WO2011093200A1 - インバータ一体型駆動モジュール - Google Patents

インバータ一体型駆動モジュール Download PDF

Info

Publication number
WO2011093200A1
WO2011093200A1 PCT/JP2011/050941 JP2011050941W WO2011093200A1 WO 2011093200 A1 WO2011093200 A1 WO 2011093200A1 JP 2011050941 W JP2011050941 W JP 2011050941W WO 2011093200 A1 WO2011093200 A1 WO 2011093200A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
rotor
drive module
integrated drive
cooling air
Prior art date
Application number
PCT/JP2011/050941
Other languages
English (en)
French (fr)
Inventor
義浩 深山
盛幸 枦山
井上 正哉
美子 大開
達也 北村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112011100372T priority Critical patent/DE112011100372T5/de
Priority to CN201180007345.4A priority patent/CN102725943B/zh
Priority to US13/519,332 priority patent/US8866353B2/en
Priority to JP2011551822A priority patent/JP5312614B2/ja
Publication of WO2011093200A1 publication Critical patent/WO2011093200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • This invention relates to a drive module incorporating an inverter, and more particularly to a cooling structure such as a bearing and an inverter module.
  • an AC motor that is fixed to a rotating shaft and has a cooling fan and sucks a cooling air flow from one end wall of the motor housing, is positioned on the axially outer side of the one end wall of the motor housing.
  • a control device fixed to the motor housing, a cover attached to the motor housing so as to cover the control device, and a brush for flowing a field current to the rotor of the AC motor are provided (for example, refer to Patent Document 1). ).
  • the conventional inverter-integrated AC motor uses an inner rotor, the amount of magnetic flux generated in the rotor cannot be increased due to the structural limitations of the rotor, and the torque per unit length cannot be increased. That is, when the outer diameter of the motor is constant, the inner rotor has a smaller surface area facing the stator than the outer rotor, and the amount of generated magnetic flux is smaller than that of the outer rotor.
  • an outer rotor In order to increase the torque per unit length, it is preferable to use an outer rotor.
  • the rotor diameter is larger and the rotor weight is heavier than that of the inner rotor, so that the load on the bearing that pivotally supports the rotor is increased and the amount of heat generated in the bearing is increased.
  • the inverter since the inverter is built in, the flow path of the cooling air into the motor is limited, so that the bearing is not sufficiently cooled, resulting in a new problem that the life of the bearing is shortened.
  • the present invention has been made to solve the above-described problems, and enables the bearing to be cooled with cooling air that has cooled the inverter module, thereby obtaining an inverter integrated drive module that can effectively cool the inverter module and the bearing. With the goal.
  • An inverter-integrated drive module includes an annular stator core arranged in a circumferential direction so that a slot portion opens to the outer peripheral side, a stator having a stator coil wound around the stator core, and radial ribs on the stator core A bearing box held at the axial center position of the stator core via the rotor, a cylindrical rotor yoke portion, a bottom surface portion extending from one end of the rotor yoke portion toward the inner diameter side, and an N pole and an S pole.
  • a motor composed of a rotor coaxially attached to the stator so as to be enclosed, and an axial direction of the rotor
  • a fan disposed on one side so as to be able to circulate with the rotor, a flat fin base, and each of the fin bases are vertically provided on the back surface of the fin base and extend in the radial direction.
  • a plurality of heat sinks having a plurality of heat dissipating fins arranged in the circumferential direction, and a plurality of heat sinks mounted on the surface of the fin base so as to be positioned on the disposition region of the heat dissipating fins and supplying AC power to the stator coil
  • An inverter module including the inverter unit. Then, the motor is attached to the bracket by fixing the stator core to one surface of the flat plate-shaped mounting portion of the bracket, and the inverter module is disposed via a spacer with the radiating fin facing the other surface of the mounting portion.
  • the fin base is fixed to the mounting portion and attached to the bracket.
  • a first inverter side ventilation hole is drilled in a portion of the bracket facing the bearing, and a first rotor side ventilation hole is drilled in a portion of the bottom surface portion facing the bearing, Rotational drive allows the first inverter side ventilation hole and the radial outside of the heat sink to communicate with each other and is formed between adjacent heat radiating fins.
  • a first cooling air ventilation path is formed which is formed inside and communicates with the first inverter side ventilation hole and the first rotor side ventilation hole and includes an axial ventilation path through which cooling air flows in the axial direction.
  • the inverter unit and the bearing are cooled by the cooling air flowing in the first cooling air passage. Therefore, even in an inverter integrated drive module using an outer rotor, an excessive increase in temperature of the inverter unit and the bearing is suppressed, so that the life of the inverter unit and the bearing can be extended.
  • FIG. 1 is an exploded perspective view showing an inverter-integrated drive module according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional perspective view showing the inverter-integrated drive module according to Embodiment 1 of the present invention
  • FIG. Sectional drawing which shows the rotor which comprises the motor applied to the inverter integrated drive module which concerns on Embodiment 1 of invention
  • FIG. 4 shows the motor applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a front view of a state in which the stator support member of the inverter-integrated drive module according to Embodiment 1 of the present invention is attached to the bracket, as viewed from one side of the bracket.
  • FIG. 7 is a rear view showing a heat sink constituting the inverter module applied to the inverter integrated drive module according to the first embodiment of the present invention.
  • FIG. 8 is an inverter integrated drive module according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional perspective view illustrating the flow of cooling air in the inverter-integrated drive module according to Embodiment 1 of the present invention.
  • an inverter-integrated drive module 100 is an inverter module that is attached to a bracket 1 and one surface of the bracket 1 and converts DC power supplied from an external DC power source (not shown) into AC power. 7 and a motor 14 that is attached to the other surface of the bracket 1 so as to face the inverter module 7 and is driven to rotate by being supplied with AC power converted by the inverter module 7.
  • the bracket 1 is manufactured by, for example, bending a steel plate into an L shape, and is used for mounting the flat mounting portion 2 that supports the inverter module 7 and the motor 14 and the inverter integrated drive module 100 to a mounting base (not shown).
  • the mounting portion 2 is provided with a first inverter side ventilation hole 4 that constitutes a ventilation path for cooling the bearing 30.
  • the mounting portion 2 has a second inverter side ventilation hole 5 constituting a ventilation path for cooling the stator coil 25 on the same circumference centered on the hole center of the first inverter side ventilation hole 4. Eighteen holes are drilled at a pitch.
  • the 1st inverter side ventilation hole 4 is formed in the internal diameter equivalent to the stator support part 28 of the stator support member 26 mentioned later.
  • the second inverter side ventilation hole 5 is formed so as to be opposed to each of a slot portion 24 defined by a stator yoke portion 22 and a tooth portion 23 adjacent to each other.
  • a screw hole 43 for mounting the heat sink is formed in the mounting portion 2 as shown in FIG.
  • inverter units 8 are equiangular pitch on the same circumference centering on the hole center of the through hole 10a so that it may correspond to the arrangement
  • An array is implemented. Note that the radial position of the inverter unit 8 mounted on the surface of the fin base 10 substantially matches the radial position of the slot portion 24. Further, as shown in FIG. 7, the spacer 12 having the same height as the radiation fins 11 protrudes from the space on the back surface of the fin base 10 formed by thinning the group of radiation fins 11 located between the inverter units 8. Has been. Further, an insertion hole 10 b for attaching a heat sink is formed so as to penetrate the fin base 10 and the spacer 12, and an insertion hole 10 c for inserting a wiring is formed so as to penetrate the fin base 10.
  • the spacer 12 is not limited to the same height as the heat radiating fins 11 and may be formed higher than the heat radiating fins 11. Further, the number of the spacers 12 is not limited to six, and it is sufficient that the heat sink 9 is stably attached to one surface of the attachment portion 2 of the bracket 1. Furthermore, all spacers 12 need not have the same shape.
  • the motor 14 is produced, for example, by pressing a magnetic material such as iron into a cylindrical shape with a bottom having a cylindrical rotor yoke portion 17 and a bottom surface portion 18 extending inward from one axial end of the rotor yoke portion 17.
  • the rotor 16 having the bottom surface portion 18 fixed to the shaft 15 at the axial center position of the rotor yoke portion 17, the permanent magnet 19 fixed to the inner peripheral surface of the rotor yoke portion 17 to form a magnetic pole, and a magnetic material such as iron, for example
  • a stator yoke part 22 made of a laminate of steel plates and made into a cylindrical shape, and 18 pieces projecting radially outward from the outer peripheral surface of each stator yoke part 22 and arranged at equiangular pitches in the circumferential direction
  • the stator core 21 having the teeth portion 23, the stator 20 having the stator coil 25 wound around the teeth portion 23, the stator 20, and the stator 20 are supported.
  • a stator support member 26 for supporting the shift 15, and a centrifugal fan 31 mounted on the outer peripheral surface of the bottom portion 18 of the rotor 16.
  • the permanent magnet 19 is, for example, a sintered rare earth magnet.
  • a ring-shaped spacer 45 made of a nonmagnetic material such as stainless steel is fitted to the rotor yoke portion 17 so as to contact the inner peripheral surface of the bottom surface portion 18.
  • the 16 permanent magnets 19 are in contact with the spacer 45 and are arranged at equiangular pitches in the circumferential direction so that N poles and S poles are alternately arranged, and are fixed to the inner peripheral surface of the rotor yoke portion 17 by adhesion or the like. Has been.
  • a ring-shaped magnet holder 46 made of a nonmagnetic material such as stainless steel is press-fitted into the rotor yoke portion 17 so as to press the permanent magnet 19 toward the spacer 45, and is welded as necessary. It is fixed to. Thereby, the permanent magnet 19 is positioned in the axial direction, and the permanent magnet 19 is prevented from coming off. Further, leakage of magnetic flux from the axial end surface of the permanent magnet 19 is suppressed.
  • the stator support member 26 has a cylindrical bearing box 27, a cylindrical stator support portion 28, and radial directions at an equiangular pitch from the outer peripheral surface of the bearing box 27, and an axial direction. And has six radial ribs 29 connecting the bearing box 27 and the stator support 28.
  • the rotor 16 is manufactured by press-molding a magnetic material such as iron, but the bottom surface portion 18 is not necessarily made of a magnetic material. In other words, the rotor 16 only needs to have at least the rotor yoke portion 17 made of a magnetic material. Further, although the permanent magnet 19 is bonded to the inner peripheral surface of the rotor yoke portion 17, the spacer 45 and the magnet presser 46 may be omitted if the bonding strength between the permanent magnet 19 and the rotor yoke portion 17 is sufficient.
  • the permanent magnet 17 is directly attached to the inner peripheral surface of the rotor yoke portion 17, but it is made of a magnetic material such as iron, and 16 permanent magnets 19 are embedded so as to be arranged at an equiangular pitch on the same circumference.
  • the ring body may be sandwiched between the spacer 45 and the magnet presser 46 and press-fitted into the rotor yoke portion 17.
  • stator support portion 28 is press-fitted into the stator yoke portion 22 and welded as necessary, so that the stator 20 and the stator support member 26 are integrated.
  • the bearing 30 is fitted into the bearing box 27.
  • the shaft 15 is press-fitted into the axial center position of the bottom surface portion 18 of the rotor 16 to which the centrifugal fan 31 is fixed, and welded as necessary, so that the rotor 16 and the shaft 15 are integrated.
  • the shaft 15 is press-fitted into the bearing 30, and the rotor 16 is assembled to the stator 20 so that the rotor yoke portion 17 covers the outer periphery of the stator 20, thereby manufacturing the motor 14.
  • the motor 14 is an outer rotor type three-phase motor having 16 poles and 18 slots.
  • the six inverter units 8 are arranged on the surface of the fin base 10 at an equiangular pitch on the same circumference centering on the hole center of the through hole 10a so as to correspond to the region where the heat radiating fins 11 are disposed.
  • the inverter module 7 is manufactured by arranging and mounting.
  • the shaft center of the bearing box 27 is aligned with the hole center of the first inverter side ventilation hole 4, and the screw 40 is inserted through the mounting portion 2 to be formed on the stator support member 26.
  • the motor 14 is attached to the other surface of the attachment portion 2 of the bracket 1 by being fastened to the screw hole 41.
  • the circumferential position of the stator support member 26 is adjusted so that the slot portion 24 faces the second inverter side ventilation hole 5.
  • the inverter module 7 is attached to one surface of the attachment portion 2 of the bracket 1 by being fastened in the hole 43.
  • a part of the cooling air that has flowed inward in the radial direction from the outside of the heat sink 9 through the radiation fins 11 passes through the second inverter side ventilation hole 5 as shown by the arrow in FIG. 20, flows in the slot 24 in the axial direction, passes through the second rotor side ventilation hole 35, flows out to the outer peripheral side of the bottom surface portion 18 of the rotor 16, and radially between the bottom surface portion 18 and the base portion 32.
  • a third cooling air passage that flows outward is formed.
  • heat generated by the upper arm switching element and the lower arm switching element of the inverter unit 8 is transmitted to the heat radiating fins 11 through the fin base 10 and is radiated to the cooling air flowing between the heat radiating fins 11.
  • a part of the heat generated by the upper arm switching element and the lower arm switching element transmitted to the heat radiating fin 11 is transmitted to the mounting portion 2 of the bracket 1 and radiated from the surface of the bracket 1.
  • the heat generated in the bearing 30 is radiated to the cooling air flowing in the axial direction through the stator support portion 28.
  • the heat generated in the stator coil 25 is radiated to the cooling air flowing in the axial direction in the slot portion 24.
  • the heat generated in the wiring 36 is radiated to the cooling air flowing between the radiation fins 11 and the cooling air flowing through the second inverter side ventilation hole 5.
  • the cooling air flows from the radially outer side of the heat sink 9 through the radiating fins 11 to the radially inner side, and then passes through the first inverter side. It flows in the axial direction from the air hole 4 through the stator support portion 28, flows out to the outer peripheral side of the bottom surface portion 18 of the rotor 16 through the first rotor side air flow hole 34, and the diameter between the bottom surface portion 18 and the base portion 32 is reduced.
  • a first cooling air passage that flows outward in the direction is formed. Therefore, the inverter unit 8 and the bearing 30 are cooled by the cooling air flowing in the first cooling air passage.
  • a part of the cooling air that has flowed inward in the radial direction from between the radial outside of the heat sink 9 through the radiation fins 11 flows from the second inverter side ventilation hole 5 to the stator 20 side, and passes through the slot portion 24.
  • a third cooling air ventilation path that flows in the axial direction flows out to the outer peripheral side of the bottom surface portion 18 of the rotor 16 through the second rotor side ventilation hole 35, and flows radially outward between the bottom surface portion 18 and the base portion 32. Is configured. Therefore, since an excessive temperature rise of the stator coil 25 is suppressed, an increase in loss due to the temperature rise is suppressed, and the motor output characteristics are improved.
  • FIG. FIG. 10 is a diagram illustrating the radial positional relationship between the stator and the inverter module in the inverter-integrated drive module according to Embodiment 2 of the present invention.
  • the inverter unit 8 is mounted on the surface of the fin base 10 of the heat sink 9 so as to be positioned on the radially outer side of the second inverter side ventilation hole 5.
  • Other configurations are the same as those in the first embodiment.
  • the inverter unit 8 is mounted on the surface of the fin base 10 so as to be positioned on the radially outer side of the second inverter side ventilation hole 5. Therefore, since all of the cooling air flowing between the radiation fins 11 is used for cooling the inverter unit 8, the inverter unit 8 can be effectively cooled.
  • the mounting portion 2A of the bracket 1A has the second inverter side ventilation hole 5 in the mounting portion 2 of the bracket 1 omitted, and has a through hole (not shown) for wiring insertion.
  • the axial length of the rotor yoke portion 17A of the rotor 16A is shorter than the axial length of the rotor yoke portion 17 of the rotor 16.
  • Other configurations are the same as those in the first embodiment.
  • the axial length of the rotor yoke portion 17A is shortened, when the motor 14A is mounted on the other surface of the mounting portion 2A of the bracket 1A, the rotor yoke portion 17A and the mounting portion are mounted. A gap is formed between 2A.
  • the cooling air flows by the rotation of the centrifugal fan 31 from the radially outer side of the heat sink 9 through the radiating fins 11 to the radially inner side, and then the first inverter side. It flows in the axial direction from the ventilation hole 4 through the stator support portion 28, flows out to the outer peripheral side of the bottom surface portion 18 of the rotor 16 ⁇ / b> A through the first rotor side ventilation hole 34, and between the bottom surface portion 18 and the base portion 32. A first cooling air passage that flows radially outward is formed. Further, as indicated by arrows in FIG.
  • the axial length of the rotor yoke portion 17A is shortened. Therefore, when the motor 14A is attached to the other surface of the attachment portion 2 of the bracket 1, the rotor yoke portion 17A and the attachment portion are mounted. A gap is formed between the two.
  • the cooling air flows by the rotation of the centrifugal fan 31 from the radially outer side of the heat sink 9 through the radiating fins 11 to the radially inner side, and then the first inverter side. It flows in the axial direction from the ventilation hole 4 through the stator support portion 28, flows out to the outer peripheral side of the bottom surface portion 18 of the rotor 16 ⁇ / b> A through the first rotor side ventilation hole 34, and between the bottom surface portion 18 and the base portion 32. A first cooling air passage that flows radially outward is formed. Further, as indicated by an arrow in FIG.
  • the wiring 36 passes through the insertion hole 10c in the axial direction. And is pulled out to the motor 14 side without passing between the radiating fins 11. Therefore, since the cooling air flows between the radiating fins 11 without being obstructed by the wiring 36, the amount of cooling air used for cooling the inverter unit 8 and the bearing 30 increases, and the inverter unit 8 and the bearing 30 are effective. Can be cooled.
  • FIG. FIG. 15 is a principal rear view showing a heat sink applied to an inverter-integrated drive module according to Embodiment 7 of the present invention.
  • FIG. 16 is a principal rear view showing a heat sink applied to an inverter-integrated drive module according to Embodiment 8 of the present invention.
  • the heat sink 9 ⁇ / b> D is bent so that the removed end portion on the radially outer side of the radiating fin 11 from which the predetermined region in the radial direction is removed is directed toward the insertion hole 10 c.
  • Other configurations are the same as those in the seventh embodiment.
  • the cooling air is radiated from the radiating fin. 11 flows inward in the radial direction, and flows into the fin removal space 37 from the removal end of the radiating fin 11 toward the insertion hole 10c. Therefore, the cooling air used for cooling the wiring 36 is further increased, and the wiring 36 can be cooled more effectively.
  • FIG. 17 is a main part rear view showing a heat sink applied to an inverter-integrated drive module according to Embodiment 9 of the present invention.
  • the insulating sheath 38 of the wiring 36 is formed in an elliptical cross section.
  • the heat sink 9E has an elliptical shape in which the cross-sectional shape of the insertion hole 10c matches the cross-sectional shape of the insulating sheath 38.
  • the insulating sheath 38 of the wiring 36 inserted through the insertion hole 10c is disposed in the fin removal space 37 with the major axis having an elliptical cross section directed in the radial direction.
  • Other configurations are the same as those in the seventh embodiment.
  • the fin removal space of the radiation fin 11 is arranged.
  • the cooling air flowing through 37 is rectified by the insulating sheath 38. Therefore, the pressure loss due to the wiring 36 in the fin removal space 37 can be reduced, and the amount of cooling air flowing between the radiating fins 11 is ensured. Therefore, the inverter unit 8 and the bearing caused by inserting the wiring 36 are used. A decrease in the ability to cool 30 can be suppressed.
  • the insulating sheath 38 is formed in an elliptical cross section.
  • the sectional shape of the insulating sheath is not limited to an elliptical shape, and the front end side and the rear end of the long axis. It is sufficient that the side has an elongated shape with a curve that gradually narrows the width in the end axis direction toward the front end and the rear end in the long axis direction.
  • a plurality of rectangular plate-like thin plate-like fins 47 are erected at right angles to both circumferential side surfaces of each radial rib 29 and extend in the axial direction.
  • Other configurations are the same as those in the first embodiment.
  • the stator support member 26B configured in this manner is formed such that strip-shaped thin fins 48 having a circular arc cross section are connected between the radial ribs 29 adjacent in the circumferential direction, and the heat dissipation area is increased. Therefore, the heat generated in the stator coil 25 and the heat generated in the bearing 30 are transmitted to the stator support member 26A and radiated from the thin plate fins 48 to the cooling air flowing in the stator support member 26B. Therefore, also in the twelfth embodiment, excessive temperature rise of the stator coil 25 and the bearing 30 is suppressed, and the motor output characteristics are improved and the life of the bearing 30 is extended.
  • the centrifugal fan 31 is used.
  • the fan is not limited to the centrifugal fan 31 and is opposed to the outer peripheral surface of the bottom surface portion 18 of the rotors 16 and 16A.
  • the cooling air can be discharged from the stator support portions 26, 26A, 26B and the slot portion 24.
  • an axial fan may be used.
  • FIG. FIG. 21 is a sectional perspective view showing an inverter-integrated drive module according to Embodiment 13 of the present invention.
  • the axial fan 50 is disposed so as to be fixed to the extending portion of the shaft 15 from the bottom surface portion 18 of the rotor 16 and to face the outer peripheral surface of the bottom surface portion 18.
  • the axial fan 50 is rotationally driven together with the shaft 15 so as to send cooling air from the first rotor side ventilation hole 34 into the stator support portion 38 and from the second rotor side ventilation hole 35 to the slot portion 24. It is configured.
  • the thirteenth embodiment is configured in the same manner as the first embodiment except that an axial fan 50 is used instead of the centrifugal fan 31.
  • the cooling air is caused to enter the stator support portion 38 from the first rotor-side ventilation hole 34 as indicated by an arrow in FIG. Then, the air flows through the stator support portion 38 in the axial direction, then flows from the first inverter side ventilation hole 4 to the inner diameter side of the heat radiation fin 11, and flows between the heat radiation fins 11 from the inner diameter side to the outer radial direction.
  • a first cooling air passage that flows outward in the radial direction is formed.
  • the cooling air is used for cooling the bearing 30 and the stator coil 25 before being used for cooling the inverter unit 8
  • the bearing 30 and the stator coil are used. 25 is effectively cooled. Therefore, when an inverter unit manufactured using a high heat-resistant semiconductor element such as SiC is used, the heat resistance temperature of the bearing 30 and the stator coil 25 is lower than that of the inverter unit. It is effective.
  • FIG. FIG. 22 is a cross-sectional perspective view showing an inverter-integrated drive module according to Embodiment 14 of the present invention.
  • the axial fan 50 is disposed so as to be fixed to the extending portion from the bottom surface portion 18 of the rotor 16 of the shaft 15 and to face the outer peripheral surface of the bottom surface portion 18.
  • the fourteenth embodiment is configured in the same manner as the third embodiment except that an axial fan 50 is used instead of the centrifugal fan 31.
  • the cooling air flows from the first rotor side ventilation hole 34 into the stator support portion 38 as indicated by arrows in FIG. Then, the air flows through the stator support portion 38 in the axial direction, then flows from the first inverter side ventilation hole 4 to the inner diameter side of the heat radiation fin 11, and flows between the heat radiation fins 11 from the inner diameter side to the outer radial direction.
  • a first cooling air passage that flows outward in the radial direction is formed.
  • the cooling air is used for cooling the bearing 30 before being used for cooling the inverter unit 8, so that the bearing 30 is effectively cooled. . Therefore, when an inverter unit manufactured using a high heat-resistant semiconductor element such as SiC is used, the heat-resistant temperature of the bearing 30 is lower than that of the inverter unit, so that this configuration is effective. .
  • the axial fan 50 is used instead of the centrifugal fan 31 in the first and third embodiments.
  • the axial fan 50 is used instead of the centrifugal fan 31.
  • the flow fan 50 may be used.
  • the axial fan 50 when the axial fan 50 is used in place of the centrifugal fan 31, the end of the radiating fin 11 located on the inner diameter side of the fin removing region 37 is inserted into the insertion hole 10c. It is preferable from the viewpoint of the cooling property of the wiring 36 to bend toward the front.
  • the axial fan 50 is used.
  • the wiring is passed through the second inverter side ventilation hole formed in the mounting portion of the bracket in order to flow the cooling air through the slot portion.
  • a dedicated hole for inserting the wiring may be newly formed in the mounting portion of the bracket.
  • the inverter unit is composed of one upper arm switching element and one lower arm switching element.
  • the inverter unit includes a plurality of inverter units connected in parallel. You may comprise from the several lower arm switching element connected in parallel with the upper arm switching element.
  • the second inverter side ventilation hole is formed in the mounting portion so as to be opposed to the slot portion in the axial direction. It is not necessary to provide all the slot portions so as to be opposed to each other in the axial direction, and the number of the second inverter side ventilation holes may be appropriately set in consideration of the temperature rise of the stator coil.

Abstract

 この発明は、インバータモジュールを冷却した冷却風で軸受を冷却できるようにし、インバータモジュールと軸受とを効果的に冷却できるインバータ一体型駆動モジュールを得る。 この発明では、第1インバータ側通風穴4が、軸受30と相対するフィンベース10の部位に穿設され、第1ロータ側通風穴34が、軸受30と相対する底面部18の部位に穿設されている。そこで、遠心ファン31の回転駆動により、冷却風が、放熱フィン11間を径方向内方に流れ、ついで、第1インバータ側通風穴4から取付部2の一面側に流れ、ステータコア21の内部を軸方向に流れた後、第1ロータ側通風穴34から底面部18と基部32との間に流出し、その後底面部18と基部32との間を径方向外方に流れる第1冷却風通風路が構成される。

Description

インバータ一体型駆動モジュール
 この発明は、インバータを内蔵した駆動モジュールに関し、特に軸受、インバータモジュールなどの冷却構造に関するものである。
 従来のインバータ一体型交流モータでは、回転軸に固定され、冷却ファンを有してモータハウジングの一端壁から冷却空気流を吸入する交流モータと、モータハウジングの一端壁の軸方向外側に位置してモータハウジングに固定される制御装置と、制御装置を覆うようにモータハウジングに取り付けられるカバーと、交流モータのロータに界磁電流を流すためのブラシと、を備えている(例えば、特許文献1参照)。
特許第4123436号公報
 従来のインバータ一体型交流モータは、インナーロータを用いているので、ロータの構造上の制約から、ロータで発生する磁束量を多くできず、単位長さ当たりのトルクを大きくできない。つまり、モータの外径を一定とした場合、インナーロータはアウターロータに比べてステータに対向する表面積が小さくなり、発生する磁束量がアウターロータに比べて少なくなる。
 このように、単位長さ当たりのトルクを大きくするためには、アウターロータを用いることが好ましい。アウターロータを用いた場合、インナーロータに比べ、ロータの直径が大きくなり、ロータの重量が重くなるので、ロータを軸支する軸受の負担が大きくなり、軸受での発熱量が多くなる。しかし、インバータが内蔵されるため、モータ内への冷却風の流入路が制限されるので、軸受の冷却が不十分となり、軸受の寿命が短くなってしまうという新たな不具合が生じる。
 この発明は、上記課題を解決するためになされたもので、インバータモジュールを冷却した冷却風で軸受を冷却できるようにし、インバータモジュールと軸受とを効果的に冷却できるインバータ一体型駆動モジュールを得ることを目的とする。
 この発明によるインバータ一体型駆動モジュールは、スロット部が外周側に開口するように周方向に配列された円環状のステータコア、および該ステータコアに巻装されたステータコイルを有するステータ、上記ステータコアに放射状リブを介して該ステータコアの軸心位置に保持されるベアリングボックス、および円筒状のロータヨーク部、該ロータヨーク部の一端から内径側に延設された底面部、およびN極とS極とが該ロータヨーク部の内周面に周方向に交互に配列されてなる複数の磁極を有し、該底面部が上記ベアリングボックスに収納された軸受に支持されたシャフトに固着されて、該ロータヨーク部が上記ステータコアを内包するように上記ステータに同軸に取り付けられたロータから構成されるモータと、上記ロータの軸方向一側に上記底面部に相対して該ロータと供回り可能に配設されたファンと、平板状のフィンベース、およびそれぞれ該フィンベースの裏面に垂直に立設されて径方向に延在して、周方向に配列された複数の放熱フィンを有するヒートシンク、およびそれぞれ該フィンベースの表面に該放熱フィンの配設領域上に位置するように実装され、上記ステータコイルに交流電力を供給する複数のインバータユニットから構成されるインバータモジュールと、を備える。そして、上記モータが、上記ステータコアをブラケットの平板状の取付部の一面に固着して該ブラケットに取り付けられ、上記インバータモジュールが、上記放熱フィンを上記取付部の他面に向けてスペーサを介して上記フィンベースを該取付部に固着して上記ブラケットに取り付けられている。さらに、第1インバータ側通風穴が、上記軸受と相対する上記ブラケットの部位に穿設され、第1ロータ側通風穴が、上記軸受と相対する上記底面部の部位に穿設され、上記ファンの回転駆動により、隣り合う上記放熱フィン間に形成されて上記第1インバータ側通風穴と上記ヒートシンクの径方向外方とを連通し、冷却風が径方向に流れる径方向通風路、および上記ステータコアの内部に形成されて上記第1インバータ側通風穴と上記第1ロータ側通風穴とを連通し、冷却風が軸方向に流れる軸方向通風路からなる第1冷却風通風路が構成される。
 この発明によれば、インバータユニットと軸受とが第1冷却風通風路内を流れる冷却風により冷却される。そこで、アウターロータを用いたインバータ一体型駆動モジュールにおいても、インバータユニットおよび軸受の過度の温度上昇が抑制されるので、インバータユニットおよび軸受の長寿命化が図られる。
この発明の実施の形態1に係るインバータ一体型駆動モジュールを示す分解斜視図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールを示す断面斜視図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるモータを構成するロータを示す断面図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるモータを構成するステータ支持部材を示す斜視図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールのステータ支持部材をブラケットに取り付けた状態をブラケットの一面側から見た正面図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールにおけるステータとブラケットとの径方向の位置関係を説明する図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるインバータモジュールを構成するヒートシンクを示す背面図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールにおけるインバータユニットとステータコイルとの間の電気的な接続方法を説明する要部断面図である。 この発明の実施の形態1に係るインバータ一体型駆動モジュールにおける冷却風の流れを説明する断面斜視図である。 この発明の実施の形態2に係るインバータ一体型駆動モジュールにおけるステータとインバータモジュールとの径方向の位置関係を説明する図である。 この発明の実施の形態3に係るインバータ一体型駆動モジュールにおける冷却風の流れを説明する断面斜視図である。 この発明の実施の形態4に係るインバータ一体型駆動モジュールにおける冷却風の流れを説明する断面斜視図である。 この発明の実施の形態5に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。 この発明の実施の形態6に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。 この発明の実施の形態7に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。 この発明の実施の形態8に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。 この発明の実施の形態9に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。 この発明の実施の形態10に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。 この発明の実施の形態11に係るインバータ一体型駆動モジュールに適用されるモータを構成するステータ支持部材を示す正面図である。 この発明の実施の形態12に係るインバータ一体型駆動モジュールに適用されるモータを構成するステータ支持部材を示す正面図である。 この発明の実施の形態13に係るインバータ一体型駆動モジュールを示す断面斜視図である。 この発明の実施の形態14に係るインバータ一体型駆動モジュールを示す断面斜視図である。
 以下、本発明によるインバータ一体型駆動モジュールの好適な実施の形態につき図面を用いて説明する。
 実施の形態1.
 図1はこの発明の実施の形態1に係るインバータ一体型駆動モジュールを示す分解斜視図、図2はこの発明の実施の形態1に係るインバータ一体型駆動モジュールを示す断面斜視図、図3はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるモータを構成するロータを示す断面図、図4はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるモータを構成するステータ支持部材を示す斜視図、図5はこの発明の実施の形態1に係るインバータ一体型駆動モジュールのステータ支持部材をブラケットに取り付けた状態をブラケットの一面側から見た正面図、図6はこの発明の実施の形態1に係るインバータ一体型駆動モジュールにおけるステータとブラケットとの径方向の位置関係を説明する図、図7はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるインバータモジュールを構成するヒートシンクを示す背面図、図8はこの発明の実施の形態1に係るインバータ一体型駆動モジュールにおけるインバータユニットとステータコイルとの間の電気的な接続方法を説明する要部断面図、図9はこの発明の実施の形態1に係るインバータ一体型駆動モジュールにおける冷却風の流れを説明する断面斜視図である。
 図1および図2において、インバータ一体型駆動モジュール100は、ブラケット1と、ブラケット1の一面に取り付けられ、外部の直流電源(図示せず)から供給された直流電力を交流電力に変換するインバータモジュール7と、インバータモジュール7と相対するようにブラケット1の他面に取り付けられ、インバータモジュール7で変換された交流電力が供給されて回転駆動するモータ14と、を備えている。
 ブラケット1は、例えば、鋼板をL状に折り曲げて作製され、インバータモジュール7およびモータ14を支持する平板状の取付部2と、インバータ一体型駆動モジュール100を取付台(図示せず)に取り付けるための取付腕3と、を有する。そして、取付部2には、軸受30を冷却する通風路を構成する第1インバータ側通風穴4が穿設されている。さらに、取付部2には、ステータコイル25を冷却する通風路を構成する第2インバータ側通風穴5が、第1インバータ側通風穴4の穴中心を中心とする同一円周上に、等角ピッチで18個穿設されている。ここで、第1インバータ側通風穴4は、後述するステータ支持部材26のステータ支持部28と同等の内径に形成されている。第2インバータ側通風穴5は、後述するステータヨーク部22と隣り合うティース部23とにより画成されるスロット部24のそれぞれに相対するように形成されている。また、ヒートシンク取付用のねじ穴43が、図5に示されるように、取付部2に形成されている。
 インバータモジュール7は、例えば、6個のインバータユニット8と、アルミニウムや銅などで作製されたヒートシンク9と、を有する。インバータユニット8は、例えば、上アームスイッチング素子と下アームスイッチング素子とを絶縁性樹脂で封止して構成されている。ヒートシンク9は、貫通穴10aを有するリング平板状のフィンベース10と、それぞれ延在方向を径方向としてフィンベース10の裏面に垂直に立設されて、等角ピッチで放射状に配列された多数枚の放熱フィン11と、を有する。
 そして、6個のインバータユニット8が、フィンベース10の表面上に、放熱フィン11の配設領域に対応するように、貫通穴10aの穴中心を中心とする同一円周上に等角ピッチに配列して実装されている。なお、フィンベース10の表面上に実装されたインバータユニット8の径方向位置は、スロット部24の径方向位置に略一致している。また、放熱フィン11と同じ高さのスペーサ12が、図7に示されるように、インバータユニット8間に位置する放熱フィン11の群を間引いて形成されたフィンベース10の裏面のスペースに突設されている。また、ヒートシンク取付用の挿通穴10bがフィンベース10およびスペーサ12を貫通するように形成され、配線挿通用の挿通穴10cがフィンベース10を貫通するように形成されている。
 なお、スペーサ12は、放熱フィン11と同じ高さに限定されず、放熱フィン11より高く形成されてもよい。また、スペーサ12の個数は、6個に限定されず、ヒートシンク9をブラケット1の取付部2の一面に安定して取り付けられればよい。さらに、全てのスペーサ12は、同じ形状である必要はない。
 モータ14は、例えば、鉄などの磁性材料をプレス成形して、円筒状のロータヨーク部17、およびロータヨーク部17の軸方向一端から内方に延在する底面部18を有する有底円筒状に作製され、ロータヨーク部17の軸心位置で底面部18をシャフト15に固着されたロータ16と、ロータヨーク部17の内周面に固着されて磁極を構成する永久磁石19と、例えば、鉄などの磁性鋼板を積層して作製され、円筒状に作製されたステータヨーク部22、およびそれぞれステータヨーク部22の外周面から径方向外方に突設され、周方向に等角ピッチで配列された18個のティース部23を有するステータコア21、およびティース部23に巻回されたステータコイル25を有するステータ20と、ステータ20を支持するとともに、シャフト15を軸支するステータ支持部材26と、ロータ16の底面部18の外周面に取り付けられる遠心ファン31と、を備えている。
 ロータ16の底面部18には、図3に示されるように、軸受30を冷却する通風路を構成する第1ロータ側通風穴34が、ロータヨーク部17の軸心を中心とする同一円周上に、等角ピッチで18個穿設され、ステータコイル25を冷却する通風路を構成する第2ロータ側通風穴35が、ロータヨーク部17の軸心を中心とする同一円周上に、等角ピッチで18個穿設されている。ここで、第1ロータ側通風穴34は、径方向に関し、ベアリングボックス27とステータ支持部28との間に位置するように形成されている。また、第2ロータ側通風穴35は、径方向に関し、ステータヨーク部22と隣り合うティース部23とにより画成されるスロット部24と相対する位置関係に形成している。
 永久磁石19は、例えば焼結希土類磁石である。ステンレスなどの非磁性材料で作製されたリング状のスペーサ45が、底面部18の内周面に接するようにロータヨーク部17に嵌着されている。そして、16個の永久磁石19が、スペーサ45に接して、N極とS極とが交互に並ぶように周方向に等角ピッチに配列され、ロータヨーク部17の内周面に接着などにより固着されている。さらに、ステンレスなどの非磁性材料で作製されたリング状の磁石押さえ46が、永久磁石19をスペーサ45側に押圧するようにロータヨーク部17に圧入され、必要に応じて溶接されて、ロータヨーク部17に固着されている。これにより、永久磁石19の軸方向の位置決めがなされ、永久磁石19の抜けが防止されている。さらに、永久磁石19の軸方向端面からの磁束の漏れが抑えられる。
 ステータ支持部材26は、図4に示されるように、円筒状のベアリングボックス27、円筒状のステータ支持部28、およびベアリングボックス27の外周面から周方向に等角ピッチで放射状に、かつ軸方向に延在し、ベアリングボックス27とステータ支持部28とを連結する6本の放射状リブ29を有する。
 遠心ファン31は、平板リング状に作製された基部32と、基部32の一面に周方向に並んで配設されたブレード33と、を有する。そして、遠心ファン31は、基部32の一面を底面部18の外周面に向けて、底面部18との間に所定の隙間を確保してロータ16に固着されている。
 なお、ロータ16は、例えば鉄などの磁性材料をプレス成形して作製されるが、底面部18は必ずしも磁性体である必要はない。即ち、ロータ16は、少なくともロータヨーク部17が磁性材料で作製されていればよい。
 また、永久磁石19をロータヨーク部17の内周面に接着しているが、永久磁石19とロータヨーク部17との接合強度が十分ならば、スペーサ45および磁石押さえ46を省略してもよい。
 また、永久磁石17をロータヨーク部17の内周面に直接取り付けているが、鉄などの磁性材料で作製され、16個の永久磁石19を同一円周上に等角ピッチに配列するように埋め込んだリング体を、スペーサ45と磁石押さえ46とに挟持されてロータヨーク部17内に圧入してもよい。
 つぎにインバータ一体型駆動モジュール100の組立方法について説明する。
 まず、ステータ支持部28をステータヨーク部22に内嵌状態に圧入し、必要に応じて溶接して、ステータ20とステータ支持部材26とを一体化する。そして、軸受30をベアリングボックス27に嵌着させる。ついで、遠心ファン31が固着されたロータ16の底面部18の軸心位置にシャフト15を圧入し、必要に応じて溶接して、ロータ16とシャフト15とを一体化する。そして、シャフト15を軸受30に圧入して、ロータヨーク部17がステータ20の外周を覆うようにロータ16をステータ20に組み付け、モータ14を作製する。このモータ14は、極数16、スロット数18のアウターロータ型の3相モータである。
 ついで、6個のインバータユニット8を、フィンベース10の表面上に、放熱フィン11の配設領域に対応するように、貫通穴10aの穴中心を中心とする同一円周上に等角ピッチに配列して実装し、インバータモジュール7を作製する。
 そして、図5に示されるように、ベアリングボックス27の軸心を第1インバータ側通風穴4の穴中心に一致させて、ねじ40を取付部2を挿通してステータ支持部材26に形成されたねじ穴41に締着して、モータ14をブラケット1の取付部2の他面に取り付ける。このとき、図6に示されるように、スロット部24が第2インバータ側通風穴5に相対するように、ステータ支持部材26の周方向の位置が調整される。
 さらに、フィンベース10の貫通穴10aの穴中心を第1インバータ側通風穴4の穴中心に一致させて、ねじ42を挿通穴10bに通してブラケット1の取付部2の一面に形成されたねじ穴43に締着して、インバータモジュール7をブラケット1の取付部2の一面に取り付ける。
 ついで、配線36を用いてインバータユニット8の交流出力端子とステータコイル25の相コイルとを結線し、インバータ一体型駆動モジュール100が組み立てられる。配線36は、図8に示されるように、ヒートシンク9に開けられた挿通穴10cに挿入されて放熱フィン11間を通され、さらにブラケット1の取付部2に穿設された第2インバータ側通風穴5に挿入されて、インバータユニット8の交流出力端子とステータコイル25の相コイルとを結線している。
 このように構成されたインバータ一体型駆動モジュール100は、各インバータユニット8の上アームスイッチング素子および下アームスイッチング素子のON/OFFが制御装置(図示せず)により制御され、外部の電源(図示せず)から供給された直流電力が交流電力に変換され、配線36を介してステータコイル25に供給される。これにより、ステータ20に回転磁界が発生される。このステータ20の回転磁界と永久磁石19による磁界との相互作用により回転力が発生し、ロータ16が回転駆動される。
 そして、遠心ファン31がロータ16とともに回転駆動される。この遠心ファン31の回転により、図9に矢印で示されるように、冷却風が、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れ、ついで第1インバータ側通風穴4からステータ支持部28内を通って軸方向に流れ、第1ロータ側通風穴34を通ってロータ16の底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第1冷却風通風路が構成される。さらに、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れた冷却風の一部が、図9に矢印で示されるように、第2インバータ側通風穴5からステータ20側に流れ、スロット部24内を軸方向に流れ、第2ロータ側通風穴35を通ってロータ16の底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第3冷却風通風路が構成される。
 そこで、インバータユニット8の上アームスイッチング素子および下アームスイッチング素子での発熱は、フィンベース10を介して放熱フィン11に伝達され、放熱フィン11間を流通する冷却風に放熱される。そして、放熱フィン11に伝達された上アームスイッチング素子および下アームスイッチング素子での発熱の一部が、ブラケット1の取付部2に伝達され、ブラケット1の表面から放熱される。また、軸受30での発熱は、ステータ支持部28内を通って軸方向に流れる冷却風に放熱される。さらに、ステータコイル25での発熱は、スロット部24内を軸方向に流れる冷却風に放熱される。さらにまた、配線36での発熱は、放熱フィン11間を流れる冷却風、および第2インバータ側通風穴5を流れる冷却風に放熱される。
 この実施の形態1によれば、遠心ファン31を回転駆動させると、冷却風が、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れ、ついで第1インバータ側通風穴4からステータ支持部28内を通って軸方向に流れ、第1ロータ側通風穴34を通ってロータ16の底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第1冷却風通風路が構成される。そこで、インバータユニット8と軸受30とが第1冷却風通風路内を流れる冷却風により冷却される。また、放熱フィン11がブラケット1の取付部2に接しているので、インバータユニット8での発熱の一部が放熱フィン11を介して取付部2に伝達され、ブラケット1の表面から放熱される。
 そこで、アウターロータを用いたインバータ一体型駆動モジュール100においても、インバータユニット8および軸受30の過度の温度上昇が抑制されるので、インバータユニット8および軸受30の長寿命化が図られる。
 また、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れた冷却風の一部が、第2インバータ側通風穴5からステータ20側に流れ、スロット部24内を軸方向に流れ、第2ロータ側通風穴35を通ってロータ16の底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第3冷却風通風路が構成される。そこで、ステータコイル25の過度の温度上昇が抑制されるので、温度上昇に起因する損失の増加が抑えられ、モータ出力特性が向上される。
 第2インバータ側通風穴5が、スロット部24のそれぞれと軸方向に相対するように取付部2に穿設されているので、放熱フィン11間から第2インバータ側通風穴5を通ってステータ20側に流入した冷却風はスムーズにスロット部24内に流入する。そこで、第3冷却風通風路の通風抵抗が小さくなり、第3冷却風通風路内を流通する冷却風の十分な流量が確保される。
 第2ロータ側通風穴35が、底面部18のスロット部24と同等の径方向位置に穿設されているので、スロット部24内を軸方向に流れてきた冷却風が速やかに第2ロータ側通風穴35から排出される。そこで、第3冷却風通風路の通風抵抗の増大が抑えられ、第3冷却風通風路内を流通する冷却風の流量が確保される。
 配線36がヒートシンク9のフィンベース10に開けられた挿通穴10cに挿入されて放熱フィン11間を通されているので、配線36での発熱が放熱フィン11間を流通する冷却風に放熱され、配線36の温度上昇が抑えられる。また、配線36がフィンベース10と第2インバータ側通風穴5とを軸方向に貫通しているので、配線長を短くでき、配線36の低抵抗化が図られる。
 放射状リブ29が、軸方向に延在する板状に作製されているので、放射状リブ29が放熱フィンとして作用し、ステータ20および軸受30が効果的に冷却される。
 実施の形態2.
 図10はこの発明の実施の形態2に係るインバータ一体型駆動モジュールにおけるステータとインバータモジュールとの径方向の位置関係を説明する図である。
 図10において、インバータユニット8は、第2インバータ側通風穴5の径方向外側に位置するように、ヒートシンク9のフィンベース10の表面上に実装されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 従って、この実施の形態2においても、上記実施の形態1と同様の効果が得られる。
 この実施の形態2によれば、インバータユニット8が、第2インバータ側通風穴5の径方向外側に位置するように、フィンベース10の表面上に実装されている。そこで、放熱フィン11間を流通する冷却風の全てがインバータユニット8の冷却に供されるので、インバータユニット8を効果的に冷却することができる。
 実施の形態3.
 図11はこの発明の実施の形態3に係るインバータ一体型駆動モジュールにおける冷却風の流れを説明する断面斜視図である。
 図11において、ブラケット1Aの取付部2Aは、ブラケット1の取付部2における第2インバータ側通風穴5が省略され、配線挿通用の挿通穴(図示せず)が穿設されている。ロータ16Aのロータヨーク部17Aの軸方向長さが、ロータ16のロータヨーク部17の軸方向長さに比べ、短く形成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 実施の形態3によるインバータ一体型駆動モジュール101では、ロータヨーク部17Aの軸方向長さが短くなっているので、モータ14Aをブラケット1Aの取付部2Aの他面に取り付けると、ロータヨーク部17Aと取付部2Aとの間に隙間が形成される。
 そこで、遠心ファン31の回転により、図11に矢印で示されるように、冷却風が、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れ、ついで第1インバータ側通風穴4からステータ支持部28内を通って軸方向に流れ、第1ロータ側通風穴34を通ってロータ16Aの底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第1冷却風通風路が構成される。さらに、図11に矢印で示されるように、冷却風が、ロータ16Aの外周側からロータヨーク部17Aと取付部2Aとの間に隙間を通って径方向内方に流れ、ついでスロット部24内を軸方向に流れ、第2ロータ側通風穴35を通ってロータ16Aの底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第2冷却風通風路が構成される。
 この実施の形態3によれば、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れる冷却風の全てが軸受30の冷却に供されるので、軸受30の冷却に供される冷却風の風量が増大し、軸受30を効果的に冷却することができる。また、ロータ16Aの外周側からロータヨーク部17Aと取付部2Aとの間に隙間を通って吸入された冷却風がステータコイル25の冷却に供されるので、ステータコイル25の冷却に供される冷却風の温度が低くなり、ステータコイル25を効果的に冷却することができる。
 また、第2インバータ側通風穴5を取付部2Aに形成する必要がないので、ブラケット1Aの加工が容易となる。
 実施の形態4.
 図12はこの発明の実施の形態4に係るインバータ一体型駆動モジュールにおける冷却風の流れを説明する断面斜視図である。
 図12において、ロータ16Aのロータヨーク部17Aの軸方向長さが、ロータ16のロータヨーク部17の軸方向長さに比べ、短く形成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 実施の形態4によるインバータ一体型駆動モジュール102では、ロータヨーク部17Aの軸方向長さが短くなっているので、モータ14Aをブラケット1の取付部2の他面に取り付けると、ロータヨーク部17Aと取付部2との間に隙間が形成される。
 そこで、遠心ファン31の回転により、図12に矢印で示されるように、冷却風が、ヒートシンク9の径方向外方から放熱フィン11間を通って径方向内方に流れ、ついで第1インバータ側通風穴4からステータ支持部28内を通って軸方向に流れ、第1ロータ側通風穴34を通ってロータ16Aの底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる第1冷却風通風路が構成される。さらに、図12に矢印で示されるように、ロータ16Aの外周側からロータヨーク部17Aと取付部2Aとの間に隙間を通って径方向内方に流れた冷却風が、ヒートシンク9の径方向外方から放熱フィン11間を径方向内方に流れ、第2インバータ側通風穴5からステータ20側に流れてきた冷却風と合流し、スロット部24内を軸方向に流れ、第2ロータ側通風穴35を通ってロータ16Aの底面部18の外周側に流出し、底面部18と基部32との間を径方向外方に流れる冷却風通風路が構成される。
 この実施の形態4によれば、ロータ16Aの外周側からロータヨーク部17Aと取付部2との間に隙間を通って吸入された冷却風が、ヒートシンク9の径方向外方から放熱フィン11間を径方向内方に流れ、第2インバータ側通風穴5からステータ20側に流れてきた冷却風と合流してステータコイル25の冷却に供されるので、ステータコイル25の冷却に供される冷却風の風量が増大し、ステータコイル25を効果的に冷却することができる。
 実施の形態5.
 図13はこの発明の実施の形態5に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。
 図13において、ヒートシンク9Aは、配線挿通用の挿通穴10cがフィンベース10のスペーサ12の径方向外方位置に穿設されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態5によれば、配線挿通用の挿通穴10cがフィンベース10のスペーサ12の径方向外方の位置に穿設されているので、配線36は、挿通穴10cを通って軸方向に延び、放熱フィン11間を通らずにモータ14側に引き出される。そこで、冷却風は配線36に邪魔されることなく放熱フィン11間を流通するので、インバータユニット8および軸受30の冷却に供される冷却風の風量が増大し、インバータユニット8および軸受30を効果的に冷却することができる。
 実施の形態6.
 図14はこの発明の実施の形態6に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。
 図14において、ヒートシンク9Bは、配線挿通用の挿通穴10cがフィンベース10のスペーサ12の径方向内方の位置に穿設されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態6によれば、配線挿通用の挿通穴10cがフィンベース10のスペーサ12の径方向内方の位置に穿設されているので、配線36は、挿通穴10cを通って軸方向に延び、放熱フィン11間を通らずにモータ14側に引き出される。そこで、冷却風は配線36に邪魔されることなく放熱フィン11間を流通するので、インバータユニット8および軸受30の冷却に供される冷却風の風量が増大し、インバータユニット8および軸受30を効果的に冷却することができる。
 実施の形態7.
 図15はこの発明の実施の形態7に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。
 図15において、ヒートシンク9Cは、周方向に隣り合う複数本の放熱フィン11の径方向の所定領域が除去され、配線挿通用の挿通穴10cがフィンベース10の放熱フィン11のフィン除去スペース37に穿設されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態7によれば、挿通穴10cがフィンベース10のフィン除去スペース37に穿設されているので、配線36を挿通穴10cに挿通させることに起因する放熱フィン11間を通って径方向内方に流れる冷却風の通風抵抗の増大が抑えられる。そこで、インバータユニット8および軸受30の冷却に供される冷却風の風量が確保される。さらに、配線36の冷却に供される冷却風が増大し、配線36を効果的に冷却することができる。
 実施の形態8.
 図16はこの発明の実施の形態8に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。
 図16において、ヒートシンク9Dは、径方向の所定領域が除去された放熱フィン11の径方向外側の除去端部が、挿通穴10cに向かうように曲げられている。
 なお、他の構成は、上記実施の形態7と同様に構成されている。
 この実施の形態8によれば、径方向の所定領域が除去された放熱フィン11の径方向外側の除去端部が、挿通穴10cに向かうように曲げられているので、冷却風は、放熱フィン11間を径方向内方に流れ、放熱フィン11の除去端部から挿通穴10cに向かうようにフィン除去スペース37に流入する。そこで、配線36の冷却に供される冷却風がさらに増大し、配線36をより効果的に冷却することができる。
 実施の形態9.
 図17はこの発明の実施の形態9に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。
 図17において、配線36の絶縁シース38が断面楕円形に形成されている。ヒートシンク9Eは、挿通穴10cの断面形状が絶縁シース38の断面形状に適合する楕円形の形成されている。そして、挿通穴10cに挿通された配線36の絶縁シース38は、断面楕円形の長軸を径方向に向けて、フィン除去スペース37内に配設されている。
 なお、他の構成は上記実施の形態7と同様に構成されている。
 この実施の形態9によれば、断面楕円形の絶縁シース38が、断面楕円形の長軸を径方向に向けてフィン除去スペース37内に配設されているので、放熱フィン11のフィン除去スペース37内を流通する冷却風が、絶縁シース38により整流される。そこで、フィン除去スペース37内での配線36による圧損を小さくすることができ、放熱フィン11間を流れる冷却風の風量が確保されるので、配線36を挿通させることに起因するインバータユニット8および軸受30を冷却する能力の低下が抑えられる。
 なお、上記実施の形態9では、絶縁シース38が断面楕円形に形成されているものとしているが、絶縁シースの断面形状は楕円形に限定されるものではなく、長軸の先端側および後端側が端軸方向の幅を長軸方向の先端および後端に向って漸次狭くする曲線となる細長形状であればよい。
 実施の形態10.
 図18はこの発明の実施の形態10に係るインバータ一体型駆動モジュールに適用されるヒートシンクを示す要部背面図である。
 図18において、ヒートシンク9Fは、配線挿通用の挿通穴10cがスペーサ12に穿設されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態10によれば、挿通穴10cがスペーサ12に穿設されているので、冷却風が配線36に邪魔されずに放熱フィン11間を流通でき、インバータユニット8および軸受30の冷却に供される冷却風の風量が確保される。さらに、挿通穴10cに挿通された配線36での発熱は、スペーサ12およびフィンベース10を介して放熱フィン11に伝達され、放熱フィン11から冷却風に放熱される。
 実施の形態11.
 図19はこの発明の実施の形態11に係るインバータ一体型駆動モジュールに適用されるモータを構成するステータ支持部材を示す正面図である。
 図19において、矩形平板状の薄板状フィン47が、各放射状リブ29の周方向の両側面に直角に複数枚ずつ立設されて軸方向に延在している。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 このように構成されたステータ支持部材26Aは、薄板状フィン47が各放射状リブ29に形成され、放熱面積が増大されている。そこで、ステータコイル25で発生した熱や軸受30で発生した熱がステータ支持部材26Aに伝達され、薄板状フィン47からステータ支持部材26A内を流れる冷却風に放熱される。
 したがって、この実施の形態11によれば、ステータコイル25や軸受30の過度の温度上昇が抑えられ、モータ出力特性の向上および軸受30の長寿命化が図られる。
 実施の形態12.
 図20はこの発明の実施の形態12に係るインバータ一体型駆動モジュールに適用されるモータを構成するステータ支持部材を示す正面図である。
 図20において、断面円弧形の短冊状の薄板状フィン48が、周方向に隣り合う放射状リブ29の各対を連結するように複数枚ずつ配設されて軸方向に延在している。これにより、薄板状フィン48により構成される円筒が、軸方向からみて、同心状に3つ形成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 このように構成されたステータ支持部材26Bは、断面円弧形の短冊状の薄板状フィン48が周方向に隣り合う放射状リブ29間を連結するように形成され、放熱面積が増大されている。そこで、ステータコイル25で発生した熱や軸受30で発生した熱がステータ支持部材26Aに伝達され、薄板状フィン48からステータ支持部材26B内を流れる冷却風に放熱される。
 したがって、この実施の形態12においても、ステータコイル25や軸受30の過度の温度上昇が抑えられ、モータ出力特性の向上および軸受30の長寿命化が図られる。
 ここで、上記実施の形態1~12では、遠心ファン31を用いるものとしているが、ファンは、遠心ファン31に限定されるものではなく、ロータ16,16Aの底面部18の外周面に相対して配設されて冷却風をステータ支持部26,26A,26B内やスロット部24内から排出させるように動作するものであればよく、例えば軸流ファンでもよい。
 実施の形態13.
 図21はこの発明の実施の形態13に係るインバータ一体型駆動モジュールを示す断面斜視図である。
 図21において、軸流ファン50が、シャフト15のロータ16の底面部18からの延出部に固着されて底面部18の外周面と相対するように配設されている。この軸流ファン50は、シャフト15とともに回転駆動され、冷却風を第1ロータ側通風穴34からステータ支持部38内に送り込むとともに、第2ロータ側通風穴35からスロット部24内に送り込むように構成されている。
 なお、実施の形態13は、遠心ファン31に代えて軸流ファン50を用いている点を除いて、上記実施の形態1と同様に構成されている。
 このように構成されたインバータ一体型駆動モジュール103では、軸流ファン50の回転により、図21に矢印で示されるように、冷却風が、第1ロータ側通風穴34からステータ支持部38内に送り込まれ、ステータ支持部38内を軸方向に流れ、ついで第1インバータ側通風穴4から放熱フィン11の内径側に流れ、放熱フィン11間を内径側から径方向外方に流れてヒートシンク9の径方向外方に流れ出る第1冷却風通風路が構成される。さらに、冷却風が、第2ロータ側通風穴35からスロット部24内に送り込まれ、スロット部24内を軸方向に流れ、ついで第2インバータ側通風穴5から放熱フィン11間に入り、内径側から放熱フィン11間を径方向外方に流れる冷却風と合流する第3冷却風通風路が構成される。
 この実施の形態13によれば、上記実施の形態1と異なり、冷却風がインバータユニット8の冷却に供せられる前に軸受30およびステータコイル25の冷却に供せられるので、軸受30およびステータコイル25が効果的に冷却される。そこで、SiCなどの高耐熱半導体素子を用いて作製されたインバータユニットを用いた場合には、軸受30やステータコイル25の耐熱温度がインバータユニットに比べて低くなるので、本構成を採用することが効果的である。
 実施の形態14.
 図22はこの発明の実施の形態14に係るインバータ一体型駆動モジュールを示す断面斜視図である。
 図22において、軸流ファン50が、シャフト15のロータ16の底面部18からの延出部に固着されて底面部18の外周面と相対するように配設されている。
 なお、実施の形態14は、遠心ファン31に代えて軸流ファン50を用いている点を除いて、上記実施の形態3と同様に構成されている。
 このように構成されたインバータ一体型駆動モジュール104では、軸流ファン50の回転により、図22に矢印で示されるように、冷却風が、第1ロータ側通風穴34からステータ支持部38内に送り込まれ、ステータ支持部38内を軸方向に流れ、ついで第1インバータ側通風穴4から放熱フィン11の内径側に流れ、放熱フィン11間を内径側から径方向外方に流れてヒートシンク9の径方向外方に流れ出る第1冷却風通風路が構成される。さらに、冷却風が、第2ロータ側通風穴35からスロット部24内に送り込まれ、スロット部24内を軸方向に流れ、ついでロータ16Aの外周側からロータヨーク部17Aと取付部2Aとの間の隙間を通ってロータ16Aの外周外方に流れ出る第3冷却風通風路が構成される。
 この実施の形態14によれば、上記実施の形態3と異なり、冷却風がインバータユニット8の冷却に供せられる前に軸受30の冷却に供せられるので、軸受30が効果的に冷却される。そこで、SiCなどの高耐熱半導体素子を用いて作製されたインバータユニットを用いた場合には、軸受30の耐熱温度がインバータユニットに比べて低くなるので、本構成を採用することが効果的である。
 ここで、実施の形態13,14では、実施の形態1,3において、遠心ファン31に代えて軸流ファン50を用いるものとしているが、他の実施の形態において、遠心ファン31に代えて軸流ファン50を用いてもよいことは言うまでもないことである。
 また、上記実施の形態8において、遠心ファン31に代えて軸流ファン50を用いる場合には、フィン除去領域37の内径側に位置する放熱フィン11の除去領域側の端部を、挿通穴10cに向かうように曲げることが、配線36の冷却性の観点から好ましい。
 また、実施の形態13,14では、軸流ファン50を用いるものとしているが、ファンは、軸流ファン50に限定されるものではなく、ロータ16,16Aの底面部18の外周面に相対して配設されて冷却風をステータ支持部26,26A,26B内やスロット部24内に流入させるように動作するものであればよく、例えば斜流ファンでもよい。
 なお、上記各実施の形態では、ステータコアとステータ支持部材とを別部品に構成するものとしているが、ステータコアとステータ支持部材とを一部品として構成してもよい。
 また、上記各実施の形態では、ステータ支持部材は6枚の放射状リブを有しているものとしているが、放射状リブの枚数を増やしてもよい。これにより、放射状リブの放熱面積が増大し、ステータコイルおよび軸受での発熱がステータ支持部内を流通する冷却風に放熱され、ステータおよび軸受の温度上昇が抑えられる。この場合、各放射状リブの断面積を小さくすれば、放射状リブの枚数を増やすことに起因するステータ支持部内の通風抵抗の増大を抑えることができる。
 また、上記実施の形態1,2,4-9,13,14では、配線が、冷却風をスロット部に流すためにブラケットの取付部に穿設された第2インバータ側通風穴に通されるものとしているが、配線を挿通するための専用の穴をブラケットの取付部に新たに形成してもよい。
 また、上記各実施の形態では、インバータユニットが1個の上アームスイッチング素子と1個の下アームスイッチング素子とから構成されているものとしているが、インバータユニットは、並列に接続された複数個の上アームスイッチング素子と並列に接続された複数個の下アームスイッチング素子とから構成されてもよい。
 また、上記各実施の形態では、6個のインバータユニットを用いるものとしているが、インバータユニットの個数はこれに限定されるものではなく、ステータコイルの結線形態に合わせて適宜設定される。例えば、ステータコイルが1組の3相交流巻線に構成されていれば、インバータユニットの個数は3個となる。
 また、上記各実施の形態では、スペーサがヒートシンクのフィンベースに一体に形成されているものとしているが、スペーサはフィンベースと別部品として作製されてもよい。
 また、上記各実施の形態では、第2インバータ側通風穴がスロット部のそれぞれに軸方向に相対するように取付部に穿設されているものとしているが、第2インバータ側通風穴は、必ずしも、全てのスロット部に軸方向に相対するように設ける必要はなく、第2インバータ側通風穴の個数はステータコイルの温度上昇度を考慮して適宜設定すればよい。

Claims (12)

  1.  スロット部が外周側に開口するように周方向に配列された円環状のステータコア、および該ステータコアに巻装されたステータコイルを有するステータ、上記ステータコアに放射状リブを介して該ステータコアの軸心位置に保持されるベアリングボックス、および円筒状のロータヨーク部、該ロータヨーク部の一端から内径側に延設された底面部、およびN極とS極とが該ロータヨーク部の内周面に周方向に交互に配列されてなる複数の磁極を有し、該底面部が上記ベアリングボックスに収納された軸受に支持されたシャフトに固着されて、該ロータヨーク部が上記ステータコアを内包するように上記ステータに同軸に取り付けられたロータから構成されるモータと、
     上記ロータの軸方向一側に上記底面部に相対して該ロータと供回り可能に配設されたファンと、
     平板状のフィンベース、およびそれぞれ該フィンベースの裏面に垂直に立設されて径方向に延在して、周方向に配列された複数の放熱フィンを有するヒートシンク、およびそれぞれ該フィンベースの表面に該放熱フィンの配設領域上に位置するように実装され、上記ステータコイルに交流電力を供給する複数のインバータユニットから構成されるインバータモジュールと、を備えたインバータ一体型駆動モジュールにおいて、
     上記モータが、上記ステータコアをブラケットの平板状の取付部の一面に固着して該ブラケットに取り付けられ、
     上記インバータモジュールが、上記放熱フィンを上記取付部の他面に向けてスペーサを介して上記フィンベースを該取付部に固着して上記ブラケットに取り付けられ、
     第1インバータ側通風穴が、上記軸受と相対する上記ブラケットの部位に穿設され、
     第1ロータ側通風穴が、上記軸受と相対する上記底面部の部位に穿設され、
     上記ファンの回転駆動により、隣り合う上記放熱フィン間に形成されて上記第1インバータ側通風穴と上記ヒートシンクの径方向外方とを連通し、冷却風が径方向に流れる径方向通風路、および上記ステータコアの内部に形成されて上記第1インバータ側通風穴と上記第1ロータ側通風穴とを連通し、冷却風が軸方向に流れる軸方向通風路からなる第1冷却風通風路が構成されることを特徴とするインバータ一体型駆動モジュール。
  2.  第2ロータ側通風穴が、上記ステータコアと相対する上記底面部の部位に穿設され、
     上記ファンの回転駆動により、上記スロット部の内部に形成されて上記ロータヨーク部と上記取付部との間の空隙と協働して上記ロータヨーク部の径方向外方と上記第2ロータ側通風穴とを連通し、冷却風が軸方向に流れる第2冷却風通風路が構成されることを特徴とする請求項1記載のインバータ一体型駆動モジュール。
  3.  第2インバータ側通風穴が、上記ステータコアと相対する上記取付部の部位に穿設され、
     第2ロータ側通風穴が、上記ステータコアと相対する上記底面部の部位に穿設され、
     上記ファンの回転駆動により、上記スロット部の内部に形成されて上記第2インバータ側通風穴と協働して上記径方向通風路と上記第2ロータ側通風穴とを連通し、冷却風が軸方向に流れる第3冷却風通風路が構成されることを特徴とする請求項1又は請求項2記載のインバータ一体型駆動モジュール。
  4.  上記第2インバータ側通風穴が上記スロット部に軸方向に相対するように上記取付部に穿設されていることを特徴とする請求項3記載のインバータ一体型駆動モジュール。
  5.  上記第2インバータ側通風穴が上記スロット部のそれぞれに軸方向に相対するように上記取付部に穿設されていることを特徴とする請求項4記載のインバータ一体型駆動モジュール。
  6.  薄板状フィンが軸方向に延在するように上記放射状リブに複数形成されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載のインバータ一体型駆動モジュール。
  7.  上記インバータユニットと上記ステータコイルとを結線する配線が上記フィンベースおよび上記取付部を貫通していることを特徴とする請求項1乃至請求項6のいずれか1項に記載のインバータ一体型駆動モジュール。
  8.  上記配線が周方向に隣り合う複数本の上記放熱フィンの径方向の一部を除去して構成されたフィン除去スペース内を通るように上記フィンベースを貫通していることを特徴とする請求項7記載のインバータ一体型駆動モジュール。
  9.  上記フィン除去スペースの外径側又は内径側に位置する上記放熱フィンの端部が、上記放熱フィン間から上記フィン除去スペース内に流入する冷却風が上記フィン除去スペース内を通る上記配線に向うように曲げられていることを特徴とする請求項8記載のインバータ一体型駆動モジュール。
  10.  上記配線の絶縁シースの断面形状が、長軸方向を径方向とし、長軸の先端側および後端側を、短軸方向の幅を長軸の先端および後端に向って漸次狭くする曲線とする細長形状であることを特徴とする請求項8記載のインバータ一体型駆動モジュール。
  11.  上記配線が上記スペーサを挿通するように上記フィンベースを貫通していることを特徴とする請求項7記載のインバータ一体型駆動モジュール。
  12.  上記インバータユニットが、径方向関し、上記第2インバータ側通風穴より径方向外側に位置するように上記フィンベースの表面に実装されていることを特徴とする請求項3乃至請求項6のいずれか1項に記載のインバータ一体型駆動モジュール。
PCT/JP2011/050941 2010-01-29 2011-01-20 インバータ一体型駆動モジュール WO2011093200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011100372T DE112011100372T5 (de) 2010-01-29 2011-01-20 Inverterintegriertes Arbeitsmodul
CN201180007345.4A CN102725943B (zh) 2010-01-29 2011-01-20 逆变器一体型驱动组件
US13/519,332 US8866353B2 (en) 2010-01-29 2011-01-20 Inverter-integrated driving module
JP2011551822A JP5312614B2 (ja) 2010-01-29 2011-01-20 インバータ一体型駆動モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010018096 2010-01-29
JP2010-018096 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093200A1 true WO2011093200A1 (ja) 2011-08-04

Family

ID=44319189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050941 WO2011093200A1 (ja) 2010-01-29 2011-01-20 インバータ一体型駆動モジュール

Country Status (5)

Country Link
US (1) US8866353B2 (ja)
JP (1) JP5312614B2 (ja)
CN (1) CN102725943B (ja)
DE (1) DE112011100372T5 (ja)
WO (1) WO2011093200A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042486A1 (ja) * 2011-09-20 2013-03-28 三菱電機株式会社 機電一体型モジュール
WO2013092445A1 (fr) * 2011-12-23 2013-06-27 Valeo Systemes Thermiques Dispositif de refroidissement par air d'un pulseur pour appareil de chauffage, de ventilation ou de climatisation
JP2014057451A (ja) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp 回転電機
JP2014064345A (ja) * 2012-09-20 2014-04-10 Toyota Industries Corp ハウジング部材および冷却構造
CN103931086A (zh) * 2012-01-25 2014-07-16 三菱电机株式会社 驱动装置一体型旋转电机
JP2017175699A (ja) * 2016-03-22 2017-09-28 株式会社デンソー 回転電機
CN107863828A (zh) * 2017-12-11 2018-03-30 天津市佳利电梯电机有限公司 一种扶梯用高效电机
JP2019509711A (ja) * 2016-03-11 2019-04-04 アイティーティー マニュファクチャリング エンタープライジーズ エルエルシー 多層電力及び制御用プリント回路基板アセンブリを伴う電力プレーンを有するポンプ又は回転デバイスを駆動するためのモーターアセンブリ
TWI658680B (zh) * 2017-11-30 2019-05-01 財團法人工業技術研究院 驅控器與電動機相連結之一體式電力連結裝置
WO2019142777A1 (ja) * 2018-01-17 2019-07-25 株式会社 荏原製作所 放熱部材および電動機組立体
JP2020039234A (ja) * 2018-09-05 2020-03-12 アイシン・エィ・ダブリュ株式会社 車両用駆動装置およびレゾルバステータ
WO2020145219A1 (ja) * 2019-01-08 2020-07-16 日本電産株式会社 モータ、回転翼装置
WO2022123926A1 (ja) * 2020-12-09 2022-06-16 株式会社マキタ 電動作業機

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20120001A1 (it) * 2012-01-03 2013-07-04 Pmp Pro Mec S P A "motoriduttore con freno e inverter integrati per trasmissione diretta alla ruota di veicolo a trazione elettrica"
DE102012025877B3 (de) 2012-08-02 2021-11-11 Ebm-Papst Mulfingen Gmbh & Co. Kg Aktive Kühlung eines Motors
DE102012107107B4 (de) 2012-08-02 2021-11-11 Ebm-Papst Mulfingen Gmbh & Co. Kg Aktive Kühlung eines Motors
ITBO20130271A1 (it) * 2013-05-29 2014-11-30 Spal Automotive Srl Macchina elettrica.
CN105830314B (zh) * 2013-12-16 2019-01-22 三菱电机株式会社 机电一体型驱动装置及其制造方法
FR3019951B1 (fr) * 2014-04-11 2016-04-29 Valeo Systemes Thermiques Moteur electrique, dispositif de pulsion d'air et systeme de ventilation de chauffage et/ou de climatisation equipes d'un tel moteur
DE112015002343B4 (de) * 2014-05-20 2022-06-09 Mitsubishi Electric Corp. Wechselrichterintegrierte Motorvorrichtung
KR101595722B1 (ko) * 2014-11-11 2016-02-22 현대모비스 주식회사 차량 조향용 구동장치
DE102015200866A1 (de) * 2015-01-20 2016-07-21 Zf Friedrichshafen Ag Motoranordnung
EP3204291B1 (en) * 2015-06-01 2021-07-07 SZ DJI Technology Co., Ltd. System, kit, and method for dissipating heat generated by a motor assembly
CN104967237A (zh) * 2015-06-29 2015-10-07 蔡勇 转子及转子发动机冷却系统
CN106685141A (zh) * 2015-11-10 2017-05-17 大陆汽车投资(上海)有限公司 电动汽车用驱动装置的冷却流道
CN106911224A (zh) * 2015-12-22 2017-06-30 大陆汽车投资(上海)有限公司 电动汽车用集成驱动装置的冷却流道
CN106911228A (zh) * 2015-12-22 2017-06-30 大陆汽车投资(上海)有限公司 电动汽车用集成驱动装置
JP6475670B2 (ja) * 2016-07-26 2019-02-27 株式会社Subaru 電装ユニット
CN106451881A (zh) * 2016-11-21 2017-02-22 南京磁谷科技有限公司 一种磁悬浮鼓风机风冷结构
US10381901B2 (en) * 2017-05-12 2019-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Wireless in-wheel electric assemblies with integrated in-wheel cooling and vehicles incorporating the same
US10608505B1 (en) * 2018-02-09 2020-03-31 Wisk Aero Llc Cooling motor controller with a motor with duct
JP2019170077A (ja) * 2018-03-23 2019-10-03 日本電産トーソク株式会社 モータ
US11043876B2 (en) * 2018-05-11 2021-06-22 General Electric Company Electric motor having conformal heat pipe assemblies
DE102019103541A1 (de) * 2018-07-06 2020-01-09 Hanon Systems Kühlmodul mit Axialgebläse für Fahrzeuge, insbesondere für Elektrofahrzeuge
TWI678867B (zh) * 2018-07-09 2019-12-01 群光電能科技股份有限公司 變頻器整合馬達
EP4250541A3 (en) 2019-04-24 2024-04-10 Black & Decker Inc. Outer rotor brushless motor having an axial fan
US11658545B2 (en) * 2020-06-19 2023-05-23 Snap-On Incorporated Brushless direct current motor end cap
CN112039286A (zh) * 2020-08-24 2020-12-04 广东肇庆德通有限公司 一种自带冷却风路结构的ip23工业吊扇电机
US11777374B2 (en) * 2021-04-06 2023-10-03 Hamilton Sundstrand Corporation Integrated motor drive architecture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262517A (ja) * 2000-12-20 2002-09-13 Trw Automot Electronics & Components Gmbh & Co Kg 車両用ファンのための駆動装置
WO2006008897A1 (ja) * 2004-07-15 2006-01-26 Mitsubishi Denki Kabushiki Kaisha 制御装置一体型回転電機
JP4123436B2 (ja) * 2003-02-18 2008-07-23 株式会社デンソー インバータ一体型交流モータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123436A (ja) 1990-09-14 1992-04-23 Texas Instr Japan Ltd 半導体装置とその製造方法
WO2000002429A1 (en) * 1998-07-01 2000-01-13 Mitsubishi Denki Kabushiki Kaisha Alternating-current generator for vehicles and heat sink incorporated therein
FR2847085B1 (fr) * 2002-10-28 2005-03-04 Valeo Equip Electr Moteur Dispositif de refroidissement de l'electronique de puissance integree a l'arriere d'un alternateur ou d'un alterno-demarreur
US20090230791A1 (en) * 2005-09-29 2009-09-17 Zf Friedrichshafen Ag Drive unit having optimized cooling
JP4708951B2 (ja) 2005-10-21 2011-06-22 ニチコン株式会社 インバータモジュールおよびそれを用いたインバータ一体型交流モータ
JP2009291040A (ja) 2008-05-30 2009-12-10 Panasonic Corp 同期電動機駆動システム
JP4907694B2 (ja) * 2009-05-13 2012-04-04 三菱電機株式会社 回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262517A (ja) * 2000-12-20 2002-09-13 Trw Automot Electronics & Components Gmbh & Co Kg 車両用ファンのための駆動装置
JP4123436B2 (ja) * 2003-02-18 2008-07-23 株式会社デンソー インバータ一体型交流モータ
WO2006008897A1 (ja) * 2004-07-15 2006-01-26 Mitsubishi Denki Kabushiki Kaisha 制御装置一体型回転電機

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042486A1 (ja) * 2011-09-20 2013-03-28 三菱電機株式会社 機電一体型モジュール
WO2013092445A1 (fr) * 2011-12-23 2013-06-27 Valeo Systemes Thermiques Dispositif de refroidissement par air d'un pulseur pour appareil de chauffage, de ventilation ou de climatisation
FR2984810A1 (fr) * 2011-12-23 2013-06-28 Valeo Systemes Thermiques Dispositif de refroidissement par air d'un pulseur pour appareil de chauffage, de ventilation et de climatisation
JP2015504126A (ja) * 2011-12-23 2015-02-05 ヴァレオ システム テルミク 加熱、換気または空調装置のための送風機の空冷のための装置
US20150303772A1 (en) * 2011-12-23 2015-10-22 Valeo Systems Thermiques Device For The Air-Cooling Of A Blower For A Heating, Ventilation Or Air-Conditioning Apparatus
CN103931086A (zh) * 2012-01-25 2014-07-16 三菱电机株式会社 驱动装置一体型旋转电机
JPWO2013111277A1 (ja) * 2012-01-25 2015-05-11 三菱電機株式会社 駆動装置一体型回転電機
US9570960B2 (en) 2012-01-25 2017-02-14 Mitsubishi Electric Corporation Driving-device-integral-type rotary electric machine
JP2014057451A (ja) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp 回転電機
JP2014064345A (ja) * 2012-09-20 2014-04-10 Toyota Industries Corp ハウジング部材および冷却構造
JP2019509711A (ja) * 2016-03-11 2019-04-04 アイティーティー マニュファクチャリング エンタープライジーズ エルエルシー 多層電力及び制御用プリント回路基板アセンブリを伴う電力プレーンを有するポンプ又は回転デバイスを駆動するためのモーターアセンブリ
US11777380B2 (en) 2016-03-11 2023-10-03 Itt Manufacturing Enterprises Llc Motor drive unit
US11855495B2 (en) 2016-03-11 2023-12-26 Itt Manufacturing Enterprises Llc Motor drive unit
JP7395250B2 (ja) 2016-03-11 2023-12-11 アイティーティー マニュファクチャーリング エンタープライジズ エルエルシー モーターアセンブリを含む装置、およびモーターアセンブリ
US11824406B2 (en) 2016-03-11 2023-11-21 Itt Manufacturing Enterprises Llc Motor drive unit
US11489418B2 (en) 2016-03-11 2022-11-01 Itt Manufacturing Enterprises Llc Motor drive unit
US11777379B2 (en) 2016-03-11 2023-10-03 Itt Manufacturing Enterprises Llc Motor drive unit
JP2017175699A (ja) * 2016-03-22 2017-09-28 株式会社デンソー 回転電機
TWI658680B (zh) * 2017-11-30 2019-05-01 財團法人工業技術研究院 驅控器與電動機相連結之一體式電力連結裝置
CN107863828A (zh) * 2017-12-11 2018-03-30 天津市佳利电梯电机有限公司 一种扶梯用高效电机
CN107863828B (zh) * 2017-12-11 2024-01-23 天津市佳利电梯电机有限公司 一种扶梯用高效电机
WO2019142777A1 (ja) * 2018-01-17 2019-07-25 株式会社 荏原製作所 放熱部材および電動機組立体
JP7031536B2 (ja) 2018-09-05 2022-03-08 株式会社アイシン 車両用駆動装置およびレゾルバステータ
JP2020039234A (ja) * 2018-09-05 2020-03-12 アイシン・エィ・ダブリュ株式会社 車両用駆動装置およびレゾルバステータ
WO2020145219A1 (ja) * 2019-01-08 2020-07-16 日本電産株式会社 モータ、回転翼装置
WO2022123926A1 (ja) * 2020-12-09 2022-06-16 株式会社マキタ 電動作業機

Also Published As

Publication number Publication date
JP5312614B2 (ja) 2013-10-09
DE112011100372T5 (de) 2012-12-27
US8866353B2 (en) 2014-10-21
US20120299407A1 (en) 2012-11-29
JPWO2011093200A1 (ja) 2013-06-06
CN102725943B (zh) 2014-03-12
CN102725943A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5312614B2 (ja) インバータ一体型駆動モジュール
JP5220765B2 (ja) Afpmコアレス型マルチ発電機及びモーター
JP5783804B2 (ja) 電気モーター
WO2013054811A1 (ja) 回転電機
JP2019531044A (ja) 内部冷却システムを有する密閉型回転電気機械
WO2013042486A1 (ja) 機電一体型モジュール
JP5548046B2 (ja) 永久磁石回転電機
EP2549629A2 (en) Rotating electrical machine
JP2010539884A (ja) 永久磁石埋め込み型モータ及びこれを用いた真空吸込装置
WO2021100292A1 (ja) スロットレス型電動機、電動送風機および電気掃除機
KR20150144294A (ko) 히트 싱크를 갖는 회전자
CN217362867U (zh) 径向磁通电机
JP2016052221A (ja) ブラシレス回転電機
JP5260824B2 (ja) アウターロータモータ
JP6843688B2 (ja) 電動送風機及びそれを搭載した電気掃除機
JP7135801B2 (ja) モータおよびファンモータ
WO2021146130A1 (en) Electronically commutated dc motor
CN108071616A (zh) 送风机
CN108155756B (zh) 外转型旋转电机
CN107394969B (zh) 一种用于洗涤机的新型电机
JP2019134667A (ja) 電動機組立体
KR101012251B1 (ko) 영구자석 회전자 모터
JP7185048B2 (ja) 電動機、送風機および空気調和装置
TW202245386A (zh) 馬達、送風裝置、壓縮裝置及冷凍裝置
JP2022153313A (ja) モータ、送風装置、および冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007345.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551822

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13519332

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111003722

Country of ref document: DE

Ref document number: 112011100372

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736914

Country of ref document: EP

Kind code of ref document: A1