WO2011092963A1 - セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ - Google Patents

セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ Download PDF

Info

Publication number
WO2011092963A1
WO2011092963A1 PCT/JP2010/072563 JP2010072563W WO2011092963A1 WO 2011092963 A1 WO2011092963 A1 WO 2011092963A1 JP 2010072563 W JP2010072563 W JP 2010072563W WO 2011092963 A1 WO2011092963 A1 WO 2011092963A1
Authority
WO
WIPO (PCT)
Prior art keywords
green sheet
ceramic green
mol
slurry composition
ceramic
Prior art date
Application number
PCT/JP2010/072563
Other languages
English (en)
French (fr)
Inventor
島住夕陽
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2011551705A priority Critical patent/JP5702311B2/ja
Priority to KR1020127021222A priority patent/KR101780839B1/ko
Priority to CN2010800625116A priority patent/CN102822117A/zh
Publication of WO2011092963A1 publication Critical patent/WO2011092963A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength

Definitions

  • the present invention relates to a slurry composition for a ceramic green sheet, a ceramic green sheet, and a multilayer ceramic capacitor.
  • a binder resin such as polyvinyl butyral resin and a plasticizer are added, and a slurry composition for a ceramic green sheet is prepared by uniformly mixing with a ball mill or the like.
  • the slurry composition is cast-molded on a releasable support such as a polyethylene terephthalate film, the solvent and the like are distilled off by heating or the like, and then peeled from the support to produce a ceramic green sheet.
  • These ceramic green sheets are used by being peeled off from the peelable support.
  • a plurality of laminates obtained by alternately applying a conductive paste serving as an internal electrode on the surface of a ceramic green sheet by screen printing or the like are heated and pressed to obtain a laminate.
  • a laminated body is formed by various processes and cut into a predetermined shape. Then, through a process of thermally decomposing and removing the binder component contained in the laminate, so-called degreasing treatment, and then sintering the external electrode on the end face of the ceramic fired product obtained by firing.
  • a multilayer ceramic capacitor is manufactured. Therefore, the ceramic green sheet is required to have good workability in preparing the slurry composition for a ceramic green sheet and strength to withstand these processing steps.
  • the ceramic powder used in the ceramic green sheet has a fine particle size of 0.5 ⁇ m or less, and is coated on a peelable support in a thin film shape of 5 ⁇ m or less. Attempts have been made.
  • Patent Document 1 At least dialdehyde is added at a ratio of 0.005 to 2 mol% with respect to the vinyl alcohol unit of polyvinyl alcohol having a saponification degree of 80 mol% or more.
  • the ceramic paste for ceramic green sheets is disclosed, and a slurry composition for ceramic green sheets with excellent mechanical strength is realized.
  • the present invention provides a slurry composition for a ceramic green sheet, a ceramic green sheet, and a multilayer ceramic capacitor that are capable of obtaining a ceramic green sheet having sufficient mechanical strength and less warpage in view of the above-described present situation.
  • the present inventors have found that the degree of polymerization is more than 1000 and less than 4500 as the binder resin of the ceramic green sheet slurry composition, the vinyl ester unit content is less than 1 mol%, and the degree of acetalization is By using a polyvinyl acetal resin of 60 to 83 mol%, it is possible to achieve excellent coating properties, and even when the thickness is reduced, the mechanical strength is high, and further, it is difficult to warp.
  • the inventors have found that a ceramic green sheet can be obtained and have completed the present invention.
  • the polymerization degree of the polyvinyl acetal resin used in the present invention is more than 1000 and 4500 or less.
  • the degree of polymerization is 1000 or less, the mechanical strength becomes insufficient when a thin film ceramic green sheet having a thickness of 2 ⁇ m or less is produced.
  • the degree of polymerization exceeds 4500, it does not sufficiently dissolve in an organic solvent. Or the solution viscosity becomes too high, and the coatability and dispersibility are reduced.
  • the minimum with a preferable polymerization degree of polyvinyl acetal resin is 1500, and an upper limit is 3500.
  • the degree of polymerization is determined from both the viscosity average degree of polymerization of the polyvinyl alcohol resin used in the production of the polyvinyl acetal resin and the viscosity average degree of polymerization of the polyvinyl acetal resin. That is, since the polymerization degree does not change by acetalization, the polymerization degree of the polyvinyl alcohol resin and the polyvinyl acetal resin obtained by acetalizing the polyvinyl alcohol are the same.
  • the viscosity average degree of polymerization of the polyvinyl alcohol resin refers to an average degree of polymerization determined based on JIS K6726.
  • the apparent viscosity average polymerization degree of the whole polyvinyl alcohol resin after mixing is said.
  • the degree of polymerization of the polyvinyl acetal resin it means a value obtained by measuring the viscosity average degree of polymerization after acetalizing the polyvinyl alcohol resin based on the method described in JIS K6728.
  • the content of vinyl ester units in the polyvinyl acetal resin is less than 1 mol%, and the preferred upper limit is 0.99 mol%. If it is 1 mol% or more, the flexibility of the thin film green sheet becomes too strong, and the ceramic green sheet cannot maintain sufficient mechanical strength.
  • the polyvinyl acetal resin having a vinyl ester unit content of less than 1 mol% is an acetal of a polyvinyl alcohol resin having a vinyl ester unit content of less than 1 mol%, that is, a polyvinyl alcohol resin having a saponification degree higher than 99 mol%. Can be obtained.
  • a preferable lower limit of the saponification degree of the polyvinyl alcohol resin is 99.01 mol%.
  • the preferable lower limit of the content of the vinyl ester unit in the polyvinyl acetal resin is 0.01 mol%.
  • a polyvinyl acetal resin having a vinyl ester unit content of 0.01 mol% or less can be obtained by acetalizing a polyvinyl alcohol resin having a saponification degree of 99.99 mol% or more. It is difficult to industrially produce polyvinyl alcohol having a saponification degree of 99.99 mol% or more, and the acetalization reaction may be difficult due to poor solubility in water. Therefore, the upper limit with preferable saponification degree of polyvinyl alcohol resin is 99.99 mol%.
  • the lower limit of the degree of acetalization of the polyvinyl acetal resin is 60 mol%, and the upper limit is 83 mol%. If it is less than 60 mol%, the polyvinyl acetal resin is highly hydrophilic and difficult to dissolve in an organic solvent, which hinders the production of a ceramic green sheet slurry composition. If it exceeds 83 mol%, there are few residual hydroxyl groups. Thus, the toughness of the polyvinyl acetal resin is impaired, and it is difficult to obtain industrially from the viewpoint of productivity and reactivity, leading to a decrease in productivity.
  • the preferable lower limit of the degree of acetalization is 65 mol%, and the preferable upper limit is 75 mol%.
  • the polyvinyl acetal resin used in the present invention is usually produced using a polyvinyl alcohol resin as a raw material.
  • the polyvinyl alcohol resin can be obtained by a conventionally known method, that is, by polymerizing a vinyl ester monomer and saponifying the obtained polymer.
  • a method for polymerizing the vinyl ester monomer a conventionally known method such as a solution polymerization method, a bulk polymerization method, a suspension polymerization method, and an emulsion polymerization method can be applied.
  • As the polymerization initiator an azo initiator, a peroxide initiator, a redox initiator, or the like is appropriately selected depending on the polymerization method.
  • a conventionally known alcoholysis or hydrolysis using an alkali catalyst or an acid catalyst can be applied.
  • a saponification reaction using methanol as a solvent and a caustic soda (NaOH) catalyst is simple and most preferable.
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, vinyl laurate, palmitic acid.
  • vinyl, vinyl stearate, vinyl oleate, vinyl benzoate and the like can be mentioned, with vinyl acetate being particularly preferred.
  • the polyvinyl alcohol resin in the present invention is a concept including a polymer composed of vinyl alcohol units and other monomer units.
  • Examples of other monomers include, for example, ⁇ -olefins such as ethylene, propylene, n-butene and isobutylene; acrylic acid and its salts; methyl acrylate, ethyl acrylate, n-propyl acrylate, i-acrylate Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and salts thereof; methyl methacrylate, Methacrylic acid such as ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate
  • the acid catalyst used for acetalization is not particularly limited, and any of organic acids and inorganic acids can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like. Among these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used, and hydrochloric acid is particularly preferably used.
  • the polyvinyl acetal resin of the present invention can be obtained by the following method. First, an aqueous solution of polyvinyl alcohol resin having a concentration of 3 to 15% by mass is adjusted to a temperature range of 80 to 100 ° C., and the temperature is gradually cooled over 10 to 60 minutes. When the temperature drops to ⁇ 10 to 40 ° C., an aldehyde and an acid catalyst are added, and an acetalization reaction is performed for 10 to 300 minutes while keeping the temperature constant. Thereafter, the reaction liquid is heated to a temperature of 45 to 80 ° C. over 30 to 200 minutes, and the temperature is maintained for 60 to 360 minutes. The aging temperature of the reaction (temperature after the temperature rise) is preferably 45 ° C. or higher.
  • the reaction solution is preferably cooled to room temperature, washed with water, then added with a neutralizing agent such as alkali, washed and dried to obtain the desired polyvinyl acetal resin.
  • a neutralizing agent such as alkali
  • the monoaldehyde used for acetalizing the polyvinyl alcohol resin is not particularly limited.
  • acetaldehyde including paraacetaldehyde
  • propionaldehyde propionaldehyde
  • butyraldehyde amylaldehyde
  • hexylaldehyde hexylaldehyde
  • heptylaldehyde examples include 2-ethylhexyl aldehyde, cyclohexyl aldehyde, furfural, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde, and the like.
  • acetaldehyde and butyraldehyde are preferable from the viewpoint of productivity and property balance.
  • These aldehydes may be used alone or in combination of two or more.
  • a polyvinyl acetal resin using an aldehyde having 2 to 6 carbon atoms, particularly an aldehyde having 2 to 4 carbon atoms, particularly a polyvinyl butyral resin using n-butyraldehyde is a ceramic green sheet. It is preferable in terms of mechanical strength and coatability.
  • the content of the ⁇ -olefin segment in the polyvinyl acetal resin of the present invention is preferably 1 mol% at the lower limit and 20 mol% at the upper limit. If the content of the ⁇ -olefin segment is less than 1 mol%, the effect of containing the ⁇ -olefin becomes insufficient, and if it exceeds 20 mol%, the hydrophobicity becomes too strong and the dispersibility of the ceramic powder decreases. Or the solubility of the polyvinyl alcohol resin decreases, making the acetalization reaction difficult.
  • the slurry composition for ceramic green sheets of the present invention may contain an acrylic resin or a cellulose resin in addition to the polyvinyl acetal resin as a binder resin.
  • an acrylic resin, a cellulose resin, or the like is contained as the binder resin, a preferable lower limit of the content of the polyvinyl acetal resin in the entire binder resin is 30% by mass. If it is less than 30% by mass, the resulting ceramic green sheet may have insufficient mechanical strength.
  • the polyvinyl acetal resin used in the present invention can be produced by acetalizing a polyvinyl alcohol resin having a polymerization degree exceeding 1000 and not exceeding 4500 with an aldehyde.
  • the average value of each polymerization degree should just exceed 1000 and 4500 or less.
  • the preferable lower limit of the average value of the degree of polymerization is 1500 and the upper limit is 3500.
  • the ceramic powder is not particularly limited, and examples thereof include alumina, zirconia, aluminum silicate, titanium oxide, zinc oxide, barium titanate, magnesia, sialon, spinelmullite, silicon carbide, silicon nitride, aluminum nitride, and the like. Can be mentioned. These ceramic powders may be used alone or in combination of two or more.
  • the upper limit of the content of the ceramic powder with respect to the total amount of the slurry composition for a ceramic green sheet of the present invention is 80% by mass, and the lower limit is 30% by mass. When the content of the ceramic powder is less than 30% by mass, the viscosity becomes too low and the handling property when forming the ceramic green sheet is deteriorated. When the content is more than 80% by mass, the viscosity of the ceramic green sheet slurry composition is high. It becomes too much and the kneadability tends to decrease.
  • the organic solvent is not particularly limited, and examples thereof include ketones such as acetone, methyl ethyl ketone, dipropyl ketone, and diisobutyl ketone; alcohols such as methanol, ethanol, isopropanol, and butanol; aromatic hydrocarbons such as toluene and xylene; Methyl propionate, ethyl propionate, butyl propionate, methyl butanoate, ethyl butanoate, butyl butanoate, methyl pentanoate, ethyl pentanoate, butyl pentanoate, methyl hexanoate, ethyl hexanoate, butyl hexanoate, acetic acid 2 -Esters such as ethylhexyl and 2-ethylhexyl butyrate; methyl cellosolve, ethyl cellosolve, butyl cell
  • organic solvents may be used independently and 2 or more types may be used together.
  • the upper limit of the content of the organic solvent with respect to the total amount of the slurry composition for a ceramic green sheet of the present invention is 80% by mass, and the lower limit is 20% by mass. If it is in the said range, moderate kneading
  • the amount is more than 80% by mass, the viscosity becomes too low and the handling property at the time of forming the ceramic green sheet is deteriorated.
  • the amount is less than 20% by mass, the viscosity of the slurry composition for the ceramic green sheet becomes too high and is kneadable. Tend to decrease.
  • the slurry composition for ceramic green sheets is conventionally known as binder resins such as acrylic resins and cellulose resins, plasticizers, lubricants, dispersants, antistatic agents, antioxidants and the like as long as the effects of the present invention are not impaired.
  • binder resins such as acrylic resins and cellulose resins, plasticizers, lubricants, dispersants, antistatic agents, antioxidants and the like as long as the effects of the present invention are not impaired.
  • the additive may be contained.
  • the slurry composition for ceramic green sheets of the present invention can contain a plasticizer as necessary.
  • the type of plasticizer to be added is not particularly limited.
  • Phthalic acid plasticizers such as dihexyl adipate and di (2-ethylhexyl) adipate (DOA)
  • glycol plasticizers such as ethylene glycol, diethylene glycol and triethylene glycol
  • triethylene glycol examples include glycol ester plasticizers such as dibutyrate, triethylene glycol di (2-ethylbutyrate), and triethylene glycol di (2-ethylhexanoate).
  • the amount of the plasticizer to be used is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 1 to 8% by mass with respect to the total amount of the ceramic green sheet slurry composition.
  • DOP, DOA, and triethylene glycol 2-ethylhexyl are preferable because they are low in volatility and easily maintain the flexibility of the sheet.
  • the method for producing a slurry composition for a ceramic green sheet using the polyvinyl acetal resin of the present invention is not particularly limited.
  • a binder resin containing the polyvinyl acetal resin, a ceramic powder, an organic solvent, and an addition as necessary A method of mixing various additives using various mixers such as a ball mill, a blender mill, and a three-roll mill.
  • the slurry composition for ceramic green sheets of the present invention has the above-described configuration, a thin film ceramic green sheet having sufficient mechanical strength can be produced even if the thickness is 2 ⁇ m or less.
  • the ceramic green sheet obtained using the slurry composition for ceramic green sheets of the present invention and having a thickness of 2 ⁇ m or less is also one aspect of the present invention.
  • the method for producing the ceramic green sheet of the present invention is not particularly limited, and can be produced by a conventionally known production method.
  • the slurry composition for a ceramic green sheet of the present invention can be peeled off such as a polyethylene terephthalate film. Examples include a method of casting on a body, removing the solvent by heating or the like, and then peeling from the support.
  • a multilayer ceramic capacitor can be produced by laminating a ceramic green sheet of the present invention coated with a conductive paste.
  • the multilayer ceramic capacitor obtained by using the ceramic green sheet and the conductive paste of the present invention is also one aspect of the present invention.
  • the production method of the multilayer ceramic capacitor of the present invention is not particularly limited and can be produced by a conventionally known production method.
  • a conductive paste serving as an internal electrode is applied to the surface of the ceramic green sheet of the present invention by screen printing or the like.
  • a ceramic fired product obtained by stacking a plurality of coated materials alternately and heat-pressing them to obtain a laminate, pyrolyzing and removing the binder components contained in the laminate (degreasing treatment), and firing.
  • a method of sintering an external electrode on the end face For example, a method of sintering an external electrode on the end face.
  • the said electrically conductive paste it is not specifically limited as a manufacturing method of the said electrically conductive paste,
  • it can manufacture with a well-known manufacturing method, for example, conductive powder, such as a metal, a dispersing agent, a plasticizer, a solvent, etc. to polyvinyl acetal resin.
  • conductive powder such as a metal, a dispersing agent, a plasticizer, a solvent, etc. to polyvinyl acetal resin.
  • the method of mixing etc. is mentioned.
  • the physical properties of the polyvinyl acetal resin and the antioxidant were measured according to the following method.
  • Example 1 Preparation of polyvinyl acetal resin
  • a glass container having an internal volume of 2 liters equipped with a reflux condenser, a thermometer and a squid type stirring blade
  • 1295 g of ion-exchanged water and 105 g of polyvinyl alcohol (PVA-1: polymerization degree 1050, saponification degree 99.2 mol%)
  • PVA-1 polymerization degree 1050, saponification degree 99.2 mol
  • the whole was heated to 98 ° C. to completely dissolve the polyvinyl alcohol, thereby forming an aqueous polyvinyl alcohol solution (concentration 7.5 mass%).
  • the aqueous polyvinyl alcohol solution thus formed was gradually cooled to 5 ° C.
  • the concentration of the aqueous solution was 70 g of butyraldehyde and an acid catalyst that was a butyralization catalyst.
  • 100 ml of 20% by mass hydrochloric acid was added to start butyralization of polyvinyl alcohol. After butyralization was performed for 30 minutes, the whole was heated to 70 ° C. over 120 minutes, held at 70 ° C. for 180 minutes, and then cooled to room temperature.
  • the resulting polyvinyl butyral resin (PVB-1) had a degree of butyralization of 71.0 mol%, a vinyl ester unit content of 0.8 mol%, and a vinyl alcohol unit content of 28.2 mol%. It was.
  • Example 2 A polyvinyl butyral resin (PVB-2) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-2: polymerization degree 1700, saponification degree 99.6 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-2 was 69.8 mol%, the content of vinyl ester units was 0.4 mol%, and the content of vinyl alcohol units was 29.8 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 3 A polyvinyl butyral resin (PVB-3) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-3: polymerization degree 2400, saponification degree 99.9 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-3 was 74.3 mol%, the content of vinyl ester units was 0.1 mol%, and the content of vinyl alcohol units was 25.6 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 4 A polyvinyl butyral resin (PVB-4) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-4: polymerization degree 3500, saponification degree 99.8 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-4 was 73.2 mol%, the content of vinyl ester units was 0.2 mol%, and the content of vinyl alcohol units was 26.6 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 5 A polyvinyl butyral resin (PVB-5) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-5: polymerization degree 4200, saponification degree 99.9 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-5 was 69.0 mol%, the content of vinyl ester units was 0.1 mol%, and the content of vinyl alcohol units was 30.9 mol%.
  • a slurry composition for a ceramic green sheet was obtained in the same manner as in Example 1 except that 8 parts by mass of polyvinyl butyral resin and 8 parts by mass of DOA as a plasticizer were added.
  • Example 6 A polyvinyl butyral resin (PVB-6) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-6: polymerization degree 1700, saponification degree 99.95 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-6 was 74.25 mol%, the content of vinyl ester units was 0.05 mol%, and the content of vinyl alcohol units was 25.70 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 7 A polyvinyl butyral resin (PVB-7) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-7: polymerization degree 1700, saponification degree 99.9 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-7 was 80.6 mol%, the content of vinyl ester units was 0.1 mol%, and the content of vinyl alcohol units was 19.3 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 8 A polyvinyl butyral resin (PVB-8) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-8: polymerization degree 1700, saponification degree 99.8 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-8 was 65.2 mol%, the content of vinyl ester units was 0.2 mol%, and the content of vinyl alcohol units was 34.6 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 1 A polyvinyl butyral resin (PVB-A) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-A: polymerization degree 850, saponification degree 99.2 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-A was 71.0 mol%, the content of vinyl ester units was 0.8 mol%, and the content of vinyl alcohol units was 28.2 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 2 A polyvinyl butyral resin (PVB-B) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-B: polymerization degree 1700, saponification degree 99 mol%) was used instead of PVA-1.
  • the degree of butyralization of PVB-B was 70 mol%, the content of vinyl ester units was 1 mol%, and the content of vinyl alcohol units was 29 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • Example 3 A polyvinyl butyral resin (PVB-C) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-C: polymerization degree 3500, saponification degree 98.5 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-C was 71.5 mol%, the content of vinyl ester units was 1.5 mol%, and the content of vinyl alcohol units was 27 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • a polyvinyl butyral resin (PVB-D) was obtained in the same manner as in Example 1 except that polyvinyl alcohol (PVA-D: polymerization degree 4800, saponification degree 99.9 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-D was 71.9 mol%, the content of vinyl ester units was 0.1 mol%, and the content of vinyl alcohol units was 28 mol%.
  • a slurry composition for a ceramic green sheet was obtained in the same manner as in Example 1, but the slurry viscosity was high, the coating property was poor, and spots were observed in the particle dispersibility in the green sheet.
  • Example 6 A polyvinyl butyral resin (PVB-F) was obtained in the same manner as in Comparative Example 5 except that polyvinyl alcohol (PVA-F: polymerization degree 1700, saponification degree 99.5 mol%) was used instead of PVA-1. .
  • the degree of butyralization of PVB-F was 71.0 mol%, the content of vinyl ester units was 0.5 mol%, and the content of vinyl alcohol units was 28.5 mol%.
  • a ceramic green sheet slurry composition was obtained in the same manner as in Example 1.
  • the slurry compositions for ceramic green sheets prepared in Examples 1 to 8 and Comparative Examples 1 to 6 were coated on a polyester film that had been subjected to a release treatment so as to have a dry thickness of 2 ⁇ m using a coater bar. And then dried at 80 ° C. for 3 hours and then at 120 ° C. for 2 hours to obtain a ceramic green sheet.
  • Green sheet evaluation A ceramic green sheet was cut out from polyethylene terephthalate in a size of 60 mm ⁇ 50 mm and left at 20 ° C. for 3 minutes, and then the side surface of the sheet was observed with an optical microscope. ⁇ : No warpage of the ceramic sheet was observed.
  • Table 1 shows the results of mechanical strength evaluation and green sheet evaluation.
  • a ceramic green sheet slurry composition a ceramic green sheet, and a multilayer ceramic capacitor capable of obtaining a ceramic green sheet having sufficient mechanical strength and little warpage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 充分な機械的強度を有し、かつ反りが少ないセラミックグリーンシートを得ることが可能なセラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサを提供する。 【解決手段】 重合度が1000を超え4500以下であり、ビニルエステル単位の含有量が1モル%より少ないポリビニルアルコール樹脂をモノアルデヒドでアセタール化して得られ、アセタール化度が60~83モル%であるポリビニルアセタール樹脂、セラミック粉末、及び、有機溶剤を含有するセラミックグリーンシート用スラリー組成物。

Description

セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
 本発明は、セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサに関する。
 積層セラミックコンデンサを製造する場合には、一般に次のような工程が行われる。まず、セラミック粉末を分散させた有機溶剤中に、ポリビニルブチラール樹脂等のバインダー樹脂と可塑剤とを添加し、ボールミル等により均一に混合することでセラミックグリーンシート用スラリー組成物を調製し、調製したスラリー組成物をポリエチレンテレフタレートフィルム等の剥離性の支持体上にて流延成形し、加熱等により溶剤等を溜去させた後、支持体から剥離してセラミックグリーンシートを製造する。
 これらのセラミックグリーンシートは、上記剥離性の支持体から剥離されて用いられる。まず、セラミックグリーンシートの表面に内部電極となる導電ペーストをスクリーン印刷等により塗布したものを交互に複数枚積み重ね、加熱圧着して積層体を得る。さらに、諸工程により積層体を形成し、所定形状に切断する。そして、この積層体中に含まれるバインダー成分等を熱分解して除去する処理、いわゆる脱脂処理を行った後に焼成して得られるセラミック焼成物の端面に外部電極を焼結する工程を経ることにより、積層セラミックコンデンサが製造される。従って、上記セラミックグリーンシートは、セラミックグリーンシート用スラリー組成物の調製作業の良好な作業性とこれらの加工の諸工程に耐え得る強度が要求されるものである。
 近年、電子機器の多機能化や小型化に伴い、積層セラミックコンデンサには大容量化、小型化が求められている。これに対応して、セラミックグリーンシートに用いられるセラミック粉末としては、0.5μm以下の微細な粒子径のものが用いられ、5μm以下のような薄膜状に剥離性の支持体上に塗工する試みがなされている。
 しかしながら、微細な粒子径のセラミックス粉末を用いると、充填密度や表面積が増加するため、使用するバインダー樹脂量が増加し、これに伴って、セラミックグリーンシート用スラリー組成物の粘度も増大することから、塗工が困難となったり、セラミック粉末自体の分散不良が発生したりすることがあった。一方、セラミックグリーンシート作製時の諸工程においては、引張りや曲げ等の応力が負荷されることから、このような応力に耐え得るような十分な強度を持つバインダーが必要とされていた。
 このような問題点を解決するため、特許文献1ではけん化度が80モル%以上のポリビニルアルコールのビニルアルコール単位に対して、少なくともジアルデヒドを0.005~2モル%の割合で添加してアセタール化してなるセラミックグリーンシート用セラミックペーストを開示し、機械強度にすぐれるセラミックグリーンシート用スラリー組成物を実現している。
 しかしながら、ジアルデヒドで架橋した場合、分子間架橋が過密になり、得られる薄膜グリーンシートの機械的強度は向上するものの、得られた架橋ポリビニルアセタール樹脂の一部が有機溶剤に不溶となり、一部未溶解分が残ることがあるという問題があった。また、架橋部位と未架橋部位の応力緩和力が異なる為、薄膜グリーンシートが反ることがあるという問題があった。
特開2006-282490号公報
 本発明は、上記現状に鑑み、充分な機械的強度を有し、さらに反りが少ないセラミックグリーンシートを得ることが可能なセラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサを提供する。
 本発明者らは、鋭意検討の結果、セラミックグリーンシート用スラリー組成物のバインダー樹脂として、重合度が1000を超え4500以下で、ビニルエステル単位の含有量が1モル%より少なく、アセタール化度が60~83モル%であるポリビニルアセタール樹脂を用いることにより、塗工性に優れたものとすることができるとともに、厚みを薄くした場合であっても、機械的強度が高く、さらには、反りにくいセラミックグリーンシートが得られることを見出し、本発明を完成させるに至った。
 充分な機械的強度を有し、かつ反りが少ないセラミックグリーンシートを得ることが可能なセラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサを提供することが出来る。
 以下に本発明を詳述する。
 本発明で用いられるポリビニルアセタール樹脂の重合度は1000を超え4500以下である。重合度が1000以下であると、厚さ2μm以下のような薄膜セラミックグリーンシートを作製する場合に、機械的強度が不充分となり、重合度が4500を超えると、有機溶剤に充分に溶解しなかったり、溶液粘度が高くなりすぎて、塗工性や分散性が低下したりする。ポリビニルアセタール樹脂の重合度の好ましい下限は1500で上限は3500である。
 なお、上記重合度はポリビニルアセタール樹脂の製造に用いられるポリビニルアルコール樹脂の粘度平均重合度、ポリビニルアセタール樹脂の粘度平均重合度の双方から求められる。つまり、アセタール化により重合度が変化することはないため、ポリビニルアルコール樹脂と、そのポリビニルアルコールをアセタール化して得られるポリビニルアセタール樹脂の重合度は同じである。特に限定はされないが、ポリビニルアルコール樹脂の粘度平均重合度は、JIS K6726に基づき求められる平均重合度をいう。又、ポリビニルアルコール樹脂として2種以上のポリビニルアルコール樹脂を混合して用いる場合は、混合後のポリビニルアルコール樹脂全体の見掛け上の粘度平均重合度をいう。一方、ポリビニルアセタール樹脂の重合度の場合はJIS K6728に記載の方法に基づき、ポリビニルアルコール樹脂をアセタール化した後における粘度平均重合度を測定したものをいう。
 上記ポリビニルアセタール樹脂のビニルエステル単位の含有量は1モル%より少なく、好ましい上限は0.99モル%である。1モル%以上となると、薄膜のグリーンシートの柔軟性が強くなり過ぎるため、セラミックグリーンシートが十分な機械的強度を保つ事ができなくなる。なお、ビニルエステル単位の含有量が1モル%より少ないポリビニルアセタール樹脂は、ビニルエステル単位の含有量が1モル%より少ないポリビニルアルコール樹脂、すなわち、けん化度が99モル%より高いポリビニルアルコール樹脂をアセタール化することにより得られる。ポリビニルアルコール樹脂のけん化度の好ましい下限は99.01モル%である。
 上記ポリビニルアセタール樹脂のビニルエステル単位の含有量の好ましい下限は0.01モル%である。なお、ビニルエステル単位の含有量が0.01モル%以下のポリビニルアセタール樹脂は、鹸化度が99.99モル%以上のポリビニルアルコール樹脂をアセタール化することにより得られる。鹸化度が99.99モル%以上のポリビニルアルコールを工業的に生産するのは困難であり、さらに水への溶解性が悪くなるためアセタール化反応が困難になることがある。従って、ポリビニルアルコール樹脂のけん化度の好ましい上限は99.99モル%である。
 上記ポリビニルアセタール樹脂のアセタール化度の下限は60モル%、上限は83モル%である。60モル%未満であると、ポリビニルアセタール樹脂の親水性が高く、有機溶剤に溶けにくくなるため、セラミックグリーンシート用スラリー組成物の製造に支障をきたし、83モル%を超えると、残存水酸基が少なくなり、ポリビニルアセタール樹脂の強靭性が損なわれ、生産性、反応性の観点からも工業的に得る事が難しく、生産性の低下を招く。アセタール化度の好ましい下限は65モル%であり、好ましい上限は75モル%である。
 上記ポリビニルアセタール樹脂に使用されるアルデヒドはモノアルデヒド(アルデヒド基が一分子内に1つ)である。2つ以上のアルデヒド基を有する化合物でアセタール化した場合、架橋部位と未架橋部位の応力緩和力が異なる為、乾燥後にポリエチレンテレフタレートからはがした後に反りが生じることがある。従って、使用するアルデヒドはモノアルデヒドのみであることが好ましく、2つ以上のアルデヒド基を有する化合物を用いる場合であっても、ポリビニルアルコール樹脂のビニルアルコール単位に対して、0.005モル%より少ない量、より好ましくは0.003モル%以下の量を添加してアセタール化することが好ましい。
 本発明に用いられるポリビニルアセタール樹脂は、通常、ポリビニルアルコール樹脂を原料として製造される。上記ポリビニルアルコール樹脂は、従来公知の手法、すなわちビニルエステル系単量体を重合し、得られた重合体をけん化することによって得ることができる。ビニルエステル系単量体を重合する方法としては、溶液重合法、塊状重合法、懸濁重合法、乳化重合法など、従来公知の方法を適用することができる。重合開始剤としては、重合方法に応じて、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤などが適宜選ばれる。けん化反応は、従来公知のアルカリ触媒または酸触媒を用いる加アルコール分解、加水分解などが適用でき、この中でもメタノールを溶剤とし苛性ソーダ(NaOH)触媒を用いるけん化反応が簡便であり最も好ましい。
 ビニルエステル系単量体としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどが挙げられるが、とりわけ酢酸ビニルが好ましい。
 また、前記ビニルエステル系単量体を重合する場合、本発明の主旨を損なわない範囲で他の単量体と共重合させることもできる。したがって、本発明におけるポリビニルアルコール樹脂は、ビニルアルコール単位と他の単量体単位で構成される重合体も含む概念である。他の単量体の例としては、例えばエチレン、プロピレン、n-ブテン、イソブチレンなどのα-オレフィン;アクリル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシルなどのメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンまたはその酸塩またはその4級塩、N-メチロールアクリルアミドおよびその誘導体などのアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンまたはその酸塩またはその4級塩、N-メチロールメタクリルアミドまたはその誘導体などのメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのニトリル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン;酢酸アリル、塩化アリルなどのアリル化合物;マレイン酸およびその塩またはそのエステルまたはその無水物;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニルなどが挙げられる。これらの単量体は通常ビニルエステル系単量体に対して10モル%未満の割合で用いられる。
 アセタール化に用いる酸触媒としては特に限定されず、有機酸および無機酸のいずれでも使用可能であり、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく用いられ、とりわけ塩酸が好ましく用いられる。
 本発明のポリビニルアセタール樹脂は次のような方法によって得ることができる。まず、3~15質量%濃度のポリビニルアルコール樹脂の水溶液を、80~100℃の温度範囲に調整し、その温度を10~60分かけて徐々に冷却する。温度が-10~40℃まで低下したところで、アルデヒドおよび酸触媒を添加し、温度を一定に保ちながら、10~300分間アセタール化反応を行う。その後、反応液を30~200分かけて、45~80℃の温度まで昇温し、その温度を60~360分間保持する。反応の熟成温度(昇温後の温度)は45℃以上が好ましい。45℃より低くなると、得られたポリビニルアセタール樹脂の溶液粘度が高くなり、セラミックグリーンシート用スラリー組成物の分散性が低下する。次に、反応液を、好適には室温まで冷却し、水洗した後、アルカリなどの中和剤を添加し、洗浄、乾燥することにより、目的とするポリビニルアセタール樹脂が得られる。なお、アセタール化度を60~83モル%に調整するには、ポリビニルアルコール樹脂に対するアルデヒドの添加量、及び、アルデヒドと酸触媒を添加した後の反応時間等を適宜調整することが必要である。また、ポリビニルアルコール100質量部に対し、46~74質量部のアルデヒドを添加することが好ましい。
 本発明においては、ポリビニルアルコール樹脂をアセタール化するために用いられるモノアルデヒドとしては特に限定されず、例えば、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、ブチルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、シクロヘキシルアルデヒド、フルフラール、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等が挙げられる。なかでも、生産性と特性バランス等の点から、アセトアルデヒド、ブチルアルデヒドが好適である。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。本発明に用いられるポリビニルアセタール樹脂としては、炭素数2~6のアルデヒド、特に炭素数2~4のアルデヒドを用いたポリビニルアセタール樹脂、中でもn-ブチルアルデヒドを用いたポリビニルブチラール樹脂が、セラミックグリーンシートの機械的強度、塗工性の点で好ましい。
 本発明のポリビニルアセタール樹脂における上記α-オレフィンセグメントの含有量は、好ましい下限が1モル%、好ましい上限が20モル%である。α-オレフィンセグメントの含有量が1モル%未満であると、上記α-オレフィンを含有する効果が不充分となり、20モル%を超えると、疎水性が強くなりすぎてセラミック粉末の分散性が低下したり、ポリビニルアルコール樹脂の溶解性が低下するため、アセタール化反応が困難になったりする。
 また、本発明のセラミックグリーンシート用スラリー組成物は、バインダー樹脂として上記ポリビニルアセタール樹脂のほかにアクリル系樹脂、セルロース系樹脂を含有してもよい。バインダー樹脂としてアクリル系樹脂、セルロース系樹脂等を含有する場合、バインダー樹脂全体に占める上記ポリビニルアセタール樹脂の含有量の好ましい下限は30質量%である。30質量%未満であると、得られるセラミックグリーンシートの機械的強度が不充分となることがある。
 本発明で用いられるポリビニルアセタール樹脂は、重合度が1000を超え4500以下のポリビニルアルコール樹脂をアルデヒドによりアセタール化することにより製造することができる。なお、2種類以上のポリビニルアルコール樹脂を混合して用いる場合には、それぞれの重合度の平均値が1000を超え4500以下であればよい。重合度の平均値の好ましい下限は1500で上限は3500である。
 上記セラミック粉末としては特に限定されず、例えば、アルミナ、ジルコニア、ケイ酸アルミニウム、酸化チタン、酸化亜鉛、チタン酸バリウム、マグネシア、サイアロン、スピネムルライト、炭化ケイ素、窒化ケイ素、窒化アルミニウム等の粉末が挙げられる。これらのセラミック粉末は単独で用いられてもよく、2種以上が併用されてもよい。本発明のセラミックグリーンシート用スラリー組成物の全量に対するセラミック粉末の含有量の上限は80質量%であり、下限は30質量%である。セラミック粉末の含有量が30質量%より少なくなると、粘度が低くなり過ぎてセラミックスグリーンシートを成形する際のハンドリング性が悪くなり80質量%より多くなると、セラミックスグリーンシート用スラリー組成物の粘度が高くなり過ぎて混練性が低下する傾向にある。
 上記有機溶剤としては特に限定されず、例えば、アセトン、メチルエチルケトン、ジプロピルケトン、ジイソブチルケトン等のケトン類;メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;トルエン、キシレン等の芳香族炭化水素類;プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、ブタン酸メチル、ブタン酸エチル、ブタン酸ブチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸ブチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸ブチル、酢酸2-エチルヘキシル、酪酸2-エチルヘキシル等のエステル類;メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、α-テルピネオール、ブチルセルソルブアセテート、ブチルカルビトールアセテート等が挙げられる。これらの有機溶剤は単独で用いられてもよく、2種以上が併用されてもよい。本発明のセラミックグリーンシート用スラリー組成物の全量に対する有機溶剤の含有量の上限は80質量%であり、下限は20質量%である。上記範囲内であれば、本発明のセラミックスグリーンシート用スラリー組成物に適度な混練性を与えることができる。80質量%より多くなると、粘度が低くなり過ぎてセラミックスグリーンシートを成形する際のハンドリング性が悪くなり、20質量%より少なくなると、セラミックスグリーンシート用スラリー組成物の粘度が高くなり過ぎて混練性が低下する傾向にある。
 セラミックグリーンシート用スラリー組成物は、本発明の効果を損なわない範囲でアクリル系樹脂、セルロース系樹脂等のバインダー樹脂、可塑剤、潤滑剤、分散剤、帯電防止剤、酸化防止剤等の従来公知の添加剤を含有してもよい。
 本発明のセラミックグリーンシート用スラリー組成物は必要に応じて可塑剤を添加することができる。添加する可塑剤の種類は特に限定されないが、例えば、フタル酸ジオクチル、フタル酸ベンジルブチル、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジ(2-エチルヘキシル)(DOP)、フタル酸ジ(2-エチルブチル)などのフタル酸系可塑剤、アジピン酸ジヘキシル、アジピン酸ジ(2-エチルヘキシル)(DOA)などのアジピン酸系可塑剤、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール系可塑剤、トリエチレングリコールジブチレート、トリエチレングリコールジ(2-エチルブチレート)、トリエチレングリコールジ(2-エチルヘキサノエート)などのグリコールエステル系可塑剤などが挙げられ、これらは2種以上組み合わせて用いることも可能である。可塑剤の使用量は特に限定されないが、セラミックグリーンシート用スラリー組成物の全量に対して0.1~10質量%使用することが好ましく、より好適には1~8質量%である。なかでも、揮発性が低く、シートの柔軟性を保ちやすいことから、DOP、DOA、トリエチレングリコール2-エチルヘキシルが好適である。
 本発明のポリビニルアセタール樹脂を用いたセラミックスグリーンシート用スラリー組成物を製造する方法としては特に限定されず、例えば、上記ポリビニルアセタール樹脂を含有するバインダー樹脂、セラミック粉末、有機溶剤及び必要に応じて添加する各種添加剤をボールミル、ブレンダーミル、3本ロール等の各種混合機を用いて混合する方法が挙げられる。
 本発明のセラミックグリーンシート用スラリー組成物は、上述のような構成を有することから、厚さが2μm以下であっても、充分な機械的強度を有する薄膜セラミックグリーンシートを製造することができる。このように、本発明のセラミックグリーンシート用スラリー組成物を用いて得られるセラミックグリーンシートであって、厚さが2μm以下であるセラミックグリーンシートもまた、本発明の1つである。
 本発明のセラミックグリーンシートの製造方法としては特に限定されず、従来公知の製造方法により製造することができ、例えば、本発明のセラミックグリーンシート用スラリー組成物をポリエチレンテレフタレートフィルム等の剥離性の支持体上に流延成形し、加熱等により溶剤等を溜去させた後、支持体から剥離する方法等が挙げられる。
 本発明のセラミックグリーンシートに導電ペーストを塗布したものを積層することにより、積層セラミックコンデンサを作製することができる。このように、本発明のセラミックグリーンシートと導電ペーストとを用いて得られる積層セラミックコンデンサもまた、本発明の1つである。
 本発明の積層セラミックコンデンサの製造方法としては特に限定されず、従来公知の製造方法により製造することができ、例えば、本発明のセラミックグリーンシートの表面に内部電極となる導電ペーストをスクリーン印刷等により塗布したものを交互に複数枚積み重ね、加熱圧着して積層体を得、この積層体中に含まれるバインダー成分等を熱分解して除去した後(脱脂処理)、焼成して得られるセラミック焼成物の端面に外部電極を焼結する方法等が挙げられる。
 また、上記導電ペーストの製造方法としては特に限定されず、従来公知の製造方法により製造することができ、例えば、ポリビニルアセタール樹脂に、金属等の導電性粉末、分散剤、可塑剤、溶剤等を混合する方法等が挙げられる。
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、以下の実施例において「%」および「部」は特に断りのない限り、「質量%」および「質量部」を意味する。
 ポリビニルアセタール樹脂および酸化防止剤の諸物性の測定は以下の方法に従って行った。
(ポリビニルアセタール樹脂のビニルエステル単位含有量)
 JIS K6728に記載の方法に基づき測定した。
(ポリビニルアセタール樹脂のビニルアルコール単位含有量)
 JIS K6728に記載の方法に基づき測定した。
(実施例1)
(ポリビニルアセタール樹脂の調製)
 還流冷却器、温度計およびイカリ型攪拌翼を備えた内容積2リットルのガラス製容器に、イオン交換水1295gと、ポリビニルアルコール(PVA-1:重合度1050、けん化度99.2モル%)105gとを仕込み、全体を98℃に昇温してポリビニルアルコールを完全に溶解させ、ポリビニルアルコール水溶液(濃度7.5質量%)を形成した。形成したポリビニルアルコール水溶液を、回転速度120rpmにて攪拌し続けながら、約30分かけて5℃まで徐々に冷却した後、当該水溶液に、ブチルアルデヒド70g、および、ブチラール化触媒である酸触媒として濃度20質量%の塩酸100mlを添加して、ポリビニルアルコールのブチラール化を開始した。ブチラール化を30分間行った後、120分かけて全体を70℃まで昇温し、70℃にて180分間保持した後に、室温まで冷却した。冷却によって析出した樹脂をろ過した後、イオン交換水(樹脂に対して100倍量のイオン交換水)で複数回洗浄し、中和のために0.3質量%水酸化ナトリウム溶液を加え、70℃で5時間保持した後、遠心脱水し、さらに100倍量のイオン交換水で複数回再洗浄し、脱水したのち、40℃、減圧下で18時間乾燥し、ポリビニルブチラール樹脂(PVB-1)を得た。得られたポリビニルブチラール樹脂(PVB-1)は、ブチラール化度が71.0モル%、ビニルエステル単位の含有量が0.8モル%、ビニルアルコール単位の含有量が28.2モル%であった。
 得られたポリビニルブチラール樹脂10質量部を、トルエン20質量部とエタノール20質量部との混合溶剤に加え、攪拌溶解し、更に、可塑剤としてDOP8質量部を加え、攪拌溶解した。得られた樹脂溶液に、セラミック粉末としてチタン酸バリウム(堺化学工業株式会社製、BT-03(平均粒径0.3μm))100質量部を加え、ボールミルで48時間混合することによりセラミックグリーンシート用スラリー組成物を得た。
(実施例2)
 PVA-1に代わって、ポリビニルアルコール(PVA-2:重合度1700、けん化度99.6モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-2)を得た。PVB-2のブチラール化度は69.8モル%、ビニルエステル単位の含有量は0.4モル%、ビニルアルコール単位の含有量は29.8モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(実施例3)
 PVA-1に代わって、ポリビニルアルコール(PVA-3:重合度2400、けん化度99.9モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-3)を得た。PVB-3のブチラール化度は74.3モル%、ビニルエステル単位の含有量は0.1モル%、ビニルアルコール単位の含有量は25.6モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(実施例4)
 PVA-1に代わって、ポリビニルアルコール(PVA-4:重合度3500、けん化度99.8モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-4)を得た。PVB-4のブチラール化度は73.2モル%、ビニルエステル単位の含有量は0.2モル%、ビニルアルコール単位の含有量は26.6モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(実施例5)
 PVA-1に代わって、ポリビニルアルコール(PVA-5:重合度4200、けん化度99.9モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-5)を得た。PVB-5のブチラール化度は69.0モル%、ビニルエステル単位の含有量は0.1モル%、ビニルアルコール単位の含有量は30.9モル%であった。次いで、ポリビニルブチラール樹脂を8質量部、可塑剤であるDOAを8質量部添加した以外は実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(実施例6)
 PVA-1に代わって、ポリビニルアルコール(PVA-6:重合度1700、けん化度99.95モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-6)を得た。PVB-6のブチラール化度は74.25モル%、ビニルエステル単位の含有量は0.05モル%、ビニルアルコール単位の含有量は25.70モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(実施例7)
 PVA-1に代わって、ポリビニルアルコール(PVA-7:重合度1700、けん化度99.9モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-7)を得た。PVB-7のブチラール化度は80.6モル%、ビニルエステル単位の含有量は0.1モル%、ビニルアルコール単位の含有量は19.3モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(実施例8)
 PVA-1に代わって、ポリビニルアルコール(PVA-8:重合度1700、けん化度99.8モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-8)を得た。PVB-8のブチラール化度は65.2モル%、ビニルエステル単位の含有量は0.2モル%、ビニルアルコール単位の含有量は34.6モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(比較例1)
 PVA-1に代わって、ポリビニルアルコール(PVA-A:重合度850、けん化度99.2モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-A)を得た。PVB-Aのブチラール化度は71.0モル%、ビニルエステル単位の含有量は0.8モル%、ビニルアルコール単位の含有量は28.2モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(比較例2)
 PVA-1に代わって、ポリビニルアルコール(PVA-B:重合度1700、けん化度99モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-B)を得た。PVB-Bのブチラール化度は70モル%、ビニルエステル単位の含有量は1モル%、ビニルアルコール単位の含有量は29モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(比較例3)
 PVA-1に代わって、ポリビニルアルコール(PVA-C:重合度3500、けん化度98.5モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-C)を得た。PVB-Cのブチラール化度は71.5モル%、ビニルエステル単位の含有量は1.5モル%、ビニルアルコール単位の含有量は27モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(比較例4)
 PVA-1に代わって、ポリビニルアルコール(PVA-D:重合度4800、けん化度99.9モル%)を用いた以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-D)を得た。PVB-Dのブチラール化度は71.9モル%、ビニルエステル単位の含有量は0.1モル%、ビニルアルコール単位の含有量は28モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得たが、スラリー粘度が高く、塗工性が悪くグリーンシート中の粒子分散性に斑が見られた。
(比較例5)
 PVA-1に代わって、ポリビニルアルコール(PVA-E:重合度2400、けん化度99.9モル%)を用い、ブチルアルデヒドと同時にグルタルアルデヒド0.08g添加した以外は実施例1と同様にして、ポリビニルブチラール樹脂(PVB-E)を得た。PVB-Eのブチラール化度は71.9モル%、ビニルエステル単位の含有量は0.1モル%、ビニルアルコール単位の含有量は28モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
(比較例6)
 PVA-1に代わって、ポリビニルアルコール(PVA-F:重合度1700、けん化度99.5モル%)を用いた以外は比較例5と同様にして、ポリビニルブチラール樹脂(PVB-F)を得た。PVB-Fのブチラール化度は71.0モル%、ビニルエステル単位の含有量は0.5モル%、ビニルアルコール単位の含有量は28.5モル%であった。次いで、実施例1と同様にしてセラミックグリーンシート用スラリー組成物を得た。
 実施例1~8及び比較例1~6で作製したセラミックグリーンシート用スラリー組成物を、コーターバーを用いて、乾燥厚みが2μmとなるように離形処理したポリエステルフィルム上に塗工し、常温で1時間風乾した後、熱風乾燥機にて80℃にて3時間、続いて120℃で2時間乾燥させてセラミックグリーンシートを得た。
(評価)
(機械的強度の評価)
 得られたセラミックグリーンシートをポリエステルフィルムから剥離し、セラミックグリーンシートの状態を観察した。
 ○:セラミックグリーンシートに切れや破れが観察されなかったもの
 ×:切れや破れがわずかでも観察されたもの
の2段階で評価した。
(グリーンシート評価)
 ポリエチレンテレフタレートからセラミックグリーンシートを60mm×50mmのサイズで切り出し、20℃で3分放置後、シートの側面を光学顕微鏡で観測した。
 ○:セラミックスシートの反りが認められないもの
 ×:セラミックスシートにわずかでも反りが認められるもの
の2段階で評価した。
 機械的強度の評価とグリーンシート評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、充分な機械的強度を有し、かつ反りが少ないセラミックグリーンシートを得ることが可能なセラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサを提供することが出来る。

Claims (3)

  1. 重合度が1000を超え4500以下であり、ビニルエステル単位の含有量が1モル%より少ないポリビニルアルコール樹脂をモノアルデヒドでアセタール化して得られ、アセタール化度が60~83モル%であるポリビニルアセタール樹脂、セラミック粉末、及び、有機溶剤を含有するセラミックグリーンシート用スラリー組成物。
  2. 請求項1記載のセラミックグリーンシート用スラリー組成物を用いて得られるセラミックグリーンシートであって、厚さが2μm以下であることを特徴とするセラミックグリーンシート。
  3. 請求項2記載のセラミックグリーンシートと導電ペーストとを用いて得られることを特徴とする積層セラミックコンデンサ。
PCT/JP2010/072563 2010-01-26 2010-12-15 セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ WO2011092963A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011551705A JP5702311B2 (ja) 2010-01-26 2010-12-15 セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
KR1020127021222A KR101780839B1 (ko) 2010-01-26 2010-12-15 세라믹 그린 시트용 슬러리 조성물, 세라믹 그린 시트 및 적층 세라믹 콘덴서
CN2010800625116A CN102822117A (zh) 2010-01-26 2010-12-15 陶瓷生片用浆料组合物、陶瓷生片以及层叠陶瓷电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010014011 2010-01-26
JP2010-014011 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011092963A1 true WO2011092963A1 (ja) 2011-08-04

Family

ID=44318961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072563 WO2011092963A1 (ja) 2010-01-26 2010-12-15 セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ

Country Status (5)

Country Link
JP (1) JP5702311B2 (ja)
KR (1) KR101780839B1 (ja)
CN (1) CN102822117A (ja)
TW (1) TW201144254A (ja)
WO (1) WO2011092963A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047717A1 (ja) * 2011-09-28 2013-04-04 株式会社クラレ スラリー組成物、セラミックグリーンシートおよび積層セラミックコンデンサ
JP5592470B2 (ja) * 2010-02-16 2014-09-17 株式会社クラレ ポリビニルアセタール樹脂を含有するセラミックグリーンシート用スラリー組成物
KR20160124171A (ko) 2014-02-17 2016-10-26 주식회사 쿠라레 세라믹 성형용 또는 도전 페이스트용 결합제, 및 이들의 용도

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141394A (ja) * 2012-12-26 2014-08-07 Murata Mfg Co Ltd セラミックグリーンシートおよびその製造方法
WO2017014295A1 (ja) * 2015-07-22 2017-01-26 昭栄化学工業株式会社 無機粒子分散ペースト用のバインダー樹脂及び無機粒子分散ペースト
CN109563001A (zh) * 2016-07-28 2019-04-02 株式会社可乐丽 陶瓷生片和涂覆片
JP7498896B2 (ja) * 2018-12-25 2024-06-13 住友金属鉱山株式会社 導電性ペースト、電子部品、及び積層セラミックコンデンサ
JP7493946B2 (ja) * 2019-01-29 2024-06-03 花王株式会社 セラミック成形体からの有機物成分の除去方法
WO2020203786A1 (ja) * 2019-03-29 2020-10-08 積水化学工業株式会社 セラミックグリーンシート用樹脂組成物、セラミックグリーンシート及び積層セラミックコンデンサ
CN112028625A (zh) * 2020-07-31 2020-12-04 深圳陶陶科技有限公司 氧化锆陶瓷材料及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089354A (ja) * 2004-09-27 2006-04-06 Sekisui Chem Co Ltd セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP2006282490A (ja) * 2005-04-05 2006-10-19 Sekisui Chem Co Ltd セラミックグリーンシート用セラミックペースト
JP2008133371A (ja) * 2006-11-28 2008-06-12 Sekisui Chem Co Ltd ポリビニルアセタール樹脂及びセラミックグリーンシート
JP2010001488A (ja) * 2003-01-23 2010-01-07 Kuraray Co Ltd ビニルアセタール系重合体からなるセラミック成形用バインダーおよびそれを含有するセラミックグリーンシート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279392B2 (ja) * 1993-06-17 2002-04-30 積水化学工業株式会社 グリーンシート成形用セラミック泥漿物及びグリーンシート
EP1384730B1 (en) * 2002-07-23 2005-11-30 Kuraray Co., Ltd. Polyvinyl acetal and its use
DE602007008862D1 (de) * 2006-04-05 2010-10-14 Nippon Synthetic Chem Ind Harz auf Basis von Polyvinylacetal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001488A (ja) * 2003-01-23 2010-01-07 Kuraray Co Ltd ビニルアセタール系重合体からなるセラミック成形用バインダーおよびそれを含有するセラミックグリーンシート
JP2006089354A (ja) * 2004-09-27 2006-04-06 Sekisui Chem Co Ltd セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP2006282490A (ja) * 2005-04-05 2006-10-19 Sekisui Chem Co Ltd セラミックグリーンシート用セラミックペースト
JP2008133371A (ja) * 2006-11-28 2008-06-12 Sekisui Chem Co Ltd ポリビニルアセタール樹脂及びセラミックグリーンシート

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5592470B2 (ja) * 2010-02-16 2014-09-17 株式会社クラレ ポリビニルアセタール樹脂を含有するセラミックグリーンシート用スラリー組成物
WO2013047717A1 (ja) * 2011-09-28 2013-04-04 株式会社クラレ スラリー組成物、セラミックグリーンシートおよび積層セラミックコンデンサ
CN103842313A (zh) * 2011-09-28 2014-06-04 株式会社可乐丽 浆料组合物、陶瓷生片和层叠陶瓷电容器
US9355777B2 (en) 2011-09-28 2016-05-31 Kuraray Co., Ltd. Slurry composition, ceramic green sheet, and multi layer ceramic capacitor
TWI557096B (zh) * 2011-09-28 2016-11-11 可樂麗股份有限公司 漿料組成物、陶瓷坯片及積層陶瓷電容器
KR20160124171A (ko) 2014-02-17 2016-10-26 주식회사 쿠라레 세라믹 성형용 또는 도전 페이스트용 결합제, 및 이들의 용도

Also Published As

Publication number Publication date
KR20120127596A (ko) 2012-11-22
JP5702311B2 (ja) 2015-04-15
JPWO2011092963A1 (ja) 2013-05-30
KR101780839B1 (ko) 2017-09-21
CN102822117A (zh) 2012-12-12
TW201144254A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5702311B2 (ja) セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP5698750B2 (ja) ポリビニルアセタール樹脂、そのスラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP5913339B2 (ja) スラリー組成物、セラミックグリーンシートおよび積層セラミックコンデンサ
JP5400986B2 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体及びそれを含有する組成物
JP6162962B2 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体、その製造方法及び組成物
US9416054B2 (en) Alkyl-modified vinyl acetal polymer, and composition
JP5592470B2 (ja) ポリビニルアセタール樹脂を含有するセラミックグリーンシート用スラリー組成物
JP4870919B2 (ja) セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP5462700B2 (ja) セラミックグリーンシート用ポリビニルアセタール樹脂、スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP4829518B2 (ja) セラミックグリーンシート用セラミックペースト
JP2023120276A (ja) ポリビニルアセタール樹脂、セラミックグリーンシート用組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP2021055085A (ja) ポリビニルアセタール樹脂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062511.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551705

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021222

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7108/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10844717

Country of ref document: EP

Kind code of ref document: A1