WO2011089920A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2011089920A1
WO2011089920A1 PCT/JP2011/000336 JP2011000336W WO2011089920A1 WO 2011089920 A1 WO2011089920 A1 WO 2011089920A1 JP 2011000336 W JP2011000336 W JP 2011000336W WO 2011089920 A1 WO2011089920 A1 WO 2011089920A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
temperature
food
infrared sensor
heating chamber
Prior art date
Application number
PCT/JP2011/000336
Other languages
English (en)
French (fr)
Inventor
弘一朗 川添
孝之 明石
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010011625A external-priority patent/JP2011149627A/ja
Priority claimed from JP2010011626A external-priority patent/JP2011149628A/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800064224A priority Critical patent/CN102713444A/zh
Publication of WO2011089920A1 publication Critical patent/WO2011089920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • H05B6/6455Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors the sensors being infrared detectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/687Circuits for monitoring or control for cooking

Definitions

  • a high-frequency heating device in which a plurality of infrared sensors are repeatedly scanned in a certain direction in the heating chamber, the maximum temperature between them is detected, compared with a predetermined value, and the heating time is determined (for example, , See Patent Document 1).
  • the present invention solves the above-described conventional problems, and eliminates erroneous determination of food even when the lens surface of the infrared sensor is clouded by residual steam in the heating chamber generated by previous cooking during continuous cooking. This is intended to prevent overheating.
  • the high-frequency heating device of the present invention includes a heating chamber for storing food, heating means for heating the food in the heating chamber, and a detection hole provided in a wall surface of the heating chamber.
  • An infrared sensor that measures the temperature in the heating chamber, a movable part that operates the infrared sensor so that the temperature can be detected while reciprocating a predetermined range in the heating chamber, and a temperature that is acquired during the forward operation 1 storage means and a control unit for controlling the heating operation of the heating means, and by changing the pattern of the subsequent heating control according to the value stored in the first storage means, Even when the detection surface is cloudy, overheating can be prevented.
  • the second invention comprises a heating chamber for storing food, heating means for heating the food in the heating chamber, an infrared sensor for measuring the temperature in the heating chamber through a detection hole provided in a wall surface of the heating chamber, A movable part that operates the infrared sensor so that the temperature can be detected while reciprocating a predetermined range in the heating chamber, first storage means for storing the temperature acquired during the forward operation, and acquired during the return operation A second storage means for storing the temperature is provided, and the detection surface of the infrared sensor is clouded by changing the subsequent heating control pattern according to the difference between the values stored in the first and second storage means. Even when the food is present, overheating of the food can be prevented.
  • the value stored in the first storage means is a predetermined value or less. If the difference between the values stored in the first and second storage means is greater than or equal to the predetermined value or less than the predetermined value, it is determined that the food is normal temperature, so that it is not erroneously determined as frozen food. Can prevent overheating of food.
  • FIG. 1 is a schematic diagram of a system according to Embodiment 1 of the high-frequency heating device of the present invention
  • FIG. 2 is a configuration diagram of a machine room below the heating chamber of the high-frequency heating device according to Embodiment 1 of the present invention
  • FIG. It is a block diagram seen from the right side surface of the high frequency heating apparatus in Embodiment 1 of the same.
  • the infrared sensor 5 is repeatedly operated in the direction indicated by the arrow by the drive motor 6 so that the temperature within a predetermined range of the bottom surface in the heating chamber 1 can be detected.
  • a control unit 7 controls the operation of the drive motor 6 or A / D-converts the voltage obtained from the infrared sensor 5, and the A / D-converted temperature data of the food 3 and the finished temperature of the predetermined food 3 The determination time is compared to determine the heating time of the food 3.
  • the magnetron 16 for generating a high frequency is disposed at the left central portion and is cooled by a cooling fan B17 provided on the back side.
  • the air that has cooled the magnetron 16 passes through the air guide left 18, and a part of the air is blown into the heating chamber 1 through the intake punching hole 10.
  • Fig. 3 shows the configuration of the right side.
  • a part of the cooling air from the cooling fan A13 cools the latch U20 such as the door SW for determining the open / closed state of the infrared sensor 5 and the door 12 through the air guide right 19 from the air blowing port 14c.
  • the infrared sensor 5 stands by in a state of being tilted to the right so as to avoid the temperature detection hole 4 from the vertical direction. This is to prevent oil from splashing and oil smoke from adhering to the lens surface of the infrared sensor 5 when cooking at a high temperature such as grill cooking, for example, when the infrared sensor 5 is not used. .
  • the cooling fan A13 cools the infrared sensor 5 and the latch U20 in addition to the control unit 7 and the inverter 15. Therefore, when the cooling air is dispersed and viewed for each individual component, one cooling fan A13 is provided.
  • the wind power is weaker than when cooling only the parts.
  • the cooling fan A13 is a sirocco fan
  • the control unit 7 and the inverter 15 arranged in the rotation direction can be strongly cooled, but the infrared sensor 5 causes the air in the horizontal direction of the cooling fan A13 to be The wind and the direction of cooling will change, and the wind will become weaker as the resistance increases.
  • FIG. 4 is a flowchart showing the operation in the first embodiment of the present invention
  • FIG. 5 is a diagram showing the visual field of the infrared sensor 5 in the heating chamber 1.
  • the infrared sensor 5 according to the present embodiment uses an 8-element type.
  • the control unit 7 first drives the drive device of the infrared sensor 5 and simultaneously sets a freezing flag used for determining whether the food is frozen or normal temperature to 0 representing normal temperature food (S1). ). At the same time, the rotation of the cooling fan A13 and the cooling fan B17 for cooling the components is started.
  • the infrared sensor 5 first defines an initial position in order to measure temperature while repeatedly operating in the heating chamber 1. For this reason, the infrared sensor 5 moves from the standby position to the reading start address (address 1). While the infrared sensor 5 is moving, the control unit 7 starts driving the magnetron 16 (S2).
  • the cooling air from the cooling fan A13 flows through the air outlet 14c and the air guide right 19, so that the moisture on the surface is vaporized by the cooling air.
  • the temperature to be measured is low.
  • the cloudy water on the lens surface disappears, the temperature in the heating chamber 1 can be measured correctly.
  • the heating power is reduced from 1000W to 600W (S10) because there is an erroneous determination of frozen food due to the lens surface being cloudy (S10).
  • Control is performed using a heating control pattern for food (S17). If neither of the conditions of steps S7 and S8 is satisfied, the infrared sensor 5 measures the temperature while returning from the heating chamber 1 door side to the back side, this time, 9, 8,. The temperature is stored in the second storage means as return path data (S9).
  • the cooling fan B17 also starts rotating, so the cooling air that has cooled the magnetron flows into the heating chamber 1 through the air guide left 18 from the intake punching hole 10 on the left side of the heating chamber 1, The remaining steam is pushed out of the heating chamber 1 through the exhaust punching hole 11 and the infrared detection hole 4.
  • the cooling air from the cooling fan A13 does not cause the vapor from the detection hole 4 to adhere to the lens surface of the infrared sensor 5, if there is a large amount of residual vapor, it adheres to the lens surface. May end up. In that case, the temperature can be normally acquired at the beginning of cooking, but after a while, a low temperature is suddenly measured.
  • the temperature measurement at address 1 after starting cooking was ⁇ 40 ° C. for all elements. From around address 3, the temperature gradually increases, but the measured temperature continues to be negative. The temperature measurement operation of the infrared sensor 5 enters the return path and moves from address 9 to address 1, but the negative temperature still continues. When entering the outbound route again, the cloudiness finally cleared around No. 5 and No. 6, and the temperature in the heating chamber 1 was successfully acquired.
  • the control unit 7 recognizes that the heating of the frozen food has started because the measured temperature is ⁇ 4 ° C. or lower of the freezing determination.
  • the predetermined value 1 is set to ⁇ 30 ° C. and the predetermined value 2 is set to ⁇ 30 ° C.
  • the value of the addresses 1 and 2 becomes the predetermined value 1 or less, and the data of the forward path is acquired. So it was possible to set the food at room temperature.
  • the predetermined value 3 is set to 550
  • the predetermined value 4 is set to ⁇ 380. Therefore, in this experimental example, frozen food was once determined, but at the time when the return path data was acquired, The food could be reset.
  • the lens surface of the infrared sensor 5 is clouded to cancel the freezing determination, and at the same time, the heating power is reduced to 600W.
  • heating is performed at 1000 W, when the load is small, it may be considered that the heating is progressing when the cloudiness is clear.
  • the lens surface can be reliably fogged while delaying the time until the food reaches a desired temperature, so that a safer high-frequency heating device can be provided.
  • the power is set to 600 W, but any number may be selected according to the heating characteristics of the system. If the lens surface of the infrared sensor 5 becomes cloudy, the heating is stopped by setting the output to 0 W, and if the high frequency is output again after clearing, a safer system can be supplied.
  • a dish tray 2 is inserted on the bottom surface of the heating chamber 1, and the food 3 is placed on the dish tray 2.
  • a temperature detection hole 4 is formed above the right side surface of the heating chamber 1, and an infrared sensor 5 as a surface temperature detection unit 5 is disposed outside the wall surface of the heating chamber 1.
  • the infrared sensor 5 detects the surface temperature of the food 3 in the heating chamber 1 in a non-contact manner using infrared rays detected through the holes 4.
  • the infrared sensor 5 is repeatedly operated in the direction indicated by the arrow by the drive motor 6 so that the temperature within a predetermined range of the bottom surface in the heating chamber 1 can be detected.
  • a control unit 7 controls the operation of the drive motor 6 or A / D-converts the voltage obtained from the infrared sensor 5, and the A / D-converted temperature data of the food 3 and the finished temperature of the predetermined food 3 The determination time is compared to determine the heating time of the food 3.
  • a water reservoir 9 for boiling the water supplied from the nozzle 8 to generate steam.
  • a punching hole 10 for intake of the heating chamber is provided on the left side surface, and a punching hole 11 for exhausting the heating chamber is provided on the right side surface.
  • a door 12 that prevents the front surface of the heating chamber 1 is provided on the front surface of the heating chamber 1 so as to be openable and closable. Further, various operation keys (not shown) are used by the user to select a cooking menu or give instructions to start cooking. ) And a display unit (not shown) for performing necessary display.
  • the lower side in the drawing is the door 12 side, that is, the front side of the high-frequency heating device of the present embodiment.
  • a control P plate constituting the control unit 7 is arranged on the right side of the heating chamber 1, and a cooling fan A13 constituted by a sirocco fan is arranged on the back side thereof.
  • the cooling air from the cooling fan A13 is directed in these three directions from the air blowing port 14a toward the control unit 7, from the air blowing port 14b toward the inverter 15 that controls the high frequency output, and from the air blowing port 14c to the upper right side. Sent to.
  • the magnetron 16 that generates a high frequency is arranged at the left center and cooled by a cooling fan B17 provided on the back side.
  • the air that has cooled the magnetron 16 passes through the air guide left 18, and a part of the air is blown into the heating chamber from the punching hole 10 for suction.
  • Fig. 3 shows the configuration of the right side.
  • a part of the cooling air from the cooling fan A13 cools the latch U20 such as the door SW for determining the open / closed state of the infrared sensor 5 and the door 12 via the air guide right 19 from the air blowing port 14c.
  • the infrared sensor 5 stands by in a state of being tilted to the right so as to avoid the temperature detection hole 4 from the vertical direction. This is to prevent oil from splashing and oil smoke from adhering to the lens surface of the infrared sensor 5 when cooking at a high temperature such as grill cooking, for example, when the infrared sensor 5 is not used. .
  • FIG. 8 is a flowchart showing the operation of the high-frequency heating device according to Embodiment 2 of the present invention.
  • the control unit 7 first drives the drive device of the infrared sensor 5 and simultaneously sets a freezing flag used for determining whether the food is frozen or normal temperature to 0 representing normal temperature food (S21).
  • the rotation of the cooling fan A13 and the cooling fan B17 for cooling the components is started.
  • the infrared sensor 5 first defines an initial position in order to measure temperature while repeatedly operating in the heating chamber 1. For this reason, the infrared sensor 5 moves from the standby position to the reading start address (address 1). While the infrared sensor 5 is moving, the control unit 7 starts driving the magnetron 16 (S22).
  • the number of divisions in the heating chamber 1 to measure the temperature may be determined in consideration of the size of the heating chamber 1. In this embodiment, 10 divisions are used.
  • the control unit 7 determines whether the food stored in the heating chamber 1 is frozen food or normal temperature food (S24). In the case of frozen food, in general, the temperature does not rise uniformly, but the part where heating proceeds and the part where heating is delayed are mixed, and the end of cooking is judged by the temperature of the part where heating has progressed As a result, the portion where heating is delayed remains cold.
  • the control unit 7 is instructed to continue the heating for a while after the predetermined temperature is reached so that the heating progresses to an appropriate temperature even for the portion where the heating is delayed.
  • the heating pattern is memorized.
  • the control unit 7 determines that the food is frozen food (S25), and the infrared sensor 5 moves from address 1 to address 10.
  • the measured temperature is stored in the first storage means as forward data (S26).
  • the cooling fan B17 When cooking is repeated, steam from the previous cooking may remain in the heating chamber 1.
  • the cooling fan B17 also starts rotating, so the cooling air that has cooled the magnetron flows into the heating chamber 1 through the air guide left 18 from the intake punching hole 10 on the left side of the heating chamber 1, The remaining steam is pushed out of the heating chamber 1 through the exhaust punching hole 11 and the infrared detection hole 4.
  • the cooling air from the cooling fan A13 does not cause the vapor from the detection hole 4 to adhere to the lens surface of the infrared sensor 5, if there is a large amount of residual vapor, it adheres to the lens surface. May end up. In that case, the temperature can be normally acquired at the beginning of cooking, but after a while, a low temperature is suddenly measured.
  • the infrared sensor 5 determines whether the calculation result in step S9 is equal to or greater than the predetermined value 1 or less than the predetermined value 2 in consideration of the case where it is cloudy from the beginning or the case where cloudiness occurs immediately after the start of cooking. It is determined whether the lens surface is cloudy (S30, S31). If neither of the conditions in steps S30 and S31 is satisfied, the frozen food is heated with no fogging of the lens surface, so control is performed with a heating pattern for frozen food (S32). If any of the conditions in steps S30 and S31 is satisfied, the heating power is reduced from 1000W to 600W because the lens surface is cloudy or there is an erroneous determination of frozen food due to sudden cloudiness. Then, control is performed with a heating control pattern for room temperature food (S34).
  • Residual vapor in the heating chamber 1 gradually goes out of the heating chamber 1 from the temperature detection hole 4 and the exhaust punching 11.
  • the cooling air also flows to the infrared sensor 5 via the air guide right 19, so that no vapor adheres to the lens surface of the infrared sensor 5.
  • the residual vapor reaches the lens surface of the infrared sensor 5 and is in a dew condensation state. Although this dew condensation state does not continue for 1 hour, the dew condensation increases for a while after the post fan operation is stopped. At this time, when the next automatic cooking is performed, heating starts while the lens surface of the infrared sensor 5 is clouded, and thus a low temperature is measured.
  • FIG. 5 shows the measurement temperature of the infrared sensor 5 when 100 cc of normal temperature water is heated at “warm 70 ° C.” 5 minutes after the stop of the post fan operation.
  • the infrared sensor 5 according to the present embodiment uses an 8-element type.
  • the temperature measurement at address 1 was -40 ° C for all elements.
  • the measurement at ⁇ 40 ° C. continues for a while, and the temperature gradually increases from around address 8, but the measured temperature continues to be negative.
  • the temperature measurement operation of the infrared sensor 5 enters the return path and moves from the 10th address to the 1st address, but the negative temperature still continues.
  • the cloudiness finally cleared around No. 5 and No. 6, and the temperature in the heating chamber 1 was successfully acquired.
  • the control unit 7 recognizes that the heating of the frozen food has started because the measurement temperature is ⁇ 4 ° C. or less of the freezing determination. Since the temperature data of the forward path and the backward path are measured and stored, the return path-forward path calculation is performed for each element 1 to 8 of each address. The total sum of these calculations was 1897 in the present experiment.
  • the predetermined value 1 is set to 550, and the predetermined value 2 is set to ⁇ 380. Therefore, in the present experimental example, frozen food was once determined. The food could be reset.
  • the lens surface of the infrared sensor 5 is clouded to cancel the freezing determination, and at the same time, the heating power is reduced to 600W.
  • heating is performed at 1000 W, when the load is small, it may be considered that heating is progressing when the cloudiness is clear.
  • the lens surface can be reliably fogged while delaying the time until the food reaches a desired temperature, so that a safer high-frequency heating device can be provided.
  • the power is set to 600 W, but any number may be selected according to the heating characteristics of the system. If the lens surface of the infrared sensor 5 becomes cloudy, the heating is stopped by setting the output to 0 W, and if the high frequency is output again after clearing, a safer system can be supplied.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)

Abstract

 加熱室内に残留蒸気がある場合でも、食品への誤判定を防止し、食品の過加熱を防ぐこと。制御部は、赤外線センサの温度測定動作における往路の測定温度、または往路、復路の測定温度を演算(S12~S14)することで、赤外線センサのレンズ面が曇っているかどうかを判定し、曇っている場合に誤って冷凍食品と判定した場合でも、加熱パターンを常温食品用のものに選択し直すことで、食品の過加熱を防止する。

Description

高周波加熱装置
 本発明は、高周波加熱装置に関し、特に、赤外線センサを用いて加熱室内の食品の温度を検知する高周波加熱装置に関する。
 従来、この種の高周波加熱装置では、食品の表面検出温度として赤外線センサが一般的に用いられている。また、近年においては、食品を載置する回転台を備えず、加熱室内の底面が平面状に構成するものが多く生産されている。これにより、食品の載置可能位置が広がり、赤外線センサによる食品温度の検出精度がより求められている。
 このために、複数の赤外線センサを加熱室内の一定方向に反復走査させ、その間の最大温度を検出して、所定の値と比較し、加熱時間を決定する高周波加熱装置が発明されている(例えば、特許文献1参照)。
 一方、近年の高周波加熱装置においては、高周波加熱の利便性、電熱加熱の調理範囲の多さに加えて、蒸気加熱ができることを特徴とする製品が多く発売されてきており、蒸気加熱の方法として、加熱室内に蒸気発生部を設ける構成のものも発明されている(例えば、特許文献2参照)。
 また、食品の加熱によって赤外線センサの検知面が曇ることに対応した加熱調理装置も発明されている(例えば、特許文献3参照)。
日本国特開2002-168457号公報 日本国特開2004-44993号公報 日本国特開2000-240946号公報
 前記従来の高周波加熱装置は、加熱室内で蒸気を発生させながら調理を行うので、加熱室内の気密性をあげる構成としている。すなわち、排気を少なくすることで加熱室内に蒸気を充満させ、蒸気による高温を維持することで、蒸し調理が可能となっている。一方、蒸気加熱を使わない高周波加熱による調理でも、食品が加熱された時に発生する水蒸気が加熱室内に充満する。
 調理終了後、食品を取り出した後も、扉を閉めると、水蒸気が加熱室内に残留し、その残留水蒸気で、赤外線センサの検知面が曇る場合があった。曇った状態で次の調理を開始すると、食品の温度を正しく検知することができず、低めに検知してしまうので、常温の食品であっても、冷凍食品と判定される場合があった。使用者が冷凍食品を加熱しようとする場合には問題にならない。しかし、常温の食品を加熱しようとしていた場合には、赤外線センサのレンズ面の曇りによる誤判定で冷凍食品用の加熱が行われる。このため、加熱室内では過加熱となり、予期せぬ沸騰状態になり、又はお皿等の容器の温度が上がり過ぎてやけどを招くという課題を有していた。
 また、赤外線センサの検知面が曇ることに対応した、前記従来の高周波加熱装置では、調理中に食品から発散される水分で、赤外線センサの検知面が曇るので、赤外線センサが赤外線を検知しにくくなり、食品の温度を低めに検知してしまう。その場合、食品の加熱が進行しているにもかかわらず、加熱進行の正確な状況を高周波加熱装置では検知できていない。そこで、食品の温度を記憶しながら、比較を行うことで加熱動作を終了させるよう判断していた。しかしながら、この従来の高周波加熱装置の発明では、加熱中に赤外線センサの検知面が曇ることへの対応であって、調理開始時に赤外線センサの検知面が曇っている場合への対応にはなっていなかった。
 本発明は、前記従来の課題を解決するもので、連続調理時に前の調理により発生した加熱室内の残留蒸気により、赤外線センサのレンズ面が曇ってしまった場合でも、食品への誤判定を無くすことにより、過加熱を防止することを目的とするものである。
 前記従来の課題を解決するために、本発明の高周波加熱装置は、食品を収納する加熱室と、前記加熱室内の食品を加熱する加熱手段と、前記加熱室の壁面に設けた検出用孔を通して加熱室内の温度を測定する赤外線センサと、前記加熱室内の定められた範囲を往復しながら温度を検出できるように前記赤外線センサを動作させる可動部と、往路動作中に取得した温度を記憶する第1の記憶手段と、前記加熱手段の加熱動作を制御する制御部と、を備え、第1の記憶手段の記憶する値に応じて、以降の加熱制御のパターンを変更することによって、赤外線センサの検知面が曇ってる場合でも、過加熱を防止することができる。
 また、本発明の高周波加熱装置は、食品を収納する加熱室と、前記加熱室内の食品を加熱する加熱手段と、前記加熱室の壁面に設けた検出用孔を通して加熱室内の温度を測定する赤外線センサと、前記加熱室内の定められた範囲を往復しながら温度を検出できるように前記赤外線センサを動作させる可動部と、往路動作中に取得した温度を記憶する第1の記憶手段と、復路動作中に取得した温度を記憶する第2の記憶手段を備え、第1の記憶手段が記憶する値、または第1の記憶手段と第2の記憶手段とが記憶する値の差に応じて、以降の加熱制御のパターンを変更することによって、赤外線センサの検知面が曇っている場合でも過加熱を防止することができる。
 本発明によれば、連続調理時にその前の調理により発生し、加熱室内に残留した蒸気により、赤外線センサのレンズ面が曇ってしまった場合でも、食品への誤判定を無くすことにより、過加熱を防止することができるので、危険を回避した高周波加熱装置を提供することが可能となる。
本発明の各実施の形態におけるシステムの概略図 同高周波加熱装置の加熱室下部の機械室の構成図 同高周波加熱装置の右側面からみた構成図 本発明の実施の形態1における高周波加熱装置の動作を示すフローチャート 加熱室内の赤外線センサの視野を表す図 本発明の実施の形態1における赤外線センサの温度測定結果を示す図 本発明の実施の形態1における赤外線センサの温度測定結果を示す図 本発明の実施の形態2における高周波加熱装置の動作を示すフローチャート 本発明の実施の形態2における赤外線センサの温度測定結果を示す図
 第1の発明は、食品を収納する加熱室と、前記加熱室内の食品を加熱する加熱手段と、前記加熱室の壁面に設けた検出用孔を通して加熱室内の温度を測定する赤外線センサと、前記加熱室内の定められた範囲を往復しながら温度を検出できるように前記赤外線センサを動作させる可動部と、往路動作中に取得した温度を記憶する第1の記憶手段を備え、第1の記憶手段が記憶する値が所定値以下となった場合に、それ以降の加熱制御のパターンを変更することにより、赤外線センサの検知面が曇っている場合でも、食品の過加熱を防止することができる。
 第2の発明は、食品を収納する加熱室と、前記加熱室内の食品を加熱する加熱手段と、前記加熱室の壁面に設けた検出用孔を通して加熱室内の温度を測定する赤外線センサと、前記加熱室内の定められた範囲を往復しながら温度を検出できるように前記赤外線センサを動作させる可動部と、往路動作中に取得した温度を記憶する第1の記憶手段と、復路動作中に取得した温度を記憶する第2の記憶手段を備え、第1、第2の記憶手段が記憶する値の差に応じて、以降の加熱制御のパターンを変更することにより、赤外線センサの検知面が曇っている場合でも、食品の過加熱を防止することができる。
 第3の発明は、第2の発明において特に、赤外線センサの測定温度により、冷凍食品か常温の食品かを判断する高周波加熱装置において、第1の記憶手段が記憶する値が所定値以下となった場合に、または第1、第2の記憶手段が記憶する値の差が所定値以上、または所定値以下となった場合に常温の食品と判断することで、冷凍食品と誤判別することなく、食品の過加熱を防止することができる。
 第4の発明は、特に、第1の記憶手段が記憶する範囲1の値が所定値未満となった場合に、または第1、第2の記憶手段が記憶する値の差が、所定値以上または所定値以下となった場合に加熱パワーを低下することで、調理物が適温に仕上がるまでの時間が、高出力で加熱した場合よりも長くなるので、赤外線センサのレンズ面の曇りが確実に無くなるので、より安定した検知性能が得られ、過加熱を防止することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
 図1は本発明の高周波加熱装置の実施の形態1におけるシステムの概略図、図2は本発明の実施の形態1における高周波加熱装置の加熱室下部の機械室の構成図、図3は本発明の同実施の形態1における高周波加熱装置の右側面からみた構成図である。
 加熱室1の底面には皿受け台2が挿入されており、皿受け台2の上に食品3を載せる。加熱室1の右側面上方には、温度検出用の穴4が開けられており、加熱室1の壁面外側に表面温度検出部5(以下、赤外線センサ5と称す)が配置されている。赤外線センサ5は、穴4を通して検出する赤外線により、加熱室1内の食品3の表面温度を非接触で検出するものである。
 そして、赤外線センサ5は、加熱室1内の底面部の定められた範囲の温度が検出できるよう、駆動モータ6によって矢印で示す方向に反復動作する。7は制御部で、駆動モータ6の動作を制御したり、赤外線センサ5から得られる電圧をA/D変換し、そのA/D変換された食品3の温度データと所定の食品3の仕上がり温度の判定値とを比較し、食品3の加熱時間を決定したりするものである。
 加熱室1の奥には、ノズル8から給水された水を沸騰させて蒸気を発生させる為の水溜部9が配置されている。左側面には加熱室吸気用のパンチング穴10、右側面には加熱室排気用のパンチング穴11が設けられている。
 加熱室1の前面には加熱室1の前面を防ぐ扉12が、開閉可能に設けられており、さらには、使用者が調理メニューの選択や調理開始の指示などを行う各種操作キー(図示せず)と、必要な表示を行う表示部(図示せず)とが設けられている。
 図2に示す加熱室1の下部は、図面における下側が扉12側、すなわち本実施の形態の高周波加熱装置の前側となる。加熱室1の右側に制御部7を構成する制御P板を配置し、その奥側にシロッコファンで構成した冷却ファンA13を配置する。冷却ファンA13の冷却風は、送風口14aから制御部7に向けてと、送風口14bから高周波出力を制御するインバータ15に向けてと、そして送風口14cから右側面上部へと、これら3方向に送られる。高周波を発生させるマグネトロン16は左側中央部に配置し、奥側に設けた冷却ファンB17によって冷却される。マグネトロン16を冷却した風は、エアガイド左18を経由し、そのうちの一部が吸気用パンチング穴10から、加熱室1内に送風される。
 図3に右側面の構成図を示す。冷却ファンA13からの冷却風の一部が、送風口14cから、エアガイド右19を経由して、赤外線センサ5と扉12の開閉状態を判定するドアSW等のラッチU20を冷却する。赤外線センサ5は、非動作時、温度検出穴4の鉛直方向から避けるように、右に傾いた状態で待機している。これは、赤外線センサ5を使用しないメニュー、例えば、グリル調理の様に高温で調理する際、食品からの油の飛び散りや、油煙が赤外線センサ5のレンズ面に付着することを防止する為である。
 以上記載したように、冷却ファンA13は、制御部7、インバータ15に加えて、赤外線センサ5とラッチU20とを冷却するので、冷却風が分散し、個々の部品毎で見たときには、一つの部品だけを冷却する場合に比べて風力が弱くなる。また、冷却ファンA13はシロッコファンであるため、回転方向に配置される制御部7やインバータ15は強力に冷却できるが、赤外線センサ5は、冷却ファンA13の水平方向の風を送風口14cによって上に向かう風と方向を変えての冷却となり、抵抗が大きくなる分、さらに風力が弱くなる。
 以上のように構成された高周波加熱装置の動作について、説明する。
 図4は本発明の実施の形態1における動作を示すフローチャート、図5は加熱室1内の赤外線センサ5の視野を表す図である。なお、本実施の形態の赤外線センサ5は、8素子タイプのものを使用している。
 まず、調理を開始すると、制御部7は、最初に赤外線センサ5の駆動装置を駆動させると同時に、食品が冷凍か常温かの判定に使う冷凍フラグを、常温食品を表す0に設定する(S1)。合わせて、部品を冷却するための冷却ファンA13と冷却ファンB17との回転を開始する。赤外線センサ5は、加熱室1内を反復動作しながら温度を測定するために、まずは、初期位置を定義する。このため赤外線センサ5は、待機位置から読み取り開始番地(1番地)まで移動する。赤外線センサ5が移動している間に、制御部7は、マグネトロン16の駆動を開始する(S2)。
 自動調理では、調理時間を短くするため、最高出力(本実施の形態1では、1000W)で駆動するのが一般的である。赤外線センサ5が1番地に移動完了すると、温度の測定を開始する(S3)。赤外線センサ5は、1番地として、加熱室1の奥側の温度を測定したら、ステッピングモータで前側に移動して停止し、2番地として次の温度を測定する。以降、移動、停止を繰り返しながら、加熱室1の扉側まで温度を測定する。なお、加熱室1内を何分割して温度を測定するかは、加熱室1の大きさを考慮して決めればよい。本実施の形態1では、9分割とした。
 赤外線センサ5が温度を測定すると、制御部7は、加熱室1に入れられたのが冷凍食品なのか常温の食品なのかを判別する(S4)。冷凍食品の場合、一般的には均一的に温度が上昇するのではなく、加熱が進む部分と加熱が遅れる部分とが混在しており、加熱が進んだ部分の温度で調理終了を判断してしまうと、加熱が遅れる部分が冷たいままとなる。
 そこで、冷凍食品の加熱を開始した場合には、所定の温度に到達してからも、しばらく加熱を継続することで、加熱が遅れる部分に対しても適温まで加熱が進むよう、制御部7に加熱パターンを記憶させている。ステップS4で、冷凍食品温度(本発明では4℃)以下の温度を赤外線センサ5が測定したら、制御部7は冷凍食品と判定し(S5)、赤外線センサ5が1番地から9番地まで移動しながら測定した温度を、往路のデータとして第1の記憶手段に保存する(S6)。
 赤外線センサ5のレンズ面が曇っていると、冷却ファンA13からの冷却風が送風口14c、エアガイド右19を経由して流れてくるので、表面の水分が冷却風によって気化される状態となり、測定する温度は低くなる。やがて、レンズ表面の曇り水分がなくなると、加熱室1内の温度を正しく測定できるようになる。
 調理開始当初から曇っていた場合、食品が置かれるはずのない加熱室1奥側の温度を測定する1、2番地、または加熱室1扉側の温度を測定する8、9番地の温度が急激に低い温度を測定するため、往路で記憶した1、2番地の値が所定値1以下、または8、9番地の値が所定値2以下となっているかで、赤外線センサ5のレンズ面が曇っているかどうかの判定を行う(S7、S8)。ステップS7、S8いずれかの条件を満たした場合には、レンズ面が曇っていたことによる冷凍食品への誤判定があったということで、加熱パワーを1000Wから600Wに低減し(S10)、常温食品用の加熱制御のパターンで制御を行う(S17)。ステップS7、S8のいずれの条件も満たさない場合は、赤外線センサ5が、今度は9、8・・・1番地と、加熱室1扉側から奥側へと戻りながら温度を測定し、その時の温度を復路のデータとして第2の記憶手段に保存する(S9)。
 次に、冷凍食品があったかどうか、の確認を行う(S11)。冷凍フラグが1となっていた場合は、レンズ面が曇っていることによる冷凍判定なのかを推定するために、往路で記録したデータと復路で記憶したデータとを演算する(S12)。
 調理が繰り返し行われる場合には、その前の調理時の蒸気が、加熱室1内に残留している場合がある。調理開始時に、冷却ファンB17も回転を開始しているので、マグネトロンを冷却した冷却風がエアガイド左18を経由して、加熱室1左面にある吸気パンチング穴10から加熱室1内に流れ、残留している蒸気が、排気パンチング穴11と赤外線検出用の穴4とから、加熱室1外に押し出される。また、冷却ファンA13からの冷却風で、検出用穴4からの蒸気は、赤外線センサ5のレンズ面に付着しないように配慮しているものの、残留蒸気が多い場合には、レンズ面に付着してしまう場合がある。その場合は、調理開始当初は正常に温度取得ができているが、しばらくして、急激に低い温度を測定し始める。
 これらのように当初から曇っている場合、あるいは調理開始後すぐに曇り出す場合を考慮して、ステップS12の演算結果が所定値3以上なのか、所定値4以下なのかで、赤外線センサ5のレンズ面が曇っているかどうかの判定を行う(S13、S14)。ステップS13、S14のいずれの条件とも満たさない場合は、レンズ面の曇りは無い状態で冷凍食品を加熱している場合なので、冷凍食品用の加熱パターンで制御を行う(S16)。ステップS13、S14のいずれかの条件を満たした場合は、レンズ面が曇っていた、または急激に曇ったことによる冷凍食品への誤判定があったということで、加熱パワーを1000Wから600Wに低減し(S15)、常温食品用の加熱制御のパターンで制御を行う(S17)。
 実験例を元に、本発明の効果を説明する。
 蒸気の発生量が多い調理としては、例えば、根菜の加熱等があるが、実験条件を安定させるために、水200ccを800W出力で3分加熱することで、加熱室1内に蒸気を発生させる。3分で加熱終了した後、さらに条件を厳しくするために、扉12を閉じた状態で1分放置し、加熱室1内に蒸気を充満させる。加熱終了、放置1分後に扉12を開け、加熱室1内で沸騰した水をすばやく取り出し、扉12をすばやく閉じる。加熱終了後に、機械室内の部品の温度を冷却するために、しばらくは冷却ファンの回転を継続することが一般的に行われており、本実施の形態の高周波加熱装置も加熱終了後2分間は回転を継続している(以降、ポストファン運転と呼ぶ)。
 加熱室1内の残留蒸気は、温度検出用穴4と排気パンチング穴11から、少しずつ加熱室1外に出て行く。ポストファン運転中は、エアガイド右19を経由して冷却風が赤外線センサ5にも流れているので、赤外線センサ5のレンズ面への蒸気の付着はない。しかし、加熱終了後2分経過すると、ポストファン運転が停止するので、残留蒸気分が、赤外線センサ5のレンズ面にも到達し、結露状態となる。この結露状態は、1時間も継続するものではないが、ポストファン運転停止後しばらくは、結露が増える状態となる。この時に、次の自動調理をすると、赤外線センサ5のレンズ面が曇ったままで加熱開始となるので、低い温度を測定してしまう。
 ポストファン運転停止5分後に、常温水100ccを「あたため70℃」で加熱した場合における、赤外線センサ5の測定温度の様子を図6、図7に示す。図6及び図7は、それぞれ本発明の実施の形態1における赤外線センサの温度測定結果を示す図である。
 図6に示す実験の場合では、調理開始後、1番地の温度測定は、全素子とも-40℃であった。3番地辺りから、温度が少しずつ上昇してくるが、測定温度はマイナスの温度が続く。赤外線センサ5の温度測定動作が、復路に入って9番地から1番地へと移動するが、まだマイナスの温度が継続する。再び往路に入ると、5番、6番辺りでやっと曇りが晴れて、正常に加熱室1内の温度を取得できている。
 制御部7は、1番地の「素子1」のデータが-40℃と測定すると、測定温度が冷凍判定の-4℃以下であるので、冷凍食品の加熱が始まったと認識をする。しかし、本実施の形態では、所定値1として-30℃、所定値2として-30℃と設定していたので、1、2番地の値が所定値1以下となり、往路のデータを取得した時点で、常温の食品に設定することができた。
 図7に示す実験の場合では、調理開始当初は正常に温度取得ができているが、しばらくして、低い温度を測定し始めている。制御部7は、4番地の「素子3」のデータが-5℃と測定すると、測定温度が冷凍判定の-4℃以下であるので、冷凍食品の加熱が始まったと認識をする。往路、復路の温度データを測定すると、それぞれ記憶しているので、各番地の各素子1~8毎に復路-往路の演算を行った。この演算の総和を求めると、今回の実験の場合では、-1269であった。
 赤外線センサ5のレンズ面に曇りがない場合は、正しく温度を取得できるので、復路往路の演算では、加熱による食品の温度上昇分だけであるはずである。一方、レンズ面に曇りがある場合では、レンズ表面の曇りが8素子全てに影響するので、変化値が大きくなる。本実施の形態では、所定値3として550、所定値4として-380と設定していたので、今回の実験例では、一旦冷凍食品を判定したが、復路のデータを取得した時点で、常温の食品に再設定することができた。
 常温の水100ccを「あたため70℃」で加熱した場合、通常40秒ぐらいで停止するが、本発明を実施する前は、冷凍食品と判定されてしまい、1分50秒加熱し、水が沸騰し続けるという危険な状態となっていたが、本実施の形態により、故意に曇らせた場合でも、通常と同じく40秒で停止することが可能となり、水温も71℃とほぼ適温で加熱終了することができた。
 また、本実施の形態では、赤外線センサ5のレンズ面が曇って冷凍判定を取り消すと同時に、加熱パワーを600Wに低下する構成とした。1000Wで加熱をすると、負荷量が少量の場合には、曇りが晴れる場合には、加熱が進行している場合も考えられる。加熱パワーを低下することで、食品が所望の温度になるまでの時間を遅らせる間に、レンズ面の曇りを確実に晴らすことができるので、より安全な高周波加熱装置を提供することができる。
 なお、本実施の形態では600Wに設定したが、システムのもつ加熱特性に応じて、任意の数字を選択すればよい。赤外線センサ5のレンズ面の曇りが晴れるまでは、出力を0Wにして加熱を停止し、晴れた後に高周波を再出力すれば、さらに安全なシステムが供給できる。
(実施の形態2)
 加熱室1の底面には皿受け台2が挿入されており、皿受け台2の上に食品3を載せる。加熱室1の右側面上方には、温度検出用の穴4が開けられており、加熱室1の壁面外側に表面温度検出部5である赤外線センサ5が配置されている。赤外線センサ5は、穴4を通して検出する赤外線により、加熱室1内の食品3の表面温度を非接触で検出するものである。
 そして、赤外線センサ5は、加熱室1内の底面部の定められた範囲の温度が検出できるよう、駆動モータ6によって矢印で示す方向に反復動作する。7は制御部で、駆動モータ6の動作を制御したり、赤外線センサ5から得られる電圧をA/D変換し、そのA/D変換された食品3の温度データと所定の食品3の仕上がり温度の判定値とを比較し、食品3の加熱時間を決定したりするものである。
 加熱室1の奥には、ノズル8から給水された水を沸騰させて蒸気を発生させる為の水溜部9が配置されている。左側面には加熱室吸気用のパンチング穴10、右側面には加熱室排気用のパンチング穴11が、設けられている。
 加熱室1の前面には加熱室1前面を防ぐ扉12が、開閉可能に設けられており、さらには、使用者が調理メニューの選択や調理開始の指示などを行う各種操作キー(図示せず)と、必要な表示を行う表示部(図示せず)とが設けられている。
 図2に示す加熱室1下部は、図面における下側が扉12側、すなわち本実施の形態の高周波加熱装置の前側となる。加熱室1の右側に、制御部7を構成する制御P板を配置し、その奥側にシロッコファンで構成した冷却ファンA13を配置する。冷却ファンA13の冷却風は、送風口14aから制御部7に向けてと、送風口14bから高周波出力を制御するインバータ15に向けてと、そして送風口14cから右側面上部へと、これら3方向に送られる。高周波を発生させるマグネトロン16は、左側中央部に配置し、奥側に設けた冷却ファンB17によって、冷却される。マグネトロン16を冷却した風はエアガイド左18を経由し、そのうちの一部が吸気用パンチング穴10から加熱室内に送風される。
 図3に右側面の構成図を示す。冷却ファンA13からの冷却風の一部が、送風口14cからエアガイド右19を経由して、赤外線センサ5と扉12の開閉状態を判定するドアSW等のラッチU20を冷却する。赤外線センサ5は、非動作時、温度検出穴4の鉛直方向から避けるように、右に傾いた状態で待機している。これは、赤外線センサ5を使用しないメニュー、例えば、グリル調理の様に高温で調理する際、食品からの油の飛び散りや、油煙が赤外線センサ5のレンズ面に付着することを防止する為である。
 以上記載したように、冷却ファンA13は、制御部7、インバータ15に加えて、赤外線センサ5とラッチU20とを冷却するので、冷却風が分散し、個々の部品毎で見たときには、一つの部品だけを冷却する場合に比べて風力が弱くなる。また、冷却ファンA13は、シロッコファンであるため、回転方向に配置される制御部7やインバータ15は、強力に冷却できるが、赤外線センサ5は、冷却ファンA13の水平方向の風を送風口14cによって、上に向かう風と方向を変えての冷却となり、抵抗が大きくなる分、さらに風力が弱くなる。
 以上のように構成された実施の形態2における高周波加熱装置の動作について、説明する。
 図8は本発明の実施の形態2における高周波加熱装置の動作を示すフローチャートである。調理開始をすると、制御部7は、最初に赤外線センサ5の駆動装置を駆動させると同時に、食品が冷凍か常温かの判定に使う冷凍フラグを、常温食品を表す0に設定する(S21)。合わせて、部品を冷却するための冷却ファンA13と冷却ファンB17との回転を開始する。赤外線センサ5は、加熱室1内を反復動作しながら温度を測定するために、まずは、初期位置を定義する。このため赤外線センサ5は、待機位置から読み取り開始番地(1番地)まで移動する。赤外線センサ5が移動している間に、制御部7は、マグネトロン16の駆動を開始する(S22)。
 自動調理では、調理時間を短くするため、最高出力(本実施の形態では、1000W)で駆動するのが一般的である。赤外線センサ5が1番地に移動完了すると、温度の測定を開始する(S23)。赤外線センサ5は、1番地として、加熱室1奥側の温度を測定したら、ステッピングモータで前側に移動して停止し、2番地として次の温度を測定する。以降、移動、停止を繰り返ししながら、加熱室1前側まで温度を測定する。
 加熱室1内を何分割して温度を測定するかは、加熱室1の大きさを考慮して決めればよい。本実施の形態では、10分割とした。赤外線センサ5が温度を測定すると、制御部7は、加熱室1に入れられたのが冷凍食品なのか常温の食品なのかを判別する(S24)。冷凍食品の場合、一般的には均一的に温度が上昇するのではなく、加熱が進む部分と加熱が遅れる部分とが混在しており、加熱が進んだ部分の温度で調理終了を判断してしまうと、加熱が遅れる部分が冷たいままとなる。
 そこで、冷凍食品の加熱を開始した場合には、所定の温度に到達してからも、しばらく加熱を継続することで、加熱が遅れる部分に対しても適温まで加熱が進むよう、制御部7に加熱パターンを記憶させている。ステップS4で、冷凍食品温度(本発明では4℃)以下の温度を赤外線センサ5が測定したら、制御部7は冷凍食品と判定し(S25)、赤外線センサ5が1番地から10番地まで移動しながら測定した温度を、往路のデータとして第1の記憶手段に保存する(S26)。赤外線センサ5が10番地まで到達したら、赤外線センサ5は、今度は10、9、・・・1番地と、加熱室1扉側から奥側へと戻りながら温度を測定し、その時の温度を復路のデータとして、第2の記憶手段に保存する(S27)。
 次に、冷凍食品があったかどうか、の確認を行い(S28)、冷凍フラグが1となっていた場合は、レンズ面が曇っていることによる冷凍判定なのかを推定するために、往路で記録したデータと復路で記憶したデータとを演算する(S29)。赤外線センサ5のレンズ面が曇っていると、冷却ファンA13からの冷却風が送風口14c、エアガイド右19を経由して流れてくるので、表面の水分が冷却風によって気化される状態となり、測定する温度は低くなる。やがてレンズ表面の曇り水分がなくなると、加熱室1内の温度を正しく測定できるようになる。
 調理が繰り返し行われる場合には、その前の調理時の蒸気が加熱室1内に残留している場合がある。調理開始時に、冷却ファンB17も回転を開始しているので、マグネトロンを冷却した冷却風がエアガイド左18を経由して、加熱室1左面にある吸気パンチング穴10から加熱室1内に流れ、残留している蒸気が、排気パンチング穴11と赤外線検出用の穴4とから、加熱室1外に押し出される。また、冷却ファンA13からの冷却風で、検出用穴4からの蒸気は、赤外線センサ5のレンズ面に付着しないように配慮しているものの、残留蒸気が多い場合には、レンズ面に付着してしまう場合がある。その場合は、調理開始当初は正常に温度取得ができているが、しばらくして、急激に低い温度を測定し始める。
 これらのように、当初から曇っている場合、あるいは調理開始後すぐに曇り出す場合を考慮して、ステップS9の演算結果が所定値1以上なのか、所定値2以下なのかで、赤外線センサ5のレンズ面が曇っているかどうかの判定を行う(S30、S31)。ステップS30、S31のいずれの条件とも満たさない場合は、レンズ面の曇りは無い状態で冷凍食品を加熱している場合なので、冷凍食品用の加熱パターンで制御を行う(S32)。ステップS30、S31のいずれかの条件を満たした場合は、レンズ面が曇っていた、または急激に曇ったことによる冷凍食品への誤判定があったということで、加熱パワーを1000Wから600Wに低減し(S33)、常温食品用の加熱制御のパターンで制御を行う(S34)。
 実験例を元に、本発明の効果を説明する。
 蒸気の発生量が多い調理としては、例えば、根菜の加熱等があるが、実験条件を安定させるために、水200ccを800W出力で3分加熱することで、加熱室1内に蒸気を発生させる。3分で加熱終了した後、さらに条件を厳しくするために扉12を閉じた状態で1分放置し、加熱室1内に蒸気を充満させる。加熱終了、放置1分後に扉12を開け、加熱室1内で沸騰した水をすばやく取り出し、扉12をすばやく閉じる。加熱終了後に、機械室内の部品の温度を冷却するために、しばらくは冷却ファンの回転を継続することが一般的に行われており、本実施の形態の高周波加熱装置も、加熱終了後2分間は回転を継続している(以降、ポストファン運転と呼ぶ)。
 加熱室1内の残留蒸気は、温度検出用穴4と排気パンチング11から、少しずつ加熱室1外に出て行く。ポストファン運転中は、エアガイド右19を経由して冷却風が赤外線センサ5にも流れているので、赤外線センサ5のレンズ面への蒸気の付着はない。しかし、加熱終了後2分経過するとポストファン運転が停止するので、残留蒸気分が、赤外線センサ5のレンズ面にも到達し、結露状態となる。この結露状態は、1時間も継続するものではないが、ポストファン運転停止後しばらくは、結露が増える状態となる。この時に、次の自動調理をすると、赤外線センサ5のレンズ面が曇ったままで加熱開始となるので、低い温度を測定してしまう。
 ポストファン運転停止5分後に、常温水100ccを「あたため70℃」で加熱した場合における赤外線センサ5の測定温度の様子を図5に示す。なお、本実施の形態の赤外線センサ5は、8素子タイプのものを使用している。
 調理開始後、1番地の温度測定は、全素子とも-40℃であった。しばらく-40℃の測定が継続し、8番地辺りから、温度が少しずつ上昇してくるが、測定温度はマイナスの温度が続く。赤外線センサ5の温度測定動作が復路に入って10番地から1番地へと移動するが、まだマイナスの温度が継続する。再び往路に入ると、5番、6番辺りでやっと曇りが晴れて、正常に加熱室1内の温度を取得できている。
 制御部7は、1番地の「素子1」のデータが-40℃と測定すると、測定温度が冷凍判定の―4℃以下であるので、冷凍食品の加熱が始まったと認識をする。往路、復路の温度データを測定すると、それぞれ記憶しているので、各番地の各素子1~8毎に復路-往路の演算を行った。この演算の総和を求めると、今回の実験の場合では、1897であった。
 赤外線センサ5のレンズ面に曇りがない場合は、正しく温度を取得できるので、復路往路の演算では、加熱による食品の温度上昇分だけであるはずである。一方、レンズ面に曇りがある場合では、レンズ表面の曇りが8素子全てに影響するので、変化値が大きくなる。本実施の形態では、所定値1として550、所定値2として-380と設定していたので、今回の実験例では、一旦冷凍食品を判定したが、復路のデータを取得した時点で、常温の食品に再設定することができた。
 常温の水100ccを「あたため70℃」で加熱した場合、通常40秒ぐらいで停止するが、本発明を実施する前は、冷凍食品と判定されてしまい、1分50秒加熱し、水が沸騰し続けるという危険な状態となっていたが、本実施の形態により、故意に曇らせた場合でも、通常と同じく40秒で停止することが可能となり、水温も71℃とほぼ適温で加熱終了することができた。
 また、本実施の形態では、赤外線センサ5のレンズ面が曇って冷凍判定を取り消すと同時に、加熱パワーを600Wに低下する構成とした。1000Wで加熱をすると、負荷量が少量の場合には、曇りが晴れる場合には、加熱が進行してる場合も考えられる。加熱パワーを低下することで、食品が所望の温度になるまでの時間を遅らせる間に、レンズ面の曇りを確実に晴らすことができるので、より安全な高周波加熱装置を提供することができる。
 なお、本実施の形態では600Wに設定したが、システムのもつ加熱特性に応じて、任意の数字を選択すればよい。赤外線センサ5のレンズ面の曇りが晴れるまでは、出力を0Wにして加熱を停止し、晴れた後に高周波を再出力すれば、さらに安全なシステムが供給できる。
 なお、本出願は、2010年1月22日出願の日本特許出願(特願2010-011625及び特願2010-011626)に基づくものであり、その内容はここに参照として取り込まれる。
 以上のように、本発明にかかる高周波加熱装置によれば、繰り返し調理時に赤外線センサのレンズ面が曇った状態で調理開始しても、赤外線センサの温度測定動作における往路の測定温度データより、または往路と復路の測定温度データを演算することにより、赤外線センサのレンズ面が曇った状態で調理開始した場合の冷凍食品への誤判定を防止でき、より安全に加熱を終了するシステムを提供することができる。
1加熱室
3食品
4検出用の穴
5赤外線センサ
6駆動モータ(可動部)
7制御部

Claims (4)

  1.  食品を収納する加熱室と、
     前記加熱室内の食品を加熱する加熱手段と、
     前記加熱室の壁面に設けた検出用孔を通して加熱室内の温度を測定する赤外線センサと、
     前記加熱室内の定められた範囲を往復しながら温度を検出できるように前記赤外線センサを動作させる可動部と、
     往路動作中に取得した温度を記憶する第1の記憶手段と、
     前記加熱手段の加熱動作を制御する制御部と、を備え、
     前記制御部は、前記第1の記憶手段の記憶する値に応じて、以降の加熱制御のパターンを変更することを特徴とする高周波加熱装置。
  2.  食品を収納する加熱室と、
     前記加熱室内の食品を加熱する加熱手段と、
     前記加熱室の壁面に設けた検出用孔を通して加熱室内の温度を測定する赤外線センサと、
     前記加熱室内の定められた範囲を往復しながら温度を検出できるように前記赤外線センサを動作させる可動部と、
     往路動作中に取得した温度を記憶する第1の記憶手段と、
     復路動作中に取得した温度を記憶する第2の記憶手段と、
     前記加熱手段の加熱動作を制御する制御部と、を備え、
     前記制御部は、第1、第2の記憶手段の記憶する値の差に応じて、以降の加熱制御のパターンを変更することを特徴とする高周波加熱装置。
  3.  赤外線センサの取得温度により、冷凍食品か常温の食品かを判断する高周波加熱装置において、第1、第2の記憶手段の記憶する値の差が所定値以上または所定値以下となった場合に常温の食品と判断する請求項2記載の高周波加熱装置。
  4.  第1、第2の記憶手段の記憶する値の差が、所定値以上または所定値以下となった場合に加熱パワーを落とすことを特徴とする請求項2記載の高周波加熱装置。
PCT/JP2011/000336 2010-01-22 2011-01-21 高周波加熱装置 WO2011089920A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800064224A CN102713444A (zh) 2010-01-22 2011-01-21 高频加热装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010011625A JP2011149627A (ja) 2010-01-22 2010-01-22 高周波加熱装置
JP2010-011625 2010-01-22
JP2010-011626 2010-01-22
JP2010011626A JP2011149628A (ja) 2010-01-22 2010-01-22 高周波加熱装置

Publications (1)

Publication Number Publication Date
WO2011089920A1 true WO2011089920A1 (ja) 2011-07-28

Family

ID=44306724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000336 WO2011089920A1 (ja) 2010-01-22 2011-01-21 高周波加熱装置

Country Status (2)

Country Link
CN (1) CN102713444A (ja)
WO (1) WO2011089920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550213A1 (en) * 2018-04-05 2019-10-09 Rockwell Collins, Inc. Adaptive cooking system
FR3112593A1 (fr) * 2020-07-20 2022-01-21 Patrick Herbault Four micro-ondes comportant un capteur de température infrarouge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202132727A (zh) * 2020-02-26 2021-09-01 日商夏普股份有限公司 加熱烹調器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011994A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 高周波加熱装置の加熱制御方法、及び高周波加熱装置
JP2007120829A (ja) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2008282691A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd マイクロ波加熱装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003201758A1 (en) * 2002-03-12 2003-09-22 Matsushita Electric Industrial Co., Ltd. High-frequency heating apparatus and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011994A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 高周波加熱装置の加熱制御方法、及び高周波加熱装置
JP2007120829A (ja) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2008282691A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd マイクロ波加熱装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550213A1 (en) * 2018-04-05 2019-10-09 Rockwell Collins, Inc. Adaptive cooking system
US11333364B2 (en) 2018-04-05 2022-05-17 Rockwell Collins, Inc. Adaptive cooking system
FR3112593A1 (fr) * 2020-07-20 2022-01-21 Patrick Herbault Four micro-ondes comportant un capteur de température infrarouge
WO2022018328A1 (fr) 2020-07-20 2022-01-27 Patrick Herbault Four micro-ondes comportant un capteur de température infrarouge

Also Published As

Publication number Publication date
CN102713444A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
KR101755738B1 (ko) 수-비드 쿠커
CN102538041B (zh) 用于控制烧煮设备中烧煮过程的方法及烧煮设备
US11313563B2 (en) Heating cooker and heating cooking method
KR20160111707A (ko) 조리기기 및 그 제어방법
JP2007032902A (ja) 加熱調理器
JP2006046715A (ja) 蒸気調理器
WO2011089920A1 (ja) 高周波加熱装置
JP2011149627A (ja) 高周波加熱装置
JP2011149628A (ja) 高周波加熱装置
JP6467645B2 (ja) 高周波加熱装置
KR20200105621A (ko) 가열 조리기 및 가열 조리 방법
TWI614458B (zh) 高頻加熱調理器
JP2017067325A (ja) 加熱調理器
JP6491937B2 (ja) 加熱調理器
JP6905957B2 (ja) 高周波加熱調理器
JP6476075B2 (ja) 加熱調理器
JP2010112634A (ja) 加熱調理器
JP6818793B2 (ja) 加熱調理器
JP2017194173A (ja) 高周波加熱調理器
JP2017156053A (ja) 加熱調理器
JP2017009178A (ja) 加熱調理器
JP6335670B2 (ja) 加熱調理器
JP2017009229A (ja) 加熱調理器
JP3829274B2 (ja) 高周波加熱調理器
JP5471436B2 (ja) 加熱調理器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006422.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734527

Country of ref document: EP

Kind code of ref document: A1