WO2011093274A1 - 透明導電積層体付基板及びその製造方法 - Google Patents
透明導電積層体付基板及びその製造方法 Download PDFInfo
- Publication number
- WO2011093274A1 WO2011093274A1 PCT/JP2011/051325 JP2011051325W WO2011093274A1 WO 2011093274 A1 WO2011093274 A1 WO 2011093274A1 JP 2011051325 W JP2011051325 W JP 2011051325W WO 2011093274 A1 WO2011093274 A1 WO 2011093274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- conductive film
- substrate
- indium oxide
- film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
Definitions
- the present invention relates to a substrate with a transparent conductive laminate in which a transparent conductive laminate containing indium oxide is formed on the surface of the substrate, and a method for manufacturing the same.
- antimony tin composite oxide obtained by doping tin oxide with antimony
- aluminum zinc composite oxide obtained by doping aluminum with zinc oxide
- tin with indium oxide A doped indium tin composite oxide (ITO) or the like is known.
- the ITO film is widely used as a material for transparent electrodes such as liquid crystal display elements and electroluminescence display elements because it has higher conductivity than the ATO film and AZO film and has high light transmittance in the visible light region. ing.
- Patent Document 1 JP-A-7-335031
- an indium oxide-based powder containing at least one of tin oxide, titanium oxide and zirconium oxide as a dopant, and at least one of antimony oxide, tantalum oxide and niobium oxide as a dopant is used.
- a conductive film formed using a conductive oxide obtained by firing a mixture with a tin oxide-based powder is disclosed.
- the present invention has been made in view of the above-described problems of the prior art, and has a sufficiently high light transmittance and a sufficiently low resistivity even though the indium content is reduced. It is an object of the present invention to provide a body-attached substrate and a manufacturing method thereof.
- the present inventors are a method for producing a substrate with a transparent conductive laminate in which a transparent conductive laminate containing indium oxide is formed on the surface of the substrate, Forming a first transparent conductive film having an indium oxide content of 80 to 98% by mass directly or indirectly on the surface of the substrate; and oxidizing the surface of the first transparent conductive film It was obtained by a manufacturing method including a step of laminating a second transparent conductive film having an indium content of 45 to 75% by mass and a step of heating the second transparent conductive film at a temperature of 350 to 950K.
- the substrate with a transparent conductive laminate in which the first transparent conductive film and the second transparent conductive film have a crystal having a crystal structure equivalent to an indium oxide crystal has a reduced indium content.
- the substrate with a transparent conductive laminate of the present invention is a substrate with a transparent conductive laminate in which a transparent conductive laminate containing indium oxide is formed on the surface of the substrate, and the transparent conductive laminate is indium oxide.
- the first transparent conductive film and the second transparent conductive film have a crystal having a crystal structure equivalent to an indium oxide crystal.
- the transparent conductive laminate according to the present invention is preferably a laminate having a light transmittance of 80% or more in the entire wavelength range of 800 to 2500 nm.
- a diffraction peak exists in at least one selected from the group consisting of around 5 °, around 51.0 °, and around 60.7 °.
- the crystal is preferably at least one crystal selected from the group consisting of In 2 O 3 crystal and In 4 Sn 3 O 12 crystal.
- the method for producing a substrate with a transparent conductive laminate according to the present invention is a method for producing a substrate with a transparent conductive laminate in which a transparent conductive laminate containing indium oxide is formed on the surface of the substrate.
- Forming a first transparent conductive film having an indium oxide content of 80 to 98% by mass directly or indirectly on the surface; and containing indium oxide on the surface of the first transparent conductive film A method comprising: laminating a second transparent conductive film having an amount of 45 to 75% by mass; and heating the second transparent conductive film at a temperature of 350 to 950 K. .
- the step of heating the second transparent conductive film according to the present invention is preferably performed as follows.
- the step of heating the second transparent conductive film includes heating the substrate and the first transparent conductive film at a temperature of 350 to 950 K in the step of laminating the second transparent conductive film. To be done.
- the step of heating the second transparent conductive film according to the present invention is performed after the step of laminating the second transparent conductive film.
- the temperature for heating the second transparent conductive film is preferably 350 to 600K.
- the temperature for heating the second transparent conductive film is preferably 450 to 950K.
- the thickness of the first transparent conductive film according to the present invention is preferably 6 to 50 nm, and the thickness of the second transparent conductive film is preferably 50 to 150 nm.
- the second transparent conductive film according to the present invention is tin, titanium, antimony, molybdenum, iron, cobalt, zinc, cerium, gallium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, And a transparent conductive film containing at least one selected from the group consisting of these oxides.
- the substrate with a transparent conductive laminate of the present invention although the content of indium is reduced, the reason why a sufficiently high light transmittance and a sufficiently low resistivity can be achieved is not necessarily clear,
- the present inventors infer as follows. That is, the substrate with a transparent conductive laminate of the present invention is a transparent conductive film having a low indium oxide content and not easily having a crystal structure, and a transparent conductive film having an indium oxide content of 80 to 98% by mass and easily having a crystal structure.
- (B) is a photograph of a part of the transmission electron micrograph of (a) observed at a high magnification.
- (A) is a transmission electron micrograph of a substrate with a transparent conductive film obtained in Comparative Example 1.
- (B) is a photograph of a part of the transmission electron micrograph of (a) observed at a high magnification. It is a graph which shows the X-ray-diffraction pattern (upper part) of the board
- FIG. 1 It is a graph which shows the X-ray-diffraction pattern (upper part) of the board
- (A) is the transmission electron micrograph of the board
- FIG. (B) is a photograph of a part of the transmission electron micrograph of (a) observed at a high magnification.
- A) is a transmission electron micrograph of a substrate with a transparent conductive film obtained in Comparative Example 2.
- (B) is a photograph of a part of the transmission electron micrograph of (a) observed at a high magnification.
- 3 is a view showing volume resistivity of a substrate with a transparent conductive laminate obtained in Examples 1 to 3 and substrates with a transparent conductive film obtained in Comparative Examples 1 to 3 and Comparative Example 13.
- 4 is a graph showing the relationship between the measurement wavelength and transmittance of the substrate with a transparent conductive laminate obtained in Examples 1 to 3, the substrate with a transparent conductive film obtained in Comparative Example 13, and glass. It is a graph which shows the X-ray-diffraction pattern (upper part) of the board
- 3 is a graph showing volume resistivity of a substrate with a transparent conductive laminate obtained in Examples 4 to 6 and a substrate with a transparent conductive film obtained in Comparative Examples 4 to 6.
- 6 is a graph showing the volume resistivity of a substrate with a transparent conductive laminate obtained in Examples 7 to 9 and a substrate with a transparent conductive film obtained in Comparative Examples 7 to 9.
- FIG. 3 is a graph showing the volume resistivity of a substrate with a transparent conductive laminate obtained in Examples 10 to 12 and a substrate with a transparent conductive film obtained in Comparative Examples 10 to 12. It is a graph which shows the relationship between the measurement wavelength and transmittance
- FIG. 13 It is a transmission electron micrograph which shows the bright field image of the cross section of the board
- FIG. 13 It is the transmission electron micrograph which shows the result of the high resolution image of a cross section of the board
- FIG. It is the transmission electron microscope photograph which shows the result of the high resolution image of a cross section of the board
- the substrate with a transparent conductive laminate of the present invention is a substrate with a transparent conductive laminate in which a transparent conductive laminate containing indium oxide is formed on the surface of the substrate, and the transparent conductive laminate has an indium oxide content.
- the first transparent conductive film and the second transparent conductive film have a crystal having a crystal structure equivalent to an indium oxide crystal.
- the substrate used in the present invention may be any material that has high light transmittance and does not change in the process of heating the second transparent conductive film in the production method of the present invention described later.
- the thickness of the substrate is not particularly limited, and is appropriately selected according to the material depending on the light transmittance and strength of the substrate with a transparent conductive laminate of the present invention or the usage mode of the substrate with a transparent conductive laminate of the present invention.
- the first transparent conductive film used in the present invention is a transparent conductive film formed directly or indirectly on the surface of the substrate.
- the first transparent conductive film used in the present invention may be directly laminated on the surface of the substrate, but has a transparent function for the purpose of improving light transmittance, improving reflectance, or adding barrier properties.
- a film may be disposed between the substrate.
- the indium oxide content in the film needs to be 80 to 98% by mass, and preferably 90 to 97% by mass.
- the carrier density in the first transparent conductive film used in the present invention is reduced, so that the resistivity is increased. It becomes difficult to promote crystallization of the transparent conductive film.
- the first transparent conductive film used in the present invention contains other metals and metal oxides in addition to indium oxide, such as tin, titanium, antimony, molybdenum, iron, cobalt, zinc, cerium, gallium, silicon. , Zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, and oxides thereof. These metals and metal oxides are contained in the film alone or in combination of two or more. You may do it.
- tin oxide is the first transparent conductive material used in the present invention from the viewpoint of the role as a dopant having high conductivity and the light transmittance of the substrate with the transparent conductive laminate of the present invention.
- the film is preferably contained together with indium oxide.
- indium oxide needs to have a crystal structure.
- the first transparent conductive film used in the present invention it is preferable that the first transparent conductive film is grown in parallel with the substrate surface from the viewpoint of reducing the resistivity of the film, and indium oxide in the film
- the crystallinity of is preferably 50 to 100%.
- the crystallinity of indium oxide in the film can be estimated from the change in diffraction peak intensity obtained by X-ray diffraction analysis.
- the diffraction peak must be present, and the S / N ratio of the diffraction peak is preferably 1 or more.
- the crystal having a crystal structure equivalent to the indium oxide crystal included in the first transparent conductive film is preferably at least one crystal selected from the group consisting of In 2 O 3 crystal and In 4 Sn 3 O 12 crystal. .
- the thickness of the first transparent conductive film used in the present invention is preferably 6 to 50 nm, and more preferably 8 to 15 nm. If the thickness exceeds the upper limit, the manufacturing cost of the substrate with a transparent conductive laminate of the present invention tends to increase. On the other hand, if the thickness is less than the lower limit, the film tends to be broken into islands in some places. Therefore, the resistivity of the substrate with a transparent conductive laminate of the present invention tends to increase.
- the second transparent conductive film used in the present invention is laminated on the surface of the first transparent conductive film, and the indium oxide content is 45 to 75% by mass and 45 to 55% by mass. Is preferred.
- the content of the indium oxide content exceeds the upper limit, the manufacturing cost of the substrate with a transparent conductive laminate of the present invention increases.
- the second transparent conductive film has an indium oxide crystal. It becomes difficult to have a crystal having a crystal structure equivalent to.
- the difference in indium oxide content between the first transparent conductive film and the second transparent conductive film used in the present invention is It is preferably 40 to 50% by mass.
- the second transparent conductive film used in the present invention contains other metals and metal oxides in addition to indium oxide.
- metals and metal oxides in addition to indium oxide.
- These metals and metal oxides may be used alone or in combination of two or more in the film. It may contain.
- the substrate with a transparent conductive laminate of the present invention Gallium, silicon, magnesium, aluminum, and oxides thereof are preferable.
- the substrate with a transparent conductive laminate of the present invention as a transparent electrode material for solar cells, from the viewpoint that a substrate with a transparent conductive laminate having high transmittance without absorption in the infrared region can be obtained.
- the second transparent conductive film used in the present invention contains tin or tin oxide.
- the second transparent conductive film used in the present invention a transparent conductive laminate having a light transmittance in the entire wavelength range of 800 to 2500 nm of 80% or more can be obtained while the volume resistivity is sufficiently low.
- the second transparent conductive film used in the present invention has a content of indium oxide in the film of 45 to 55% by mass and a content of tin oxide of 40 to 50% by mass.
- the antimony content is particularly preferably 1 to 10% by mass.
- indium oxide indium oxide must have a crystal structure, and like the first transparent conductive film, it grows in a film shape parallel to the substrate surface.
- the crystallinity in the film is preferably 50 to 100%.
- the crystal structure in the film was examined by X-ray diffraction measurement using CuK ⁇ rays.
- 2 ⁇ 21.5 degrees, 30.6 degrees, 35.5
- a peak needs to be present, and the S / N ratio of the diffraction peak is preferably 1 or more.
- the crystal having a crystal structure equivalent to the indium oxide crystal included in the second transparent conductive film is preferably at least one crystal selected from the group consisting of In 2 O 3 crystal and In 4 Sn 3 O 12 crystal. .
- the thickness of the second transparent conductive film used in the present invention is preferably 50 to 150 nm. If the thickness exceeds the upper limit, the light transmittance of the substrate with a transparent conductive laminate of the present invention tends not to be sufficiently high. On the other hand, if the thickness is less than the lower limit, the substrate with a transparent conductive laminate of the present invention is used. When manufacturing a conventional device, sufficient conductivity tends to be difficult to obtain on a substrate with unevenness.
- the total thickness of the first transparent conductive film and the second transparent conductive film is preferably 50 to 150 nm. If the thickness exceeds the upper limit, the light transmittance of the substrate with a transparent conductive laminate of the present invention tends not to be sufficiently high. On the other hand, if the thickness is less than the lower limit, the substrate with a transparent conductive laminate of the present invention is used. When manufacturing a conventional device, sufficient conductivity tends to be difficult to obtain on a substrate with unevenness.
- the method for producing a substrate with a transparent conductive laminate of the present invention is a method for producing a substrate with a transparent conductive laminate in which a transparent conductive laminate containing indium oxide is formed on the surface of the substrate, the surface of the substrate being Directly or indirectly on the step of forming the first transparent conductive film, the step of laminating the second transparent conductive film on the surface of the first transparent conductive film, and the second Heating the transparent conductive film of the second transparent conductive film at a temperature of 350 to 950 K.
- the temperature of heating the second transparent conductive film exceeds the upper limit, the second transparent conductive film is heated.
- the resistivity increases.
- the mobility decreases due to the amorphous structure in the second transparent conductive film.
- Examples of the method for forming the first transparent conductive film and the second transparent conductive film according to the present invention include physical film formation methods such as sputtering, vacuum deposition, and ion plating, thermal spraying, dip A chemical film forming method such as a coating method or a CVD method can be employed. Among these, it is preferable to employ the sputtering method from the viewpoint that it is easy to form a large-area transparent conductive film having sufficient conductivity.
- the process of heating said 2nd transparent conductive film as a 1st manufacturing method WHEREIN In the process of laminating said 2nd transparent conductive film, the said board
- the temperature of heating the second transparent conductive film is preferably 350 to 600 K, preferably 400 to More preferably, it is 550K.
- the resistivity tends to increase with a decrease in carrier density in the second transparent conductive film.
- the mobility tends to decrease due to the amorphous structure in the second transparent conductive film.
- the temperature for heating the second transparent conductive film is relatively low, about 523 K or less, and the resistance of the substrate with a transparent conductive laminate obtained is as follows. From the viewpoint of a low rate, it can be suitably used in a process for producing a device such as a flat panel display using a transparent electrode material.
- the step of heating the second transparent conductive film is performed after the step of stacking the second transparent conductive film
- the temperature for heating the second transparent conductive film is preferably 450 to 950K, and more preferably 523 to 723K.
- the resistivity tends to increase with a decrease in carrier density in the second transparent conductive film.
- the mobility tends to decrease due to the amorphous structure in the second transparent conductive film.
- the heating time of the second transparent conductive film is not particularly limited, and in consideration of a decrease in carrier density in the second transparent conductive film and a decrease in light transmission accompanying oxygen deficiency, the heating temperature, It is appropriately selected according to the composition of the second transparent conductive film and the thickness of the second transparent conductive film.
- the heat treatment is performed in the presence of oxygen gas from the viewpoint of obtaining the substrate with a transparent conductive laminate of the present invention having high light transmittance.
- Example 1 Using sputtering equipment (ULVAC, product name “CS-200”), ITO target (ULVAC and Mitsui Mining & Mining Co., Ltd., ITO content: 90% by mass, tin oxide content as target) Amount: 10% by mass, hereinafter referred to as “ITO90”, sputtered power direct current (DC) 100 W, rotated glass substrate (thickness: 0.7 mm, length: 50 mm, width: 50 mm, manufactured by Corning, product name “EAGLE2000”)
- the first substrate is made of ITO90 having a thickness of 12 nm, sputtered under the conditions that the substrate heating temperature is 523 K, the pressure in the reaction vessel is 0.68 Pa, the argon gas flow rate is 50 sccm, and the oxygen gas flow rate is 0.2 sccm.
- a transparent conductive film was formed. Furthermore, a transparent conductive film made of ITO90 obtained from an ITO target (manufactured by Mitsui Mining & Smelting Co., Ltd., content of indium oxide in ITO: 50 mass%, content of tin oxide: 50 mass%, hereinafter referred to as “ITO50”) A second transparent conductive film made of ITO 50 having a thickness of 138 nm is formed by sputtering under the same conditions as described above except that the oxygen gas flow rate is changed to 0.3 sccm directly on the surface of the substrate. A glass substrate was obtained.
- each film in the obtained glass substrate with a transparent conductive laminate is such that each film is locally peeled using an ITO film removal processing apparatus (product name “LXSY-UV”, manufactured by Laserx). It was measured using a surface shape evaluation system (product name “L-Trace II” manufactured by SII).
- the content of indium oxide in the transparent conductive laminate obtained in Example 1 calculated from the composition of the target and the thickness of the film was 53% by mass, and the content of tin oxide was 47% by mass.
- Example 2 Instead of sputtering the ITO target (ITO50), the ITO target (ITO50) was sputtered with a DC power of 100 W, and the titanium oxide target (manufactured by High Purity Chemical Laboratory Co., Ltd., content of titanium oxide in the target: 99.9% by mass) was used.
- a glass substrate with a transparent conductive laminate was produced in the same manner as in Example 1 except that sputtering was performed at a sputtering power radio frequency (RF) of 20 W and the oxygen gas flow rate was changed to 0 sccm and sputtering was performed simultaneously.
- RF radio frequency
- the obtained glass substrate with a transparent conductive laminate is a second transparent conductive film made of ITO directly doped with titanium having a thickness of 140 nm on the surface of the first transparent conductive film made of ITO 90 having a thickness of 12 nm.
- ITO50 second transparent conductive film made of Ti
- the content of indium oxide of the transparent conductive laminate obtained in Example 2 calculated from the composition of the target and the thickness of the film was 51% by mass
- the content of tin oxide was 44% by mass
- the content of titanium oxide The amount was 5% by mass.
- Example 3 Instead of ITO target (ITO50), antimony-added ITO target (Mitsui Mining & Mining Co., Ltd., indium oxide content: 50 mass%, tin oxide content: 45 mass%, antimony oxide content: A glass substrate with a transparent conductive laminate was produced in the same manner as in Example 1 except that 5% by mass, hereinafter referred to as “ITO50; Sb”) was used. In the obtained glass substrate with a transparent conductive laminate, a second transparent conductive film made of ITO 50; Sb having a thickness of 137 nm was directly laminated on the surface of the first transparent conductive film made of ITO 90 having a thickness of 12 nm. Is.
- the content of indium oxide in the transparent conductive laminate obtained in Example 3 calculated from the composition of the target and the thickness of the film was 53% by mass
- the content of tin oxide was 42% by mass
- the content of antimony oxide was included. The amount was 5% by mass.
- Comparative Examples 1 to 3 A glass substrate with a transparent conductive film was produced in the same manner as in Examples 1 to 3, except that a film made of ITO90 was not formed. That is, the transparent conductive film obtained in Comparative Example 1 was a film made of ITO 50 having a thickness of 153 nm, the content of indium oxide in the film was 50% by mass, and the content of tin oxide was 50% by mass. .
- the transparent conductive film obtained in Comparative Example 2 is a film made of ITO 50; TiO 2 having a thickness of 150 nm. The content of indium oxide in the film is 47.5% by mass, and the content of tin oxide is 47. The content of titanium oxide was 5% by mass.
- the transparent conductive film obtained in Comparative Example 3 is a film made of ITO 50; Sb having a thickness of 150 nm, the content of indium oxide in the film is 50 mass%, the content of tin oxide is 45 mass%, The content of antimony oxide was 5% by mass.
- Example 6 Except that the substrate was not heated, a transparent conductive film made of ITO90 was formed on the surface of the glass substrate in the same manner as in Example 1, and ITO50 was directly formed on the surface of the first transparent conductive film made of ITO90. A second transparent conductive film made of was laminated. The obtained substrate, the first transparent conductive film, and the second transparent conductive film were further heated in air at temperatures of 523K (Example 4), 623K (Example 5), and 723K (Example 6) for 1 hour. Thus, a glass substrate with a transparent conductive film was obtained.
- Example 7 Except that the substrate was not heated, a transparent conductive film made of ITO90 was formed on the surface of the glass substrate in the same manner as in Example 2, and ITO50 was directly formed on the surface of the first transparent conductive film made of ITO90. A second transparent conductive film made of —TiO 2 was laminated. The obtained substrate, the first transparent conductive film, and the second transparent conductive film were further heated in the atmosphere at temperatures of 523K (Example 7), 623K (Example 8), and 723K (Example 9) for 1 hour. A glass substrate with a transparent conductive film was obtained by heating.
- Example 10 to 12 instead of heating the substrate and sputtering the ITO target (ITO50), the ITO target (ITO90) was sputtered at a DC power of 100 W, and an antimony-added tin oxide target (Mitsui Metal Mining Co., Ltd., content of antimony oxide in the target: 10 mass%, tin oxide content: 90 mass%) was sputtered at the same time as in Example 1 except that the sputtering gas power was 45 W and the oxygen gas flow rate was changed to 0.2 sccm. Two transparent conductive films were formed.
- the obtained substrate, the first transparent conductive film, and the second transparent conductive film were further heated in the atmosphere at temperatures of 523K (Example 10), 623K (Example 11), and 723K (Example 12) for 1 hour.
- a glass substrate with a transparent conductive film was obtained.
- the obtained glass substrate with a transparent conductive laminate is a second transparent conductive film made of ITO directly doped with antimony oxide having a thickness of 136 nm on the surface of the first transparent conductive film made of ITO 90 having a thickness of 12 nm.
- ITO50 second transparent conductive film made of Sb [2]
- the transparent conductive laminates obtained in Examples 10 to 12, calculated from the target composition and film thickness contained 52% by mass of indium oxide, 44% by mass of tin oxide, and antimony oxide. The content of was 4% by mass.
- Comparative Examples 4 to 12 A glass substrate with a transparent conductive film was produced in the same manner as in Examples 4 to 12 except that a film made of ITO90 was not formed. That is, the transparent conductive film obtained in Comparative Examples 4 to 6 (heating temperature after film formation: 523K for Comparative Example 4, 623K for Comparative Example 5 and 723K for Comparative Example 6) is a film made of ITO 50 having a thickness of 153 nm. The content of indium oxide in the film was 50% by mass, and the content of tin oxide was 50% by mass.
- the transparent conductive films obtained in Comparative Examples 7 to 9 are ITO 50; TiO 2 with a thickness of 150 nm.
- the content of indium oxide in the film was 47.5% by mass, the content of tin oxide was 47.5% by mass, and the content of titanium oxide was 5% by mass.
- the transparent conductive films obtained in Comparative Examples 10 to 12 were made of ITO 50; Sb [ 2], the content of indium oxide in the film was 49 mass%, the content of tin oxide was 47 mass%, and the content of antimony oxide was 4 mass%.
- Comparative Example 13 A glass substrate with a transparent conductive film was produced in the same manner as in Comparative Example 4 except that ITO90 was used instead of ITO50. That is, the transparent conductive film obtained in Comparative Example 13 (heating temperature after film formation is 523 K) is a film made of ITO 90 having a thickness of 152 nm, the content of indium oxide in the film is 90% by mass, and tin oxide The content of was 10% by mass.
- Example 13 Instead of sputtering the ITO target (ITO50), the ITO target (ITO50) was sputtered at a DC power of 100 W, and the content of iron oxide target (manufactured by High-Purity Chemical Laboratory Co., Ltd., iron oxide (Fe 2 O 3 ) in the target: 99 0.9 mass%) was sputtered at high frequency (RF) 20 W and the oxygen gas flow rate was changed to 0.1 sccm and sputtered simultaneously to produce a glass substrate with a transparent conductive laminate in the same manner as in Example 1.
- RF high frequency
- the obtained glass substrate with a transparent conductive laminate is a second transparent conductive film made of ITO directly doped with iron having a thickness of 138 nm on the surface of the first transparent conductive film made of ITO 90 having a thickness of 12 nm.
- ITO50; second transparent conductive film made of Fe is laminated.
- the content of indium oxide of the transparent conductive laminate obtained in Example 13 calculated from the composition of the target and the thickness of the film was 51% by mass
- the content of tin oxide was 44% by mass
- the content of iron oxide The amount was 5% by mass.
- Example 14 A glass substrate with a transparent conductive laminate was prepared in the same manner as in Example 3 except that the flow rate of oxygen gas when sputtering ITO50; Sb was changed to 0.5 sccm.
- a second transparent conductive film made of ITO 138; Sb having a thickness of 138 nm was directly laminated on the surface of the first transparent conductive film made of ITO 90 having a thickness of 12 nm. Is.
- the content of indium oxide in the transparent conductive laminate obtained in Example 14 calculated from the composition of the target and the thickness of the film was 53% by mass, the content of tin oxide was 42% by mass, and the content of antimony oxide was included. The amount was 5% by mass.
- Comparative Example 14 A glass substrate with a transparent conductive film was produced in the same manner as in Comparative Example 1 except that ITO 90 was used instead of ITO 50 and sputtering was performed while changing the oxygen gas flow rate to 0.2 sccm. That is, the transparent conductive film obtained in Comparative Example 14 was a film made of ITO 90 having a thickness of 151 nm, the content of indium oxide in the film was 90% by mass, and the content of tin oxide was 10% by mass. .
- Comparative Example 15 A glass substrate with a transparent conductive film was produced in the same manner as in Comparative Example 1 except that sputtering was performed while changing the oxygen gas flow rate to 0.5 sccm. That is, the transparent conductive film obtained in Comparative Example 15 was a film made of ITO 50 having a thickness of 150 nm, the content of indium oxide in the film was 50% by mass, and the content of tin oxide was 50% by mass. .
- Comparative Example 16 A glass substrate with a transparent conductive film was produced in the same manner as in Example 2 except that a film made of ITO90 was not formed. That is, the transparent conductive film obtained in Comparative Example 16 is a film made of ITO 50; TiO 2 having a thickness of 153 nm. The content of indium oxide in the film is 47.5% by mass, and the content of tin oxide is 47. The content of titanium oxide was 5% by mass.
- Comparative Example 17 A glass substrate with a transparent conductive film was produced in the same manner as in Example 13 except that a film made of ITO90 was not formed. That is, the transparent conductive film obtained in Comparative Example 17 is a film made of ITO 50; Fe having a thickness of 151 nm, the content of indium oxide in the film is 47.5 mass%, and the content of tin oxide is 47. The content of 5% by mass and iron oxide was 5% by mass.
- Comparative Example 18 A glass substrate with a transparent conductive film was produced in the same manner as in Example 14 except that a film made of ITO90 was not formed. That is, the transparent conductive film obtained in Comparative Example 18 is a film made of ITO 50; Sb having a thickness of 150 nm, the indium oxide content in the film is 50 mass%, the tin oxide content is 45 mass%, The content of antimony oxide was 5% by mass.
- Comparative Example 12 is shown in FIG. 12, and Examples 1, 13, and 14 are shown in FIGS.
- Table 1 shows main X-ray diffraction peaks observed in the In 2 O 3 phase when the X-ray source is CuK ⁇ ray.
- “h k l” represents the Miller index
- “2 ⁇ ” represents the diffraction angle
- “d” represents the surface separation
- “I” represents the relative diffraction intensity.
- the transmittance of light in the wavelength region of 200 to 2600 nm was measured using a spectrophotometer (manufactured by Hitachi High-Technologies Corporation, product name “U-4100”) as a reference sample in Examples 1 and 2.
- a spectrophotometer manufactured by Hitachi High-Technologies Corporation, product name “U-4100”
- the transparent conductive laminate in the glass substrate with a transparent conductive laminate obtained in Example 13 and Example 14 and the transparent conductive film in the glass substrate with a transparent conductive film obtained in Comparative Examples 14 to 18 were measured.
- the obtained results are shown in FIG. 25 for Examples 1, 2, 13, and 14, and FIG. 26 for the glass substrate with a transparent conductive film obtained in Comparative Examples 14-18.
- the substrate with a transparent conductive laminate of the present invention has a crystal phase of indium oxide, and as is clear from the results shown in FIG.
- the crystal phase of indium oxide is all of the first transparent conductive film made of ITO90 (the region below the white broken line in the figure) and the second transparent conductive film made of ITO 50 (the area above the white broken line in the figure).
- the substrate with a transparent conductive film that does not include a film made of ITO 90 according to the present invention, as is apparent from the results shown in FIG.
- an amorphous layer was confirmed in the region from the substrate to about 30 nm (region below the white broken line in the figure).
- Example 2 and Comparative Example 2 the same results as described above were confirmed as shown in FIGS.
- the substrates with transparent conductive laminates of the present invention have a crystal phase of indium oxide (In 2 O 3 ).
- the substrate with transparent conductive laminate of the present invention had indium oxide in the film despite the reduced amount of indium. It had a volume resistivity equal to or lower than that of the substrate with a transparent conductive film (Comparative Example 13) containing 90% by mass.
- the substrate with a transparent conductive film that does not have a film made of ITO 90 according to the present invention and does not have a sufficient crystal structure equivalent to an indium oxide crystal (Comparative Examples 1 to 3) Despite being sputtered, the volume resistivity was inferior compared to the corresponding Examples 1 to 3.
- the substrates with transparent conductive laminates of the present invention show a transmittance of about 80% in the wavelength region of 500 to 900 nm, and the amount of indium is Despite the reduction, the transmittance was as high as that of Comparative Example 13.
- the transparent conductive laminate of the substrate with the transparent conductive laminate of the present invention has a wavelength region of 500 to 1400 nm.
- a high transmittance of 80% or more was exhibited in the entire region, and the transmittance was high in a wider wavelength region than Comparative Example 14, particularly in the infrared region of 800 nm or more, in spite of the reduced amount of indium.
- Example 14 had a high transmittance of 80% or more over the entire wider wavelength region (500 to 2500 nm).
- the substrate with a transparent conductive laminate of the present invention in particular, the substrate with a transparent conductive laminate of the present invention provided with the second transparent conductive film made of ITO50; Sb has excellent infrared transmittance. Became.
- Example 10 for the substrate with a transparent conductive laminate (Example 10) obtained by the production method of the present invention different from Examples 1 to 3, 13, and 14, as is apparent from the results shown in FIG. It was confirmed that it has a crystal structure equivalent to that of indium oxide crystal.
- the substrate with a transparent conductive film Comparative Example 12 that does not include a film made of ITO 90 according to the present invention, as is apparent from the results shown in FIG. The spectrum was not confirmed.
- the substrate with the transparent conductive laminate of the present invention obtained by the production method of the present invention different from Examples 1 to 3 (Examples 4 to 12).
- Examples 4 to 12 Each having a film having the same elemental composition and element content, each of which is more than the substrates with transparent conductive films of Comparative Examples 4 to 12 even though the film was formed and subjected to heat treatment at the same temperature. It had a low volume resistivity.
- the substrates with transparent conductive laminates of the present invention show a transmittance of about 80% in the wavelength region of 450 to 900 nm.
- the substrate with a transparent conductive laminate of the present invention exhibits a transmittance of about 80% in the wavelength region of 500 to 900 nm, and the transparent conductive laminate of the present invention.
- the attached substrates (Example 4, Example 7, and Example 10) had a high transmittance equivalent to that of Comparative Example 13 although the amount of indium was reduced.
- a substrate with a transparent conductive laminate having a sufficiently high light transmittance and a sufficiently low resistivity in spite of a reduced indium content and a method for manufacturing the same Can be provided.
- the substrate with a transparent conductive laminate of the present invention constitutes a plasma light emitting display element, a liquid crystal display element, an electroluminescence display element, a transparent electrode such as a solar cell, an infrared absorption reflection film, an antifogging film, and an electromagnetic shielding film.
- a plasma light emitting display element a liquid crystal display element
- an electroluminescence display element a transparent electrode such as a solar cell
- an infrared absorption reflection film an antifogging film
- an electromagnetic shielding film Useful as a material.
- the present invention it is possible to increase the content of tin in the transparent conductive film, and thus to provide a substrate with a transparent conductive laminate that exhibits high transmittance without absorption in the infrared region. Therefore, it is particularly useful as a transparent electrode material for solar cells and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Non-Insulated Conductors (AREA)
- Laminated Bodies (AREA)
- Manufacturing Of Electric Cables (AREA)
- Compounds Of Iron (AREA)
- Physical Vapour Deposition (AREA)
Abstract
基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板であって、前記透明導電積層体は、酸化インジウム含有量が80~98質量%である第一の透明導電膜と前記第一の透明導電膜の表面上に積層された酸化インジウムの含有量が45~75質量%である第二の透明導電膜とを備え、且つ、前記第一の透明導電膜及び前記第二の透明導電膜が酸化インジウム結晶と同等の結晶構造を持つ結晶を有していることを特徴とする透明導電積層体付基板。
Description
本発明は、基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板、並びにその製造方法に関する。
従来、透明導電膜の材料として、酸化スズにアンチモンをドープしてなるアンチモンスズ複合酸化物(ATO)、酸化亜鉛にアルミニウムをドープしてなるアルミニウム亜鉛複合酸化物(AZO)、酸化インジウムにスズをドープしてなるインジウムスズ複合酸化物(ITO)等が知られている。これらの中でもITO膜はATO膜、AZO膜に比べて導電率が高く、また可視光領域における光透過率が高いことから、液晶表示素子、エレクトロルミネッセンス表示素子等の透明電極用材料として広く使用されている。
しかしながら、ITO膜はインジウムの含有量が高いために材料コストが高いという問題があったことから、インジウムの含有量を低減させた透明導電膜が検討されており、例えば、特開平7-335031号公報(特許文献1)には、ドーパントとして酸化スズ、酸化チタン及び酸化ジルコニウムのうちの少なくとも1種を含む酸化インジウム系粉末と、ドーパントとして酸化アンチモン、酸化タンタル及び酸化ニオブのうちの少なくとも1種を含む酸化スズ系粉末との混合物を焼成して得られる導電性酸化物を用いて成膜された導電膜が開示されている。
しかしながら、特許文献1に記載のような導電膜においては、インジウムの含有量の低減を図ることは可能となるものの、このような導電膜は光透過性(特に可視光領域での透過率の高さ)、導電性(抵抗率の低さ)の点で未だ十分なものではなかった。
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を有する透明導電積層体付基板及びその製造方法を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板の製造方法であって、前記基板の表面上に直接的に又は間接的に、酸化インジウム含有量が80~98質量%である第一の透明導電膜を形成する工程と、前記第一の透明導電膜の表面上に酸化インジウムの含有量が45~75質量%である第二の透明導電膜を積層する工程と前記第二の透明導電膜を350~950Kの温度で加熱する工程と、を含む製造方法によって得られた、前記第一の透明導電膜及び前記第二の透明導電膜が酸化インジウム結晶と同等の結晶構造を持つ結晶を有している透明導電積層体付基板は、インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を有することを見出し、本発明を完成するに至った。
すなわち、本発明の透明導電積層体付基板は、基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板であって、前記透明導電積層体は、酸化インジウム含有量が80~98質量%である第一の透明導電膜と前記第一の透明導電膜の表面上に積層された酸化インジウムの含有量が45~75質量%である第二の透明導電膜とを備え、且つ、前記第一の透明導電膜及び前記第二の透明導電膜が酸化インジウム結晶と同等の結晶構造を持つ結晶を有していることを特徴とするものである。
なお、本発明において、酸化インジウム結晶と同等の結晶構造を持つ結晶を有しているとは、膜中の結晶構造をCuKα線によるX線回折測定にて調べた結果、2θ=21.5度付近、30.6度付近、35.5度付近、37.7度付近、41.8度付近、45.7度付近、51.0度付近、56.0度付近、及び60.7度付近からなる群から選択される少なくとも1の回折ピークが存在することであり、前記回折ピークのS/N比が1以上であることが好ましい。
また、本発明にかかる前記透明導電積層体は、波長800~2500nmの全域における光の透過率が80%以上の積層体であることが好ましい。
さらに、CuKα線によるX線回折測定によって得られる、前記第一の透明導電膜及び前記第二の透明導電膜のX線回折パターンにおいて、2θ=21.5度付近、30.6度付近、35.5度付近、51.0度付近、及び60.7度付近からなる群から選択される少なくとも一に回折ピークが存在することが好ましい。
また、前記結晶は、In2O3結晶及びIn4Sn3O12結晶からなる群から選択される少なくとも一つの結晶であることが好ましい。
なお、本発明において、「In2O3結晶」とは膜中の結晶構造をCuKα線によるX線回折測定にて調べた結果、酸化インジウム結晶が有する立方晶系ビクスバイト(bixbyite)構造に起因する回折ピーク、すなわち、2θ=21.5度付近、30.6度付近、35.5度付近、37.7度付近、41.8度付近、45.7度付近、51.0度付近、56.0度付近、及び60.7度付近からなる群から選択される少なくとも1の回折ピークが存在することであり、前記回折ピークのS/N比が1以上であることが好ましい。また、「In4Sn3O12結晶」とは膜中の結晶構造をCuKα線によるX線回折測定にて調べた結果、In4Sn3O12結晶が有する菱面体晶又は六方晶系構造に起因する回折ピーク、すなわち、2θ=30.6度付近、35.5度付近(好ましくは35.3度付近)、51.0度付近、56.0度付近、及び60.7度付近からなる群から選択される少なくとも1の回折ピークが存在し、且つ2θ=30.6度付近、51.0度付近、及び60.7度付近に分離したピークが存在する結晶であり、前記回折ピークのS/N比が1以上であることが好ましい。
また、本発明の透明導電積層体付基板の製造方法は、基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板の製造方法であって、前記基板の表面上に直接的に又は間接的に、酸化インジウム含有量が80~98質量%である第一の透明導電膜を形成する工程と、前記第一の透明導電膜の表面上に酸化インジウムの含有量が45~75質量%である第二の透明導電膜を積層する工程と、前記第二の透明導電膜を350~950Kの温度で加熱する工程と、を含むことを特徴とする方法である。
本発明にかかる第二の透明導電膜を加熱する工程は、以下のいずれかのようにして行われることが好ましい。
(1)前記第二の透明導電膜を加熱する工程は、前記第二の透明導電膜を積層する工程において、前記基板及び前記第一の透明導電膜を350~950Kの温度で加熱することによって行われること。
また、(2)本発明にかかる第二の透明導電膜を加熱する工程は、前記第二の透明導電膜を積層する工程の後に行われること。
なお、(1)の場合においては、前記第二の透明導電膜を加熱する温度は350~600Kであることが好ましい。
また、(2)の場合においては、前記第二の透明導電膜を加熱する温度は450~950Kであることが好ましい。
また、本発明にかかる第一の透明導電膜の厚さとしては6~50nmであり、前記第二の透明導電膜の厚さとしては50~150nmであることが好ましい。
さらに、本発明にかかる第二の透明導電膜は、スズ、チタン、アンチモン、モリブデン、鉄、コバルト、亜鉛、セリウム、ガリウム、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、及びこれらの酸化物からなる群から選択される少なくとも1種を含有する透明導電膜であることが好ましい。
なお、本発明の透明導電積層体付基板において、インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を達成できる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の透明導電積層体付基板は、酸化インジウムの含有量が低く結晶構造をとりにくい透明導電膜を、酸化インジウム含有量が80~98質量%であり結晶構造をとり易い透明導電膜の表面上に積層し350~950Kの温度で加熱等を施すことにより、前記酸化インジウムの含有量が低い透明導電膜における結晶化が促進され、酸化インジウム結晶相と同等のビクスバイト構造を有するようになる。そのため、本発明の透明導電積層体付基板においては、インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を達成できるものと推察する。
本発明によれば、インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を有する透明導電積層体付基板及びその製造方法を提供することが可能となる。
先ず、本発明の透明導電積層体付基板について説明する。本発明の透明導電積層体付基板は、基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板であって、前記透明導電積層体は、酸化インジウム含有量が80~98質量%である第一の透明導電膜と前記第一の透明導電膜の表面上に積層された酸化インジウムの含有量が45~75質量%である第二の透明導電膜とを備え、且つ、前記第一の透明導電膜及び前記第二の透明導電膜が酸化インジウム結晶と同等の結晶構造を持つ結晶を有していることを特徴とするものである。
本発明において用いられる基板としては、高い光透過性を有し、後述の本発明の製造方法における第二の透明導電膜を加熱する工程等において変質しない材質であればよく、例えば、ポリイミド、ポリアラミド、ポリフェニレンサルファド、ポリエーテルサルフォン等の耐熱性樹脂及びガラスが挙げられる。また、基板の厚さは特に制限されず、本発明の透明導電積層体付基板の光透過性や強度又は本発明の透明導電積層体付基板の使用態様により、前記材質に応じて適宜選択される。
本発明において用いられる第一の透明導電膜は、前記基板の表面上に直接的に又は間接的に形成された透明導電膜である。本発明において用いられる第一の透明導電膜は、前記基板の表面上に直接積層されていてもよいが、光透過率の向上、反射率の向上又はバリア性の付加を目的とする透明な機能膜を前記基板との間に配置していてもよい。
また、本発明において用いられる第一の透明導電膜としては、膜中の酸化インジウム含有量は80~98質量%であることが必要であり、90~97質量%であることが好ましい。前記酸化インジウムの含有量が前記上限を超えると、本発明において用いられる第一の透明導電膜中のキャリア密度が小さくなるため抵抗率が高くなり、他方、前記下限未満では、後述の第二の透明導電膜の結晶化を促進しにくくなる。
さらに、本発明において用いられる第一の透明導電膜は、酸化インジウム以外に他の金属及び金属酸化物を含み、例えば、スズ、チタン、アンチモン、モリブテン、鉄、コバルト、亜鉛、セリウム、ガリウム、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、及びこれらの酸化物が挙げられ、このような金属及び金属酸化物は、単独で又は2種類以上を混合して膜中に含有していてもよい。このような酸化物の中では、高い導電性を有するというドーパントとしての役割及び本発明の透明導電積層体付基板の光透過性の観点から、酸化スズが本発明において用いられる第一の透明導電膜に酸化インジウムと共に含有されていることが好ましい。
また、本発明において用いられる第一の透明導電膜において酸化インジウムは結晶構造を有している必要がある。さらに、本発明において用いられる第一の透明導電膜においては、膜の抵抗率の低減という観点から、前記基板面に対して平行に膜状成長していることが好ましく、また膜中の酸化インジウムの結晶度が50~100%であることが好ましい。なお、膜中の酸化インジウムの結晶度は、X線回折分析により得られる回折ピーク強度の変化により推定することができる。
さらに、本発明において用いられる第一の透明導電膜において、膜中の結晶構造をCuKα線によるX線回折測定で調べた結果、すなわち、2θ=21.5度付近、30.6度付近、35.5度付近、37.7度付近、41.8度付近、45.7度付近、51.0度付近、56.0度付近、及び60.7度付近からなる群から選択される少なくとも1の回折ピークが存在している必要があり、前記回折ピークのS/N比が1以上であることが好ましい。また、移動度を向上し、膜の抵抗率を低減させるという観点から、CuKα線によるX線回折測定によって得られる、前記第一の透明導電膜のX線回折パターンにおいて、2θ=21.5度付近、30.6度付近、35.5度付近、51.0度付近、及び60.7度付近からなる群から選択される少なくとも一に回折ピークが存在することが好ましく、本発明において用いられる第一の透明導電膜が有する酸化インジウム結晶と同等の結晶構造を持つ結晶は、In2O3結晶及びIn4Sn3O12結晶からなる群から選択される少なくとも一つの結晶であることが好ましい。
また、本発明において用いられる第一の透明導電膜の厚さとしては、6~50nmであることが好ましく、8~15nmであることがより好ましい。前記厚さが前記上限を超えると、本発明の透明導電積層体付基板の製造上のコストが高くなる傾向にあり、他方、前記下限未満では、膜が所々途切れ島状になってしまい易くなるため、本発明の透明導電積層体付基板の抵抗率が高くなる傾向にある。
本発明において用いられる第二の透明導電膜としては、前記第一の透明導電膜の表面上に積層され、酸化インジウムの含有量が45~75質量%であり、45~55質量%であることが好ましい。前記酸化インジウム含有量の含有量が前記上限を超えると、本発明の透明導電積層体付基板の製造上のコストが高くなり、他方、前記下限未満では、第二の透明導電膜が酸化インジウム結晶と同等の結晶構造を持つ結晶を有しにくくなる。さらに、本発明の透明導電積層体付基板の製造上のコスト低減の観点から、前記第一の透明導電膜と本発明において用いられる第二の透明導電膜との酸化インジウムの含有量の差は40~50質量%であることが好ましい。
また、本発明において用いられる第二の透明導電膜は、酸化インジウム以外に他の金属及び金属酸化物を含んでおり、例えば、スズ、チタン、アンチモン、モリブテン、鉄、コバルト、亜鉛、セリウム、ガリウム、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、及びこれらの酸化物が挙げられ、このような金属及び金属酸化物は、単独で又は2種類以上を混合して膜中に含有していてもよい。このような金属及び酸化物の中では、高い導電性を有するというドーパントとしての役割及び本発明の透明導電積層体付基板の光透過性の観点から、スズ、チタン、アンチモン、モリブテン、鉄、亜鉛、ガリウム、珪素、マグネシウム、アルミニウム、及びこれらの酸化物が好ましい。また、本発明の透明導電積層体付基板を太陽電池用の透明電極材料として用いる場合において、赤外領域での吸収がなく高い透過率を有する透明導電積層体付基板が得られるという観点から、本発明において用いられる第二の透明導電膜にスズ又は酸化スズが含有されていることがより好ましい。さらに、本発明において用いられる第二の透明導電膜としては、体積抵抗率を十分に低くしつつ、波長800~2500nmの全域における光の透過率が80%以上である透明導電積層体が得られるという観点から、本発明において用いられる第二の透明導電膜としては、膜中の酸化インジウムの含有量が45~55質量%であり、酸化スズの含有量が40~50質量%であり、酸化アンチモンの含有量が1~10質量%であることが特に好ましい。
また、本発明において用いられる第二の透明導電膜において酸化インジウムは結晶構造を有している必要があり、前記第一の透明導電膜と同様、前記基板面に対して平行に膜状成長していることが好ましく、また膜中の結晶度が50~100%であることが好ましい。
さらに、本発明において用いられる第二の透明導電膜において、膜中の結晶構造をCuKα線によるX線回折測定で調べた結果、2θ=21.5度付近、30.6度付近、35.5度付近、37.7度付近、41.8度付近、45.7度付近、51.0度付近、56.0度付近、及び60.7度付近からなる群から選択される少なくとも1の回折ピークが存在している必要があり、前記回折ピークのS/N比が1以上であることが好ましい。また、移動度を向上し、膜の抵抗率を低減させるという観点から、CuKα線によるX線回折測定によって得られる、前記第二の透明導電膜のX線回折パターンにおいて、2θ=21.5度付近、30.6度付近、35.5度付近、51.0度付近、及び60.7度付近からなる群から選択される少なくとも一に回折ピークが存在することが好ましく、本発明において用いられる第二の透明導電膜が有する酸化インジウム結晶と同等の結晶構造を持つ結晶は、In2O3結晶及びIn4Sn3O12結晶からなる群から選択される少なくとも一つの結晶であることが好ましい。
また、本発明において用いられる第二の透明導電膜の厚さとしては、50~150nmであることが好ましい。前記厚さが前記上限を超えると、本発明の透明導電積層体付基板の光透過性が十分に高くなくなる傾向にあり、他方、前記下限未満では、本発明の透明導電積層体付基板を用いたデバイスを作製する時に凹凸のある基板上では十分な導電性が得られにくくなる傾向にある。
さらに、前記第一の透明導電膜と前記第二の透明導電膜との合計の厚さとしては、50~150nmであることが好ましい。前記厚さが前記上限を超えると、本発明の透明導電積層体付基板の光透過性が十分に高くなくなる傾向にあり、他方、前記下限未満では、本発明の透明導電積層体付基板を用いたデバイスを作製する時に凹凸のある基板上では十分な導電性が得られにくくなる傾向にある。
次に、本発明の透明導電積層体付基板の製造方法について説明する。本発明の透明導電積層体付基板の製造方法は、前記基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板の製造方法であって、前記基板の表面上に直接的に又は間接的に、前記第一の透明導電膜を形成する工程と、前記第一の透明導電膜の表面上に前記第二の透明導電膜を積層する工程と、前記第二の透明導電膜を350~950Kの温度で加熱する工程と、を含むことを特徴とする方法であり、前記第二の透明導電膜を加熱する温度が前記上限を超えると、前記第二の透明導電膜中のキャリア密度の減少に伴い抵抗率が上昇し、他方、前記下限未満では、前記第二の透明導電膜中の非晶質構造に起因して移動度が減少する。
本発明にかかる前記第一の透明導電膜及び前記第二の透明導電膜を形成する方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法等の物理的成膜法、熱スプレー法、ディップコート法、CVD法等の化学的成膜方法を採用することができる。これらの中でも、十分な導電性を有する大面積の透明導電膜を形成し易いという観点から、スパッタリング法を採用することが好ましい。
本発明の透明導電積層体付基板の製造方法としては、第一の製造方法として、前記第二の透明導電膜を加熱する工程が、前記第二の透明導電膜を積層する工程において、前記基板及び前記第一の透明導電膜を350~950Kの温度で加熱することによって行われる方法があり、前記第二の透明導電膜を加熱する温度としては、350~600Kであることが好ましく、400~550Kであることがより好ましい。前記第二の透明導電膜を加熱する温度が前記上限を超えると、前記第二の透明導電膜中のキャリア密度の減少に伴い抵抗率が上昇し易くなる傾向にあり、他方、前記下限未満では、前記第二の透明導電膜中の非晶質構造に起因して移動度が減少し易くなる傾向にある。
また、本発明の透明導電積層体付基板の第一の製造方法は、前記第二の透明導電膜を加熱する温度が523K程度以下と比較的低く済み、得られる透明導電積層体付基板の抵抗率が低いという観点から、透明電極用材料を利用したフラットパネルディスプレイ等のデバイスを作製する工程に好適に用いることができる。
さらに、本発明の透明導電積層体付基板の第二の製造方法として、前記第二の透明導電膜を加熱する工程が前記第二の透明導電膜を積層する工程の後に行われる方法があり、前記第二の透明導電膜を加熱する温度としては、450~950Kであることが好ましく、523~723Kであることがより好ましい。前記第二の透明導電膜を加熱する温度が前記上限を超えると、前記第二の透明導電膜中のキャリア密度の減少に伴い抵抗率が上昇し易くなる傾向にあり、他方、前記下限未満では、前記第二の透明導電膜中の非晶質構造に起因して移動度が減少し易くなる傾向にある。
また、前記第二の透明導電膜の加熱時間は特に制限されず、前記第二の透明導電膜中のキャリア密度の減少や酸素欠損に伴う光透過性の低下等を考慮し、前記加熱温度、前記第二の透明導電膜の組成、前記第二の透明導電膜の厚さに応じて適宜選択される。
さらに、加熱処理中は酸素ガスの存在下で行われることが、光透過性の高い本発明の透明導電積層体付基板が得られるという観点から好ましい。
以下、実施例、比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
スパッタリング装置(ULVAC社製、製品名「CS-200」)を用い、ターゲットとしてITOターゲット(ULVAC社製及び三井金属鉱業社製、ITO中の酸化インジウムの含有量:90質量%、酸化スズの含有量:10質量%、以下「ITO90」という)をスパッタ電力直流(DC)100Wで、回転したガラス基板(厚み:0.7mm、縦:50mm、横:50mm、コーニング社製、製品名「EAGLE2000」)上に、基板加熱温度を523K、反応槽内の圧力を0.68Pa、アルゴンガス流量を50sccm、酸素ガス流量を0.2sccmの条件下でスパッタし、厚さが12nmのITO90からなる第一の透明導電膜を形成した。更に、ITOターゲット(三井金属鉱業社製、ITO中の酸化インジウムの含有量:50質量%、酸化スズの含有量:50質量%、以下「ITO50」という)を得られたITO90からなる透明導電膜の表面上に直接、酸素ガス流量を0.3sccmに変えた以外は前記と同条件下でスパッタし、厚さが138nmのITO50からなる第二の透明導電膜を形成し、透明導電積層体付ガラス基板を得た。
スパッタリング装置(ULVAC社製、製品名「CS-200」)を用い、ターゲットとしてITOターゲット(ULVAC社製及び三井金属鉱業社製、ITO中の酸化インジウムの含有量:90質量%、酸化スズの含有量:10質量%、以下「ITO90」という)をスパッタ電力直流(DC)100Wで、回転したガラス基板(厚み:0.7mm、縦:50mm、横:50mm、コーニング社製、製品名「EAGLE2000」)上に、基板加熱温度を523K、反応槽内の圧力を0.68Pa、アルゴンガス流量を50sccm、酸素ガス流量を0.2sccmの条件下でスパッタし、厚さが12nmのITO90からなる第一の透明導電膜を形成した。更に、ITOターゲット(三井金属鉱業社製、ITO中の酸化インジウムの含有量:50質量%、酸化スズの含有量:50質量%、以下「ITO50」という)を得られたITO90からなる透明導電膜の表面上に直接、酸素ガス流量を0.3sccmに変えた以外は前記と同条件下でスパッタし、厚さが138nmのITO50からなる第二の透明導電膜を形成し、透明導電積層体付ガラス基板を得た。
なお、得られた透明導電積層体付ガラス基板における各膜の厚さは、ITO膜除去加工装置(レーザックス社製、製品名「LXSY-UV」)を用いて局所的に各膜を剥離し、表面形状評価システム(SII社製、製品名「L-TraceII」)を用いて測定した。また、ターゲットの組成及び膜の厚さから算出した、実施例1で得られた透明導電積層体の酸化インジウムの含有量は53質量%、酸化スズの含有量は47質量%であった。
(実施例2)
ITOターゲット(ITO50)をスパッタした代わりに、ITOターゲット(ITO50)をスパッタ電力DC100Wで、酸化チタンターゲット(高純度化学研究所社製、ターゲット中の酸化チタンの含有量:99.9質量%)をスパッタ電力高周波(RF)20Wで酸素ガス流量を0sccmに変えて同時にスパッタした以外は実施例1と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ140nmのチタンがドープされたITOからなる第二の透明導電膜(以下「ITO50;Tiからなる第二の透明導電膜」という)が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例2で得られた透明導電積層体の酸化インジウムの含有量は51質量%、酸化スズの含有量は44質量%、酸化チタンの含有量は5質量%であった。
ITOターゲット(ITO50)をスパッタした代わりに、ITOターゲット(ITO50)をスパッタ電力DC100Wで、酸化チタンターゲット(高純度化学研究所社製、ターゲット中の酸化チタンの含有量:99.9質量%)をスパッタ電力高周波(RF)20Wで酸素ガス流量を0sccmに変えて同時にスパッタした以外は実施例1と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ140nmのチタンがドープされたITOからなる第二の透明導電膜(以下「ITO50;Tiからなる第二の透明導電膜」という)が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例2で得られた透明導電積層体の酸化インジウムの含有量は51質量%、酸化スズの含有量は44質量%、酸化チタンの含有量は5質量%であった。
(実施例3)
ITOターゲット(ITO50)の代わりに、アンチモン添加ITOターゲット(三井金属鉱業社製、ITOターゲット中の酸化インジウムの含有量:50質量%、酸化スズの含有量:45質量%、酸化アンチモンの含有量:5質量%、以下「ITO50;Sb」という)を用いた以外は実施例1と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ137nmのITO50;Sbからなる第二の透明導電膜が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例3で得られた透明導電積層体の酸化インジウムの含有量は53質量%、酸化スズの含有量は42質量%、酸化アンチモンの含有量は5質量%であった。
ITOターゲット(ITO50)の代わりに、アンチモン添加ITOターゲット(三井金属鉱業社製、ITOターゲット中の酸化インジウムの含有量:50質量%、酸化スズの含有量:45質量%、酸化アンチモンの含有量:5質量%、以下「ITO50;Sb」という)を用いた以外は実施例1と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ137nmのITO50;Sbからなる第二の透明導電膜が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例3で得られた透明導電積層体の酸化インジウムの含有量は53質量%、酸化スズの含有量は42質量%、酸化アンチモンの含有量は5質量%であった。
(比較例1~3)
ITO90からなる膜を形成しなかった以外は、実施例1~3と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例1において得られた透明導電膜は、厚さ153nmのITO50からなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は50質量%であった。また、比較例2において得られた透明導電膜は、厚さ150nmのITO50;TiO2からなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化チタンの含有量は5質量%であった。さらに、比較例3において得られた透明導電膜は、厚さ150nmのITO50;Sbからなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は45質量%、酸化アンチモンの含有量は5質量%であった。
ITO90からなる膜を形成しなかった以外は、実施例1~3と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例1において得られた透明導電膜は、厚さ153nmのITO50からなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は50質量%であった。また、比較例2において得られた透明導電膜は、厚さ150nmのITO50;TiO2からなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化チタンの含有量は5質量%であった。さらに、比較例3において得られた透明導電膜は、厚さ150nmのITO50;Sbからなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は45質量%、酸化アンチモンの含有量は5質量%であった。
(実施例4~6)
基板を加熱しなかった以外は、実施例1と同様にして、ガラス基板の表面上にITO90からなる透明導電膜を形成し、さらにITO90からなる第一の透明導電膜の表面上に直接、ITO50からなる第二の透明導電膜を積層した。得られた基板、第一の透明導電膜、及び第二の透明導電膜をさらに大気中にて温度523K(実施例4)、623K(実施例5)、723K(実施例6)で1時間加熱して透明導電膜付ガラス基板を得た。
基板を加熱しなかった以外は、実施例1と同様にして、ガラス基板の表面上にITO90からなる透明導電膜を形成し、さらにITO90からなる第一の透明導電膜の表面上に直接、ITO50からなる第二の透明導電膜を積層した。得られた基板、第一の透明導電膜、及び第二の透明導電膜をさらに大気中にて温度523K(実施例4)、623K(実施例5)、723K(実施例6)で1時間加熱して透明導電膜付ガラス基板を得た。
(実施例7~9)
基板を加熱しなかった以外は、実施例2と同様にして、ガラス基板の表面上にITO90からなる透明導電膜を形成し、さらにITO90からなる第一の透明導電膜の表面上に直接、ITO50-TiO2からなる第二の透明導電膜を積層した。得られた基板、第一の透明導電膜、及び第二の透明導電膜を、さらに大気中にて温度523K(実施例7)、623K(実施例8)、723K(実施例9)で1時間加熱して透明導電膜付ガラス基板を得た。
基板を加熱しなかった以外は、実施例2と同様にして、ガラス基板の表面上にITO90からなる透明導電膜を形成し、さらにITO90からなる第一の透明導電膜の表面上に直接、ITO50-TiO2からなる第二の透明導電膜を積層した。得られた基板、第一の透明導電膜、及び第二の透明導電膜を、さらに大気中にて温度523K(実施例7)、623K(実施例8)、723K(実施例9)で1時間加熱して透明導電膜付ガラス基板を得た。
(実施例10~12)
基板を加熱せず、さらにITOターゲット(ITO50)をスパッタした代わりに、ITOターゲット(ITO90)をスパッタ電力DC100Wで、アンチモン添加酸化すずターゲット(三井金属鉱業社製、ターゲット中の酸化アンチモンの含有量:10質量%、酸化スズの含有量:90質量%)をスパッタ電力DC45Wで酸素ガス流量を0.2sccmに変えて同時にスパッタした以外は実施例1と同様にして、第一の透明導電膜及び第二の透明導電膜を形成した。得られた基板、第一の透明導電膜及び第二の透明導電膜を、さらに大気中にて温度523K(実施例10)、623K(実施例11)、723K(実施例12)で1時間加熱して透明導電膜付ガラス基板を得た。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ136nmの酸化アンチモンがドープされたITOからなる第二の透明導電膜(以下「ITO50;Sb[2]からなる第二の透明導電膜」という)が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例10~12で得られた透明導電積層体の酸化インジウムの含有量は52質量%、酸化スズの含有量は44質量%、酸化アンチモンの含有量は4質量%であった。
基板を加熱せず、さらにITOターゲット(ITO50)をスパッタした代わりに、ITOターゲット(ITO90)をスパッタ電力DC100Wで、アンチモン添加酸化すずターゲット(三井金属鉱業社製、ターゲット中の酸化アンチモンの含有量:10質量%、酸化スズの含有量:90質量%)をスパッタ電力DC45Wで酸素ガス流量を0.2sccmに変えて同時にスパッタした以外は実施例1と同様にして、第一の透明導電膜及び第二の透明導電膜を形成した。得られた基板、第一の透明導電膜及び第二の透明導電膜を、さらに大気中にて温度523K(実施例10)、623K(実施例11)、723K(実施例12)で1時間加熱して透明導電膜付ガラス基板を得た。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ136nmの酸化アンチモンがドープされたITOからなる第二の透明導電膜(以下「ITO50;Sb[2]からなる第二の透明導電膜」という)が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例10~12で得られた透明導電積層体の酸化インジウムの含有量は52質量%、酸化スズの含有量は44質量%、酸化アンチモンの含有量は4質量%であった。
(比較例4~12)
ITO90からなる膜を形成しなかった以外は、実施例4~12と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例4~6(膜形成後の加熱温度:比較例4は523K、比較例5は623K、比較例6は723K)において得られた透明導電膜は、厚さ153nmのITO50からなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は50質量%であった。また、比較例7~9(膜形成後の加熱温度:比較例7は523K、比較例8は623K、比較例9は723K)において得られた透明導電膜は、厚さ150nmのITO50;TiO2からなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化チタンの含有量は5質量%であった。さらに、比較例10~12(膜形成後の加熱温度:比較例10は523K、比較例11は623K、比較例12は723K)において得られた透明導電膜は、厚さ151nmのITO50;Sb[2]からなる膜であり、膜中における酸化インジウムの含有量は49質量%、酸化スズの含有量は47質量%、酸化アンチモンの含有量は4質量%であった。
ITO90からなる膜を形成しなかった以外は、実施例4~12と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例4~6(膜形成後の加熱温度:比較例4は523K、比較例5は623K、比較例6は723K)において得られた透明導電膜は、厚さ153nmのITO50からなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は50質量%であった。また、比較例7~9(膜形成後の加熱温度:比較例7は523K、比較例8は623K、比較例9は723K)において得られた透明導電膜は、厚さ150nmのITO50;TiO2からなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化チタンの含有量は5質量%であった。さらに、比較例10~12(膜形成後の加熱温度:比較例10は523K、比較例11は623K、比較例12は723K)において得られた透明導電膜は、厚さ151nmのITO50;Sb[2]からなる膜であり、膜中における酸化インジウムの含有量は49質量%、酸化スズの含有量は47質量%、酸化アンチモンの含有量は4質量%であった。
(比較例13)
ITO50の代わりにITO90を用いた以外は、比較例4と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例13(膜形成後の加熱温度は523K)において得られた透明導電膜は、厚さ152nmのITO90からなる膜であり、膜中における酸化インジウムの含有量は90質量%、酸化スズの含有量は10質量%であった。
ITO50の代わりにITO90を用いた以外は、比較例4と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例13(膜形成後の加熱温度は523K)において得られた透明導電膜は、厚さ152nmのITO90からなる膜であり、膜中における酸化インジウムの含有量は90質量%、酸化スズの含有量は10質量%であった。
(実施例13)
ITOターゲット(ITO50)をスパッタした代わりに、ITOターゲット(ITO50)をスパッタ電力DC100Wで、酸化鉄ターゲット(高純度化学研究所社製、ターゲット中の酸化鉄(Fe2O3)の含有量:99.9質量%)をスパッタ電力高周波(RF)20Wで酸素ガス流量を0.1sccmに変えて同時にスパッタした以外は実施例1と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ138nmの鉄がドープされたITOからなる第二の透明導電膜(以下「ITO50;Feからなる第二の透明導電膜」という)が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例13で得られた透明導電積層体の酸化インジウムの含有量は51質量%、酸化スズの含有量は44質量%、酸化鉄の含有量は5質量%であった。
ITOターゲット(ITO50)をスパッタした代わりに、ITOターゲット(ITO50)をスパッタ電力DC100Wで、酸化鉄ターゲット(高純度化学研究所社製、ターゲット中の酸化鉄(Fe2O3)の含有量:99.9質量%)をスパッタ電力高周波(RF)20Wで酸素ガス流量を0.1sccmに変えて同時にスパッタした以外は実施例1と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ138nmの鉄がドープされたITOからなる第二の透明導電膜(以下「ITO50;Feからなる第二の透明導電膜」という)が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例13で得られた透明導電積層体の酸化インジウムの含有量は51質量%、酸化スズの含有量は44質量%、酸化鉄の含有量は5質量%であった。
(実施例14)
ITO50;Sbをスパッタした際の酸素ガス流量を0.5sccmに変えた以外は実施例3と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ138nmのITO50;Sbからなる第二の透明導電膜が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例14で得られた透明導電積層体の酸化インジウムの含有量は53質量%、酸化スズの含有量は42質量%、酸化アンチモンの含有量は5質量%であった。
ITO50;Sbをスパッタした際の酸素ガス流量を0.5sccmに変えた以外は実施例3と同様にして透明導電積層体付ガラス基板を作製した。得られた透明導電積層体付ガラス基板は、厚さ12nmのITO90からなる第一の透明導電膜の表面上に直接、厚さ138nmのITO50;Sbからなる第二の透明導電膜が積層されたものである。なお、ターゲットの組成及び膜の厚さから算出した、実施例14で得られた透明導電積層体の酸化インジウムの含有量は53質量%、酸化スズの含有量は42質量%、酸化アンチモンの含有量は5質量%であった。
(比較例14)
ITO50の代わりにITO90を用いて、酸素ガス流量を0.2sccmに変えてスパッタした以外は、比較例1と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例14において得られた透明導電膜は、厚さ151nmのITO90からなる膜であり、膜中における酸化インジウムの含有量は90質量%、酸化スズの含有量は10質量%であった。
ITO50の代わりにITO90を用いて、酸素ガス流量を0.2sccmに変えてスパッタした以外は、比較例1と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例14において得られた透明導電膜は、厚さ151nmのITO90からなる膜であり、膜中における酸化インジウムの含有量は90質量%、酸化スズの含有量は10質量%であった。
(比較例15)
酸素ガス流量を0.5sccmに変えてスパッタした以外は比較例1と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例15において得られた透明導電膜は、厚さ150nmのITO50からなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は50質量%であった。
酸素ガス流量を0.5sccmに変えてスパッタした以外は比較例1と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例15において得られた透明導電膜は、厚さ150nmのITO50からなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は50質量%であった。
(比較例16)
ITO90からなる膜を形成しなかった以外は、実施例2と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例16において得られた透明導電膜は、厚さ153nmのITO50;TiO2からなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化チタンの含有量は5質量%であった。
ITO90からなる膜を形成しなかった以外は、実施例2と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例16において得られた透明導電膜は、厚さ153nmのITO50;TiO2からなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化チタンの含有量は5質量%であった。
(比較例17)
ITO90からなる膜を形成しなかった以外は、実施例13と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例17において得られた透明導電膜は、厚さ151nmのITO50;Feからなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化鉄の含有量は5質量%であった。
ITO90からなる膜を形成しなかった以外は、実施例13と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例17において得られた透明導電膜は、厚さ151nmのITO50;Feからなる膜であり、膜中における酸化インジウムの含有量は47.5質量%、酸化スズの含有量は47.5質量%、酸化鉄の含有量は5質量%であった。
(比較例18)
ITO90からなる膜を形成しなかった以外は、実施例14と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例18において得られた透明導電膜は、厚さ150nmのITO50;Sbからなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は45質量%、酸化アンチモンの含有量は5質量%であった。
ITO90からなる膜を形成しなかった以外は、実施例14と同様にして透明導電膜付ガラス基板を作製した。すなわち、比較例18において得られた透明導電膜は、厚さ150nmのITO50;Sbからなる膜であり、膜中における酸化インジウムの含有量は50質量%、酸化スズの含有量は45質量%、酸化アンチモンの含有量は5質量%であった。
このようにして得られた透明導電積層体付ガラス基板又は透明導電膜付ガラス基板について、以下の評価を行った。
(X線回折測定)
X線回折装置(Bruker AXS社製、製品名「D8 DISCOVER」又は、リガク社製、製品名「RINT2000」)を用いて、X線源をCuKα線とし、走査角2θ=10~70度の範囲で評価し、2θが21.5度、30.6度、35.5度、37.7度、41.8度、45.7度、51.0度、56.0度、60.7度付近の回折ピークの存在、すなわち、酸化インジウム結晶と同様の結晶構造の有無を、実施例1、実施例2、実施例10、実施例13、実施例14で得られた透明導電積層体付ガラス基板、比較例1、比較例2、比較例12で得られた透明導電膜付ガラス基板について調べた。得られた結果を、実施例1については図1に、比較例1については図2に、実施例2については図5に、比較例2については図6に、実施例10については図11に、比較例12については図12、実施例1、13、及び14については図19及び20に示す。また表1に、X線源をCuKα線とした際にIn2O3相において確認される主なX線回折ピークを示す。なお表1中、「h k l」はミラー指数を示し、「2θ」は回折角を示し、「d」は面間隔を示し、「I」は相対的な回折強度を示す。
X線回折装置(Bruker AXS社製、製品名「D8 DISCOVER」又は、リガク社製、製品名「RINT2000」)を用いて、X線源をCuKα線とし、走査角2θ=10~70度の範囲で評価し、2θが21.5度、30.6度、35.5度、37.7度、41.8度、45.7度、51.0度、56.0度、60.7度付近の回折ピークの存在、すなわち、酸化インジウム結晶と同様の結晶構造の有無を、実施例1、実施例2、実施例10、実施例13、実施例14で得られた透明導電積層体付ガラス基板、比較例1、比較例2、比較例12で得られた透明導電膜付ガラス基板について調べた。得られた結果を、実施例1については図1に、比較例1については図2に、実施例2については図5に、比較例2については図6に、実施例10については図11に、比較例12については図12、実施例1、13、及び14については図19及び20に示す。また表1に、X線源をCuKα線とした際にIn2O3相において確認される主なX線回折ピークを示す。なお表1中、「h k l」はミラー指数を示し、「2θ」は回折角を示し、「d」は面間隔を示し、「I」は相対的な回折強度を示す。
(透過型電子顕微鏡による観察)
透過型電子顕微鏡(日立製作所社製、製品名「H-9000NAR」又は「H-9000UHR」)を用いて、実施例1、実施例2、実施例13、実施例14で得られた透明導電積層体付ガラス基板、比較例1、比較例2で得られた透明導電膜付ガラス基板の各々の断面を観察し、結晶相又は非晶質層の有無について調べた。すなわち、各積層体又は積層膜に対して機械研磨及びArイオンミリングを施し、断面観察試料を作製した。そして、得られた断面観察試料を、透過型電子顕微鏡を用いて加速電圧300kVにて観察した。得られた結果を、実施例1については図3に、比較例1については図4に、実施例2については図7に、比較例2については図8に、実施例13については図21及び22に、実施例14については図23及び24に示す。
透過型電子顕微鏡(日立製作所社製、製品名「H-9000NAR」又は「H-9000UHR」)を用いて、実施例1、実施例2、実施例13、実施例14で得られた透明導電積層体付ガラス基板、比較例1、比較例2で得られた透明導電膜付ガラス基板の各々の断面を観察し、結晶相又は非晶質層の有無について調べた。すなわち、各積層体又は積層膜に対して機械研磨及びArイオンミリングを施し、断面観察試料を作製した。そして、得られた断面観察試料を、透過型電子顕微鏡を用いて加速電圧300kVにて観察した。得られた結果を、実施例1については図3に、比較例1については図4に、実施例2については図7に、比較例2については図8に、実施例13については図21及び22に、実施例14については図23及び24に示す。
(体積抵抗率)
JIS K7194に記載の方法に準拠して透明導電積層体付ガラス基板等の体積抵抗率を測定した。すなわち、透明導電積層体付ガラス基板等を試料とし、抵抗率計(三菱化学アナリテック社製、製品名「ロレスタGP MCP-T610」)を用いて、薄膜用4探針プローブにより、実施例1~12で得られた透明導電積層体付ガラス基板及び比較例1~13で得られた透明導電膜付ガラス基板の体積抵抗率を測定した。得られた結果を、実施例1~3、比較例1~3、及び比較例13については図9に、実施例4~6及び比較例4~6については図13に、実施例7~9及び比較例7~9については図14に、実施例10~12及び比較例10~12については図15に示す。
JIS K7194に記載の方法に準拠して透明導電積層体付ガラス基板等の体積抵抗率を測定した。すなわち、透明導電積層体付ガラス基板等を試料とし、抵抗率計(三菱化学アナリテック社製、製品名「ロレスタGP MCP-T610」)を用いて、薄膜用4探針プローブにより、実施例1~12で得られた透明導電積層体付ガラス基板及び比較例1~13で得られた透明導電膜付ガラス基板の体積抵抗率を測定した。得られた結果を、実施例1~3、比較例1~3、及び比較例13については図9に、実施例4~6及び比較例4~6については図13に、実施例7~9及び比較例7~9については図14に、実施例10~12及び比較例10~12については図15に示す。
(透過率)
200~900nmの波長領域における光の透過率を、分光光度計(日立ハイテクノロジーズ社製、製品名「U-3310」)を用いて、実施例1~3、実施例4、実施例7、実施例10で得られた透明導電積層体付ガラス基板、比較例13で得られた透明導電膜付ガラス基板について測定した。得られた結果を、実施例1~3については図10に、実施例4については図16に、実施例7については図17に、実施例10については図18に示す。また、これらの図において、比較例13で得られた透明導電膜付ガラス基板及びガラスについての透過率も併せて示す。
200~900nmの波長領域における光の透過率を、分光光度計(日立ハイテクノロジーズ社製、製品名「U-3310」)を用いて、実施例1~3、実施例4、実施例7、実施例10で得られた透明導電積層体付ガラス基板、比較例13で得られた透明導電膜付ガラス基板について測定した。得られた結果を、実施例1~3については図10に、実施例4については図16に、実施例7については図17に、実施例10については図18に示す。また、これらの図において、比較例13で得られた透明導電膜付ガラス基板及びガラスについての透過率も併せて示す。
さらに、200~2600nmの波長領域における光の透過率を、分光光度計(日立ハイテクノロジーズ社製、製品名「U-4100」)を用いて、ガラスを参照試料として、実施例1、実施例2、実施例13、及び実施例14で得られた透明導電積層体付ガラス基板における透明導電積層体、並びに比較例14~18で得られた透明導電膜付ガラス基板における透明導電膜について測定した。得られた結果を、実施例1、2、13、及び14については図25に、比較例14~18で得られた透明導電膜付ガラス基板については図26に示す。
図1に示した結果から明らかなように、本発明の透明導電積層体付基板(実施例1)は酸化インジウムの結晶相を有しており、さらに図3に示した結果から明らかなように、酸化インジウムの結晶相はITO90からなる第一の透明導電膜(図中、白い破線より下の領域)及びITO50からなる第二の透明導電膜(図中、白い破線より上の領域)の全てが酸化インジウムの結晶相であることが確認された。一方、本発明にかかるITO90からなる膜を備えていない透明導電膜付基板(比較例1)においては、図2に示した結果から明らかなように、酸化インジウムの結晶相を示す回折スペクトル強度は弱いものであり、図4に示した結果から明らかなように、基板から約30nmまでの領域(図中、白い破線より下の領域)には非晶質層が確認された。また、実施例2及び比較例2においても、図5~図8に示すように、前記と同様の結果が確認された。
また、図19に示した結果から明らかなように、本発明の透明導電積層体付基板(実施例1、13、及び14)は酸化インジウム(In2O3)の結晶相を有しており、さらに図20に示した結果から明らかなように、本発明の透明導電積層体付基板(特に実施例13)は、2θ=30.6°付近に現れるX線回折パターンにおいて、In4Sn3O12の結晶相に起因するピーク分離が認められ、In4Sn3O12の結晶相を有していることが確認された。また、図21及び22に示した結果から明らかなように、ITO90からなる第一の透明導電膜(図中「ITO90」)のみならず、ITO50;Feからなる第二の透明導電膜(図中「ITO50:Fe」)も酸化インジウムと同等の結晶相であることが確認された。さらに、ITO50;Feからなる第二の透明導電膜は、ITO90からなる第一の透明導電膜に対してエピタキシャル成長していることが明らかになった。また、図23及び24に示した結果から明らかなように、ITO90からなる第一の透明導電膜(図中「ITO90」)のみならず、ITO50;Sbからなる第二の透明導電膜(図中「ITO50:Sb」)も酸化インジウムと同等の結晶相であることが確認された。さらに、ITO50;Sbからなる第二の透明導電膜は、ITO90からなる第一の透明導電膜に対してエピタキシャル成長していることが明らかになった。
また、図9に示した結果から明らかなように、本発明の透明導電積層体付基板(実施例1~3)は、インジウム量が低減しているにも拘わらず、酸化インジウムを膜中に90質量%含有する透明導電膜付基板(比較例13)と同等又はそれ以下の体積抵抗率を有するものであった。一方、本発明にかかるITO90からなる膜を備えず、酸化インジウム結晶と同等の結晶構造を十分に有していない透明導電膜付基板(比較例1~3)は、同じターゲットが基板加熱しながらスパッタされているにも関わらず、対応する各々の実施例1~3と比較して、体積抵抗率はどれも劣ったものであった。
さらに、図10に示した結果から明らかなように、本発明の透明導電積層体付基板(実施例1~3)は500~900nmの波長領域で約80%の透過率を示し、インジウム量が低減しているにも拘わらず、比較例13と同等の高い透過率を有するものであった。
また、図25及び26に示した結果から明らかなように、本発明の透明導電積層体付基板(実施例1、2、13、及び14)の透明導電積層体は500~1400nmの波長領域の全域において80%以上の高い透過率を示し、インジウム量が低減しているにも拘わらず、比較例14より広い波長領域、特に800nm以上の赤外線領域において高い透過率を有するものであった。さらに実施例14は、より広い波長領域(500~2500nm)の全域において80%以上の高い透過率を有するものであった。従って、本発明の透明導電積層体付基板、特にITO50;Sbからなる第二の透明導電膜を備えた本発明の透明導電積層体付基板は優れた赤外線透過能を有していることが明らかになった。
また、実施例1~3、13、及び14とは異なる本発明の製造方法によって得られた透明導電積層体付基板(実施例10)についても、図11に示した結果から明らかなように、酸化インジウム結晶と同等の結晶構造を有していることが確認された。一方、本発明にかかるITO90からなる膜を備えていない透明導電膜付基板(比較例12)においては、図12に示した結果から明らかなように、酸化インジウム結晶と同等の結晶構造を示す回折スペクトルは確認されなかった。
さらに、図13~図15に示した結果から明らかなように、実施例1~3とは異なる本発明の製造方法によって得られた本発明の透明導電積層体付基板(実施例4~12)は、同様の元素組成及び元素含有率を有する膜を備え、膜を形成した後に同温で加熱処理が施されているにも関わらず、比較例4~12の透明導電膜付基板よりも各々低い体積抵抗率を有するものであった。
また、図16及び図17に示した結果から明らかなように本発明の透明導電積層体付基板(実施例4及び実施例7)は450~900nmの波長領域で約80%の透過率を示し、図18に示した結果から明らかなように本発明の透明導電積層体付基板(実施例10)は500~900nmの波長領域で約80%の透過率を示し、本発明の透明導電積層体付基板(実施例4、実施例7及び実施例10)はインジウム量を低減しているにも拘わらず、比較例13と同等の高い透過率を有するものであった。
以上説明したように、本発明によれば、インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を有する透明導電積層体付基板及びその製造方法を提供することが可能となる。
したがって、本発明の透明導電積層体付基板は、プラズマ発光表示素子、液晶表示素子、エレクトロルミネッセンス表示素子、太陽電池等の透明電極、赤外線吸収反射膜、防曇膜、電磁遮蔽膜等を構成する材料として有用である。
また、本発明によれば、透明導電膜中のスズの含有量を多くすることが可能であり、ひいては赤外領域での吸収がなく高い透過率を示す透明導電積層体付基板を提供することが可能となるため、太陽電池等の透明電極材料として特に有用である。
Claims (13)
- 基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板であって、
前記透明導電積層体は、酸化インジウム含有量が80~98質量%である第一の透明導電膜と前記第一の透明導電膜の表面上に積層された酸化インジウムの含有量が45~75質量%である第二の透明導電膜とを備え、且つ、前記第一の透明導電膜及び前記第二の透明導電膜が酸化インジウム結晶と同等の結晶構造を持つ結晶を有している透明導電積層体付基板。 - 前記第一の透明導電膜の厚さが6~50nmであり、前記第二の透明導電膜の厚さが50~150nmである請求項1に記載の透明導電積層体付基板。
- 前記第二の透明導電膜は、スズ、チタン、アンチモン、モリブデン、鉄、コバルト、亜鉛、セリウム、ガリウム、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、及びこれらの酸化物からなる群から選択される少なくとも1種を更に含有する透明導電膜である、請求項1又は2に記載の透明導電積層体付基板。
- 前記透明導電積層体は波長800~2500nmの全域における光の透過率が80%以上の積層体である、請求項1~3のうちのいずれか一項に記載の透明導電積層体付基板。
- CuKα線によるX線回折測定によって得られる、前記第一の透明導電膜及び前記第二の透明導電膜のX線回折パターンにおいて、2θ=21.5度付近、30.6度付近、35.5度付近、51.0度付近、及び60.7度付近からなる群から選択される少なくとも一に回折ピークが存在する、請求項1~4のうちのいずれか一項に記載の透明導電積層体付基板。
- 前記結晶は、In2O3結晶及びIn4Sn3O12結晶からなる群から選択される少なくとも一つの結晶である、請求項1~5のうちのいずれか一項に記載の透明導電積層体付基板。
- 基板の表面上に酸化インジウムを含有する透明導電積層体が形成された透明導電積層体付基板の製造方法であって、
前記基板の表面上に直接的に又は間接的に、酸化インジウム含有量が80~98質量%である第一の透明導電膜を形成する工程と、
前記第一の透明導電膜の表面上に酸化インジウムの含有量が45~75質量%である第二の透明導電膜を積層する工程と、
前記第二の透明導電膜を350~950Kの温度で加熱する工程と、
を含む透明導電積層体付基板の製造方法。 - 前記第二の透明導電膜を加熱する工程は、前記第二の透明導電膜を積層する工程において、前記基板及び前記第一の透明導電膜を350~950Kの温度で加熱することによって行われる、請求項7に記載の透明導電積層体付基板の製造方法。
- 前記第二の透明導電膜を加熱する温度は350~600Kである、請求項8に記載の透明導電積層体付基板の製造方法。
- 前記第二の透明導電膜を加熱する工程は、前記第二の透明導電膜を積層する工程の後に行われる、請求項7に記載の透明導電積層体付基板の製造方法。
- 前記第二の透明導電膜を加熱する温度は450~950Kである、請求項10に記載の透明導電積層体付基板の製造方法。
- 前記第一の透明導電膜の厚さが6~50nmであり、前記第二の透明導電膜の厚さが50~150nmである、請求項7~11のうちのいずれか一項に記載の透明導電積層体付基板の製造方法。
- 前記第二の透明導電膜は、スズ、チタン、アンチモン、モリブデン、鉄、コバルト、亜鉛、セリウム、ガリウム、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、及びこれらの酸化物からなる群から選択される少なくとも1種を含有する透明導電膜である、請求項7~12のうちのいずれか一項に記載の透明導電積層体付基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011551850A JP5780550B2 (ja) | 2010-01-28 | 2011-01-25 | 透明導電積層体付基板及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016790 | 2010-01-28 | ||
JP2010-016790 | 2010-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011093274A1 true WO2011093274A1 (ja) | 2011-08-04 |
Family
ID=44319261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051325 WO2011093274A1 (ja) | 2010-01-28 | 2011-01-25 | 透明導電積層体付基板及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5780550B2 (ja) |
TW (1) | TW201212047A (ja) |
WO (1) | WO2011093274A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013051500A1 (ja) * | 2011-10-05 | 2013-04-11 | 日東電工株式会社 | 透明導電性フィルム |
JP2020120034A (ja) * | 2019-01-25 | 2020-08-06 | トヨタ自動車株式会社 | 成膜装置と半導体装置の製造方法 |
JP2021173825A (ja) * | 2020-04-22 | 2021-11-01 | 日本放送協会 | 透過率可変素子及びその製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58169707A (ja) * | 1983-03-14 | 1983-10-06 | 日東電工株式会社 | 透明導電性膜 |
JPH08174747A (ja) * | 1994-12-27 | 1996-07-09 | Mitsui Toatsu Chem Inc | 透明導電性フィルム |
JPH1049306A (ja) * | 1996-08-02 | 1998-02-20 | Oji Paper Co Ltd | タッチパネル用透明導電性フィルム |
JP2004322628A (ja) * | 2003-04-11 | 2004-11-18 | Nippon Soda Co Ltd | 透明導電性積層体 |
JP2006244771A (ja) * | 2005-03-01 | 2006-09-14 | Nitto Denko Corp | 透明導電性フィルムおよびタッチパネル |
JP2008071531A (ja) * | 2006-09-12 | 2008-03-27 | Nitto Denko Corp | 透明導電性積層体及びそれを備えたタッチパネル |
-
2011
- 2011-01-25 JP JP2011551850A patent/JP5780550B2/ja not_active Expired - Fee Related
- 2011-01-25 WO PCT/JP2011/051325 patent/WO2011093274A1/ja active Application Filing
- 2011-01-27 TW TW100103100A patent/TW201212047A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58169707A (ja) * | 1983-03-14 | 1983-10-06 | 日東電工株式会社 | 透明導電性膜 |
JPH08174747A (ja) * | 1994-12-27 | 1996-07-09 | Mitsui Toatsu Chem Inc | 透明導電性フィルム |
JPH1049306A (ja) * | 1996-08-02 | 1998-02-20 | Oji Paper Co Ltd | タッチパネル用透明導電性フィルム |
JP2004322628A (ja) * | 2003-04-11 | 2004-11-18 | Nippon Soda Co Ltd | 透明導電性積層体 |
JP2006244771A (ja) * | 2005-03-01 | 2006-09-14 | Nitto Denko Corp | 透明導電性フィルムおよびタッチパネル |
JP2008071531A (ja) * | 2006-09-12 | 2008-03-27 | Nitto Denko Corp | 透明導電性積層体及びそれを備えたタッチパネル |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013051500A1 (ja) * | 2011-10-05 | 2013-04-11 | 日東電工株式会社 | 透明導電性フィルム |
JP2013093310A (ja) * | 2011-10-05 | 2013-05-16 | Nitto Denko Corp | 透明導電性フィルム |
US9142332B2 (en) | 2011-10-05 | 2015-09-22 | Nitto Denko Corporation | Transparent conductive film |
JP2020120034A (ja) * | 2019-01-25 | 2020-08-06 | トヨタ自動車株式会社 | 成膜装置と半導体装置の製造方法 |
US11280023B2 (en) | 2019-01-25 | 2022-03-22 | Denso Corporation | Film formation apparatus and method of manufacturing semiconductor device |
JP2021173825A (ja) * | 2020-04-22 | 2021-11-01 | 日本放送協会 | 透過率可変素子及びその製造方法 |
JP7412262B2 (ja) | 2020-04-22 | 2024-01-12 | 日本放送協会 | 透過率可変素子及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011093274A1 (ja) | 2013-06-06 |
TW201212047A (en) | 2012-03-16 |
JP5780550B2 (ja) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering | |
JP5561358B2 (ja) | 透明導電膜 | |
JP5621764B2 (ja) | 透明導電膜と透明導電膜積層体及びその製造方法、並びにシリコン系薄膜太陽電池 | |
JP5003600B2 (ja) | 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜、導電性積層体 | |
JP5005772B2 (ja) | 導電性積層体およびその製造方法 | |
TWI376701B (ja) | ||
WO2014115770A1 (ja) | 透明導電性基材ならびにその製造方法 | |
JP2011068993A (ja) | スパッタリングターゲット、透明導電性酸化物、およびスパッタリングターゲットの製造方法 | |
Ali et al. | Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes | |
JP2010157497A (ja) | 透明導電膜付き基板とその製造方法 | |
JP5170009B2 (ja) | 酸化インジウム系スパッタリングターゲットおよびその製造方法 | |
TW201423772A (zh) | 透明導電膜層積體及其製造方法、以及薄膜太陽電池及其製造方法 | |
Duan et al. | Structure, electrical and optical properties of TiNx films by atmospheric pressure chemical vapor deposition | |
Faure et al. | Co-sputtered ZnO: Si thin films as transparent conductive oxides | |
JP5780550B2 (ja) | 透明導電積層体付基板及びその製造方法 | |
Si-Ning et al. | Fabrication and characterization of the AZO/Ag/AZO transparent conductive films prepared by RF magnetron sputtering using powder targets | |
KR20120112716A (ko) | 산화물 막 및 그 제조 방법, 및 타겟 및 산화물 소결체의 제조 방법 | |
Wang et al. | Sol-gel-derived ZnO/Cu/ZnO multilayer thin films and their optical and electrical properties | |
JP2012106879A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
WO2014021374A1 (ja) | 酸化物焼結体およびそれを加工したタブレット | |
JP2012106880A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
Yu et al. | The optical and electrical properties of ZnO/Ag/ZnO films on flexible substrate | |
JP5761528B2 (ja) | 透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲット | |
JP2012140696A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
Martínez Salazar et al. | On the instructional model of a blended learning program for developing mathematical knowledge for teaching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11736987 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011551850 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11736987 Country of ref document: EP Kind code of ref document: A1 |