの分子量が150~15000の範囲内にあることを特徴とする請求項1または2に記載のアゾメチンオリゴマー。
  4.  前記アゾメチンオリゴマーが、クレゾール、トルエン、THF、シクロペンチルメチルエーテル、アセトン、MEK、MIBK、シクロペンタノン、クロロホルム、ジクロロメタン、四塩化炭素、クロロベンゼン、二硫化炭素、酢酸エチル、酢酸ブチル、乳酸メチル、メタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、n-ブタノール、t-ブタノール、ペンチルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、ピリジン、NMP、硫酸、蟻酸、酢酸、塩酸、乳酸、トリエチルアミン、ジブチルアミンの中から選択されるいずれかの溶媒、または二種以上の共溶媒100gに対し、25℃において0.1g以上の溶解性を有することを特徴とする請求項1~3のいずれかに記載のアゾメチンオリゴマー。
  5.  前記アゾメチンオリゴマーが、下記一般式(I)で表わされることを特徴とする請求項1~4のいずれかに記載のアゾメチンオリゴマー:
    Figure JPOXMLDOC01-appb-C000001
    (上記式において、二つ存在するArは独立に、置換基を有していてもよい一価の芳香族基、またはアゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した芳香族環含有共役基であり、
     Aはアゾメチン基であり、
     Rは、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~1024のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基、置換基を有していてもよい炭素数3~50のシクロアルキレン基、または基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~1024の二価の炭化水素基である。)。
  6.  前記一価の芳香族基および二価の芳香族基が、下記式で表わされる基であることを特徴とする請求項5に記載のアゾメチンオリゴマー:
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (上記式において、半カッコでくくられた部位は結合手を示す。)。
  7.  前記アゾメチンオリゴマーをP型半導体層またはN型半導体層の形成材料として使用して作製したp-n接合素子について、P型半導体側の電極に正極端子を、N型半導体側の電極に負極端子を接続し、-5V~+5Vの範囲内において電圧を印可することができ、順方向の電力量/逆方向の電力量>1.0となることを特徴とする請求項1~6のいずれかに記載のアゾメチンオリゴマー。
  8.  下記一般式(II)で表わされる炭化水素化合物1当量に対して、下記一般式(III)で表わされる芳香族環含有化合物2当量を反応させる工程を有することを特徴とする請求項1に記載のアゾメチンオリゴマーの製造方法:
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (上記式(II)において、二つのXはともにアルデヒド基またはアミノ基であり、
     二つのArは独立に置換基を有していてもよい二価の芳香族基であり、
     Aはアゾメチン基であり、
     R1およびR2は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
     Zは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
     mおよびnは独立に0または1であり、
     iは0または1であり、
     hおよびjは独立に0~12の整数であり(ただし、Zが酸素原子または硫黄原子である場合には、hおよびjはともに1以上である)、
     kは1~10の整数であり、
     hが2以上の場合、複数存在するR1は同一でも異なっていてもよく、
     jが2以上の場合、複数存在するR2は同一でも異なっていてもよく、
     kが2以上の場合、複数存在する(-(CHR1h-(Z)i-(CHR2j-)は、同一でも異なっていてもよく、
     (-(CHR1h-(Z)i-(CHR2j-)kで表わされる構造中の炭素原子数は、2~1024である;
    上記式(III)において、Yは、上記式(II)におけるXがアルデヒド基の場合にはアミノ基であり、Xがアミノ基の場合にはアルデヒド基であり、
     Ar1は置換基を有していてもよい一価の芳香族基であり、
     Ar2は置換基を有していてもよい二価の芳香族基であり、
     Aはアゾメチン基であり、
     pは0~5の整数であり、
     pが2以上の場合には、複数存在するAr2は同一でも異なっていてもよい。)。
  9.  前記芳香族環含有化合物が、下記式で表わされる化合物からなる群より選ばれる少なくとも一種の化合物であることを特徴とする請求項8に記載のアゾメチンオリゴマーの製造方法:
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    (上記式において、Yはアルデヒド基またはアミノ基である。)
  10.  前記炭化水素化合物が、下記式で表わされる化合物からなる群より選ばれる少なくとも一種の化合物であることを特徴とする請求項8または9に記載のアゾメチンオリゴマーの製造方法:
    Figure JPOXMLDOC01-appb-C000012
    (上記式において、二つのXはともにアミノ基またはアルデヒド基であり、tは6~12の整数である。)。
PCT/JP2011/051637 2010-01-29 2011-01-27 新規アゾメチンオリゴマー WO2011093394A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011551908A JP5665772B2 (ja) 2010-01-29 2011-01-27 新規アゾメチンオリゴマー
CN2011800072305A CN102781908A (zh) 2010-01-29 2011-01-27 新型偶氮甲碱低聚物
KR1020127017989A KR101429651B1 (ko) 2010-01-29 2011-01-27 신규 아조메틴 올리고머

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-019609 2010-01-29
JP2010019609 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093394A1 true WO2011093394A1 (ja) 2011-08-04

Family

ID=44319377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051637 WO2011093394A1 (ja) 2010-01-29 2011-01-27 新規アゾメチンオリゴマー

Country Status (5)

Country Link
JP (1) JP5665772B2 (ja)
KR (1) KR101429651B1 (ja)
CN (1) CN102781908A (ja)
TW (1) TW201139504A (ja)
WO (1) WO2011093394A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602321A (en) * 2020-12-24 2022-06-29 Sumitomo Chemical Co Thermally conductive polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230027521A (ko) 2021-08-19 2023-02-28 주식회사 산하첨단소재 금속촉매, 산촉매, 상간이동촉매를 이용한 고순도의 에버롤리무스 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868956A (ja) * 1981-10-21 1983-04-25 Hitachi Ltd 半導体封止用樹脂組成物
JPH08113622A (ja) * 1994-10-18 1996-05-07 Mitsui Petrochem Ind Ltd ポリアゾメチンおよびその製造方法、ならびに薄膜電界発光素子
JPH09194832A (ja) * 1996-01-17 1997-07-29 Stanley Electric Co Ltd 有機led素子
US7108958B2 (en) * 2002-07-31 2006-09-19 Brewer Science Inc. Photosensitive bottom anti-reflective coatings
US20060040139A1 (en) * 2004-08-18 2006-02-23 Norman Herron Electronic devices made with metal Schiff base complexes
WO2009026376A1 (en) * 2007-08-20 2009-02-26 Board Of Regents, The University Of Texas System Polymer-nanoparticle compositions and methods of making and using same
JP2009274962A (ja) * 2008-05-12 2009-11-26 Yoshihiro Ishikawa 鉄サレン錯体、磁性を有する薬剤、薬剤の誘導システム、並びに磁気検出装置
JP2009283523A (ja) * 2008-05-20 2009-12-03 Sumitomo Chemical Co Ltd 半導体素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C H E U K - F A I C H O W ET AL., C H E M. C O M M U N., 2007, pages 4 3 6 3 - 4 3 6 5 *
CHEUK-FAI CHOW ET AL., CHEM.COMMUN., 2007, pages 4363 - 4365 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602321A (en) * 2020-12-24 2022-06-29 Sumitomo Chemical Co Thermally conductive polymer

Also Published As

Publication number Publication date
KR101429651B1 (ko) 2014-08-13
JPWO2011093394A1 (ja) 2013-06-06
KR20120101120A (ko) 2012-09-12
JP5665772B2 (ja) 2015-02-04
TW201139504A (en) 2011-11-16
CN102781908A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
Iwan et al. Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications
Hadmojo et al. Geometrically controlled organic small molecule acceptors for efficient fullerene-free organic photovoltaic devices
WO2016111277A1 (ja) ヘテロ環含有化合物、その化合物を用いた重合体、およびその用途
Sonar et al. Isoindigo dye incorporated copolymers with naphthalene and anthracene: Promising materials for stable organic field effect transistors
Kim et al. Effect of dye end groups in non-fullerene fluorene-and carbazole-based small molecule acceptors on photovoltaic performance
Li et al. Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells
Tian et al. One-pot multicomponent tandem reactions and polymerizations for step-economic synthesis of structure-controlled pyrimidine derivatives and poly (pyrimidine) s
Grisorio et al. Monodispersed vs. polydispersed systems for bulk heterojunction solar cells: the case of dithienopyrrole/anthracene based materials
WO2011108512A1 (ja) 新規アゾメチンオリゴマー
WO2011102330A1 (ja) 新規ポリアゾメチン
Chen et al. A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells
Chen et al. Synthesis and characterization of soluble conjugated polymers having pyrene moiety in the main chain
Sęk et al. Polycyclic aromatic hydrocarbons connected with Schiff base linkers: Experimental and theoretical photophysical characterization and electrochemical properties
Zhao et al. Electron-transporting conjugated polymers from novel aromatic five-membered diimides: naphtho [1, 2-b: 4, 3-b′]-dithiophene and-diselenophene diimides
Shaker et al. Direct C–H arylation synthesis of (DD′ AD′ DA′)-constituted alternating polymers with low bandgaps and their photovoltaic performance
JP5665772B2 (ja) 新規アゾメチンオリゴマー
US20150340633A1 (en) Organic solar cell of the bulk heterojunction type comprising an imide based conjugated backbone compound as photoactive material
Kadu et al. Photophysical properties of new fluorene-based conjugated polymers containing polyphenylene-substituted dendronized core
Wang et al. Direct arylation polymerization toward ultra‐low bandgap poly (thienoisoindigo‐alt‐diketopyrrolepyrrole) conjugated polymers: The effect of β‐protection on the polymerization and properties of the polymers
KR101739259B1 (ko) 신규 피롤 단량체 및 그 제조방법, 피롤 단량체로부터 합성된 고분자 또는 화합물 및 그 제조방법
JP7298611B2 (ja) 電荷輸送性薄膜形成用組成物
CN112442169B (zh) 不对称异靛蓝受体及聚合物及其制备方法与应用
JP2004107651A (ja) デンドリック高分子及びこれを用いた電子デバイス素子
Hu et al. Triazine-containing blue emitting Hyperbranched polyamide with donor-acceptor architecture: synthesis, characterization, optoelectronic properties, and sensing behaviors toward ferric ions
WO2018021970A1 (en) Conjugated polyviologen derivatives

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007230.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551908

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127017989

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737105

Country of ref document: EP

Kind code of ref document: A1