WO2011102330A1 - 新規ポリアゾメチン - Google Patents

新規ポリアゾメチン Download PDF

Info

Publication number
WO2011102330A1
WO2011102330A1 PCT/JP2011/053103 JP2011053103W WO2011102330A1 WO 2011102330 A1 WO2011102330 A1 WO 2011102330A1 JP 2011053103 W JP2011053103 W JP 2011053103W WO 2011102330 A1 WO2011102330 A1 WO 2011102330A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyazomethine
chr
formula
same
Prior art date
Application number
PCT/JP2011/053103
Other languages
English (en)
French (fr)
Inventor
岡本 秀二
目黒 晃
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2012500591A priority Critical patent/JPWO2011102330A1/ja
Priority to EP11744616.1A priority patent/EP2537875A4/en
Priority to US13/576,714 priority patent/US20120302720A1/en
Publication of WO2011102330A1 publication Critical patent/WO2011102330A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/107Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azomethine dye
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • C09B55/005Disazomethine dyes
    • C09B55/006Disazomethine dyes containing at least one heteroring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • C09B55/005Disazomethine dyes
    • C09B55/007Disazomethine dyes containing only carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • C09B55/008Tri or polyazomethine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers

Definitions

  • the present invention relates to a novel polyazomethine.
  • a conventional polyazomethine has an aromatic ring, a hetero ring, or an aromatic ring and a hetero ring in the main chain, and these aromatic rings and / or hetero rings connected by an azomethine group are connected. It has a conjugated polymer structure.
  • polyazomethine As an organic semiconductor material, in order to form the semiconductor layer on the substrate, a method of dissolving polyazomethine in a solvent and applying the obtained solution on the substrate is simple and costly. Low.
  • the polyazomethine is a compound having a conjugated system, high planarity and a rigid structure as described above, and therefore has poor solubility in an organic solvent. Therefore, it cannot be dissolved in an organic solvent and applied onto a substrate.
  • Patent Document 1 Regarding the solvent solubility of polyazomethine disclosed in Patent Document 1, in a protonic acid such as m-cresol or an organic solvent containing the same, the polyazomethine forms a reversible Lewis acid-base pair, It has been found that it exhibits solubility in a solvent in this state (see Non-Patent Documents 1 to 4).
  • Patent Document 2 discloses an invention relating to an organic LED element containing polyazomethine, and the polyazomethine is represented by the following general formula (I).
  • Patent Document 2 such polyazomethine is polymerized in m-cresol or benzene, and the obtained polyazomethine solution is subjected to a substrate (anode) by a wet film formation method such as spin coating or dip coating. ) To form a polyazomethine layer by heating in an inert gas atmosphere.
  • Patent Document 2 does not describe at all whether the polyazomethine represented by the above general formula (I) was actually synthesized.
  • m-cresol and benzene in which polyazomethine disclosed in Patent Document 2 is dissolved are versatile. As described above, m-cresol is corrosive, and benzene is carcinogenic, both of which are harmful to the human body.
  • Patent Document 2 neither describes nor suggests whether or not the polyazomethine is dissolved in another versatile solvent (for example, alcohol).
  • polyazomethine having low solubility in organic solvents
  • polyazomethine can be converted into chloroform by introducing an alkyl group or alkoxy group into the aromatic ring, hetero ring or aromatic ring and hetero ring in the main chain.
  • THF, DMF, DMSO, NMP, m-cresol and the like have been reported to be soluble (see Non-Patent Document 5).
  • the solvent species used may have a halogen-containing structure, in which case the solvent species exhibits a high boiling point. For this reason, it is difficult to say that it is preferable to use the solvent for industrial use because of high health requirements for the health management of the handler and the drying process of the solvent.
  • the introduction of a substituent into such a conjugated system leads to a decrease in planarity within the original conjugated system due to the steric hindrance of the compound, and the crystallinity within and between the polyazomethine molecules is low. Therefore, it is considered that the carrier mobility required for the organic semiconductor material is deteriorated.
  • the substituent is an alkyl group or the like that has an effect of inducing crystallinity in the conjugated molecule. This is not the case.
  • the present invention secures sufficient carrier mobility as a semiconductor material, and furthermore, a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or an ester such as methyl lactate.
  • a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or an ester such as methyl lactate.
  • a divalent aromatic ring-containing conjugated group in which an azomethine group and a divalent aromatic group which may have a substituent are alternately bonded to each other and the azomethine group are not conjugated.
  • a divalent hydrocarbon group which may have a group having an oxygen atom, a sulfur atom or a cycloalkylene group, and the aromatic ring-containing conjugated group and the hydrocarbon group via an azomethine group It is a polyazomethine having a repeating unit formed by bonding.
  • polyazomethine has an aromatic ring, a heterocycle, or an aromatic ring and a heterocycle in the main chain, and these aromatic rings and / or heterocycles are connected by an azomethine group.
  • the conjugated polymer structure was connected. This is because carriers are moved within one molecule of polyazomethine.
  • the conjugated polymer structure has caused low solubility of polyazomethine in organic solvents.
  • it has also been proposed to introduce an alkyl group or an alkoxy group into the aromatic ring and / or hetero ring as a side chain (Non-patent Document 5).
  • this proposed method has a problem that a raw material monomer for synthesizing such polyazomethine is not commercially available.
  • the present inventor can not only dissolve in a highly versatile solvent by changing the idea of the following two points, but also enables easy and industrial production, and is sufficient as a semiconductor. They invented polyazomethine that ensured carrier mobility. (1) Rather than move the carrier within one molecule, the conjugated system (aromatic ring) of the polymer is stacked between the polymer molecules (orienting the conjugated structure portion between the molecules) so that the carrier is a molecule. (2) Instead of introducing an alkyl group or the like as a side chain of a polymer, it is introduced as a part of the main chain of the polymer (that is, a conjugated structure is linked by a non-conjugated spacer). thing.
  • polyazomethine of the present invention examples include polyazomethine having a repeating unit represented by the following general formula (I).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom or a carboxyl group, A is an azomethine group, X is a divalent aromatic group which may have a substituent, T is a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group, b is 0 or 1, a and c are each independently an integer of 0 to 12 (provided that when T is an oxygen atom or a sulfur atom, a and c are both 1 or more); d is an integer from 1 to 10, e is an integer from 1 to 10, f and g are each independently an integer of 1 to 800; In the repeating unit, a hydrocarbon group represented by ⁇ ((CHR 1 ) a- (T) b- (CHR 2 ) c ) e -A- ⁇ and an aromatic represented by ((X-A) d )
  • the weight average molecular weight of the polyazomethine of the present invention is preferably in the range of 2,000 to 2,000,000.
  • the polyazomethine of the present invention is usually cresol, toluene, THF, cyclopentyl methyl ether, acetone.
  • divalent aromatic group in the aromatic ring-containing conjugated group examples include groups represented by the following formula.
  • the polyazomethine of the present invention is suitable for semiconductor applications, and a pn junction element can be produced by forming a film on an electrode by a coating method.
  • a pn junction element manufactured using polyazomethine as a material for forming a P-type semiconductor layer or an N-type semiconductor layer a positive electrode terminal is connected to an electrode on the P-type semiconductor side, and a negative electrode terminal is connected to an electrode on the N-type semiconductor side, It is a feature of the polyazomethine of the present invention that a voltage can be applied within the range of ⁇ 5 V to +5 V, and the forward power amount / reverse power amount> 1.0.
  • the polyazomethine of the present invention can be produced by a production method having a step of copolymerizing a hydrocarbon compound represented by the following general formula (II) and an aromatic ring-containing compound represented by the following general formula (III). it can.
  • two Ys are both an aldehyde group or an amino group
  • A is an azomethine group
  • Two Ar are independently a divalent aromatic group which may have a substituent
  • h and m are independently 0 or 1
  • R 3 and R 4 are independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom or a carboxyl group
  • T is a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group
  • j is 0 or 1
  • i and k are each independently an integer of 0 to 12 (provided that when T is an oxygen atom or a sulfur atom, i and k are both 1 or more)
  • n is an integer from 1 to 10, when i is 2 or more, a plurality of R 3 may be the same or different; when k is 2 or more, a plurality of R 4 may be the same or different; when n is 2 or more, a pluralit
  • aromatic ring-containing compound examples include compounds represented by the following formula.
  • Z is an aldehyde group or an amino group.
  • hydrocarbon compound examples include compounds represented by the following formula.
  • Y is an aldehyde group or an amino group
  • Ya is an integer of 6 to 12.
  • the polyazomethine of the present invention secures sufficient carrier mobility as a semiconductor material, and furthermore, a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or methyl lactate High solubility in highly versatile organic solvents such as ester solvents.
  • a hydrophobic solvent such as toluene, an alcohol solvent such as methanol and ethanol, a glycol solvent such as propylene glycol monomethyl ether, or methyl lactate
  • the semiconductor layer can be formed on the substrate by a coating method, instead of orienting the polyazomethine on the substrate by vacuum deposition as in the case of the conventional conjugated polymer. .
  • FIG. 1 shows the measurement results of the UV-visible absorption spectrum of a sample obtained by dissolving the polyazomethine produced in Example 4 in THF or a 5% formic acid / THF solution in Example 14.
  • the aromatic ring-containing conjugated group has a structure in which an azomethine group and a divalent aromatic group which may have a substituent are alternately bonded and conjugated.
  • the polyazomethine of the present invention Due to the conjugated structure of the aromatic ring-containing conjugated group, the polyazomethine of the present invention has a carrier transport function.
  • Examples of the divalent aromatic group that may have a substituent include groups represented by the following formulas A-1 to A-24.
  • Ra is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group.
  • the halogen atom include F, Cl and Br. The same applies to the following formulas A-2 to A-24.
  • Ra is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sa is an integer of 1 to 4, and from the viewpoint of reducing the localization of electrons in the aromatic ring for high crystallization between the molecules of the polyazomethine of the present invention, Sa is It is preferable that the number is even, and it is more preferable that Sa is an even number and is substituted so as to have a symmetrical element as a whole aromatic group.
  • the symmetry element refers to the symmetry of the structural part of the aromatic group, not the whole polyazomethine molecule.
  • the symmetry is inferred from the structure drawn on the paper, and not from the structure optimized by actual X-ray structural analysis and molecular orbital calculation. The same applies hereinafter.
  • a plurality of Ras may be the same or different.
  • Rb is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rb is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sb is an integer of 1 to 3, and Sb is preferably an odd number from the viewpoint of reducing the localization of electrons in the aromatic ring for high crystallization between molecules. More preferably, Sb is an odd number and is substituted so as to have a symmetric element as a whole aromatic group.
  • Sb is 2 or more, a plurality of Rb may be the same or different.
  • Xa is selected from S, NH, N (CH 3 ), N (C 2 H 5 ) and N (Ph), and from the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, S and NH are preferred because of their low steric hindrance and high planarity.
  • Rc is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rc is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sc is 1 or 2
  • Sc is 2 from the viewpoint of further reducing the localization of electrons in the aromatic ring due to high crystallization between the molecules of the polyazomethine of the present invention.
  • Sc is 2, and more preferably substituted so as to have a symmetrical element as a whole aromatic group.
  • two Rc may be the same or different.
  • Xb is CH 2 , (C x H 2x + 1 ) 2 (X is an integer of 2 to 20), NH, N (C x H 2x + 1 ) (X is an integer of 2 to 20) From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention selected from N (Ph), CH 2 and NH having low steric hindrance and high planarity are preferred.
  • Rd is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rd is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sd is an integer of 1 to 6. That is, although Rd is illustrated as being bonded to the right benzene ring in Formula A-4, Rd is bonded to all carbons that can be bonded in Formula A-4. That is, Rd may be bonded not only to the right benzene ring in formula A-4 but also to the left benzene ring. The same applies to the bond. The same applies to the following formulas A-5 to A-24.
  • Sd is preferably an even number, Sd is an even number, and aromatics from the viewpoint of reducing the localization of electrons in the aromatic ring. More preferably, the whole group is substituted to have a symmetric element.
  • Sd is 2 or more, a plurality of Rd may be the same or different.
  • Xc is selected from O, S, NH, N (C x H 2x + 1 ) (X is an integer of 1 to 20) and N (Ph), and between the molecules of the polyazomethine of the present invention From the viewpoint of high crystallization, O, S and NH are preferred because of their low steric hindrance and high flatness.
  • Ya is selected from CH and N, and all are preferable from the viewpoint of high crystallization between molecules of the polyazomethine of the present invention.
  • Re is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Re is a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Se is an integer of 1 to 10
  • electrons are localized in the aromatic ring for high crystallization between the molecules of the polyazomethine of the present invention.
  • Se is preferably an even number, and more preferably, Se is an even number and is substituted so as to have a symmetrical element as a whole aromatic group.
  • Se is an integer of 1 to 8, and from the viewpoint of reducing the localization of electrons in the aromatic ring for high crystallization between molecules of the polyazomethine of the present invention, Se is preferably an even number, and more preferably, Se is an even number and is substituted so as to have a symmetric element as a whole aromatic group.
  • a plurality of Re may be the same or different.
  • Xd is selected from CH and N, both of which are preferable from the viewpoint of high crystallization between the molecules of the polyazomethine of the present invention.
  • Rf is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rf is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sf is an integer of 1 to 8 when Xd is CH, and the electron localization in the aromatic ring is further increased due to high crystallization between the molecules of the polyazomethine of the present invention. From the viewpoint of reducing the size, Sf is preferably an even number, and more preferably, Sf is an even number, and the aromatic group is substituted so as to have a symmetric element as a whole.
  • Sf is an integer of 1 to 6, and from the same viewpoint as above, Sf is preferably an even number, Sf is an even number, and the symmetric element as a whole aromatic group is selected. More preferably, it is substituted to have.
  • a plurality of Rf may be the same or different.
  • Rg is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rg is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sg is an integer of 1 to 10, and Rg may be bonded onto an ethylene group connecting two benzene rings.
  • Sg is preferably an even number, Sg is an even number, and aromatics from the viewpoint of further reducing the localization of electrons in the aromatic ring. It is preferred that the whole group is substituted to have a symmetric element.
  • Sg is 2 or more, a plurality of Rg may be the same or different.
  • Rh is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rh is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sh is an integer of 1 to 6, and from the viewpoint of further reducing the localization of electrons in the aromatic ring for high crystallization between the molecules of the polyazomethine of the present invention, Sh is It is preferably an even number, more preferably Sh is an even number, and the aromatic group is substituted so as to have a symmetric element as a whole.
  • Sh is 2 or more, a plurality of Rh may be the same or different.
  • Xe is selected from CH and N, and Xe is preferably CH from the viewpoint of high crystallization between molecules of the polyazomethine of the present invention.
  • Ri is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Ri is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Si is an integer of 1 to 8 when Xe is CH, and the localization of electrons in the aromatic ring is further increased due to high crystallization between molecules of the polyazomethine of the present invention. From the viewpoint of reducing the size, Si is preferably an even number, and more preferably, Si is an even number and is substituted so as to have a symmetric element as a whole aromatic group.
  • Si is an integer of 1 to 6 when Xe is N. From the same viewpoint as described above, Si is preferably an even number, Si is an even number, and the aromatic group as a whole has a symmetrical element. More preferably, it is substituted to have.
  • a plurality of Ri may be the same or different.
  • Rj is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rj is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sj is an integer of 1 to 8. From the viewpoint of reducing the localization of electrons in the aromatic ring for high crystallization between the molecules of the polyazomethine of the present invention, Sj is It is preferably an even number, more preferably Sj is an even number, and the aromatic group is substituted so as to have a symmetric element as a whole. When Sj is 2 or more, a plurality of Rj may be the same or different.
  • Xf is selected from CH and N, and Xf is preferably N from the viewpoint of high crystallization between molecules of the polyazomethine of the present invention.
  • Rk is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rk is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sk is an integer of 1 to 8 when Xf is CH, and the localization of electrons in the aromatic ring is further increased due to high crystallization between molecules of the polyazomethine of the present invention. From the viewpoint of reducing the size, Sk is preferably an even number, and more preferably, Sk is an even number, and the aromatic group is substituted so as to have a symmetric element.
  • Sk is an integer of 1 to 6 when Xf is N. From the same viewpoint as described above, Sk is preferably an even number, Sk is an even number, and the aromatic group as a whole has a symmetrical element. More preferably, it is substituted to have.
  • a plurality of Rk may be the same or different.
  • Xg is selected from CH and N, and Xg is preferably N from the viewpoint of high crystallization between the molecules of the polyazomethine of the present invention.
  • Rm is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rm is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom having a small van der Waals radius.
  • Sm is an integer of 1 to 8 when Xg is CH, and the localization of electrons in the aromatic ring is further increased due to high crystallization between the molecules of the polyazomethine of the present invention. From the viewpoint of reducing the size, it is preferable that Sm is an even number, and it is more preferable that Sm is an even number and the aromatic group is substituted so as to have a symmetric element as a whole.
  • Sm is an integer of 1 to 6 when Xg is N. From the same viewpoint as described above, Sm is preferably an even number, Sm is an even number, and the aromatic group as a whole has a symmetrical element. More preferably, it is substituted to have.
  • a plurality of Rm may be the same or different.
  • Xh is selected from O, S, NH, N (CH 3 ), N (C 2 H 5 ) and N (Ph), and the planarity of the intramolecular conjugated system of the polyazomethine of the present invention From the viewpoint of height, S and NH are preferable.
  • R n is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rn is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and having a small van der Waals radius. More preferably it is an atom.
  • Sn is an integer of 1 to 4.
  • a plurality of Rn may be the same or different.
  • Sn is preferably an integer of 2 to 4 and is preferably 2 or 4 from the viewpoint of reducing localization of electrons in the aromatic ring. More preferably.
  • Xi is selected from O, S, NH, N (CH 3 ), N (C 2 H 5 ) and N (Ph), and the planarity of the intramolecular conjugated system of the polyazomethine of the present invention From the viewpoint of height, S and NH are preferable.
  • Rp is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rp is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Sp is an integer of 1 to 8.
  • a plurality of Rp may be the same or different.
  • Sp is preferably an integer of 4 to 8, preferably 4 or 8, from the viewpoint of reducing electron localization in the aromatic ring. More preferably.
  • Xj is selected from CH and N, and is preferably CH from the viewpoint of commercial availability of the polyazomethine raw material of the present invention.
  • Rq is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Rq is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Sq is 1 or 2 when Xj is CH.
  • two Rp may be the same or different.
  • Sq is preferably 2 from the viewpoint of further reducing electron localization in the aromatic ring.
  • Xk is selected from S and O, and is preferably S from the viewpoint of commercial availability of the polyazomethine raw material of the present invention.
  • Rr is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rr is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and having a small van der Waals radius. More preferably it is an atom.
  • Sr is an integer of 1 to 4.
  • a plurality of Rr may be the same or different.
  • Sr is preferably 3 or 4, and more preferably 4, from the viewpoint of further reducing the localization of electrons in the aromatic ring for high crystallization between the molecules of the polyazomethine of the present invention. .
  • Rs is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between the molecules of the polyazomethine of the present invention, it is preferable that Rs is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms and having a small van der Waals radius. More preferably it is an atom.
  • Ss is 1 or 2.
  • two Rs present may be the same or different.
  • Ss is preferably 2 from the viewpoint of further reducing electron localization in the aromatic ring.
  • Rt is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rt is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and having a small van der Waals radius. More preferably it is an atom.
  • St is an integer of 1 to 4.
  • a plurality of Rt may be the same or different.
  • St is an even number from the viewpoint of reducing the localization of electrons in the aromatic ring, and the aromatic group as a whole has a symmetric element. It is preferably substituted.
  • Ru is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Ru is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Su is 1 or 2.
  • two Rus may be the same or different.
  • Su is 2 and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • Rv is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rv is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Sv is an integer of 1 to 6.
  • a plurality of Rv may be the same or different.
  • Sv is an even number and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • Rx is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rx is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Sx is 1 or 2.
  • two Rx may be the same or different.
  • Sx is preferably 2 from the viewpoint of further reducing the localization of electrons in the aromatic ring.
  • Ry is a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a hydrocarbon group having 1 to 15 carbon atoms including an ether bond or an alkoxy group in the group.
  • Ry is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Sy is an integer of 1 to 4.
  • a plurality of Ry may be the same or different.
  • Sy is an even number, and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • Rz is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group. From the viewpoint of high crystallization between molecules of the polyazomethine of the present invention, it is preferable that Rz is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and having a small van der Waals radius. More preferably it is an atom.
  • Sz is an integer of 1 to 6.
  • a plurality of Rz may be the same or different.
  • Sz is an even number from the viewpoint of reducing the localization of electrons in the aromatic ring, and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • Raa is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms including an ether bond or an alkoxy group in the group.
  • Raa is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and a hydrogen having a small van der Waals radius. More preferably it is an atom.
  • Saa is an integer of 1 to 6.
  • a plurality of Raa may be the same or different.
  • Saa is an even number from the viewpoint of reducing electron localization in the aromatic ring, and the aromatic group as a whole has a symmetrical element. It is preferably substituted.
  • these divalent aromatic groups are connected by an azomethine group, and the azomethine group and the divalent aromatic group are alternately bonded to form a conjugated structure.
  • the number of divalent aromatic groups may be one.
  • the number of aromatic groups in the aromatic ring-containing conjugated group is usually 5 or less, and 1 to 5 from the viewpoints of solubility of the polyazomethine of the present invention in a solvent, intramolecular conjugation, and crystallinity between molecules. It is preferable.
  • a method for alternately bonding an azomethine group and a divalent aromatic group will be described in the section of the method for producing a polyazomethine of the present invention described later.
  • the number of the aromatic ring-containing conjugated groups in the repeating unit constituting the polyazomethine of the present invention may be one or plural (in the case of plural, the aromatic ring in the repeating unit). Containing conjugated groups and hydrocarbon groups are alternately arranged).
  • the number of the aromatic ring-containing conjugated groups in the repeating unit is preferably 1 to 6 from the viewpoint of promoting crystallization between polyazomethine molecules.
  • the divalent hydrocarbon group may have a group having an oxygen atom, a sulfur atom or a cycloalkylene group, and is not particularly limited as long as it is not conjugated with an azomethine group.
  • the aromatic ring-containing conjugated group has a rigid structure
  • the hydrocarbon group is not conjugated to an azomethine group, and thus has a flexible structure.
  • the fact that the polyazomethine of the present invention has a hydrocarbon group having this flexible structure contributes to the high solubility of the polyazomethine of the present invention in an organic solvent, which will be described later.
  • divalent hydrocarbon group examples include an alkylene group having 2 to 42 carbon atoms which may be branched and may be substituted with a halogen atom, and an ether bond and / or a thioether bond in the group.
  • a divalent hydrocarbon group having 2 to 42 carbon atoms which may be substituted with a halogen atom examples include an alkylene group having 2 to 42 carbon atoms which may be branched and may be substituted with a halogen atom, and an ether bond and / or a thioether bond in the group.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the substituent in the cycloalkylene group include a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • the cycloalkylene group may have a plurality of cyclic structures, and the cyclic structures may be further linked by an alkylene group.
  • the number of carbon atoms of the alkylene group which may have a branch and may be substituted with a halogen atom is from the viewpoint of the compatibility between the polyazomethine of the present invention and the intermolecular crystallinity in the solid state. It is preferably 3 to 20, more preferably 4 to 12, and still more preferably 6 to 12.
  • the number of carbon atoms of the divalent hydrocarbon group having an ether bond and / or thioether bond in the group and optionally substituted with a halogen atom depends on the affinity of the polyazomethine of the present invention for the organic solvent and the solid state. From the standpoint of achieving intermolecular crystallinity, it is preferably 3-20, more preferably 4-12, and even more preferably 6-12.
  • the carbon number of the cycloalkylene group which may have the substituent is 3 to 30 from the viewpoint of compatibility of the polyazomethine of the present invention with an organic solvent and crystallinity between molecules in a solid state. It is preferably 6 to 15.
  • the number of carbon atoms of the divalent hydrocarbon group which has a carboxyl group in the group and may be substituted with a halogen atom depends on the affinity of the polyazomethine of the present invention for the organic solvent and the intermolecular crystal in the solid state. From the viewpoint of coexistence of properties, it is preferably 3 to 20, more preferably 4 to 12, and still more preferably 6 to 12.
  • the divalent hydrocarbon group constituting the repeating unit of the polyazomethine of the present invention has a relatively low polarity such as toluene and solubility in a highly hydrophobic solvent from the viewpoint of affinity to an organic solvent.
  • a structure having an alkylene group is preferable.
  • the hydrocarbon group preferably has a structure having an ether bond in the group.
  • the hydrocarbon group preferably has a structure having a halogen atom in the group (substituted with a halogen atom).
  • the number of the divalent hydrocarbon group in the repeating unit constituting the polyazomethine of the present invention may be one or plural (in the case of plural, the hydrocarbon group in the repeating unit). And aromatic ring-containing conjugated groups are alternately arranged).
  • the number of the hydrocarbon groups in the repeating unit is preferably 1 to 6 from the viewpoint of solubility in a solvent and promotion of crystallization between molecules.
  • the polyazomethine of the present invention has the above-described aromatic ring-containing conjugated group and a hydrocarbon group, and the repeating unit formed by bonding the aromatic ring-containing conjugated group and the hydrocarbon group via an azomethine group. It is characterized by having. A method of bonding the two groups via an azomethine group will be described in the section of the method for producing polyazomethine of the present invention described later.
  • repeating unit constituting the polyazomethine of the present invention include a repeating unit represented by the following general formula (I):
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom or a carboxyl group. From the viewpoint of solubility in an organic solvent and film crystallinity during film formation, R 1 and R 2 are preferably a hydrogen atom or an alkyl group having 5 to 12 carbon atoms.
  • A is an azomethine group.
  • An azomethine group is —C ⁇ N— or —N ⁇ C—.
  • the conjugated state in the conjugated system varies depending on the orientation of the azomethine group, it is considered that the conjugated state does not greatly affect the crystallinity between molecules in a non-heteroatom-containing aromatic ring such as a phenyl group. .
  • the aromatic ring is a hetero ring such as a pyridine group
  • the conjugated state may affect the crystallinity between molecules depending on the direction of the azomethine group.
  • the direction of the azomethine group is the direction in which N is closer to the heterocycle among N and C constituting the azomethine group, and the heteroatom of the heterocycle is near N constituting the azomethine group
  • the polyazomethine of the present invention is preferred because the intramolecular conjugated system in the solid state expands and the electronic structure in the conjugated system may be greatly affected.
  • the polyazomethine of the present invention is expected to exhibit a metallation effect on metal ions, a cation recognition effect, and the like based on N in the azomethine group and a heteroatom of a heterocyclic ring in a solution state. This is because polyazomethine is templated.
  • X is a divalent aromatic group which may have a substituent.
  • Specific examples of X are the same as those given as specific examples of the divalent aromatic group which may have a substituent in the section ⁇ Aromatic ring-containing conjugated group>.
  • T is a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group, and is preferably an oxygen atom from the viewpoint that the raw material is relatively commercially available.
  • b is 0 or 1
  • the hydrocarbon group in the repeating unit is an ether bond (oxygen atom), a thioether bond (sulfur atom) or a cycloalkylene group. Will have.
  • a and c are independently an integer of 0 to 12, preferably 1 and an integer of 5 to 12. However, when T is an oxygen atom or a sulfur atom, both a and c are 1 or more.
  • a is 2 or more, a plurality of R 1 may be the same or different.
  • a plurality of R 2 may be the same or different.
  • d is an integer of 1 to 10, preferably an integer of 1 to 3.
  • d is 2 or more, a plurality of Xs may be the same or different.
  • e is an integer of 1 to 10, preferably an integer of 3 to 5.
  • e is an integer of 1 to 10, preferably an integer of 3 to 5.
  • f and g are each independently an integer of 1 to 800, preferably an integer of 2 to 500.
  • a plurality of hydrocarbon groups represented by ⁇ ((CHR 1 ) a- (T) b- (CHR 2 ) c ) e -A- ⁇ are the same or different.
  • g is 2 or more, a plurality of aromatic ring-containing conjugated groups represented by ((XA) d ) may be the same or different.
  • the number of carbon atoms in the hydrocarbon group is usually 3 to 43, preferably 6 to 37.
  • the hydrocarbon group and the aromatic ring-containing conjugated group can be arranged in any order, but basically they are arranged alternately. Yes.
  • a method for adjusting the arrangement order of the hydrocarbon group and the aromatic ring-containing conjugated group in the repeating unit constituting the polyazomethine of the present invention will be described in the section for producing the polyazomethine of the present invention described later.
  • the polyazomethine of the present invention having the repeating unit described above has the above-mentioned divalent hydrocarbon group in its structure, and since this portion does not have crystallinity, various organic solvents having high versatility, For example, it exhibits high solubility in hydrophobic solvents, alcohol solvents, glycol solvents or ester solvents.
  • the polyazomethine is usually cresol, toluene, THF, cyclopentyl methyl ether, acetone, MEK, MIBK, cyclopentanone, chloroform, dichloromethane, carbon tetrachloride, chlorobenzene, carbon disulfide, ethyl acetate, acetic acid.
  • the solvent selected from any of triethylamine and dibutylamine or 100 g of two or more co-solvents usually has a solubility of 0.1 g or more, preferably 1 to 10 g, at 25 ° C. .
  • cresol, chlorobenzene and the like are corrosive or harmful to the human body.
  • these are usually mixed in a small amount with other versatile solvents such as toluene and used as a co-solvent.
  • the polyazomethine of the present invention which is highly versatile and highly soluble in a wide variety of organic solvents, does not have a conjugated structure throughout the molecule like conventional polyazomethine. It has a high function of transporting carriers such as holes and is suitable for semiconductor applications.
  • polyazomethine of the present invention has a high carrier transport function is as follows. That is, polyazomethines having high affinity overlap each other (that is, hydrocarbon groups are hydrocarbon groups, and aromatic ring-containing conjugated groups are aromatic ring-containing conjugated groups). And in the location where the aromatic ring containing conjugated group is stuck, a carrier can move freely. In other words, conventional polyazomethine sacrifices solubility in a solvent and secures carrier mobility by intramolecular conjugation and intermolecular stacking structure, whereas in the present invention, intramolecular conjugation is cleaved.
  • the solubility in the solvent is ensured, and the conjugated part in polyazomethine is regarded as a low molecule, and the conjugated part is oriented by stacking between molecules as if it were vacuum-deposited to align the low molecule.
  • the carrier mobility is ensured.
  • the polyazomethine of the present invention has a high carrier transport function, is suitable for semiconductor applications, and exhibits high solubility in highly versatile organic solvents. Therefore, it is possible to safely and easily form a semiconductor layer on a substrate by applying the polyazomethine solution obtained by dissolving the polyazomethine in a highly versatile organic solvent and using the obtained polyazomethine solution, such as spin coating or dip coating. it can.
  • a solution of the polyazomethine of the present invention having such a carrier transporting function can be applied on an electrode and formed into a film to produce a pn junction element.
  • the N-type semiconductor layer is made of a semiconductor material (e.g., fullerene) that exhibits an electron affinity (eV) that is larger than the ionization potential (eV) of polyazomethine. Use to make.
  • the P-type semiconductor layer is a semiconductor material that exhibits an ionization potential that is smaller than the electron affinity (eV) of polyazomethine (eg, poly (3- Hexylthiophene)).
  • eV electron affinity
  • a polyazomethine solution is applied on the negative electrode substrate, dried, a film is formed, and the film is formed on the film.
  • a pn junction element can be produced by depositing a P-type semiconductor material by coating or vapor deposition, and vapor-depositing the positive electrode on the obtained P-type semiconductor layer.
  • an N-type semiconductor material is formed on the negative electrode substrate by coating or vapor deposition, and a polyazomethine solution is formed on the film.
  • a pn junction element can be produced by forming a P-type semiconductor layer by coating and drying, and further depositing a positive electrode on the P-type semiconductor layer.
  • the thickness of the bonded layer of these P-type and N-type semiconductor materials is usually 10 to 900 nm.
  • the p-n junction element thus manufactured can be applied to the field of organic electronics such as a diode, an organic EL, an organic thin film solar cell, an organic thin film transistor, and a thermoelectric power generation element.
  • the ionization potential and the electron affinity can be experimentally obtained as HOMO (highest occupied orbit) and LUMO (lowest unoccupied orbit), respectively.
  • HOMO can be obtained using the AC-2 manufactured by Riken Keiki Co., Ltd. by the photoelectron spectroscopy described in Japanese Patent No. 1124703.
  • the oxidation start potential is obtained as a potential at which an oxidation current starts to flow from the baseline in the measurement result obtained by performing cyclic voltammetry (CV) measurement on the target sample. If necessary, conversion from the reference electrode used for the measurement to the standard hydrogen electrode standard is performed, and by adding the value (constant) 4.5 of the standard hydrogen electrode with respect to the vacuum level to this value, HOMO (eV ).
  • LUMO can be determined by calculating the electrochemical reduction level and converting it to LUMO, as well as calculating the LUMO from the absorption start wavelength of the UV-visible light absorption spectrum of the sample and the HOMO value obtained above.
  • the method of converting is mentioned.
  • the absorption start wavelength can be obtained as the wavelength ⁇ (nm) when the absorption starts from the baseline.
  • a value obtained by converting this value into an electron volt (eV) is defined as a band gap energy E (eV).
  • LUMO can be obtained by dividing HOMO (eV) obtained as described above by this band gap energy E (eV).
  • the P-type semiconductor characteristics of the polyazomethine of the present invention can be improved by adjusting the ionization potential of the molecule.
  • the ionization potential of a molecule can be increased by the following two methods. (1) Select an electron-rich condensed ring system unit such as naphthalene or anthracene as a conjugated system (aromatic ring-containing conjugated group). (2) Conjugate an electron-donating substituent such as a methyl group or a phenyl group. To increase the electron density in the conjugated system and delocalize the electrons.
  • the N-type semiconductor properties of the polyazomethine of the present invention can be improved by adjusting the electron affinity of the molecule.
  • the electron affinity of a molecule can be increased by the following two methods. (1) Select a heterocyclic ring such as pyridine, bipyridine, phenanthroline, etc., which has a tendency of electron deficiency as a conjugated system (aromatic ring-containing conjugated group). (2) An electron-withdrawing substituent such as F or CF 3 By introducing it into a conjugated system, the electron density in the conjugated system is lowered and the electrons are localized.
  • a p-n junction element can be prepared from the polyazomethine of the present invention having excellent semiconductor characteristics.
  • a positive electrode terminal is connected to an electrode on the P-type semiconductor side
  • a negative electrode terminal is connected to an electrode on the N-type semiconductor side
  • a voltage can be applied within the range of ⁇ 5V to + 5V, and the forward power amount / reverse power amount> 1.0.
  • the polyazomethine of the present invention can be used as, for example, p-type and n-type semiconductors.
  • a hole injection layer and an electron injection layer may be separately provided between the P-type semiconductor layer and the electrode and between the N-type semiconductor layer and the electrode, respectively.
  • the weight average molecular weight of the polyazomethine of the present invention is preferably in the range of 2,000 to 2,000,000 from the viewpoint of achieving both solvent solubility and intramolecular crystallinity, and preferably 30,000 to 1,000. More preferably in the range of 500,000.
  • a weight average molecular weight refers to the weight average molecular weight of standard polystyrene conversion measured by GPC. The method for adjusting the weight average molecular weight will be described in the section of the method for producing polyazomethine of the present invention below.
  • the polyazomethine of the present invention described above is suitable for semiconductor use because it can move carriers freely at a position where aromatic ring-containing conjugated groups are stacked between molecules. , Having high solubility in highly versatile organic solvents such as alcohol solvents, glycol solvents or ester solvents.
  • the aromatic ring in the aromatic ring-containing conjugated group of the polyazomethine of the present invention is a hetero ring such as a pyridine group
  • the direction of the azomethine group is N and C constituting the azomethine group.
  • N is in a direction closer to the heterocycle and the hetero atom of the heterocycle is near N constituting the azomethine group. Expansion may occur and the electronic structure in the conjugated system may be greatly affected.
  • Examples of the polyazomethine of the present invention include heterocyclic compounds satisfying the above conditions (the left side of the following formula) and compounds having a plurality of heterocycles, wherein heteroatoms in different heterocycles are present close to each other (Right side of the following formula).
  • the polyazomethine of the present invention can interact with various Lewis acids or metals. , Lewis acid-base complexes, metallations, and other polymer complexes are possible. This makes it possible to further adjust semiconductor characteristics such as improvement in planarity of the conjugated structure portion of the polyazomethine of the present invention, improvement in HOMO-LUMO energy level, electron affinity, ionization potential, band gap, and carrier lifetime.
  • the method for producing the polyazomethine of the present invention comprises: It has a step of copolymerizing a hydrocarbon compound represented by the following general formula (II) and an aromatic ring-containing compound represented by the following general formula (III).
  • two Ys are both an aldehyde group or an amino group.
  • two Zs are amino groups when Y in the formula (II) is an aldehyde group, When is an amino group, it is an aldehyde group.
  • the polyazomethine of the present invention can be obtained by reacting the hydrocarbon compound and the aromatic ring-containing compound alternately by utilizing a reaction between an aldehyde group and an amino group.
  • A is an azomethine group, and its direction varies depending on the selection of a compound used as a raw material substrate for producing a hydrocarbon compound, as described later.
  • two Ars are independently a divalent aromatic group which may have a substituent.
  • Specific examples of Ar are the same as those given as specific examples of the divalent aromatic group which may have a substituent in the section ⁇ Aromatic ring-containing conjugated group>.
  • h and m are independently 0 or 1.
  • A-Ar-Y (Y is an azomethine group) constitutes an aromatic ring-containing conjugated group or a part thereof in the polyazomethine of the present invention. Whether to constitute the aromatic ring-containing conjugated group or a part thereof depends on the structure of the hydrocarbon compound and the structure of the aromatic ring-containing compound represented by the general formula (III) as described later.
  • h and m are preferably 0 from the viewpoint of improving the polymerization activity of the hydrocarbon compound and the aromatic ring-containing compound.
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom, or a carboxyl group. From the viewpoint of solubility in organic solvents and film crystallinity during film formation To a hydrogen atom or an alkyl group having 5 to 12 carbon atoms.
  • T is a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group, and is preferably an oxygen atom from the viewpoint that the raw material is relatively commercially available.
  • j is 0 or 1
  • the polyazomethine of the present invention obtained by using such a hydrocarbon compound has an ether bond (oxygen atom), a thioether bond (A sulfur atom) or a divalent hydrocarbon group having a cycloalkylene group.
  • j is preferably 1.
  • i and k are independently integers of 0 to 12, preferably 1 and integers of 5 to 12. However, when T is an oxygen atom or a sulfur atom, i and k are both 1 or more.
  • a plurality of R 3 may be the same or different.
  • a plurality of R 4 may be the same or different.
  • n is an integer of 1 to 10, preferably an integer of 3 to 5.
  • n is 2 or more, there are a plurality of parenthesized parts with a subscript of n, that is, (-(CHR 3 ) i- (T) j- (CHR 4 ) k- ) However, these may be the same or different.
  • the number of carbon atoms in the structure represented by (— (CHR 3 ) i — (T) j — (CHR 4 ) k —) n is 2 to 42, preferably 5 to 36.
  • a compound in which one of h and m is 1 and the other is 0 can be easily obtained by reacting a commercially available compound.
  • Ar is a phenylene group
  • h is 1
  • n is an octylene group
  • m is 0
  • the hydrocarbon compound of the general formula (II) is obtained by the following reaction.
  • a hydrocarbon compound having an aldehyde group as Y can be obtained.
  • the reaction raw material used is changed to p-aminobenzaldehyde and 1,8-diaminooctane
  • Y has an amino group and an azomethine group.
  • a hydrocarbon compound having the opposite direction is obtained.
  • a hydrocarbon compound in which h and m are both 1 is obtained by repeating the above reaction (by further reacting p-aminobenzaldehyde with the compound obtained by the above reaction). Further, it can be obtained by a one-step reaction as shown in the following formula.
  • the case where (— (CHR 3 ) i — (T) j — (CHR 4 ) k —) n in the general formula (II) is a dodecylene group is taken as an example.
  • the one-step reaction as described above becomes possible.
  • a hydrocarbon compound having an aldehyde group at both molecular ends is obtained.
  • the reaction raw material used is changed to 1,12-diformyldodecane and 1,4-diaminobenzene, amino compounds at both molecular ends are obtained.
  • a hydrocarbon compound having a group and having the azomethine group in the opposite direction is obtained.
  • Such a reaction can be carried out under known and usual reaction conditions for reacting an amino group and an aldehyde group.
  • the reaction temperature is 30 to 120 ° C.
  • the reaction time is usually 2 to 48 hours.
  • reaction solvent examples include ester solvents such as ethyl acetate or butyl acetate, aromatic solvents such as toluene or xylene, ether solvents such as THF or cyclopentyl methyl ether, ketone solvents such as MEK or cyclopentanone, m -Proton donor aromatic solvents such as cresol or phenol (preferably used in acid catalyzed reaction conditions), halogen-containing solvents such as chloroform, methylene chloride, tetrachloroethane or benzene chloride, NMP, DMF, pyridine or Proton-accepting solvents such as piperidine (preferably used under base catalyzed reaction conditions) and nitrile solvents such as acetonitrile or benzonitrile can be used.
  • ester solvents such as ethyl acetate or butyl acetate
  • aromatic solvents such as toluene or xylene
  • ether solvents
  • the hydrocarbon compound that is a raw material for producing the polyazomethine of the present invention is commercially available or can be easily obtained by reacting a commercially available product.
  • hydrocarbon compounds Specific examples of hydrocarbon compounds represented by the general formula (II) described above include compounds represented by the following formula.
  • Y is an aldehyde group or an amino group
  • Ya is an integer of 6 to 12.
  • two Zs are amino groups when Y in the formula (II) is an aldehyde group, and are aldehyde groups when Y is an amino group.
  • Ar 1 and Ar 2 are independently a divalent aromatic group which may have a substituent.
  • Specific examples of the aromatic group are the same as those given as specific examples of the divalent aromatic group which may have a substituent in the section ⁇ Aromatic ring-containing conjugated group>.
  • A is an azomethine group, and its direction varies depending on the selection of a compound used as a raw material substrate for producing an aromatic ring-containing compound, as will be described later.
  • t is an integer of 0 to 8, preferably an integer of 1 to 3.
  • a plurality of Ar 2 may be the same or different.
  • two T are independently a divalent group having an oxygen atom, a sulfur atom or a cycloalkylene group.
  • q and v are independently 0 or 1, and when q or v is 1 (exactly when q is 1 and y is 1 or v is 1 and z is 1)
  • the polyazomethine of the present invention obtained using such an aromatic ring-containing compound is an aromatic ring-containing conjugated group having an ether bond (oxygen atom), a thioether bond (sulfur atom) or a cycloalkylene group. In the repeating unit.
  • R 5 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogen atom or a carboxyl group, and the solubility in an organic solvent and the crystallinity of the film during film formation From the viewpoint, an alkyl group having 5 to 12 carbon atoms is preferable.
  • p and r, and u and w are each independently an integer of 0 to 12, preferably an integer of 5 to 12. However, when T is an oxygen atom or a hydrogen atom, p and r and u and w are all 1 or more.
  • a plurality of R 5 may be the same or different, and when r is 2 or more, a plurality of R 6 may be the same or different.
  • a plurality of R 7 may be the same or different, and when w is two or more, a plurality of R 8 may be the same or different.
  • s and x are each independently an integer of 1 to 10, preferably an integer of 3 to 5.
  • s is 2 or more, there are a plurality of parenthesized parts with subscripts of s, that is, (-(CHR 5 ) p- (T) q- (CHR 6 ) r- ). Although present, these may be the same or different.
  • x is 2 or more, a portion enclosed in parentheses with the subscript x, i.e. (- (CHR 7) u - (T) v - (CHR 8) w -) is plurality of However, these may be the same or different.
  • the number of carbon atoms in the structure represented is independently 2 to 42, preferably 5 to 36.
  • y and z are independently 0 or 1, but are preferably 0 from the viewpoint of improving the polymerization activity of the hydrocarbon compound and the aromatic ring-containing compound.
  • the subscripted part with the subscript constitutes a divalent hydrocarbon group in the repeating unit constituting the polyazomethine of the present invention, or a part thereof. become. Whether it becomes a divalent hydrocarbon group or a part thereof depends on the structure of the hydrocarbon compound represented by the general formula (II) and the aromatic ring-containing compound represented by the general formula (III).
  • h is 1, m is 0, and in an aromatic ring compound, y and z are 1, and a parenthesized portion 1 with a subscript y in the general formula (III) 1
  • site 2 in parentheses with the subscript n in the general formula (II) are copolymerized so as to be adjacent via an azomethine group, the sites 1 and 2 are A part 3 enclosed in parentheses with a z suffix is a part of a divalent hydrocarbon group in the unit and becomes a divalent hydrocarbon group in the repeating unit.
  • the bracketed part 4 and the Ar 1- (A-Ar 2 ) t subscripted with h are each an aromatic ring-containing conjugated group in the repeating unit.
  • An aromatic ring-containing compound in which y or z is 1 and the other is 0 can be easily obtained by reacting a commercially available compound.
  • y is 1, (-(CHR 5 ) p- (T) q- (CHR 6 ) r- ) s is an octylene group, t is 0, Ar 1 is phenylene Taking the case where z is 0 as an example, an aromatic ring-containing compound can be obtained by the following reaction.
  • an aromatic ring-containing compound having an aldehyde group as Z can be obtained.
  • the reaction raw material used is changed to 8-aminooctanal and 1,4-diaminobenzene, it has an amino group as Z.
  • An aromatic ring-containing compound in which the direction of the azomethine group is reversed is obtained.
  • An aromatic ring-containing compound in which both y and z are 1 can be obtained by repeating the above reaction (by further reacting 8-aminooctanal with the compound obtained by the above reaction). It can also be obtained by a one-step reaction as shown.
  • the one-step reaction as described above becomes possible.
  • an aromatic ring-containing compound having an aldehyde group at both molecular ends is obtained.
  • amino compounds at both molecular ends are obtained.
  • An aromatic ring-containing compound having a group and having an azomethine group in the opposite direction is obtained.
  • Such a reaction can be carried out under known and usual reaction conditions for reacting an amino group and an aldehyde group.
  • the reaction temperature is 30 to 120 ° C.
  • the reaction time is usually 2 to 48 hours.
  • reaction solvent examples include ester solvents such as ethyl acetate or butyl acetate, aromatic solvents such as toluene or xylene, ether solvents such as THF or cyclopentyl methyl ether, ketone solvents such as MEK or cyclopentanone, m -Proton donor aromatic solvents such as cresol or phenol (preferably used in acid catalyzed reaction conditions), halogen-containing solvents such as chloroform, methylene chloride, tetrachloroethane or benzene chloride, NMP, DMF, pyridine or Proton-accepting solvents such as piperidine (preferably used under base catalyzed reaction conditions) and nitrile solvents such as acetonitrile or benzonitrile can be used.
  • ester solvents such as ethyl acetate or butyl acetate
  • aromatic solvents such as toluene or xylene
  • ether solvents
  • the aromatic ring-containing compound that is a raw material for producing the polyazomethine of the present invention is commercially available or can be easily obtained by reacting a commercially available product.
  • aromatic ring-containing compounds Specific examples of the aromatic ring-containing compound represented by the general formula (III) described above include compounds represented by the following formula.
  • Z is an aldehyde group or an amino group.
  • h and m are preferably 0 in the general formula (II), and y and z are preferably 0 in the general formula (III).
  • the hydrocarbon compound and the aromatic ring-containing compound are copolymerized (the aldehyde group or amino group of the hydrocarbon compound is the amino group or aldehyde of the aromatic ring-containing compound).
  • the polyazomethine of the present invention having a repeating unit in which an aromatic ring-containing group and a divalent hydrocarbon group are bonded via an azomethine group.
  • each of the hydrocarbon compound and the aromatic ring-containing compound may be used singly, or one of them may be used in plural, or both may be used in plural. May be.
  • the reaction temperature in the copolymerization reaction is usually 30 to 120 ° C., and preferably 60 to 100 ° C. from the viewpoint of reaction efficiency.
  • the reaction time in the copolymerization reaction is usually 2 to 72 hours, and preferably 6 to 54 hours from the viewpoint of reaction efficiency.
  • a catalyst used for an addition reaction catalyzed by a general acid such as m-cresol, dimethylphenol, phenol, camphorsulfonic acid, naphthol, formic acid, acetic acid, propionic acid, hydrochloric acid and sulfuric acid.
  • a general acid such as m-cresol, dimethylphenol, phenol, camphorsulfonic acid, naphthol, formic acid, acetic acid, propionic acid, hydrochloric acid and sulfuric acid.
  • the same bases used in addition reactions catalyzed by common bases can also be used as catalysts in the above reactions.
  • reaction solvent for the above reaction an ester solvent such as ethyl acetate or butyl acetate, an aromatic solvent such as toluene or xylene, an ether solvent such as THF or cyclopentyl methyl ether, a ketone such as MEK or cyclopentanone, etc.
  • System solvents proton donor aromatic solvents such as m-cresol or phenol (preferably used in acid catalyzed reaction conditions), halogen-containing solvents such as chloroform, methylene chloride, tetrachloroethane or benzene chloride, NMP, Proton accepting solvents such as DMF, pyridine or piperidine (preferably used in base catalyzed reaction conditions) and nitrile solvents such as acetonitrile or benzonitrile are possible.
  • m-cresol, toluene-m-cresol cosolvent, THF, cyclopentylmethyl ether, and cyclopentanone are preferable from the viewpoint of reaction efficiency.
  • the polyazomethine of the present invention can be easily produced from readily available raw materials (monomers).
  • the polyazomethine described in Non-Patent Document 5 is commercially available as a raw material monomer possessed by an aromatic ring, heterocycle, or aromatic ring in the main chain, or a polyazomethine having an alkyl group or alkoxy group introduced into the heterocycle. There is no problem that industrialization is difficult because it is not available.
  • the solubility in the polymerization solvent decreases as the polycondensation proceeds, and the molecular weight does not increase by precipitating from the polymerization solvent before increasing the molecular weight. That is, the weight average molecular weight of the conventional polyazomethine depends on the solubility of the conjugated structure (aromatic ring diamine and aromatic ring structure in the aromatic ring dialdehyde), so control of the molecular weight (especially high molecular weight) ) was difficult.
  • the polyazomethine of the present invention is a single-molecule non-conjugated structure in which a conjugated structure having low solubility in a solvent and a non-conjugated structure having high solubility in a solvent are alternately connected. Therefore, since the solubility of the azomethine structure in the polymerization solvent is not impaired as the polycondensation proceeds, the weight average molecular weight can be adjusted by adjusting the reaction time and reaction rate.
  • the reaction rate depends on the strength (kind) of the acid or base catalyst, the amount of catalyst, and the reaction to give priority to the formation of the condensate in the equilibrium reaction. Adjustment is possible by adding char or the like and adjusting the charged monomer concentration.
  • General high molecular weight is possible by using a strong acid or base catalyst, adding a quencher to trap the water, and lengthening the reaction time.
  • the method for producing polyazomethine of the present invention is characterized by having a step of copolymerizing the hydrocarbon compound and the aromatic ring-containing compound described above.
  • a step of purifying the polyazomethine obtained in the above step may be performed.
  • the purification step is divided into a purification step A that is performed when a polymer is precipitated after completion of the reaction and a purification step B that is performed when no polymer is precipitated.
  • the reaction solution is filtered, and the resulting polymer is a solvent (poor solvent) that exhibits no solubility or low solubility and is a raw material for the synthesis of polyazomethine.
  • Purification is possible by repeating washing several times using a solvent in which the hydrocarbon compound and the aromatic ring-containing compound are soluble as a washing solvent.
  • purification step B a solvent in which polyazomethine is not soluble or has low solubility is added to the reaction solution itself or a solution after the reaction solution is vacuum-dried. To precipitate. Thereafter, the solution containing the precipitated polyazomethine is filtered, and a hydrocarbon compound and aroma which are solvents (poor solvents) in which the polyazomethine is not soluble or has low solubility (polyazomethine synthesis raw material). Purification can be performed by repeating washing of polyazomethine several times using a solvent in which a group ring-containing compound is soluble as a washing solvent.
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 3.35 g (25.0 mmol) of terephthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution prepared by dissolving 1.57 g (10.0 mmol) of 8-aminooctanal in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 3.35 g (25.0 mmol) of terephthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution prepared by dissolving 2.00 g (10.0 mmol) of 1,12-diaminododecane in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • Nitrogen-substituted 100 mL Schlenk tube was charged with 3.35 g (25.0 mmol) of isophthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution prepared by dissolving 2.00 g (10.0 mmol) of 1,12-diaminododecane in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 3.35 g (25.0 mmol) of terephthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution of 1.48 g (10.0 mmol) of 1,2-bis (2-aminoethoxy) ethane dissolved in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • Nitrogen-substituted 100 mL Schlenk tube was charged with 3.50 g (25.0 mmol) of 2,5-thiophenedicarbaldehyde, 5 g of m-cresol, and 30 g of THF, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution of 2.20 g (10.0 mmol) of diethylene glycol bis (2-aminopropyl ether) dissolved in 30 g of THF was added dropwise to the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • a 100 mL Schlenk tube purged with nitrogen was charged with 5.26 g (25.0 mmol) of 4,4′-biphenyldicarboxaldehyde, 5 g of m-cresol, and 30 g of THF, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution of 2.20 g (10.0 mmol) of diethylene glycol bis (2-aminopropyl ether) dissolved in 30 g of THF was added dropwise to the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 2.70 g (25.0 mmol) of 1,4-phenylenediamine, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution obtained by dissolving 1.34 g (10.0 mmol) of terephthalaldehyde in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 3.35 g (25.0 mmol) of terephthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution prepared by dissolving 1.08 g (10.0 mmol) of 1,4-phenylenediamine in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 3.35 g (25.0 mmol) of terephthalaldehyde, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution prepared by dissolving 1.09 g (10.0 mmol) of 2,6-diaminopyridine in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • Nitrogen-substituted 100 mL Schlenk tube was charged with 2.70 g (25.0 mmol) of 1,4-phenylenediamine, 5 g of m-cresol, and 30 g of toluene, and the reaction solution was heated to 70 ° C. while stirring. Thereafter, a solution prepared by dissolving 1.40 g (10.0 mmol) of 2,5-thiophenedicarbaldehyde in 30 g of toluene was dropped into the above solution over 3 hours. Thereafter, the reaction was completed after stirring for 3 hours.
  • the obtained polyazomethine was measured for its weight average molecular weight (Mw) on the basis of polystyrene by gel permeation chromatography (GPC) using THF as a developing solvent. As a result, Mw of the polyazomethine was 20 million.
  • GPC gel permeation chromatography
  • HLC-8120 manufactured by Tosoh Corporation
  • a nitrogen-substituted 100 mL Schlenk tube was charged with 4.32 g (10.0 mmol) of raw material 3 obtained by synthesis, 1.96 g (10.0 mmol) of 2,7-diaminofluorene, and 20 g of m-cresol, and stirred.
  • the reaction solution was heated to 70 ° C. Thereafter, stirring was performed for 48 hours to complete the reaction.
  • the polyazomethine of the present invention having a hydrocarbon group having a flexible structure and an aromatic ring-containing conjugated group having a rigid structure is methanol, ethanol, acetonitrile, acetone, IPA, THF, MEK, toluene. It can be seen that polyazomethine which is dissolved in at least one solvent of PGM and methyl lactate, and which consists only of an aromatic ring-containing conjugated group having a rigid structure does not exhibit any solubility in the solvent.
  • Example 14 Confirmation of acid-base interaction between polyazomethine having coordination ability and Lewis acid
  • FIG. 1 shows the result of measurement of the ultraviolet-visible absorption spectrum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 本発明は、半導体材料として十分なキャリア移動度を確保し、しかもトルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒など比較的に汎用性の高い有機溶媒に溶解する新規なポリアゾメチンを提供することを目的とする。 本発明は、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した二価の芳香族環含有共役基と、前記アゾメチン基とは共役しない、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよい二価の炭化水素基とを有し、前記芳香族環含有共役基と前記炭化水素基とは、アゾメチン基を介して結合してなる繰り返し単位を有することを特徴とするポリアゾメチンに関する。

Description

新規ポリアゾメチン
 本発明は、新規なポリアゾメチンに関する。
 直鎖状に発達した共役構造を有するポリアゾメチンの用途に関しては、LED、薄膜トランジスタ、太陽電池等の電子及び光学デバイス材料用の有機半導体材料といった用途が幅広く研究されてきた。
 一般的に従来のポリアゾメチンは、主鎖中に芳香環、ヘテロ環、または芳香環及びヘテロ環を有し、これらがアゾメチン基で連結された、複数の芳香環および/またはヘテロ環が繋がった共役系ポリマー構造をとっている。
 ポリアゾメチンを有機半導体材料として利用する場合、基板上に前記半導体層を形成するためには、ポリアゾメチンを溶媒に溶解し、得られた溶液を基板上に塗布する方法が簡便であり、コストも低い。しかしながら、上記ポリアゾメチンは、上記のごとく共役系で、平面性が高く剛直な構造の化合物であり、そのため有機溶媒に対して溶解性が悪い。そのためポリアゾメチンを有機溶媒に溶解させて基板上に塗布するということができない。
 このため、モノマーをターゲット基板へ真空蒸着しながらポリアゾメチンを重合し、かつ半導体層を形成する方法が提案されているが(特許文献1参照)、当該方法は,プロセスの煩雑さ及びポリアゾメチンの収率が低いことから好ましい方法とはいえない。
 また特許文献1に開示されたポリアゾメチンの溶媒溶解性については、m-クレゾール等のプロトン酸又はそれを含む有機溶媒中においては、前記ポリアゾメチンが可逆的なLewis酸-塩基対を形成し、この状態で溶媒に対して溶解性を示すことが知見されている(非特許文献1~4参照)。
 しかしながら、これらのプロトン酸またはプロトン酸を含む有機溶媒は汎用性があるとは言い難い。さらに、前記有機溶媒は腐食性を示すため、前記ポリアゾメチンをこれらの溶媒に溶解したポリアゾメチン溶液については、工業的な使用は制限される。
 また、特許文献2は、ポリアゾメチンを含有する有機LED素子に関する発明を開示しており、そのポリアゾメチンは、下記一般式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000011
 上記の選択肢の中には、芳香環共役構造だけでなく、-(CH2m-やシクロヘキシレン基などの非共役構造もある。
 そして特許文献2の[0013]には、このようなポリアゾメチンをm-クレゾールまたはベンゼン中で重合し、得られたポリアゾメチン溶液をスピンコート、ディップコートなどの湿式による成膜法で基板(陽極)上に成膜し、その後に不活性ガスの雰囲気中で加熱することによりポリアゾメチン層を作製することが記載されている。
 しかしながら、特許文献2には、上記の一般式(I)で表わされるポリアゾメチンを実際に合成したかどうかについては何ら記載されていない。また特許文献2のポリアゾメチンが溶解するとされているm-クレゾールおよびベンゼンは、汎用性があるとは言い難い。またm-クレゾールについては上記のように腐食性があり、ベンゼンは発癌性を有しており、両者ともに人体に有害である。
 このため、特許文献2のポリアゾメチンをこれらm-クレゾールまたはベンゼンに溶解したポリアゾメチン溶液は、工業的利用が制限される。さらに、特許文献2には、前記ポリアゾメチンが汎用性の高い他の溶媒(たとえばアルコール)に溶解するかどうかについては、記載も示唆もない。
 一方、このように有機溶媒への溶解性の低いポリアゾメチンについて、その主鎖中の芳香環、ヘテロ環または芳香環及びヘテロ環にアルキル基またはアルコキシ基などを導入することにより、ポリアゾメチンがクロロホルム、THF、DMF、DMSO、NMP、m-クレゾールなどの単独の溶媒に対して溶解性を示すようになることが報告されている(非特許文献5参照)。
 しかしながら、このような芳香環および/またはヘテロ環にアルキル基またはアルコキシ基が導入された原料モノマーは、商業的に入手できないため、前記ポリアゾメチンの製造を工業化することは困難であると考えられる。また、使用する溶媒種は、含ハロゲン構造であることがあり、その場合、前記溶媒種は高沸点を示す。そのため、取扱者の健康管理や、溶媒の乾燥工程において高いエネルギーが要求されるなどの理由から、前記溶媒を工業用に使用することは好ましいとは言い難い。さらに、化学構造上、こうした共役系内への置換基の導入は、その化合物の有する立体障害により本来の共役系内における平面性の低下を招き、ポリアゾメチン分子内および分子間の結晶性が低くなり、有機半導体材料に必要とされるキャリア移動度が悪くなると考えられる。但し、立体規則性の高いポリ(3-ヘキシルチオフェン)(P3HT)のヘキシル基にみられるように、前記置換基が、共役系分子内の結晶性を誘起させる効果があるアルキル基等である場合は、この限りではない。
特開平8-113622号公報 特開平9-194832号公報
Chem.Mater.1991, 3, 878 Chem. Mater. 1994, 6, 196 Chem. Mater. 1995, 7, 1276 Macromolecules 1995, 28, 1180 Macromolecules, vol. 38, No. 5, p1958-1966, 2005
 そこで本発明は、半導体材料として十分なキャリア移動度を確保し、しかもトルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒など比較的に汎用性の高い有機溶媒に溶解する新規なポリアゾメチンを提供することを目的とする。
 本発明は、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した二価の芳香族環含有共役基と、前記アゾメチン基とは共役しない、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよい二価の炭化水素基とを有し、前記芳香族環含有共役基と前記炭化水素基とは、アゾメチン基を介して結合してなる繰り返し単位を有することを特徴とするポリアゾメチンである。
 従来のポリアゾメチンにおいては、ポリアゾメチンが、その主鎖中に芳香環、ヘテロ環、または芳香環及びヘテロ環を有し、これらがアゾメチン基で連結された、複数の芳香環および/またはヘテロ環が繋がった共役系ポリマー構造をとっていた。これは、ポリアゾメチン1分子内においてキャリアを移動させるためである。そして共役系ポリマー構造をとっていることが、ポリアゾメチンの有機溶媒への低い溶解性の原因となっていた。溶解性を上げるため、上記芳香環および/またはヘテロ環にアルキル基またはアルコキシ基を、いわば側鎖として導入することも提案されている(非特許文献5)。しかし、この提案された方法には、そのようなポリアゾメチンを合成するための原料モノマーが商業的に入手できないという問題点があった。
 これに対して本発明者は、以下の2点の発想の転換により、汎用性の高い溶媒への溶解が可能なだけでなく、容易で工業的な製造が可能であり、しかも半導体として十分なキャリア移動度を確保したポリアゾメチンを発明したのである。
(1)キャリアを1分子内において移動させるのではなく、ポリマーが有する共役系(芳香環)を、ポリマー分子間でスタックさせること(分子間で共役構造部分を配向させること)により、キャリアが分子間で移動するようにさせること
(2)アルキル基等をポリマーの側鎖として導入するのではなく、ポリマーの主鎖の一部として導入する(すなわち、共役系構造を非共役スペーサーで連結する)こと。
 本発明のポリアゾメチンの具体例としては、下記一般式(I)で表わされる繰り返し単位を有するポリアゾメチンが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式において、
 R1およびR2は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
 Aはアゾメチン基であり、
 Xは置換基を有していてもよい二価の芳香族基であり、
 Tは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
 bは0または1であり、
 aおよびcは独立に0~12の整数であり(ただし、Tが酸素原子または硫黄原子である場合には、aおよびcはともに1以上である)、
 dは1~10の整数であり、
 eは1~10の整数であり、
 fおよびgは独立に1~800の整数であり、
 前記繰り返し単位中において、{((CHR1a-(T)b-(CHR2ce-A-}で表わされる炭化水素基および((X-A)d)で表わされる芳香族環含有共役基は、任意の順に配列しており、
 aが2以上の場合、複数存在するR1は同一でも異なっていてもよく、
 cが2以上の場合、複数存在するR2は同一でも異なっていてもよく、
 dが2以上の場合、複数存在するXは同一でも異なっていてもよく、
 eが2以上の場合、複数存在する((CHR1a-(T)b-(CHR2c)は同一でも異なっていてもよく、
 fが2以上の場合には、複数存在する前記炭化水素基は同一でも異なっていてもよく、
 gが2以上の場合には、複数存在する前記芳香族環含有共役基は同一でも異なっていてもよく、
 前記炭化水素基中の炭素原子数は、3~43である。
 本発明のポリアゾメチンの重量平均分子量は、2,000~2,000,000の範囲内にあることが好ましく、また、本発明のポリアゾメチンは、通常クレゾール、トルエン、THF、シクロペンチルメチルエーテル、アセトン、MEK、MIBK、シクロペンタノン、クロロホルム、ジクロロメタン、四塩化炭素、クロロベンゼン、二硫化炭素、酢酸エチル、酢酸ブチル、乳酸メチル、メタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、n-ブタノール、t-ブタノール、ペンチルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、ピリジン、NMP、硫酸、蟻酸、酢酸、塩酸、乳酸、トリエチルアミン、ジブチルアミンの中から選択されるいずれかの溶媒、または二種以上の共溶媒100gに対し、25℃において0.1g以上の溶解性を有する。
 前記芳香族環含有共役基における二価の芳香族基の具体例としては、下記式で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記式において、半カッコでくくられた部位は結合手を示す。
 本発明のポリアゾメチンは半導体用途に好適であり、塗布法により電極上に成膜することで、p-n接合素子の作製が可能である。ポリアゾメチンをP型半導体層またはN型半導体層の形成材料として使用して作製したp-n接合素子について、P型半導体側の電極に正極端子を、N型半導体側の電極に負極端子を接続し、-5V~+5Vの範囲内において電圧を印可することができ、順方向の電力量/逆方向の電力量>1.0となることが本発明のポリアゾメチンの特徴である。
 本発明のポリアゾメチンは、下記一般式(II)で表わされる炭化水素化合物と、下記一般式(III)で表わされる芳香族環含有化合物とを共重合させる工程を有する製造方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 上記式(II)において、二つのYはともにアルデヒド基またはアミノ基であり、
 Aはアゾメチン基であり、
 二つのArは独立に置換基を有していてもよい二価の芳香族基であり、
 hおよびmは独立に0または1であり、
 R3およびR4は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
 Tは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
 jは0または1であり、
 iおよびkは独立に0~12の整数であり(ただし、Tが酸素原子または硫黄原子である場合は、iおよびkはともに1以上である)、
 nは1~10の整数であり、
 iが2以上の場合、複数存在するR3は同一でも異なっていてもよく、
 kが2以上の場合、複数存在するR4は同一でも異なっていてもよく、
 nが2以上の場合、複数存在する(-(CHR3i-(T)j-(CHR4k-)は、同一でも異なっていてもよく、
 (-(CHR3i-(T)j-(CHR4k-)nで表わされる構造中の炭素原子数は2~42である;
上記式(III)において、二つのZは、上記式(II)におけるYがアルデヒド基の場合にはアミノ基であり、Yがアミノ基の場合にはアルデヒド基であり、
 Ar1は置換基を有していてもよい二価の芳香族基であり、
 Ar2は置換基を有していてもよい二価の芳香族基であり、
 Aはアゾメチン基であり、
 tは0~8の整数であり、
 tが2以上の場合には、複数存在するAr2は同一でも異なっていてもよく、
 R5~R8はそれぞれ独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
 2つのTは独立に酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
 qおよびvは独立に0または1であり、
 pおよびr、ならびにuおよびwはそれぞれ独立に0~12の整数であり(ただし、Tが酸素原子または硫黄原子である場合には、pおよびrならびにuおよびwは、すべて1以上である)、
 sおよびxは独立に1~10の整数であり、
 pが2以上の場合には、複数存在するR5は同一でも異なっていてもよく、
 rが2以上の場合には、複数存在するR6は同一でも異なっていてもよく、
 uが2以上の場合には、複数存在するR7は同一でも異なっていてもよく、
 wが2以上の場合には、複数存在するR8は同一でも異なっていてもよく、
 sが2以上の場合には、複数存在する(-(CHR5p-(T)q-(CHR6r-)は、同一でも異なっていてもよく、
 xが2以上の場合には、複数存在する(-(CHR7u-(T)v-(CHR8w-)は、同一でも異なっていてもよく、
 yおよびzは独立に0または1であり、
 (-(CHR5p-(T)q-(CHR6r-)sで表わされる構造および(-(CHR7u-(T)v-(CHR8w-)xで表わされる構造中の炭素原子数は、2~42である。
 前記芳香族環含有化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式において、Zはアルデヒド基またはアミノ基である。
 また、前記炭化水素化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 上記式において、Yはアルデヒド基またはアミノ基であり、Yaは6~12の整数である。
 本発明のポリアゾメチンは、半導体材料として十分なキャリア移動度を確保し、しかもトルエン等の疎水性溶媒、メタノール、エタノール等のアルコール系溶媒、プロピレングリコールモノメチルエーテル等のグリコール系溶媒、または乳酸メチル等のエステル系溶媒などの汎用性の高い有機溶媒に対して高い溶解性を示す。
 そのため、本発明のポリアゾメチンによれば、従来の共役系高分子のように、真空蒸着により基板上にポリアゾメチンを配向させるのではなく、塗布法により基板上に半導体層を形成することができる。
図1は、実施例14において、実施例4で製造したポリアゾメチンをTHFまたは5%蟻酸THF溶液に溶解させたサンプルの紫外-可視吸収スペクトルの測定結果を示す。
 [ポリアゾメチン]
 以下、本発明のポリアゾメチンを構成する繰り返し単位が有する上記芳香族環含有共役基及び二価の炭化水素基について詳細に説明する。
 <芳香族環含有共役基>
 上記芳香族環含有共役基は、上記のごとく、アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した構造をとっている。
 芳香族環含有共役基の共役構造によって、本発明のポリアゾメチンはキャリア輸送機能を有するようになる。
 前記置換基を有していてもよい二価の芳香族基の例としては、下記式A-1~A-24で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 式A―1において、Raは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。前記ハロゲン原子としては、F、ClおよびBrが挙げられる。以下の式A-2~A-24においても同様である。
 本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRaが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-1において、Saは1~4の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Saは偶数であることが好ましく、Saが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。前記対称要素とは、ポリアゾメチン分子全体ではなく、芳香族基の構造部分の対称性を指す。また紙面上で描いた構造から推察される対称性であり、実際に測定したX線構造解析及び分子軌道計算による最適化された構造からの対称性ではない。以下同様である。
 なお、Saが2以上の場合には、複数存在するRaは同一でも異なっていてもよい。
 また、式A-1において、「*」は結合手であり、これがアゾメチン基に結合している。以下の式A-2~A-24においても同様である。
Figure JPOXMLDOC01-appb-C000023
 式A-2において、Rbは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRbが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-2において、Sbは1~3の整数であり、分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sbは奇数であることが好ましく、Sbが奇数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Sbが2以上の場合には、複数存在するRbは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000024
 式A-3において、XaはS、NH、N(CH3)、N(C2H5)およびN(Ph)から選択され、本発明のポリアゾメチンの分子間における高結晶化の観点から、立体障害性が小さく、平面性が高いSおよびNHが好ましい。
 式A-3において、Rcは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRcが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-3において、Scは1または2であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Scは2であることが好ましく、Scが2であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Scが2の場合には、二つのRcは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000025
 式A-4において、XbはCH2、(CxH2x+1)2 (Xは2~20の整数)、NH、 N(CxH2x+1)  (Xは2~20の整数)およびN(Ph)から選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点から、立体障害性が小さく、平面性が高いCH2およびNHが好ましい。
 式A-4において、Rdは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRdが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-4において、Sdは1~6の整数である。すなわち、Rdは、式A-4においては右側のベンゼン環に結合しているように図示したが、Rdは、式A-4において、結合し得るすべての炭素に結合する。すなわち、Rdは式A-4における右側のベンゼン環だけでなく、左側のベンゼン環に結合してもよい。結合手に関しても同様である。以下の式A-5~A-24においても同様である。
 本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sdは偶数であることが好ましく、Sdが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Sdが2以上の場合には、複数存在するRdは同一でも異なっていてもよい。
 式A-5において、XcはO、S、NH、 N(CxH2x+1)  (Xは1~20の整数)およびN(Ph)から選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点から、立体障害性が小さく、平面性が高いO、SおよびNHが好ましい。
 式A-5において、YaはCHおよびNから選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点からは、いずれも好ましい。
 式A-5において、Reは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはReが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-5において、YaがCHの場合には、Seは1~10の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Seは偶数であることが好ましく、Seが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 YaがNの場合には、Seは1~8の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Seは偶数であることが好ましく、Seが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Seが2以上の場合には、複数存在するReは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000027
 式A-6において、XdはCHおよびNから選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点からは、いずれも好ましい。
 式A-6において、Rfは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRfが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-6において、Sfは、XdがCHの場合は1~8の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sfは偶数であることが好ましく、Sfが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 また、XdがNの場合は、Sfは1~6の整数であり、前記と同様の観点から、Sfは偶数であることが好ましく、Sfが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Sfが2以上の場合には、複数存在するRfは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000028
 式A-7において、Rgは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRgが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-7において、Sgは1~10の整数であり、Rgは、二つのベンゼン環をつなげているエチレン基上に結合していてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sgは偶数であることが好ましく、Sgが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。なお、Sgが2以上の場合には、複数存在するRgは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000029
 式A-8において、Rhは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRhが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-8において、Shは1~6の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Shは偶数であることが好ましく、Shが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Shが2以上の場合には、複数存在するRhは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000030
 式A-9において、XeはCHおよびNから選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点からは、XeはCHであることが好ましい。
 式A-9において、Riは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRiが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-9において、Siは、XeがCHの場合は1~8の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Siは偶数であることが好ましく、Siが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 またSiは、XeがNの場合は、1~6の整数であり、前記と同様の観点から、Siは偶数であることが好ましく、Siが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Siが2以上の場合には、複数存在するRiは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000031
 式A-10において、Rjは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRjが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-10において、Sjは1~8の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sjは偶数であることが好ましく、Sjが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。なお、Sjが2以上の場合には、複数存在するRjは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000032
 式A-11において、XfはCHおよびNから選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点からは、XfはNであることが好ましい。
 式A-11において、Rkは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRkが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-11において、Skは、XfがCHの場合は1~8の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Skは偶数であることが好ましく、Skが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 またSkは、XfがNの場合は、1~6の整数であり、前記と同様の観点から、Skは偶数であることが好ましく、Skが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Skが2以上の場合には、複数存在するRkは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000033
 式A-12において、XgはCHおよびNから選択され、本発明のポリアゾメチンの分子間における高い結晶化の観点からは、XgはNであることが好ましい。
 式A-12において、Rmは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRmが水素原子またはハロゲン原子であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-12において、Smは、XgがCHの場合は1~8の整数であり、本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Smは偶数であることが好ましく、Smが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 またSmは、XgがNの場合は、1~6の整数であり、前記と同様の観点から、Smは偶数であることが好ましく、Smが偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることがさらに好ましい。
 なお、Smが2以上の場合には、複数存在するRmは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000034
 式A-13において、XhはO、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択され、本発明のポリアゾメチンの分子内共役系の平面性の高さの観点から、S、NHであることが好ましい。
 式A-13において、Rnは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRnが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-13において、Snは1~4の整数である。Snが2以上の場合には、複数存在するRnは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Snは2~4の整数であることが好ましく、2または4であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000035
 式A-14において、XiはO、S、NH、N(CH3)、N(C2H5)およびN(Ph)から選択され、本発明のポリアゾメチンの分子内共役系の平面性の高さの観点から、S、NHであることが好ましい。
 式A-14において、Rpは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRpが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-14において、Spは1~8の整数である。Spが2以上の場合には、複数存在するRpは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Spは4~8の整数であることが好ましく、4または8であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000036
 式A-15において、XjはCH及びNから選択され、本発明のポリアゾメチンの原料の商業的な入手のしやすさの観点から、CHであることが好ましい。
 式A-15において、Rqは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRqが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-15において、Sqは、XjがCHの場合には1または2である。Sqが2の場合には、2つ存在するRpは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sqは2であることが好ましい。
 なおXjがNの場合には、Sqは0である。
Figure JPOXMLDOC01-appb-C000037
 式A-16において、XkはS及びOから選択され、本発明のポリアゾメチンの原料の商業的な入手のしやすさの観点から、Sであることが好ましい。
 式A-16において、Rrは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRrが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-16において、Srは1~4の整数である。Srが2以上の場合には、複数存在するRrは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Srは3または4であることが好ましく、4であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000038
 式A-17において、Rsは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRsが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-17において、Ssは1または2である。Ssが2の場合には、2つ存在するRsは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Ssは2であることが好ましい。
Figure JPOXMLDOC01-appb-C000039
 式A-18において、Rtは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRtが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-18において、Stは1~4の整数である。Stが2以上の場合には、複数存在するRtは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Stは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 式A-19において、Ruは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRuが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-19において、Suは1または2である。Suが2の場合には、2つ存在するRuは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Suは2であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000041
 式A-20において、Rvは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRvが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-20において、Svは1~6の整数である。Svが2以上の場合には、複数存在するRvは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Svは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 式A-21において、Rxは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRxが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-21において、Sxは1または2である。Sxが2の場合には、2つ存在するRxは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Sxは2であることが好ましい。
Figure JPOXMLDOC01-appb-C000043
 式A-22において、Ryは水素原子、ハロゲン原子、炭素数1~15のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~15の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRyが水素原子、炭素数1~15のアルキル基または炭素数1~15のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-22において、Syは1~4の整数である。Syが2以上の場合には、複数存在するRyは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Syは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000044
 式A-23において、Rzは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRzが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-23において、Szは1~6の整数である。Szが2以上の場合には、複数存在するRzは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Szは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
Figure JPOXMLDOC01-appb-C000045
 式A-24において、Raaは水素原子、ハロゲン原子、炭素数1~8のアルキル基、又は基中にエーテル結合もしくはアルコキシ基を含む炭素数1~8の炭化水素基である。本発明のポリアゾメチンの分子間における高結晶化の観点から、好ましくはRaaが水素原子、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基であり、ファンデルワールス半径が小さい水素原子であることがより好ましい。
 式A-24において、Saaは1~6の整数である。Saaが2以上の場合には、複数存在するRaaは同一でも異なっていてもよい。本発明のポリアゾメチンの分子間における高結晶化のために、芳香環内における電子の局在化をより小さくする観点から、Saaは偶数であり、かつ芳香族基全体として対称要素を有するように置換されていることが好ましい。
 以上説明した式A-1~A-24で表わされる基のより具体的な例としては、下記式で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 上記式において、半カッコでくくられた部位は結合手を示す。
 上記芳香族環含有共役基においては、これらの二価の芳香族基がアゾメチン基によって連結されており、アゾメチン基と二価の芳香族基とが交互に結合して共役した構造をとっている。なお、二価の芳香族基の数は一つでもよい。
 芳香族環含有共役基中の芳香族基は通常5個以下であり、本発明のポリアゾメチンの溶媒への溶解性、分子内共役、分子間における結晶性の観点から、1~5個であることが好ましい。アゾメチン基と二価の芳香族基とを交互に結合させる方法については、後記の本発明のポリアゾメチンの製造方法の項にて説明する。
 本発明のポリアゾメチンを構成する繰り返し単位中の、上記芳香族環含有共役基の数は、1つであっても複数であってもよい(複数の場合には、繰り返し単位中において芳香族環含有共役基と炭化水素基とが交互に配列している)。前記繰り返し単位中の前記芳香族環含有共役基の数は、ポリアゾメチン分子間の結晶化を促進する観点から、好ましくは1~6個である。
 <二価の炭化水素基>
 上記二価の炭化水素基は、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよく、アゾメチン基と共役しなければ、特に限定されない。前記芳香族環含有共役基が剛直な構造であるのに対し、前記炭化水素基はアゾメチン基と共役しないため、柔軟な構造である。本発明のポリアゾメチンが、この柔軟な構造である炭化水素基を有することが、後述する、本発明のポリアゾメチンの有機溶媒に対する高い溶解性に寄与している。
 前記二価の炭化水素基の例としては、分岐を有していてもよくハロゲン原子で置換されていてもよい炭素数2~42のアルキレン基、基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい炭素数2~42の二価の炭化水素基、置換基を有していてもよい炭素数3~42のシクロアルキレン基、および、基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい炭素数2~42の二価の炭化水素基が挙げられる。
 前記ハロゲン原子の例としては、フッ素原子、塩素原子および臭素原子が挙げられる。
 前記シクロアルキレン基における置換基の例としては、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が挙げられる。またシクロアルキレン基は、環状構造を複数有していてもよく、さらにその環状構造が、アルキレン基によって連結されていてもよい。
 前記分岐を有していてもよくハロゲン原子で置換されていてもよいアルキレン基の炭素数は、本発明のポリアゾメチンの有機溶媒への親和性と固体状態における分子間結晶性の両立の観点から、3~20であることが好ましく、4~12であることがより好ましく、6~12であることがさらに好ましい。
 前記基中にエーテル結合および/またはチオエーテル結合を有し、ハロゲン原子で置換されていてもよい二価の炭化水素基の炭素数は、本発明のポリアゾメチンの有機溶媒への親和性と固体状態における分子間の結晶性の両立の観点から、3~20であることが好ましく、4~12であることがより好ましく、6~12であることがさらに好ましい。
 前記置換基を有していてもよいシクロアルキレン基の炭素数は、本発明のポリアゾメチンの有機溶媒への親和性と固体状態における分子間の結晶性の両立の観点から、3~30であることが好ましく、6~15であることが好ましい。
 前記基中にカルボキシル基を有し、ハロゲン原子で置換されていてもよい二価の炭化水素基の炭素数は、本発明のポリアゾメチンの有機溶媒への親和性と固体状態における分子間の結晶性の両立の観点から、3~20であることが好ましく、4~12であることがより好ましく、6~12であることがさらに好ましい。
 本発明のポリアゾメチンの繰り返し単位を構成する二価の炭化水素基は、有機溶媒への親和性の観点から、トルエンなどの比較的に低極性であり、疎水性が高い溶媒への溶解性を発現させる為にはアルキレン基を有する構造であることが好ましい。アルコール系、グリコール系、エステル系溶媒に対する溶解性を発現させるためには、前記炭化水素基は、基中にエーテル結合を有する構造であることが好ましい。さらに含ハロゲン系溶媒に対する溶解性を発現させるためには、前記炭化水素基は、基中にハロゲン原子を有する(ハロゲン原子で置換された)構造であることが好ましい。
 本発明のポリアゾメチンを構成する繰り返し単位中の、上記二価の炭化水素基の数は、1つであっても複数であってもよい(複数の場合には、繰り返し単位中において炭化水素基と芳香族環含有共役基とが交互に配列している)。前記繰り返し単位中の前記炭化水素基の数は、溶媒に対する溶解性と分子間の結晶性化の促進の観点から、好ましくは1~6個である。
 <本発明のポリアゾメチンを構成する繰り返し単位>
 本発明のポリアゾメチンは、以上説明した芳香族環含有共役基と炭化水素基とを有し、前記芳香族環含有共役基と炭化水素基とが、アゾメチン基を介して結合してなる繰り返し単位を有することを特徴としている。アゾメチン基を介して前記二つの基を結合させる方法は、後記の本発明のポリアゾメチンの製造方法の項にて説明する。
 このような本発明のポリアゾメチンを構成する繰り返し単位の具体例としては、下記一般式(I)で表わされる繰り返し単位が挙げられる:
Figure JPOXMLDOC01-appb-C000048
 上記式において、R1およびR2は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基である。有機溶媒に対する溶解性と成膜時の膜の結晶性の観点から、R1およびR2として好ましくは、水素原子または炭素数5~12のアルキル基である。
 上記式(I)において、Aはアゾメチン基である。アゾメチン基とは-C=N-または-N=C-である。このアゾメチン基の向きによって、共役系内での共役状態は異なるが、前記共役状態は、フェニル基等の非ヘテロ原子含有芳香環においては分子間における結晶性には大きな影響は及ぼさないと考えられる。一方、芳香環がピリジン基等のヘテロ環である場合においては、アゾメチン基の向きによって、前記共役状態が分子間における結晶性に影響を与えることが考えられる。すなわち、アゾメチン基の向きが、アゾメチン基を構成するNおよびCのうち、Nのほうがヘテロ環に近い位置にある向きであり、かつヘテロ環のヘテロ原子がアゾメチン基を構成するNの近くにあるときには、本発明のポリアゾメチンの固体状態における分子内共役系の拡張がおこり、また共役系内の電子構造が大きく影響を受ける場合があるので、好ましい。本発明のポリアゾメチンが、溶液状態で、前記アゾメチン基中のNおよびヘテロ環のヘテロ原子に基づく、金属イオンに対するメタレーション効果、およびカチオン認識効果等を示すことが期待され、前記効果の相互作用によりポリアゾメチンがテンプレートされるからである。
 上記式(I)において、Xは置換基を有していてもよい二価の芳香族基である。Xの具体例は、上記の<芳香族環含有共役基>の項において、置換基を有していてもよい二価の芳香族基の具体例として挙げたものと同じである。
 上記式(I)において、Tは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、原料が比較的に商業的に入手可能な点から、酸素原子であることが好ましい。
 上記式(I)において、bは0または1であり、bが1の場合には、上記繰り返し単位中の炭化水素基がエーテル結合(酸素原子)、チオエーテル結合(硫黄原子)またはシクロアルキレン基を有することになる。
 上記式(I)において、aおよびcは独立に0~12の整数であり、好ましくは1および5~12の整数である。ただし、Tが酸素原子または硫黄原子である場合には、aおよびcはともに1以上である。
 また、aが2以上の場合、複数存在するR1は同一でも異なっていてもよく、cが2以上の場合、複数存在するR2は同一でも異なっていてもよい。
 上記式(I)において、dは1~10の整数であり、好ましくは1~3の整数である。ここで、dが2以上の場合、複数存在するXは同一でも異なっていてもよい。
 式(I)において、eは1~10の整数であり、好ましくは3~5の整数である。ここで、eの添え字が付けられたカッコでくくられた部位、すなわち((CHR1a-(T)b-(CHR2c)は、eが2以上の場合には複数存在するが、その場合には、これらは同一でも異なっていてもよい。
 式(I)において、fおよびgは独立に1~800の整数であり、好ましくは2~500の整数である。ここで、fが2以上の場合には、複数存在する、{((CHR1a-(T)b-(CHR2ce-A-}で表わされる炭化水素基は同一でも異なっていてもよく、gが2以上の場合には、複数存在する、((X-A)d)で表わされる芳香族環含有共役基は同一でも異なっていてもよい。また、前記炭化水素基中の炭素数は、通常3~43であり、好ましくは6~37である。
 さらに、本発明のポリアゾメチンを構成する繰り返し単位中において、前記炭化水素基および前記芳香族環含有共役基は、任意の順に配列することが可能であるが、基本的には交互に配列している。本発明のポリアゾメチンを構成する繰り返し単位中における前記炭化水素基及び芳香族環含有共役基の配列順序を調整する方法については、後記の本発明のポリアゾメチンの製造方法の項にて説明する。
 <ポリアゾメチン>
 以上説明した繰り返し単位を有する本発明のポリアゾメチンは、その構造中に上記二価の炭化水素基を有し、この部分は結晶性を有していないため、汎用性の高い多様な有機溶媒、例えば疎水性溶媒、アルコール系溶媒、グリコール系溶媒またはエステル系溶媒に対して高い溶解性を示す。
 より具体的には、前記ポリアゾメチンは、通常クレゾール、トルエン、THF、シクロペンチルメチルエーテル、アセトン、MEK、MIBK、シクロペンタノン、クロロホルム、ジクロロメタン、四塩化炭素、クロロベンゼン、二硫化炭素、酢酸エチル、酢酸ブチル、乳酸メチル、メタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、n-ブタノール、t-ブタノール、ペンチルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、ピリジン、NMP、硫酸、蟻酸、酢酸、塩酸、乳酸、トリエチルアミン、ジブチルアミンの中から選択されるいずれかの溶媒乃至、二種以上の共溶媒100gに対し、25℃において通常0.1g以上、好ましくは1~10gの溶解性を有する。なお、[背景技術]でも述べたように、クレゾールやクロロベンゼンなどは、腐食性を有する、あるいは人体に有害である。本発明においては、これらは通常他のトルエンなどの汎用性の高い溶媒に少量混合して共溶媒として用いる。
 このように、汎用性の高い、多種多様な有機溶媒に対する溶解性の高い本発明のポリアゾメチンは、従来のポリアゾメチンのような分子全体にわたる共役構造を有していないにもかかわらず、電子および正孔などのキャリアを輸送する機能が高く、半導体用途に好適である。
 本発明のポリアゾメチンが高いキャリア輸送機能を有するのは、以下の理由による。すなわち、ポリアゾメチンが親和性の高いもの同士(すなわち炭化水素基は炭化水素基同士、芳香族環含有共役基は芳香族環含有共役基同士)が重なり合う。そして、芳香族環含有共役基がスタックしている箇所において、キャリアが自由に移動できるのである。つまり、従来のポリアゾメチンは、溶媒に対する溶解性を犠牲にし、分子内の共役と分子間のスタッキング構造によってキャリア移動度を確保していたのに対し、本発明においては、分子内の共役を切断することにより、溶媒に対する溶解性を確保するとともに、あたかも真空蒸着して低分子を配向させるように、ポリアゾメチンにおける共役系の部分を低分子とみたてて、分子間のスタックによって共役部分を配向させ、キャリア移動度を確保しているのである。
 以上説明したように、本発明のポリアゾメチンは高いキャリア輸送機能を有し、半導体用途に好適であり、しかも汎用性の高い有機溶媒に対して高い溶解性を示す。したがって、前記ポリアゾメチンを汎用性の高い有機溶媒に溶解させ、得られたポリアゾメチン溶液を使用し、スピンコートやディップコートといった塗布法によって、基板上に安全かつ容易に半導体層を形成することができる。
 このようなキャリア輸送機能を有する本発明のポリアゾメチンの溶液を、電極上に塗布して成膜し、p-n接合素子を作製することができる。ポリアゾメチンをP型半導体層形成材料として用いた場合は、N型半導体層は、ポリアゾメチンのイオン化ポテンシャル(eV)よりも大きい値である電子親和力(eV)を示す半導体材料(例:フラーレン)を用いて作製する。又、ポリアゾメチンをN型半導体層形成材料として用いた場合は、P型半導体層は、ポリアゾメチンの電子親和力(eV)よりも小さい値であるイオン化ポテンシャルを示す半導体材料(例:ポリ(3-ヘキシルチオフェン))を用いて作製する。
 より具体的には、本発明のポリアゾメチンをN型半導体層の形成材料として使用する場合には、負側電極基板上にポリアゾメチン溶液を塗布、乾燥し、膜を作製し、その膜上にP型半導体材料を塗布もしくは蒸着などで成膜し、得られたP型半導体層上に正側の電極を蒸着することにより、p-n接合素子を作製することができる。また、本発明のポリアゾメチンをP型半導体層の形成材料として使用する場合には、負側電極基板上にN型半導体材料を塗布もしくは蒸着などで成膜し、その膜上にポリアゾメチン溶液を塗布、乾燥することでP型半導体層を形成し、さらに前記P型半導体層に正極の電極を蒸着することでp-n接合素子を作製することができる。これらのP型及びN型半導体材料の接合体層の厚みは、通常10~900nmである。例えばこのようにして作製されるp-n接合素子は、例えばダイオード、有機EL、有機薄膜太陽電池、有機薄膜トランジスタ、熱電発電素子等の有機エレクトロニクス分野への応用が可能である。
 ここで、前記イオン化ポテンシャルおよび電子親和力は、それぞれHOMO(最高占有軌道)とLUMO(最低非占有軌道)として実験的に求めることができる。
 HOMOは、日本国特許第1124703号公報に記載の光電子分光法により、理研計器社製のAC-2を使用して求めることができる。
 また電気化学的な酸化電位を求めてHOMOに換算する方法としては、具体的に試料の酸化開始電位を求めて換算する方法が例示される。
 酸化開始電位は、目的の試料に関してサイクリックボルタンメトリー(CV)の測定を行い、得られた測定結果において、ベースラインから酸化電流が流れ始めるときの電位として求められる。必要に応じて、測定に用いた参照電極から標準水素電極基準への換算を行い、さらに、この値に真空準位に対する標準水素電極の値(定数)4.5を加えることにより、HOMO(eV)を求めることができる。
 次に、LUMOを求める方法としては、電気化学的な還元準位を求めてLUMOに換算する方法、ならびに試料の紫外-可視光吸収スペクトルの吸収開始波長と上記で求めたHOMOの値からLUMOに換算する方法が挙げられる。
 電気化学的な測定によりLUMOを求める場合は、上記のHOMOを求める場合と同様にCVで試料の還元電位の測定を行い、同様に換算をすることによりLUMOが求められる。
 吸収開始波長からLUMOを求める場合には、試料をガラス基板上に数十ナノメートル程度の厚みになるようにスピンコートにより製膜し、形成された膜について紫外-可視光吸収スペクトルの測定を行い、得られた測定結果において、ベースラインから吸収が開始するときの波長λ(nm)として吸収開始波長を求めることができる。この値を電子ボルト(eV)へ換算して得られた値をバンドギャップエネルギーE(eV)とする。さらに上記のようにして求められるHOMO(eV)を、このバンドギャップエネルギーE(eV)で除することにより、LUMOを求めることができる。
 ポリアゾメチンの半導体特性の調整に関しては、一般的な共役系ポリマーについての知見を参照することができ、一般的な調整法と同様の方法で前記半導体特性の調整が可能である。
 本発明のポリアゾメチンのP型半導体特性は、分子のイオン化ポテンシャル調整により向上させることができる。例えば以下の2つの方法により、分子のイオン化ポテンシャルを大きくすることが可能である。
(1)共役系(芳香族環含有共役基)として、電子豊富なナフタレン、アントラセン等の縮環系ユニットを選択すること
(2)メチル基、フェニル基等の電子供与性の置換基を共役系に導入することにより、共役系内の電子密度を大きくし、電子を非局在化させること。
 一方、本発明のポリアゾメチンのN型半導体特性は、分子の電子親和力の調整により向上させることができる。例えば以下の2つの方法により、分子の電子親和力を大きくすることが可能である。
(1)共役系(芳香族環含有共役基)として、電子不足の傾向をもつピリジン、ビピリジン、フェナントロリン等の複素環を選択すること
(2)F、CF3等の電子吸引性の置換基を共役系に導入することにより、共役系内の電子密度を低くし、電子を局在化させること。
 前記のごとく優れた半導体特性を有する本発明のポリアゾメチンからは、p-n接合素子を調製することができる。該ポリアゾメチンをP型半導体層またはN型半導体層の形成材料として使用して作製したp-n接合素子については、P型半導体側の電極に正極端子を、N型半導体側の電極に負極端子を接続し、-5V~+5Vの範囲内において電圧を印可することができ、順方向の電力量/逆方向の電力量>1.0となる。
 この特性を利用して、本発明のポリアゾメチンは、例えばp及びn型半導体として使用可能である。なお、前記P型半導体層と電極との間、前記N型半導体層と電極との間には、それぞれ正孔注入層、電子注入層を別途設けることも可能である。
 また、本発明のポリアゾメチンの重量平均分子量は、溶媒溶解性と分子内結晶性の両立の観点から、2,000~2,000,000の範囲にあることが好ましく、30,000~1,500,000の範囲にあることがより好ましい。なお、本明細書において重量平均分子量とは、GPCにより測定した標準ポリスチレン換算の重量平均分子量を指す。重量平均分子量の調整方法については、下記の本発明のポリアゾメチンの製造方法の項にて説明する。
 以上説明した本発明のポリアゾメチンは、分子間で芳香族環含有共役基がスタックしている箇所において、キャリアを自由に移動させることができるため、半導体用途に好適であり、また、疎水性溶媒、アルコール系溶媒、グリコール系溶媒またはエステル系溶媒などの汎用性の高い有機溶媒に対して高い溶解性を有している。
 また、前述のように、本発明のポリアゾメチンの芳香族環含有共役基における芳香環がピリジン基等のヘテロ環である場合であって、アゾメチン基の向きが、アゾメチン基を構成するNおよびCのうち、Nのほうがヘテロ環に近い位置にある向きであり、かつヘテロ環のヘテロ原子がアゾメチン基を構成するNの近くにあるときには、本発明のポリアゾメチンの固体状態における分子内共役系の拡張がおこり、また共役系内の電子構造が大きく影響を受ける場合がある。
 本発明のポリアゾメチンの例として、上記の条件を満たす含ヘテロ環化合物(下式左側)や、複数のヘテロ環を有する化合物であって、異なるヘテロ環中のヘテロ原子が互いに近くに存在する化合物(下式右側)が挙げられる。
Figure JPOXMLDOC01-appb-C000049
 この含へテロ環化合物のヘテロ原子とアゾメチン基のイミン窒素と、または複数のヘテロ環の、互いに近くに存在するヘテロ原子により、本発明のポリアゾメチンは、さまざまなLewis酸もしくは金属と作用して、Lewis酸-塩基錯体、メタレーション等の高分子錯体化が可能である。これにより、本発明のポリアゾメチンの共役構造部分の平面性の向上、HOMO-LUMOエネルギー準位、電子親和力、イオン化ポテンシャル、バンドギャップ、キャリア寿命の向上等のさらなる半導体特性の調整が可能となる。
 次に、本発明のポリアゾメチンの製造方法について説明する。
 [ポリアゾメチンの製造方法]
 本発明のポリアゾメチンの製造方法は、
 下記一般式(II)で表わされる炭化水素化合物と、下記一般式(III)で表わされる芳香族環含有化合物とを共重合させる工程を有することを特徴としている。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
式(II)において、二つのYはともにアルデヒド基またはアミノ基であり、式(III)において、二つのZは、上記式(II)におけるYがアルデヒド基の場合にはアミノ基であり、Yがアミノ基の場合にはアルデヒド基である。
 すなわち、アルデヒド基とアミノ基との反応を利用し、前記炭化水素化合物と芳香族環含有化合物とを交互に反応させていくことにより、本発明のポリアゾメチンが得られる。
 以下、これら一般式(II)で表わされる炭化水素化合物および一般式(III)で表わされる芳香族環含有化合物について説明する。
 <一般式(II)で表わされる炭化水素化合物>
 上記式(II)において、二つのYは、前述のように、ともにアルデヒド基またはアミノ基である。
 式(II)において、Aはアゾメチン基であり、後述するように、炭化水素化合物を製造するための原料基質として用いる化合物の選択により、その向きは異なる。
 式(II)において、二つのArは独立に置換基を有していてもよい二価の芳香族基である。Arの具体例は、上記の<芳香族環含有共役基>の項において、置換基を有していてもよい二価の芳香族基の具体例として挙げたものと同じである。
 式(II)において、hおよびmは独立に0または1である。hまたはmが1の場合には、A-Ar-Yは(Yはアゾメチン基となるが)、本発明のポリアゾメチンにおける芳香族環含有共役基、またはその一部を構成する。芳香族環含有共役基を構成するか、またはその一部を構成するかは、後述するように、炭化水素化合物の構造と一般式(III)で表わされる芳香族環含有化合物の構造による。hおよびmは、炭化水素化合物と芳香族環含有化合物との重合活性を向上させる観点から、好ましくは0である。
 式(II)において、R3およびR4は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、有機溶媒に対する溶解性と成膜時の膜の結晶性の観点から、好ましくは水素原子または炭素数5~12のアルキル基である。
 式(II)において、Tは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、原料が比較的に商業的に入手可能な点から、酸素原子であることが好ましい。
 式(II)において、jは0または1であり、jが1の場合には、そのような炭化水素化合物を使用して得られる本発明のポリアゾメチンが、エーテル結合(酸素原子)、チオエーテル結合(硫黄原子)またはシクロアルキレン基を有する二価の炭化水素基を有することになる。有機溶媒に対する溶解性を向上させる観点から、jは好ましくは1である。
 式(II)において、iおよびkは独立に0~12の整数であり、好ましくは1および5~12の整数である。ただし、Tが酸素原子または硫黄原子である場合には、iおよびkはともに1以上である。
 なお、iが2以上の場合、複数存在するR3は同一でも異なっていてもよく、kが2以上の場合、複数存在するR4は同一でも異なっていてもよい。
 式(II)において、nは1~10の整数であり、好ましくは3~5の整数である。ここで、nが2以上の場合には、nの添え字がついたカッコでくくられた部位、すなわち(-(CHR3i-(T)j-(CHR4k-)が複数存在するが、これらは同一でも異なっていてもよい。また、(-(CHR3i-(T)j-(CHR4k-)nで表わされる構造中の炭素原子数は、2~42であり、好ましくは5~36である。
 (一般式(II)で表わされる炭化水素化合物の入手方法)
 一般式(II)において、hおよびmが0である化合物は市販されており、容易に入手可能である。
 hおよびmの一方が1であり、他方が0である化合物は、市販の化合物を反応させることによって、容易に入手可能である。
 一般式(II)において、Arがフェニレン基であり、hが1であり、(-(CHR3i-(T)j-(CHR4k-)nがオクチレン基であり、mが0である場合を例とすると、下記反応によって、一般式(II)の炭化水素化合物が得られる。
Figure JPOXMLDOC01-appb-C000052
 このような、p-アミノベンズアルデヒド1分子が1,8-ジホルミルオクタン1分子と反応し、一般式(II)で表わされる炭化水素化合物が得られる反応の反応条件の詳細は、実施例の原料1の合成の項で示す。
 以上の反応では、Yとしてアルデヒド基を有する炭化水素化合物が得られるが、使用する反応原料をp-アミノベンズアルデヒドと1,8-ジアミノオクタンに変更すれば、Yとしてアミノ基を有し、アゾメチン基の向きが反対となった炭化水素化合物が得られる。
 また、hおよびmがともに1である炭化水素化合物は、上記反応を繰り返す(上記反応で得られた化合物に、さらにp-アミノベンズアルデヒドを反応させる)ことにより得られる。さらに、下記式に示すように一段階の反応によっても得られる。なお、下記式では、一般式(II)において、(-(CHR3i-(T)j-(CHR4k-)nがドデシレン基である場合を例としている。
Figure JPOXMLDOC01-appb-C000053
1,12-ジアミノドデカンに対して、p-アミノベンズアルデヒドを過剰量(2倍以上)使用することによって、上記のような一段階の反応が可能となる。以上の反応では、分子両末端にアルデヒド基を有する炭化水素化合物が得られるが、使用する反応原料を1,12-ジホルミルドデカンと1,4-ジアミノベンゼンに変更すれば、分子両末端にアミノ基を有し、アゾメチン基の向きが反対となった炭化水素化合物が得られる。
 アミノ基とアルデヒド基とは反応性が高いため、上記反応は、原料成分を接触混合することなどにより、容易に進行する。
 このような反応は、アミノ基とアルデヒド基とを反応させる公知慣用の反応条件によって実施可能であるが、通常反応温度は30~120℃であり、反応時間は通常2~48時間である。
 また反応溶媒としては、酢酸エチルまたは酢酸ブチル等のエステル系溶媒、トルエンまたはキシレン等の芳香族性溶媒、THFまたはシクロペンチルメチルエーテル等のエーテル系溶媒、MEKまたはシクロペンタノン等のケトン系溶媒、m-クレゾールまたはフェノール等のプロトンドナー性の芳香族溶媒(酸触媒化された反応条件においての使用が好ましい)、クロロホルム、塩化メチレン、テトラクロロエタンまたは塩化ベンゼンなどの含ハロゲン溶媒、NMP、DMF、ピリジンまたはピペリジン等のプロトン受容性溶媒(塩基触媒化された反応条件においての使用が好ましい)、ならびにアセトニトリルまたはベンゾニトリル等のニトリル系溶媒の使用が可能である。
 以上説明したように、本発明のポリアゾメチンの製造原料たる炭化水素化合物は、市販されているか、あるいは市販されているものを反応させることによって、容易に入手可能である。
 (炭化水素化合物の具体例)
 以上説明した一般式(II)で表わされる炭化水素化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000054
 上記式において、Yはアルデヒド基またはアミノ基であり、Yaは6~12の整数である。
 <一般式(III)で表わされる芳香族環含有化合物>
 上記一般式(III)を再度示す。
Figure JPOXMLDOC01-appb-C000055
式(III)において、二つのZは、上述のように、上記式(II)におけるYがアルデヒド基の場合にはアミノ基であり、Yがアミノ基の場合にはアルデヒド基である。
 式(III)において、Ar1およびAr2は独立に置換基を有していてもよい二価の芳香族基である。前記芳香族基の具体例は、上記の<芳香族環含有共役基>の項において、置換基を有していてもよい二価の芳香族基の具体例として挙げたものと同じである。
 式(III)において、Aはアゾメチン基であり、後述するように、芳香族環含有化合物を製造するための原料基質として用いる化合物の選択により、その向きは異なる。
 式(III)において、tは0~8の整数であり、好ましくは1~3の整数である。また、tが2以上の場合には、複数存在するAr2は同一でも異なっていてもよい。
 式(III)において、二つのTは独立に酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基である。
 式(III)において、qおよびvは独立に0または1であり、qまたはvが1の場合には(正確にはqが1でyが1、またはvが1でzが1の場合には)、そのような芳香族環含有化合物を使用して得られた本発明のポリアゾメチンは、エーテル結合(酸素原子)、チオエーテル結合(硫黄原子)またはシクロアルキレン基を有する芳香族環含有共役基を、その繰り返し単位中に有することになる。
 式(III)において、R5~R8はそれぞれ独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、有機溶媒に対する溶解性と成膜時の膜の結晶性の観点から、好ましくは炭素数5~12のアルキル基である。
 式(III)において、pおよびr、ならびにuおよびwはそれぞれ独立に0~12の整数であり、好ましくは5~12の整数である。ただし、Tが酸素原子または水素原子である場合には、pおよびrならびにuおよびwはすべて1以上である。
 また、pが2以上の場合には、複数存在するR5は同一でも異なっていてもよく、rが2以上の場合には、複数存在するR6は同一でも異なっていてもよく、uが2以上の場合には、複数存在するR7は同一でも異なっていてもよく、wが2以上の場合には、複数存在するR8は同一でも異なっていてもよい。
 式(III)において、sおよびxは独立に1~10の整数であり、好ましくは3~5の整数である。ここで、sが2以上である場合には、sの添え字がついたカッコでくくられた部位、すなわち(-(CHR5p-(T)q-(CHR6r-)は複数存在するが、これらは同一でも異なっていてもよい。また、xが2以上である場合には、xの添え字がついたカッコでくくられた部位、すなわち(-(CHR7u-(T)v-(CHR8w-)は複数存在するが、これらは同一でも異なっていてもよい。
 また、(-(CHR5p-(T)q-(CHR6r-)sで表わされる構造及び(-(CHR7u-(T)v-(CHR8w-)xで表わされる構造中の炭素原子数は、それぞれ独立に2~42であり、5~36であることが好ましい。
 式(III)において、yおよびzは独立に0または1であるが、炭化水素化合物と芳香族環含有化合物との重合活性を向上させる観点から、好ましくは0である。yまたはzが1の場合には、その添え字がついたカッコでくくられた部位が、本発明のポリアゾメチンを構成する繰り返し単位における二価の炭化水素基、またはその一部を構成することになる。二価の炭化水素基になるか、またはその一部になるかは、一般式(II)で表わされる炭化水素化合物および一般式(III)で表わされる芳香族環含有化合物の構造による。
 たとえば、炭化水素化合物において、hが1、mが0であり、芳香族環化合物においてyおよびzが1であり、一般式(III)におけるyの添え字がついたカッコでくくられた部位1と、一般式(II)におけるnの添え字がついたカッコでくくられた部位2とが、アゾメチン基を介して隣接するように共重合する場合には、部位1および部位2は、前記繰り返し単位における二価の炭化水素基の一部となり、zの添え字がついたカッコでくくられた部位3は、前記繰り返し単位における二価の炭化水素基となる。さらに、hの添え字がついたカッコでくくられた部位4およびAr1-(A-Ar2tは、それぞれ前記繰り返し単位における芳香族環含有共役基となる。
 (一般式(III)で表わされる芳香族環含有化合物の入手方法)
 一般式(III)において、yおよびzが0である化合物は市販されており、容易に入手可能である。
 yまたはzが1であり、他方が0である芳香族環含有化合物は、市販の化合物を反応させることによって、容易に入手可能である。
 一般式(III)において、yが1であり、(-(CHR5p-(T)q-(CHR6r-)sがオクチレン基であり、tが0であり、Ar1がフェニレン基であり、zが0の場合を例とすると、以下の反応により、芳香族環含有化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000056
 このような、8-アミノオクタナール1分子が1,4-ジホルミルベンゼン(テレフタルアルデヒド)1分子と反応し、一般式(III)で表わされる芳香族環含有化合物が得られる反応の反応条件の詳細は、実施例の原料1の合成の項で示す。
 以上の反応では、Zとしてアルデヒド基を有する芳香族環含有化合物が得られるが、使用する反応原料を8-アミノオクタナールと1,4-ジアミノベンゼンに変更すれば、Zとしてアミノ基を有し、アゾメチン基の向きが反対となった芳香族環含有化合物が得られる。
 また、yおよびzがともに1である芳香族環含有化合物は、上記反応を繰り返す(上記反応で得られた化合物に、さらに8-アミノオクタナールを反応させる)ことにより得られるが、下記式に示すように一段階の反応によっても得られる。
Figure JPOXMLDOC01-appb-C000057
 1,4-ジホルミルベンゼンに対して、8-アミノオクタナールを過剰量使用することによって、上記のような一段階の反応が可能となる。以上の反応では、分子両末端にアルデヒド基を有する芳香族環含有化合物が得られるが、使用する反応原料を1,4-ジアミノベンゼンと8-アミノオクタナールに変更すれば、分子両末端にアミノ基を有し、アゾメチン基の向きが反対となった芳香族環含有化合物が得られる。
 アミノ基とアルデヒド基とは反応性が高いため、上記反応は容易に進行する。
 このような反応は、アミノ基とアルデヒド基とを反応させる公知慣用の反応条件によって実施可能であるが、通常反応温度は30~120℃であり、反応時間は通常2~48時間である。
 また反応溶媒としては、酢酸エチルまたは酢酸ブチル等のエステル系溶媒、トルエンまたはキシレン等の芳香族性溶媒、THFまたはシクロペンチルメチルエーテル等のエーテル系溶媒、MEKまたはシクロペンタノン等のケトン系溶媒、m-クレゾールまたはフェノール等のプロトンドナー性の芳香族溶媒(酸触媒化された反応条件においての使用が好ましい)、クロロホルム、塩化メチレン、テトラクロロエタンまたは塩化ベンゼンなどの含ハロゲン溶媒、NMP、DMF、ピリジンまたはピペリジン等のプロトン受容性溶媒(塩基触媒化された反応条件においての使用が好ましい)、ならびにアセトニトリルまたはベンゾニトリル等のニトリル系溶媒の使用が可能である。
 以上説明したように、本発明のポリアゾメチンの製造原料たる芳香族環含有化合物は、市販されているか、あるいは市販されているものを反応させることによって、容易に入手可能である。
 (芳香族環含有化合物の具体例)
 以上説明した一般式(III)で表わされる芳香族環含有化合物の具体例としては、下記式で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 上記式において、Zはアルデヒド基またはアミノ基である。
 <ポリアゾメチンを構成する繰り返し単位における芳香族環含有共役基および二価の炭化水素基の配列順序について>
 以上説明した、一般式(II)で表わされる炭化水素化合物および一般式(III)で表わされる芳香族環含有化合物の構造を適宜選択することによって、本発明のポリアゾメチンを構成する繰り返し単位における、上記芳香族環含有共役基および二価の炭化水素基の配列順序を、自由に制御することができる。
 なお、前述のように一般式(II)においてhおよびmは0であることが好ましく、一般式(III)においてyおよびzは0であることが好ましいので、そのような炭化水素化合物と芳香族環含有化合物とを共重合させると、繰り返し単位において、炭化水素基と芳香族環含有共役基とが交互に配列したポリアゾメチンが得られる。
 <反応>
 本発明のポリアゾメチンの製造方法では、上記炭化水素化合物と芳香族環含有化合物とを共重合させることによって(炭化水素化合物の有するアルデヒド基またはアミノ基が、芳香族環含有化合物のアミノ基またはアルデヒド基と反応する)、芳香族環含有基と二価の炭化水素基とがアゾメチン基を介して結合してなる繰り返し単位を有する本発明のポリアゾメチンを製造する。
 本発明のポリアゾメチンの製造方法においては、前記炭化水素化合物および芳香族環含有化合物を、それぞれ一種ずつ使用してもよいし、一方を複数種使用してもよいし、両方を複数種使用してもよい。
 前記共重合反応における反応温度は、通常30~120℃、反応効率の観点から、好ましくは60~100℃である。
 前記共重合反応における反応時間は、通常2~72時間、反応効率の観点から、好ましくは6~54時間である。
 また、上記反応においては、m-クレゾール、ジメチルフェノール、フェノール、カンファースルホン酸、ナフトール、蟻酸、酢酸、プロピオン酸、塩酸および硫酸、といった一般的な酸に触媒化された付加反応に使用される触媒が使用可能であり、また、一般的な塩基に触媒化された付加反応に使用されるのと同様の塩基も、上記反応における触媒としての使用が可能である。
 さらに、上記反応の反応溶媒としては、酢酸エチルまたは酢酸ブチル等のエステル系溶媒、トルエンまたはキシレン等の芳香族性溶媒、THFまたはシクロペンチルメチルエーテル等のエーテル系溶媒、MEKまたはシクロペンタノン等のケトン系溶媒、m-クレゾールまたはフェノール等のプロトンドナー性の芳香族溶媒(酸触媒化された反応条件においての使用が好ましい)、クロロホルム、塩化メチレン、テトラクロロエタンまたは塩化ベンゼンなどの含ハロゲン溶媒、NMP、DMF、ピリジンまたはピペリジン等のプロトン受容性溶媒(塩基触媒化された反応条件においての使用が好ましい)、ならびにアセトニトリルまたはベンゾニトリル等のニトリル系溶媒の使用が可能である。これらの中でも、反応効率の観点から、m-クレゾール、トルエン-m-クレゾール共溶媒、THF、シクロペンチルメチルエーテルおよびシクロペンタノンが好ましい。
 アルデヒド基とアミノ基との反応性は高いため、上記共重合反応は容易に進行する。したがって、本発明のポリアゾメチンは、入手の容易な原料(モノマー)から容易に製造することができる。また前記ポリアゾメチンは、非特許文献5に記載の、主鎖中の芳香環、ヘテロ環または芳香環及びヘテロ環にアルキル基またはアルコキシ基などを導入したポリアゾメチンが有する、原料モノマーが商業的に入手できないために工業化が困難であるといった問題点を有していない。
 また、従来のポリアゾメチンは、一分子において共役構造を示すため、重縮合が進むにつれて重合溶媒に対する溶解性が低くなり、高分子量化する前に重合溶媒から析出することで、分子量が高くならない。即ち、従来のポリアゾメチンの重量平均分子量は、共役構造体(単量体である芳香環ジアミン及び芳香環ジアルデヒドにおける芳香環構造)の溶解性に依存するため、分子量の制御(特に高分子量化)が困難であった。
 これに対して本発明のポリアゾメチンは、溶媒に対して溶解性が低い共役構造と、溶媒に対して溶解性が高い非共役構造とが交互に連結した一分子非共役構造である。その為、重縮合の進行に伴って重合溶媒に対するアゾメチン構造体の溶解性が損なわれるということがないため、重量平均分子量の調整は反応時間と反応速度の調整により可能である。反応速度は、酸もしくは塩基触媒の強さ(種類)、触媒量、平衡反応において縮合体の生成に反応を優先させるため、縮合進行に伴い反応系内に形成される水を捕捉するためのクエンチャー等の添加、仕込みモノマー濃度の調整により、調整が可能である。一般的な高分子量化は、強い酸もしくは塩基触媒の使用、前記水を捕捉するためのクエンチャーの添加、および反応時間を長くすることによって可能である。
 <その他の工程>
 本発明のポリアゾメチンの製造方法は、以上説明した、上記炭化水素化合物と芳香族環含有化合物とを共重合させる工程を有することを特徴としている。
 本発明のポリアゾメチンの製造方法においては、前記工程で得られたポリアゾメチンを精製する工程を実施してもよい。
 前記精製工程は、反応終了後にポリマーが析出してくる場合に実施される精製工程Aと、析出してこない場合に実施される精製工程Bとに分けられる。
 前者(精製工程A)の場合は、反応溶液を濾過し、得られたポリマーが、溶解性を示さないもしくは溶解性が低い溶媒(貧溶媒)であって、且つ、ポリアゾメチンの合成原料である炭化水素化合物および芳香族環含有化合物が可溶の溶媒を、洗浄溶媒として使用して数回洗浄を繰り返すことにより、精製が可能である。
 一方、後者(精製工程B)の場合は、反応溶液そのもの、または反応溶液を真空乾燥した後の溶液に対して、ポリアゾメチンが溶解性を示さないもしくは溶解性が低い溶媒を投入し、ポリアゾメチンを析出させる。その後、析出ポリアゾメチンを含有する溶液を濾過し、前記ポリアゾメチンが溶解性を示さないもしくは溶解性が低い溶媒(貧溶媒)であって、且つ、ポリアゾメチンの合成原料である炭化水素化合物および芳香族環含有化合物が可溶の溶媒を洗浄溶媒として使用して、ポリアゾメチンの洗浄を数回繰り返すことにより、精製が可能である。
 以下実施例および比較例により本発明をより詳細に説明するが、本発明は何らこれらに限定されない。
 <原料1の合成>
Figure JPOXMLDOC01-appb-C000062
 窒素置換した100mLシュレンク管にテレフタルアルデヒド3.35g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、8-アミノオクタナール1.57g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色オイルとして2.49g(収率:91%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=274[M+H]+
 <原料2の合成>
Figure JPOXMLDOC01-appb-C000063
 窒素置換した100mLシュレンク管にテレフタルアルデヒド3.35g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,12-ジアミノドデカン2.00g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として3.37g(収率:78%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=433[M+H]+
 <原料3の合成>
Figure JPOXMLDOC01-appb-C000064
 窒素置換した100mLシュレンク管にイソフタルアルデヒド3.35g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,12-ジアミノドデカン2.00g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として3.37g(収率:78%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=433[M+H]+
 <原料4の合成>
Figure JPOXMLDOC01-appb-C000065
 窒素置換した100mLシュレンク管にテレフタルアルデヒド3.35g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,2-ビス(2-アミノエトキシ)エタン1.48g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として3.62g(収率:80%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=453[M+H]+
 <原料5の合成>
Figure JPOXMLDOC01-appb-C000066
 窒素置換した100mLシュレンク管に2,6-ピリジンジカルボアルデヒド3.38g(25.0mmol)、m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,2-ビス(2-アミノエトキシ)エタン1.48g(10.0mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として3.06g(収率:80%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=383[M+H]+
 <原料6の合成>
Figure JPOXMLDOC01-appb-C000067
 窒素置換した100mLシュレンク管に2,5-チオフェンジカルボアルデヒド3.50g(25.0mmol)、m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(2-アミノプロピルエーテル)2.20g(10.0mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として3.50g(収率:80%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=465[M+H] +
 <原料7の合成>
Figure JPOXMLDOC01-appb-C000068
 窒素置換した100mLシュレンク管に4,4‘-ビフェニルジカルボキシアルデヒド5.26g(25.0mmol)、m-クレゾール5g、THF 30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、ジエチレングリコールビス(2-アミノプロピルエーテル)2.20g(10.0mmol)をTHF 30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテルで洗浄した。これにより淡黄色固体として4.78g(収率:79%)の一般式(II)で表わされる炭化水素化合物が得られた。FAB-MS:m/z=605[M+H]+
 <原料8の合成>
Figure JPOXMLDOC01-appb-C000069
 窒素置換した100mLシュレンク管に1,4-フェニレンジアミン2.70g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、テレフタルアルデヒド1.34g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡黄色固体として2.52g(収率:80%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=315[M+H]+
 <原料9の合成>
Figure JPOXMLDOC01-appb-C000070
 窒素置換した100mLシュレンク管にテレフタルアルデヒド3.35g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、1,4-フェニレンジアミン1.08g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡黄色固体として2.52g(収率:80%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=315[M+H]+
 <原料10の合成>
Figure JPOXMLDOC01-appb-C000071
 窒素置換した100mLシュレンク管にテレフタルアルデヒド3.35g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、2,6-ジアミノピリジン1.09g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡黄色固体として2.60g(収率:75%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=342[M+H]+
 <原料11の合成>
Figure JPOXMLDOC01-appb-C000072
 窒素置換した100mLシュレンク管に1,4-フェニレンジアミン2.70g(25.0mmol)、m-クレゾール5g、トルエン30gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、2,5-チオフェンジカルボアルデヒド1.40g(10.0mmol)をトルエン30gに溶解した溶液を3時間かけて上記溶液に滴下した。その後3時間攪拌を行った後、反応終了とした。
 反応溶液中の揮発性溶媒をエバポレーションにより除去した後、濃縮液を真空乾燥し、ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡黄色固体として2.40g(収率:75%)の一般式(III)で表わされる芳香族環含有化合物が得られた。FAB-MS:m/z=321[M+H]+
 [実施例1]
Figure JPOXMLDOC01-appb-C000073
 窒素置換した100mLシュレンク管にテレフタルアルデヒド1.08g(10.0mmol)、1,2-ビス(2-アミノエトキシ)エタン1.48g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄色固体として2.05g(収率:78%)の本発明のポリアゾメチンが得られた。
 得られたポリアゾメチンについて、展開溶媒にTHFを用いて、ゲルパーミエーショングラフィー(GPC)により、そのポリスチレン基準での重量平均分子量(Mw)の測定を行った。その結果、前記ポリアゾメチンのMw=20.0万であった。なお、GPCの測定条件の詳細は以下のとおりであり、以下同様である。
  装置名:HLC-8120(東ソー(株)製)
  カラム:GF-1G7B+GF-510HQ(Asahipak(登録商標)、昭和電工(株)製)
  基準物質:ポリスチレン
  サンプル濃度:1.0mg/ml
  溶離液:THF
  流量:0.6ml/min
  カラム温度:40℃
  検出器:UV254nm。
 [実施例2]
Figure JPOXMLDOC01-appb-C000074
 窒素置換した100mLシュレンク管にテレフタルアルデヒド1.08g(10.0mmol)、ジエチレングリコールビス(2-アミノプロピルエーテル)2.20g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄色固体として2.62g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=12.0万であった。
 [実施例3]
Figure JPOXMLDOC01-appb-C000075
 窒素置換した100mLシュレンク管に、合成して得られた原料1を2.73g(10.0mmol)、2,6-ジアミノピリジン1.09g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡赤色固体として2.62g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=3.5万であった。
 [実施例4]
Figure JPOXMLDOC01-appb-C000076
 窒素置換した100mLシュレンク管に、合成して得られた原料2を4.32g(10.0mmol)、2,6-ジアミノピリジン1.09g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡赤色固体として4.32g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=3.2万であった。
 [実施例5]
Figure JPOXMLDOC01-appb-C000077
 窒素置換した100mLシュレンク管に、合成して得られた原料3を4.32g(10.0mmol)、2,7-ジアミノフルオレン1.96g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡赤色固体として5.02g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=0.6万であった。
 [実施例6]
Figure JPOXMLDOC01-appb-C000078
 窒素置換した100mLシュレンク管に、合成して得られた原料5を3.82g(10.0mmol)、2,6-ジアミノピリジン1.09g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡赤色固体として4.03g(収率:81%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=3.2万であった。
 [実施例7]
Figure JPOXMLDOC01-appb-C000079
 窒素置換した100mLシュレンク管に、合成して得られた原料6を4.65g(10.0mmol)、2,6-ジアミノピリジン1.09g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより淡赤色固体として4.59g(収率:81%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=2.9万であった。
 [実施例8]
Figure JPOXMLDOC01-appb-C000080
 窒素置換した100mLシュレンク管に、合成して得られた原料7を6.04g(10.0mmol)、2,6-ジアミノピリジン1.09g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄褐色固体として5.70g(収率:81%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=4.1万であった。
 [実施例9]
Figure JPOXMLDOC01-appb-C000081
 窒素置換した100mLシュレンク管に、合成して得られた原料8を4.52g(10.0mmol)、原料4を3.14g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄褐色固体として6.13g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=6.3万であった。
 [実施例10]
Figure JPOXMLDOC01-appb-C000082
 窒素置換した100mLシュレンク管に、合成して得られた原料9を3.40g(10.0mmol)、ジエチレングリコールビス(2-アミノプロピルエーテル)2.20g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄褐色固体として4.48g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=15.0万であった。
 [実施例11]
Figure JPOXMLDOC01-appb-C000083
 窒素置換した100mLシュレンク管に、合成して得られた原料10を3.41g(10.0mmol)、ジエチレングリコールビス(2-アミノプロピルエーテル)2.20g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより赤褐色固体として4.49g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=2.9万であった。
 [実施例12]
Figure JPOXMLDOC01-appb-C000084
 窒素置換した100mLシュレンク管に、合成して得られた原料4を4.52g(10.0mmol)、原料11を3.20g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄褐色固体として6.18g(収率:80%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=4.3万であった。
 [実施例13]
Figure JPOXMLDOC01-appb-C000085
 窒素置換した100mLシュレンク管に、合成して得られた原料4を4.52g(10.0mmol)、1,4-フェニレンジアミン 0.54g(5.0mmol)、2,6-ジアミノピリジン0.55g(5.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱ヘキサン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄褐色固体として4.21g(収率:75%)の本発明のポリアゾメチンが得られた。得られたポリアゾメチンのMw=14.3万であった。
 [比較例1]
Figure JPOXMLDOC01-appb-C000086
 窒素置換した100mLシュレンク管にテレフタルアルデヒド 1.34g(10.0mmol)、2,7-ジアミノフルオレン1.98g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を減圧濾過した後、熱トルエン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄色固体として2.66g(収率:80%)のポリアゾメチンが得られた。得られたポリアゾメチンはTHFへ不溶であったため、その重量平均分子量を測定することは不可能であった。
 [比較例2]
Figure JPOXMLDOC01-appb-C000087
 窒素置換した100mLシュレンク管に2,3-ナフタレンジカルボアルデヒド 1.84g(10.0mmol)、1,4-フェニレンジアミン1.08g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱トルエン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄色固体として2.48g(収率:85%)のポリアゾメチンが得られた。得られたポリアゾメチンはTHFへ不溶であったため、その重量平均分子量を測定することは不可能であった。
 [比較例3]
Figure JPOXMLDOC01-appb-C000088
 窒素置換した100mLシュレンク管にテレフタルアルデヒド 1.08g(10.0mmol)、2,3,5,6-テトラメチル-1,4-フェニレンジアミン1.64g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱トルエン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄色固体として2.18g(収率:80%)のポリアゾメチンが得られた。得られたポリアゾメチンはTHFへ不溶であったため、その重量平均分子量を測定することは不可能であった。
 [比較例4]
Figure JPOXMLDOC01-appb-C000089
 窒素置換した100mLシュレンク管に2,5-チオフェンジカルボアルデヒド 1.40g(10.0mmol)、2,7-ジアミノフルオレン1.96g(10.0mmol)、m-クレゾール20gを投入し、攪拌を行いながら反応溶液を70℃まで加熱した。その後、48時間攪拌を行い、反応終了とした。
 反応溶液を真空乾燥した後、熱トルエン、ジメチルエーテル、アセトニトリルで洗浄した。これにより黄色固体として2.86g(収率:85%)のポリアゾメチンが得られた。得られたポリアゾメチンはTHFへ不溶であったため、その重量平均分子量を測定することは不可能であった。
 <溶解性の評価>
 実施例1~13および比較例1~4で得られたポリアゾメチンの、下記表1に示す溶媒への溶解性を評価した。
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
 表1より、柔軟な構造である炭化水素基と、剛直な構造である芳香族環含有共役基とを有する本発明のポリアゾメチンは、メタノール、エタノール、アセトニトリル、アセトン、IPA、THF、MEK、トルエン、PGMおよび乳酸メチルのいずれか少なくとも一種の溶媒に溶解し、一方剛直な構造である芳香族環含有共役基のみからなるポリアゾメチンは、上記溶媒に対して全く溶解性を示さないことが分かる。
 [実施例14]配位能を有するポリアゾメチンとLewis酸との酸-塩基相互作用の確認
 実施例4で得られたポリアゾメチンをTHF、または5%蟻酸THF溶液に溶解させた2つのサンプルについて、紫外―可視吸収スペクトルを測定を行った結果を図1に示す。
 図1より明らかであるが、THF単独溶媒に比べ、5%蟻酸THF溶液では、ポリアゾメチンと蟻酸との酸-塩基錯体の形成に由来した長波長側の吸収極大波長の長波長シフト化が見られた。

Claims (9)

  1.  アゾメチン基と置換基を有していてもよい二価の芳香族基とが交互に結合して共役した二価の芳香族環含有共役基と、
     前記アゾメチン基とは共役しない、酸素原子、硫黄原子またはシクロアルキレン基を有する基を有していてもよい二価の炭化水素基とを有し、
     前記芳香族環含有共役基と前記炭化水素基とは、アゾメチン基を介して結合してなる繰り返し単位を有することを特徴とするポリアゾメチン。
  2.  前記ポリアゾメチンが、下記一般式(I)で表わされる繰り返し単位を有することを特徴とする請求項1に記載のポリアゾメチン:
    Figure JPOXMLDOC01-appb-C000001
    (上記式において、
     R1およびR2は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
     Aはアゾメチン基であり、
     Xは置換基を有していてもよい二価の芳香族基であり、
     Tは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
     bは0または1であり、
     aおよびcは独立に0~12の整数であり(ただし、Tが酸素原子または硫黄原子である場合には、aおよびcはともに1以上である)、
     dは1~10の整数であり、
     eは1~10の整数であり、
     fおよびgは独立に1~800の整数であり、
     前記繰り返し単位中において、{((CHR1a-(T)b-(CHR2ce-A-}で表わされる炭化水素基および((X-A)d)で表わされる芳香族環含有共役基は、任意の順に配列しており、
     aが2以上の場合、複数存在するR1は同一でも異なっていてもよく、
     cが2以上の場合、複数存在するR2は同一でも異なっていてもよく、
     dが2以上の場合、複数存在するXは同一でも異なっていてもよく、
     eが2以上の場合、複数存在する((CHR1a-(T)b-(CHR2c)は同一でも異なっていてもよく、
     fが2以上の場合には、複数存在する前記炭化水素基は同一でも異なっていてもよく、
     gが2以上の場合には、複数存在する前記芳香族環含有共役基は同一でも異なっていてもよく、
     前記炭化水素基中の炭素原子数は、3~43である。)。
  3.  前記ポリアゾメチンの重量平均分子量が2,000~2,000,000の範囲内にあることを特徴とする請求項1または2に記載のポリアゾメチン。
  4.  前記ポリアゾメチンが、クレゾール、トルエン、THF、シクロペンチルメチルエーテル、アセトン、MEK、MIBK、シクロペンタノン、クロロホルム、ジクロロメタン、四塩化炭素、クロロベンゼン、二硫化炭素、酢酸エチル、酢酸ブチル、乳酸メチル、メタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、n-ブタノール、t-ブタノール、ペンチルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、ピリジン、NMP、硫酸、蟻酸、酢酸、塩酸、乳酸、トリエチルアミン、ジブチルアミンの中から選択されるいずれかの溶媒、または二種以上の共溶媒100gに対し、25℃において0.1g以上の溶解性を有することを特徴とする請求項1~3のいずれかに記載のポリアゾメチン。
  5.  前記二価の芳香族基が、下記式で表わされる基からなる群より選ばれる少なくとも一種の基であることを特徴とする請求項1~4のいずれかに記載のポリアゾメチン:
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (上記式において、半カッコでくくられた部位は結合手を示す。)。
  6.  前記ポリアゾメチンをP型半導体層またはN型半導体層の形成材料として使用して作製したp-n接合素子について、P型半導体側の電極に正極端子を、N型半導体側の電極に負極端子を接続し、-5V~+5Vの範囲内において電圧を印可することができ、順方向の電力量/逆方向の電力量>1.0となることを特徴とする請求項1~5のいずれかに記載のポリアゾメチン。
  7.  下記一般式(II)で表わされる炭化水素化合物と、下記一般式(III)で表わされる芳香族環含有化合物とを共重合させる工程を有することを特徴とする請求項1に記載のポリアゾメチンの製造方法:
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (上記式(II)において、二つのYはともにアルデヒド基またはアミノ基であり、
     Aはアゾメチン基であり、
     二つのArは独立に置換基を有していてもよい二価の芳香族基であり、
     hおよびmは独立に0または1であり、
     R3およびR4は独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
     Tは酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
     jは0または1であり、
     iおよびkは独立に0~12の整数であり(ただし、Tが酸素原子または硫黄原子である場合は、iおよびkはともに1以上である)、
     nは1~10の整数であり、
     iが2以上の場合、複数存在するR3は同一でも異なっていてもよく、
     kが2以上の場合、複数存在するR4は同一でも異なっていてもよく、
     nが2以上の場合、複数存在する(-(CHR3i-(T)j-(CHR4k-)は、同一でも異なっていてもよく、
     (-(CHR3i-(T)j-(CHR4k-)nで表わされる構造中の炭素原子数は2~42である;
    上記式(III)において、二つのZは、上記式(II)におけるYがアルデヒド基の場合にはアミノ基であり、Yがアミノ基の場合にはアルデヒド基であり、
     Ar1は置換基を有していてもよい二価の芳香族基であり、
     Ar2は置換基を有していてもよい二価の芳香族基であり、
     Aはアゾメチン基であり、
     tは0~8の整数であり、
     tが2以上の場合には、複数存在するAr2は同一でも異なっていてもよく、
     R5~R8はそれぞれ独立に水素原子、炭素数1~20のアルキル基、ハロゲン原子またはカルボキシル基であり、
     2つのTは独立に酸素原子、硫黄原子またはシクロアルキレン基を有する二価の基であり、
     qおよびvは独立に0または1であり、
     pおよびr、ならびにuおよびwはそれぞれ独立に0~12の整数であり(ただし、Tが酸素原子または硫黄原子である場合には、pおよびrならびにuおよびwは、すべて1以上である)、
     sおよびxは独立に1~10の整数であり、
     pが2以上の場合には、複数存在するR5は同一でも異なっていてもよく、
     rが2以上の場合には、複数存在するR6は同一でも異なっていてもよく、
     uが2以上の場合には、複数存在するR7は同一でも異なっていてもよく、
     wが2以上の場合には、複数存在するR8は同一でも異なっていてもよく、
     sが2以上の場合には、複数存在する(-(CHR5p-(T)q-(CHR6r-)は、同一でも異なっていてもよく、
     xが2以上の場合には、複数存在する(-(CHR7u-(T)v-(CHR8w-)は、同一でも異なっていてもよく、
     yおよびzは独立に0または1であり、
     (-(CHR5p-(T)q-(CHR6r-)sで表わされる構造および(-(CHR7u-(T)v-(CHR8w-)xで表わされる構造中の炭素原子数は、2~42である。)。
  8.  前記芳香族環含有化合物が、下記式で表わされる化合物からなる群より選ばれる少なくとも一種の化合物であることを特徴とする請求項7に記載のポリアゾメチンの製造方法:
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (上記式において、Zはアルデヒド基またはアミノ基である。)。
  9.  前記炭化水素化合物が、下記式で表わされる化合物からなる群より選ばれる少なくとも一種の化合物であることを特徴とする請求項7または8に記載のポリアゾメチンの製造方法:
    Figure JPOXMLDOC01-appb-C000010
    (上記式において、Yはアルデヒド基またはアミノ基であり、Yaは6~12の整数である。)。
PCT/JP2011/053103 2010-02-18 2011-02-15 新規ポリアゾメチン WO2011102330A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012500591A JPWO2011102330A1 (ja) 2010-02-18 2011-02-15 新規ポリアゾメチン
EP11744616.1A EP2537875A4 (en) 2010-02-18 2011-02-15 NEW POLYAZOMETHINE
US13/576,714 US20120302720A1 (en) 2010-02-18 2011-02-15 Novel Polyazomethine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-033561 2010-02-18
JP2010033561 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102330A1 true WO2011102330A1 (ja) 2011-08-25

Family

ID=44482915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053103 WO2011102330A1 (ja) 2010-02-18 2011-02-15 新規ポリアゾメチン

Country Status (6)

Country Link
US (1) US20120302720A1 (ja)
EP (1) EP2537875A4 (ja)
JP (1) JPWO2011102330A1 (ja)
KR (1) KR20120110137A (ja)
TW (1) TW201139557A (ja)
WO (1) WO2011102330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554483A (zh) * 2013-11-07 2014-02-05 南昌航空大学 一种手性聚席夫碱配合物材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2012451B1 (en) * 2014-03-17 2016-01-08 Univ Delft Tech Small azomethine molecule.
GB2572365A (en) * 2018-03-27 2019-10-02 Sumitomo Chemical Co Battery
CN114751924B (zh) * 2022-04-11 2023-12-19 江苏科技大学 以五氟苯酚为轴向配体的单核镝配合物、制备方法、应用
CN116836516B (zh) * 2023-06-16 2024-02-20 广东纵胜新材料股份有限公司 一种碳纤维模压手机中框及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133185A (ja) * 1974-01-29 1976-03-22 Givaudan & Cie Sa
JPS59113033A (ja) * 1975-05-09 1984-06-29 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− アゾメチン(共)重合体及びその製法
JPS6020930A (ja) * 1983-07-14 1985-02-02 Idemitsu Kosan Co Ltd ポリイミンの製造法
JPS6038431A (ja) * 1983-07-18 1985-02-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 重合体染料ポリマー
JPS60155233A (ja) * 1983-12-22 1985-08-15 モンテヂソン・エス・ピイ・エイ ポリアゾメチン系の高電導性重合体の製造方法
JPH01124703A (ja) 1987-11-09 1989-05-17 Kawasaki Steel Corp 膜特性の非接触測定方法及び装置
JPH07301952A (ja) * 1994-04-01 1995-11-14 Xerox Corp ポリイミドイミントナー
JPH08113622A (ja) 1994-10-18 1996-05-07 Mitsui Petrochem Ind Ltd ポリアゾメチンおよびその製造方法、ならびに薄膜電界発光素子
JPH09194832A (ja) 1996-01-17 1997-07-29 Stanley Electric Co Ltd 有機led素子
JP2006131801A (ja) * 2004-11-08 2006-05-25 Japan Science & Technology Agency 導電性有機分子およびそれを用いた電子デバイスならびに導電性有機分子および電子デバイスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236980A (en) * 1992-06-26 1993-08-17 The University Of Rochester Polyazomethine complexes and method for making optical devices and other materials therewith

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133185A (ja) * 1974-01-29 1976-03-22 Givaudan & Cie Sa
JPS59113033A (ja) * 1975-05-09 1984-06-29 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− アゾメチン(共)重合体及びその製法
JPS6020930A (ja) * 1983-07-14 1985-02-02 Idemitsu Kosan Co Ltd ポリイミンの製造法
JPS6038431A (ja) * 1983-07-18 1985-02-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 重合体染料ポリマー
JPS60155233A (ja) * 1983-12-22 1985-08-15 モンテヂソン・エス・ピイ・エイ ポリアゾメチン系の高電導性重合体の製造方法
JPH01124703A (ja) 1987-11-09 1989-05-17 Kawasaki Steel Corp 膜特性の非接触測定方法及び装置
JPH07301952A (ja) * 1994-04-01 1995-11-14 Xerox Corp ポリイミドイミントナー
JPH08113622A (ja) 1994-10-18 1996-05-07 Mitsui Petrochem Ind Ltd ポリアゾメチンおよびその製造方法、ならびに薄膜電界発光素子
JPH09194832A (ja) 1996-01-17 1997-07-29 Stanley Electric Co Ltd 有機led素子
JP2006131801A (ja) * 2004-11-08 2006-05-25 Japan Science & Technology Agency 導電性有機分子およびそれを用いた電子デバイスならびに導電性有機分子および電子デバイスの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEM. MATER., vol. 3, 1991, pages 878
CHEM. MATER., vol. 6, 1994, pages 196
CHEM. MATER., vol. 7, 1995, pages 1276
MACROMOLECULES, vol. 28, 1995, pages 1180
MACROMOLECULES, vol. 38, no. 5, 2005, pages 1958 - 1966
See also references of EP2537875A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554483A (zh) * 2013-11-07 2014-02-05 南昌航空大学 一种手性聚席夫碱配合物材料

Also Published As

Publication number Publication date
JPWO2011102330A1 (ja) 2013-06-17
TW201139557A (en) 2011-11-16
EP2537875A1 (en) 2012-12-26
KR20120110137A (ko) 2012-10-09
US20120302720A1 (en) 2012-11-29
EP2537875A4 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
Iwan et al. Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications
Sonar et al. Furan containing diketopyrrolopyrrole copolymers: synthesis, characterization, organic field effect transistor performance and photovoltaic properties
Wild et al. Advances in the field of π-conjugated 2, 2′: 6′, 2 ″-terpyridines
Ng et al. The Role of Ruthenium and Rhenium Diimine Complexes in Conjugated Polymers That Exhibit Interesting Opto‐Electronic Properties
KR102014224B1 (ko) 유기 금속 착화합물을 중합체에 공유 결합시키는 방법
US20110006287A1 (en) Polymers with tunable band gaps for photonic and electronic applications
Wakioka et al. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: highly selective synthesis of π-conjugated polymers with diketopyrrolopyrrole units
WO2011102330A1 (ja) 新規ポリアゾメチン
Tian et al. One-pot multicomponent tandem reactions and polymerizations for step-economic synthesis of structure-controlled pyrimidine derivatives and poly (pyrimidine) s
Kim et al. Effect of dye end groups in non-fullerene fluorene-and carbazole-based small molecule acceptors on photovoltaic performance
JPWO2011108512A1 (ja) 新規アゾメチンオリゴマー
Yamamoto et al. Poly (1, 10-phenanthroline-3, 8-diyl) and its derivatives. Preparation, optical and electrochemical properties, solid structure, and their metal complexes
Sudheendran et al. Cyclopolymerization-derived block-copolymers of 4, 4-bis (octyloxymethyl)-1, 6-heptadiyne with 4, 4-dipropargyl malonodinitrile for use in photovoltaics
Lanzi et al. A regioregular polythiophene–fullerene for polymeric solar cells
Li et al. Novel narrow‐band‐gap conjugated copolymers containing phenothiazine‐arylcyanovinyl units for organic photovoltaic cell applications
JP5665772B2 (ja) 新規アゾメチンオリゴマー
Kadu et al. Photophysical properties of new fluorene-based conjugated polymers containing polyphenylene-substituted dendronized core
Otsuka et al. Linear-type carbazoledioxazine-based organic semiconductors: the effect of backbone planarity on the molecular orientation and charge transport properties
Hu et al. Triazine-containing blue emitting Hyperbranched polyamide with donor-acceptor architecture: synthesis, characterization, optoelectronic properties, and sensing behaviors toward ferric ions
JP2009270011A (ja) 電子状態の制御された共役高分子化合物及びそれを用いた有機半導体材料
KR101739259B1 (ko) 신규 피롤 단량체 및 그 제조방법, 피롤 단량체로부터 합성된 고분자 또는 화합물 및 그 제조방법
Lee et al. Synthesis of regiocontrolled triarylamine-based polymer with a naphthol unit
JP2004107651A (ja) デンドリック高分子及びこれを用いた電子デバイス素子
Badgujar et al. Synthesis and characterization of dithieno [3, 2-b: 2′, 3′-d] thiophene-based copolymers for polymer solar cells
KAYA et al. Synthesis, characterization, thermal properties and conductivity of oligo-4-[(2-methoxyphenylimino) methyl] phenol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127019782

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011744616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13576714

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012500591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE