WO2011089758A1 - 燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法 - Google Patents

燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法 Download PDF

Info

Publication number
WO2011089758A1
WO2011089758A1 PCT/JP2010/067063 JP2010067063W WO2011089758A1 WO 2011089758 A1 WO2011089758 A1 WO 2011089758A1 JP 2010067063 W JP2010067063 W JP 2010067063W WO 2011089758 A1 WO2011089758 A1 WO 2011089758A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
treatment
cell separator
molded body
separator
Prior art date
Application number
PCT/JP2010/067063
Other languages
English (en)
French (fr)
Inventor
山本 広志
伊藤 亨
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010010455A external-priority patent/JP5879553B2/ja
Priority claimed from JP2010119623A external-priority patent/JP2011249085A/ja
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to KR1020127021747A priority Critical patent/KR101195104B1/ko
Publication of WO2011089758A1 publication Critical patent/WO2011089758A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a fuel cell separator, a fuel cell separator, a method for producing a fuel cell separator with a gasket, and a method for producing a fuel cell.
  • a fuel cell is composed of a cell stack composed of several tens to several hundreds of unit cells stacked in series, thereby obtaining a predetermined voltage.
  • the most basic structure of the unit cell has a configuration of “separator / fuel electrode (anode) / electrolyte / oxidant electrode (cathode) / separator”.
  • fuel is supplied to the fuel electrode and oxidant is supplied to the oxidant electrode among the pair of electrodes facing each other through the electrolyte.
  • oxidant is supplied to the oxidant electrode among the pair of electrodes facing each other through the electrolyte.
  • the chemical energy of the reaction is directly converted into electrochemical energy.
  • Such fuel cells are classified into several types according to the type of electrolyte.
  • a polymer electrolyte fuel cell using a polymer electrolyte membrane as an electrolyte has attracted attention as a fuel cell capable of obtaining a high output.
  • FIG. 1 shows an example of a polymer electrolyte fuel cell.
  • an electrolyte 4 solid polymer electrolyte membrane
  • a gas diffusion electrode fuel electrode 31 and oxidant electrode 32.
  • MEA membrane-electrode assembly
  • a battery body is formed by arranging several tens to several hundreds of unit cells.
  • a gas supply / discharge groove 2 which is a flow path of hydrogen gas as a fuel or oxygen gas as an oxidant, is formed.
  • Such a cell stack is composed of, for example, 50 to 100 unit cells in the case of a stationary type for home use, 400 to 500 unit cells in the case of loading on a car, and a case of being mounted on a laptop computer. It is composed of 10 to 20 unit cells.
  • the polymer electrolyte fuel cell is normally assumed to be operated in a humid atmosphere in a range of room temperature to 120 ° C., and therefore water is often handled in a liquid state. It is necessary to manage the replenishment of liquid water and discharge the liquid water from the oxidizer electrode.
  • a methanol direct fuel cell which is a kind of solid polymer fuel cell
  • a methanol aqueous solution is used as a fuel instead of hydrogen.
  • the reaction shown in the following formula occurs in each electrode.
  • an oxygen reduction reaction (the same reaction as when hydrogen is used as a fuel) occurs.
  • the fuel cell separator 20 has a plurality of gas supply / discharge grooves 2 on one or both sides of a thin plate-like body as shown in FIGS. 1 (a) and 1 (b). Has a unique shape.
  • the fuel cell separator 20 has a function of separating the fuel gas, the oxidant gas, and the cooling water flowing through the fuel cell so as not to be mixed, and also transmits the electric energy generated by the fuel cell to the outside or the fuel cell. It plays an important role of radiating the generated heat to the outside.
  • the fuel gas and oxidant gas are often humidified to prevent the solid electrolyte from drying, and water is generated on the oxidant electrode side by the above reaction.
  • the gas supply / discharge groove 2 is closed, the flow rate of oxygen gas and fuel gas decreases, and the generation efficiency decreases. Problems arise. For this reason, active examination is made in order to discharge efficiently the water adhering to the separator 20 surface.
  • Patent Document 1 proposes improving the wettability of the separator surface by irradiating the surface of the separator with vacuum ultraviolet light from a vacuum ultraviolet light irradiation device, but the productivity is poor and not suitable for practical use. There is a problem.
  • Patent Document 2 proposes forming a film of hydrophilic phenol resin or hydrophilic epoxy resin on the separator surface
  • Patent Document 3 proposes forming a film of a silane compound having a hydrophilic functional group.
  • the electrical characteristics of the separator may be deteriorated.
  • Patent Document 3 the process of forming a silane compound is complicated, and none of them is suitable for practical use.
  • Patent Document 4 proposes forming a separator from a molding compound containing a silicon compound, but has a drawback that the moldability is lowered.
  • Patent Document 5 the separator is first preheated in a heating furnace, and then subjected to flame treatment with a flame from a burner to improve the hydrophilicity of the separator. However, the hydrophilicity is maintained for a long time. I can't.
  • Patent Document 6 proposes spraying the separator surface while burning a gas containing a silicon compound or the like. This method has high processing efficiency, and high hydrophilicity is imparted to the surface of the separator after processing. However, even with this method, the hydrophilicity of the separator surface deteriorates with time, and the hydrophilicity cannot be maintained for a long time.
  • Patent Document 7 proposes imparting hydrophilicity with a hydrophilic gas, but it cannot be said that it has reached a practical level. Further, although Patent Document 7 describes the use of fluorine gas as the hydrophilic gas, a method for sufficiently improving the hydrophilicity of the separator surface and maintaining the hydrophilicity for a long period of time has not yet been found. It has not been.
  • Patent Document 8 it is proposed that the fuel cell separator is subjected to atmospheric pressure discharge plasma treatment, but there is a problem that the durability of the surface after the treatment is poor, and the hydrophilicity and drainage performance are remarkably lowered over time. .
  • Patent Document 9 proposes that the separator surface is subjected to a roughening treatment and an atmospheric pressure plasma treatment to suppress deterioration of hydrophilicity and wettability over time.
  • the actual situation is that it cannot be said to be practically used because the hydrophilicity inside the groove for gas supply / discharge which is originally necessary is not sufficient.
  • the present invention has been made in view of the above points, and can impart high hydrophilicity to the surface of the fuel cell separator and maintain the hydrophilicity for a long period of time.
  • the gas supply / discharge groove is blocked by water droplets. It is an object of the present invention to provide a method for manufacturing a fuel cell separator, a fuel cell separator, a method for manufacturing a fuel cell separator with a gasket, and a method for manufacturing a fuel cell that can prevent the generation of the fuel cell and maintain high power generation efficiency of the fuel cell. To do.
  • the present inventors have found a technique for maintaining the hydrophilicity of the fuel cell separator for a long period of time to improve the hydrophilicity of the fuel cell separator, and have completed the present invention.
  • thermosetting resin containing an epoxy resin, a curing agent containing a phenolic compound, and graphite particles, and an equivalent ratio of the epoxy resin to the phenolic compound Is molded in the range of 0.8 to 1.2.
  • the surface of the obtained molded body is subjected to a surface treatment including a wet blast treatment and a remote atmospheric pressure plasma treatment after the wet blast treatment.
  • the epoxy resin is a cresol novolac type epoxy resin and the phenolic compound is a novolac type phenol resin.
  • a molding composition containing a thermosetting resin containing a thermosetting phenol resin and graphite particles is formed.
  • the surface of the obtained molded body is subjected to a surface treatment including a wet blast treatment and a remote atmospheric pressure plasma treatment after the wet blast treatment.
  • hydroxyl groups can be distributed on the surface of the molded body before the surface treatment by a very simple method of blending a thermosetting phenol resin in the molding composition.
  • the arithmetic average height Ra (JIS B0601: 2001) of the surface of the molded body is preferably in the range of 0.4 to 1.6 ⁇ m by wet blasting.
  • the treatment efficiency of the surface treatment on the molded body is increased, and the hydrophilicity of the surface of the fuel cell separator can be further improved and the high hydrophilicity can be maintained for a longer period.
  • the arithmetic average height Ra of the surface of this molded body is preferably 1.2 ⁇ m or less.
  • the hydrophilicity of the fuel cell separator can be further improved by the atmospheric pressure plasma treatment in the remote system, and this high hydrophilicity can be maintained for a longer period of time, and the sealing property of the surface of the fuel cell separator 20 can be improved. be able to.
  • the arithmetic average height Ra is further less than 1.0 ⁇ m, the sealing property of the surface of the fuel cell separator is further improved.
  • the arithmetic average height Ra of the surface of the molded body is particularly 0.6 ⁇ m or more, the hydrophilicity of the fuel cell separator is further improved by the atmospheric pressure plasma treatment by the remote method.
  • the plasma generation gas in the atmospheric pressure plasma treatment is preferably nitrogen gas having an oxygen gas content of 2000 ppm or less.
  • the molding composition contains an internal release agent.
  • the external mold release agent is not unevenly distributed and remains on the surface of the molded body, and this external mold release agent prevents the hydrophilicity of the surface of the molded body from being adversely affected.
  • the molding composition there is a decrease in weight when the molding composition is heated under the conditions of a measurement start temperature of 30 ° C., a heating rate of 10 ° C./min, a holding temperature of 120 ° C., and a holding temperature of 30 minutes. It is preferably 5% or less and a substituted imidazole having a hydrocarbon group at the 2-position.
  • the molding composition contains triphenylphosphine.
  • the surface treatment preferably includes a drying treatment.
  • this drying treatment the molded body is dried to a moisture absorption rate of 0.1% or less after the wet blast treatment and before the atmospheric pressure plasma treatment.
  • the surface treatment includes a water contact treatment in which the surface of the molded body is brought into contact with water after the atmospheric pressure plasma treatment.
  • the water is particularly preferably ion exchange water or pure water.
  • the hydrophilicity of the surface of the molded body can be further improved.
  • the ratio of the width (A) to the depth (B) (A / B) is 1 or more on the surface to be surface-treated of the molded body before the surface treatment. It is preferable to form a groove.
  • the treatment efficiency of the surface treatment for the molded body can be maintained high, and the hydrophilicity of the surface of the fuel cell separator can be maintained. As a result, the high hydrophilicity can be maintained for a longer period of time.
  • the contact resistance of the surface of the said molded object shall be 15 m (ohm) cm ⁇ 2 > or less by the said surface treatment.
  • the hydrophilicity of the fuel cell separator can be improved, and the function of transmitting electric energy generated by the fuel cell using the fuel cell separator to the outside can be maintained at a high level.
  • a static contact angle with water on the surface of the molded body is in a range of 0 to 50 ° by the surface treatment.
  • the hydrophilicity of the surface of the fuel cell separator can be particularly improved.
  • the surface treatment may include a cleaning process of applying ultrasonic vibration to the liquid and discharging the liquid toward the molded body.
  • the frequency of ultrasonic vibration applied to the liquid may be 900 kHz or more.
  • the liquid may be alkaline ionized water.
  • the fuel cell separator according to the present invention is manufactured by the above method.
  • a gasket is laminated on the fuel cell separator manufactured by the above method, and then the surface of the fuel cell separator is subjected to a remote atmospheric pressure plasma treatment.
  • the fuel cell separator manufactured by the above method is laminated with a gasket, and the surface of the fuel cell separator is subjected to a remote atmospheric pressure plasma treatment.
  • a battery separator is laminated with the membrane-electrode composite.
  • volatile matter and hydrophobic components resulting from the gasket can be removed from the surface of the separator by atmospheric pressure plasma treatment, and the hydrophilicity of the separator can be further improved, thereby further improving the long-term durability of the fuel cell. Can be improved.
  • the hydrophilic treatment of the surface of the fuel cell separator can be performed with high efficiency by a simple method and the hydrophilicity of the fuel cell separator can be maintained for a long period of time. For this reason, the gas supply / discharge groove in the fuel cell separator is prevented from being blocked by water droplets, and the power generation efficiency of the fuel cell incorporating the fuel cell separator can be maintained high over a long period of time.
  • (A) is a schematic perspective view showing a unit cell of the fuel cell
  • (b) is a schematic perspective view showing a fuel cell separator in the unit cell. It is a disassembled perspective view which shows an example of the unit cell of the fuel cell comprised using a gasket. It is a perspective view which shows an example of the fuel cell separator with a gasket. It is a perspective view which shows an example of a fuel cell. It is the schematic which shows an example of the atmospheric pressure plasma processing apparatus by a remote system. It is the schematic which shows an example of the atmospheric pressure plasma processing apparatus by a direct system.
  • the molding composition for producing the fuel cell separator 20 (hereinafter referred to as separator 20) contains a thermosetting resin and graphite particles as essential components.
  • the molding composition does not contain a primary amine and a secondary amine. That is, it is preferable not to include the compound having substituents —NH and —NH 2 in the molding composition. Further, it is preferable that the molding composition does not contain a tertiary amine. For this reason, the separator 20 formed from this molding composition does not poison the platinum catalyst in the fuel cell, and can suppress a decrease in electromotive force when the fuel cell is used for a long time. .
  • thermosetting resin contains at least one of an epoxy resin and a thermosetting phenol resin as an essential component.
  • Epoxy resins and thermosetting phenol resins are excellent in that they have a good melt viscosity and a small amount of impurities, in particular, a small amount of ionic impurities.
  • the content of the epoxy resin and the thermosetting phenol resin with respect to the total amount of the thermosetting resin is preferably in the range of 50 to 100% by mass. It is particularly preferable that the thermosetting resin is only an epoxy resin, only a thermosetting phenol resin, or only an epoxy resin and a thermosetting phenol resin.
  • the epoxy resin is preferably in a solid form, and its melting point is preferably in the range of 70 to 90 ° C. Thereby, there is little change of material and the handleability at the time of shaping
  • epoxy resin orthocresol novolac type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin having a biphenylene skeleton and the like are preferable. These resins are excellent in that they have a good melt viscosity and a small amount of impurities, and particularly a small amount of ionic impurities.
  • the epoxy resin contains an epoxy resin component composed only of an ortho-cresol novolac type epoxy resin.
  • the epoxy resin preferably includes an epoxy resin component comprising an ortho-cresol novolac type epoxy resin and at least one selected from a bisphenol type epoxy resin, a biphenyl type epoxy resin, and a phenol aralkyl type epoxy resin having a biphenylene skeleton.
  • the ortho-cresol novolac type epoxy resin is an essential component, the molding composition has excellent moldability and the separator 20 has excellent heat resistance. Furthermore, the manufacturing cost can be reduced.
  • the proportion of the ortho-cresol novolac type epoxy resin in the epoxy resin component is preferably in the range of 50 to 100% by mass from the viewpoints of improving the moldability, improving the heat resistance of the separator 20, and reducing the manufacturing cost.
  • a range of 50 to 70% by mass is particularly preferable.
  • a bisphenol type epoxy resin, a biphenyl type epoxy resin, or a phenol aralkyl type epoxy resin having a biphenylene skeleton is used together with an orthocresol novolac type epoxy resin. Is also preferable.
  • the viscosity of the molding composition can be reduced, and a molding composition having particularly high moldability can be obtained.
  • the content of the bisphenol F type epoxy resin in the epoxy resin component is preferably in the range of 30 to 50% by mass.
  • the content of the biphenyl type epoxy resin in the epoxy resin component is preferably in the range of 30 to 50% by mass.
  • the proportion of the phenol aralkyl type epoxy resin having a biphenylene skeleton in the epoxy resin component is preferably in the range of 30 to 50% by mass.
  • the content of the epoxy resin component with respect to the total amount of the thermosetting resin in the molding composition is preferably in the range of 50 to 100% by mass.
  • the epoxy resin component is contained in the molding composition as at least a part of the epoxy resin in the thermosetting resin. That is, as the thermosetting resin other than the epoxy resin component, for example, selected from epoxy resins other than the epoxy resin component, thermosetting phenol resin, vinyl ester resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, etc. One or more kinds of resins may be used. However, it is desirable not to use a resin containing an ester bond because it may hydrolyze in an acid resistant environment. Moreover, it is also suitable to use a polyimide resin as a thermosetting resin at the point which contributes to the improvement of the heat resistance and acid resistance of the separator 20.
  • a polyimide resin it is particularly preferable to use a bismaleimide resin or the like, and examples of this bismaleimide resin include 4,4-diaminodiphenyl bismaleimide. By using this together, the heat resistance of the separator 20 can be further improved.
  • thermosetting phenol resin When a thermosetting phenol resin is used, it is particularly preferable to use a phenol resin that undergoes a polymerization reaction by ring-opening polymerization.
  • phenol resins include benzoxazine resins.
  • gas due to dehydration is not generated in the molding process, voids are not generated in the molded product, and a decrease in gas permeability can be suppressed.
  • a resol type phenol resin for example, a resol type phenol resin having a structure of ortho-ortho 25 to 35%, ortho-para 60 to 70%, para-para 5 to 10% by 13C-NMR analysis. Is preferably used.
  • the resol resin is usually in a liquid state, but the resol type phenol resin can easily adjust the softening point, and a resol type phenol resin having a melting point of 70 to 90 ° C. can be easily obtained. Thereby, the change of a material decreases and the handleability of the molding composition at the time of shaping
  • Resin other than epoxy resin and thermosetting phenol resin may be used in combination.
  • resins selected from polyimide resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, and the like can be used.
  • thermosetting resin it is also suitable to use a polyimide resin as the thermosetting resin because it contributes to improving the heat resistance and acid resistance of the separator 20.
  • a polyimide resin it is particularly preferable to use a bismaleimide resin, and specific examples thereof include 4,4-diaminodiphenyl bismaleimide.
  • the heat resistance of the separator 20 can be further enhanced by using such other resins together.
  • the molding composition has a curing agent as an essential component, and this curing agent includes a phenolic compound as an essential component.
  • the phenol compound include novolak type phenol resins, cresol novolac type phenol resins, polyfunctional phenol resins, aralkyl-modified phenol resins, and the like.
  • the content of the phenolic compound relative to the total amount of the curing agent is determined depending on the amount of the epoxy resin used. It is particularly preferred if the curing agent is only a phenolic compound.
  • the total content of the thermosetting resin and the curing agent in the solid content of the molding composition is preferably in the range of 14 to 24.1% by mass.
  • the other curing agents are preferably non-amine compounds.
  • the electrical conductivity of the separator 20 can be maintained at a high level, and poisoning of the fuel cell catalyst can be suppressed.
  • an acid anhydride compound is used, it is hydrolyzed in an acidic environment such as a sulfuric acid acidic environment, causing a decrease in the electrical conductivity of the separator 20 or increasing the elution of impurities from the separator 20. There is a fear.
  • the epoxy resin in the thermosetting resin and the phenolic compound in the curing agent when the thermosetting resin and the curing agent are blended are the epoxy resin for the phenolic compound. It is preferable that the equivalent ratio of is in the range of 0.8 to 1.2.
  • the graphite particles are used to reduce the electrical specific resistance of the separator 20 and improve the conductivity of the separator 20.
  • the graphite particle content is preferably in the range of 75 to 90% by mass with respect to the total amount of the molding composition. When the content of the graphite particles is 75% by mass or more, sufficiently excellent conductivity is imparted to the separator 20. Further, when the content is 90% by mass or less, sufficiently excellent moldability is imparted to the molding composition and sufficiently excellent gas permeability is imparted to the separator 20.
  • the type of graphite particles is not particularly limited as long as it has high conductivity.
  • graphite particles for example, graphite particles obtained by graphitizing carbonaceous materials such as mesocarbon microbeads, graphite particles obtained by graphitizing coal-based coke and petroleum-based coke, processed powder of graphite electrodes and special carbon materials, natural graphite , Quiche graphite, expanded graphite, and the like can be used.
  • Such graphite particles can be used alone or in combination of two or more.
  • the graphite particles may be either artificial graphite powder or natural graphite powder.
  • Natural graphite powder has the advantage of high conductivity, and artificial graphite powder has the advantage of low anisotropy, although the conductivity is somewhat inferior to that of natural graphite powder.
  • the graphite particles are preferably purified regardless of whether they are natural graphite powder or artificial graphite powder. In this case, since ash and ionic impurities are low, the elution of impurities from the separator 20 which is a molded product can be suppressed.
  • the ash content in the graphite particles is preferably 0.05% by mass or less. When the ash content exceeds 0.05% by mass, there is a possibility that the characteristics of the fuel cell manufactured using the separator 20 are deteriorated.
  • the average particle diameter of the graphite particles is preferably in the range of 15 to 100 ⁇ m.
  • the average particle size is 10 ⁇ m or more, the moldability of the molding composition is excellent, and when the average particle size is 100 ⁇ m or less, the surface smoothness of the molded body 1 can be improved.
  • the average particle size is preferably 30 ⁇ m or more.
  • the surface smoothness of the molded body 1 is particularly improved so that the arithmetic average height Ra (JIS B0601: 2001) of the surface of the molded body 1 is in the range of 0.4 to 1.6 ⁇ m as described later.
  • the average particle size is preferably 70 ⁇ m or less.
  • the graphite particles when obtaining a thin separator 20, the graphite particles preferably have a particle size that passes through a 100 mesh sieve (aperture 150 ⁇ m). If the graphite particles contain particles that do not pass through a 100-mesh sieve, graphite particles having a large particle size are mixed in the molding composition, and in particular, the molding composition is molded into a thin sheet. The formability at the time will fall.
  • the aspect ratio of the graphite particles is 10 or less. In this case, it is possible to prevent anisotropy from occurring in the molded body 1 and to prevent deformation such as warpage from occurring in the molded body 1.
  • the ratio of the contact resistance between the flow direction of the molding composition during molding in the molded body 1 and the direction orthogonal to the flow direction is 2 or less. It is preferable that
  • graphite particles having two or more particle size distributions that is, graphite particles obtained by mixing two or more particle groups having different average particle diameters are also preferably used.
  • graphite particles having such a particle size distribution are used, particles having a large particle size have a small surface area, so that it is expected that kneading is possible even with a small amount of resin. It is expected to increase the strength of the molded product while increasing the contactability of the molded product.
  • the improvement of performance such as the improvement of the bulk density of the separator 20, the improvement of electroconductivity, the improvement of gas impermeability, and the intensity
  • the mixing ratio of the particles having an average particle diameter of 1 to 50 ⁇ m and the particles having an average particle diameter of 30 to 100 ⁇ m is appropriately adjusted.
  • the mixing mass ratio of the former to the latter is 40:60 to 90:10, particularly 65:35. It is preferably ⁇ 85: 15.
  • the average particle diameter of the graphite particles is a volume average particle diameter measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
  • the molding composition may contain additives such as a curing catalyst (curing accelerator), a wax (release agent), and a coupling agent as necessary.
  • a curing catalyst curing accelerator
  • a wax release agent
  • a coupling agent a coupling agent
  • the molding composition can contain an appropriate curing catalyst. However, it is preferable to use a non-amine curing catalyst so that the molding composition does not contain a primary amine and a secondary amine. For example, amine-based diaminodiphenylmethane and the like are not preferable because the residue may poison the fuel cell catalyst. In addition, imidazoles are less preferred because they easily release chlorine ions after curing, and may cause impurity elution.
  • the weight loss when heated under the conditions of a measurement start temperature of 30 ° C., a heating rate of 10 ° C./min, a holding temperature of 120 ° C., and a holding time of 30 minutes is 5% or less, and is in the second place.
  • the use of a substituted imidazole having a hydrocarbon group is preferable in that the storage stability of the molding composition can be improved.
  • the volatility when forming the sheet-like molded body 1 from the molding composition prepared in a varnish shape, the smoothness of the molded body 1 and the like are improved.
  • this substituted imidazole it is particularly preferable to use a substituted imidazole having 6 to 17 carbon atoms in the 2-position hydrocarbon group.
  • 2-undecylimidazole 2-heptadecylimidazole
  • 2-phenylimidazole 2-phenylimidazole
  • 1-benzyl-2-phenylimidazole and the like 2-undecylimidazole and 2-heptadecylimidazole are preferred.
  • These compounds are used alone or in combination of two or more.
  • the content of such a substituted imidazole is appropriately adjusted, whereby the molding and curing time can be adjusted.
  • the content of the substituted imidazole is preferably in the range of 0.5 to 3% by mass with respect to the total amount of the thermosetting resin and the curing agent in the molding composition.
  • a phosphorus compound as a curing catalyst.
  • a phosphorus compound and the substituted imidazole may be used in combination.
  • An example of a phosphorus compound is triphenylphosphine.
  • the content of the curing catalyst in the molding composition is appropriately adjusted, but is preferably in the range of 0.5 to 3 parts by mass with respect to the epoxy resin.
  • the coupling agent an appropriate one is used, but it is preferable not to use aminosilane so as not to contain the primary amine and the secondary amine in the molding composition.
  • aminosilane When aminosilane is used, the catalyst of the fuel cell may be poisoned, which is not preferable. It is also preferred not to use mercaptosilane as a coupling agent. Similarly, when this mercaptosilane is used, the fuel cell catalyst may be poisoned.
  • coupling agents examples include silicon-based silane compounds, titanate-based, and aluminum-based coupling agents.
  • Epoxysilane is suitable as the silicon-based coupling agent.
  • the amount used in the case of using an epoxy silane coupling agent is preferably in the range where the solid content of the molding composition is 0.5 to 1.5% by mass. In this range, the coupling agent can be sufficiently suppressed from bleeding on the surface of the separator 20.
  • the coupling agent may be previously adhered to the surface of the graphite particles by spraying or the like.
  • the amount of the coupling agent added is appropriately determined in consideration of the specific surface area of the graphite particles and the coating area per unit mass of the coupling agent, but preferably the total amount of the coating agent coating area Is in the range of 0.5 to 2 times the total surface area of the graphite particles. In this range, the coupling agent can be sufficiently suppressed from bleeding on the surface of the molded body 1 and contamination of the mold surface can be suppressed.
  • an appropriate one is used, but an internal mold release agent that is phase-separated without being incompatible with the thermosetting resin and the curing agent in the molding composition, particularly at 120 to 190 ° C. Is preferred.
  • an internal mold release agent include at least one selected from polyethylene wax, carnauba wax, and long-chain fatty acid wax.
  • Such an internal mold release agent exhibits a good mold release property by phase-separating with the thermosetting resin and the curing agent in the molding process of the molding composition.
  • the content of the internal mold release agent in the molding composition is appropriately set according to the complexity of the shape of the separator 20, the depth of the groove, the ease of releasability from the mold surface, such as the draft,
  • the range is preferably from 0.1 to 2.5% by mass relative to the total amount of the molding composition.
  • the wax content is more preferably in the range of 0.1 to 1% by mass, and particularly preferably in the range of 0.1 to 0.5% by mass.
  • the molding composition may be made liquid (including varnish and slurry) by adding a solvent to the molding composition.
  • a solvent it is preferable to use a polar solvent such as methyl ethyl ketone, methoxypropanol, N, N-dimethylformamide, dimethyl sulfoxide or the like.
  • a solvent may use only 1 type and may use 2 or more types together.
  • the amount of the solvent used is appropriately set in consideration of the moldability when the sheet-shaped molded body 1 is produced from the molding composition, but preferably the viscosity of the molding composition is in the range of 1000 to 5000 cps. Is set as follows.
  • what is necessary is just to use a solvent as needed, and it is not necessary to use a solvent, if a molding composition can be prepared in a liquid state by using liquid resin as a thermosetting resin.
  • the sodium content is 5 ppm or less and the chlorine content is 5 ppm or less in terms of mass ratio to the total amount of the molded body 1.
  • the content of ionic impurities in the molding composition is preferably a sodium content of 5 ppm or less and a chlorine content of 5 ppm or less as a mass ratio with respect to the total amount of the molding composition. In this case, elution of ionic impurities from the separator 20 can be suppressed, and deterioration of characteristics such as a decrease in starting voltage of the fuel cell due to the elution of impurities can be suppressed.
  • each component such as a thermosetting resin, a curing agent, graphite, and other additives constituting the molding composition. It is preferable to use a component in which the content of ionic impurities is a sodium content of 5 ppm or less and a chlorine content of 5 ppm or less by mass ratio with respect to each component.
  • the content of the ionic impurities is derived based on the amount of ionic impurities in the extraction water of the target object.
  • the extracted water can be obtained by charging an object in ion-exchanged water at a rate of 100 ml of ion-exchanged water with respect to 10 g of the object and heating at 90 ° C. for 50 hours.
  • the content of ionic impurities in the extracted water is evaluated by ion chromatography. Based on the amount of ionic impurities in the extracted water thus derived, the amount of ionic impurities in the target can be converted into a mass ratio with respect to the target and derived.
  • the molding composition is preferably prepared such that the TOC (total organic carbon) of the molded body 1 formed from the molding composition is 100 ppm or less.
  • TOC is a numerical value measured using an aqueous solution obtained by charging a molded body in ion-exchanged water at a rate of 100 ml of ion-exchanged water with respect to 10 g of the molded body and treating at 90 ° C. for 50 hours. .
  • the TOC can be measured using, for example, a total organic carbon analyzer “TOC-50” manufactured by Shimadzu Corporation in accordance with JIS K0102. In the measurement, the CO 2 concentration generated by burning the sample is measured by a non-dispersive infrared gas analysis method, and the carbon concentration in the sample is quantified. By measuring the carbon concentration, the organic substance concentration can be measured indirectly.
  • the inorganic carbon (IC) and total carbon (TC) in the sample are measured, and the total organic carbon (TOC) is measured from the difference between the total carbon and the inorganic carbon (TC-IC).
  • the value of TOC can be reduced by selecting a high-purity component as each component constituting the molding composition, further adjusting the equivalent ratio of the resin, or performing a post-curing treatment at the time of molding. .
  • the molding composition is prepared by mixing the above-described components by an appropriate technique, and kneading and granulating as necessary.
  • This molded composition can be molded to obtain the molded body 1 to be the separator 20.
  • a molding method an appropriate method such as injection molding or compression molding can be employed.
  • the separator 20 is formed with a plurality of convex portions (ribs) 21 on both surfaces, so that hydrogen gas as a fuel and an oxidizing agent are formed between the adjacent convex portions 21.
  • a gas supply / discharge groove 2 which is a flow path of oxygen gas is formed.
  • the separator 20 is composed of an anode separator having a gas supply / discharge groove 2 only on one side, and a cathode side separator having a gas supply / discharge groove 2 only on one side opposite to the anode side separator. Also good.
  • a separator 20 having gas supply / discharge grooves 2 on both sides as shown in FIG. 1 is formed.
  • a channel through which cooling water flows may be formed between the anode side separator and the cathode side separator. In this case, it is preferable to interpose a gasket between the anode side separator and the cathode side separator.
  • the molding composition is first molded into a sheet to obtain a fuel cell separator molding sheet (molding sheet).
  • the molding composition is formed into a sheet by, for example, casting (progressive) molding.
  • a plurality of types of film thickness adjusting means may be applied.
  • Such a casting method using a plurality of types of film thickness adjusting means can be realized, for example, by using a multi-coater that has already been put into practical use.
  • the film thickness adjusting means it is preferable to use at least one of a doctor knife and a wire bar, that is, one or both of the slit die and the slit die.
  • the thickness of this molding sheet is preferably 0.05 mm or more, and more preferably 0.1 mm or more. This thickness is particularly preferably 0.5 mm or less, and more preferably 0.3 mm or less. Thus, by making the thickness of the molding sheet 0.5 mm or less, the separator 1 can be made thinner and lighter, and the cost thereof can be reduced. In particular, if the thickness is 0.3 mm or less. When the solvent is used, the remaining solvent in the molding sheet can be effectively suppressed. Further, when this thickness is less than 0.05 mm, the advantage in producing the separator 20 is not sufficiently exhibited, and this thickness is preferably 0.1 mm or more in consideration of moldability.
  • the molding sheet is made into a semi-cured (B stage) state by drying along with casting, and this is compressed and thermoset to form a plurality of convex portions (ribs) 21 on both sides, and this convex portion.
  • Gas supply / discharge grooves 2 are formed between (ribs) 21.
  • the molded object 1 can be obtained.
  • the gas supply / discharge groove 2 on the other surface side can be formed on the back side of the convex portion 21 on the one surface side.
  • the molding sheet is first cut or punched into a predetermined plane dimension as necessary, and then thermoset in a mold with a compression molding machine.
  • the compression / thermosetting molding conditions depend on the composition of the molding composition, the type of conductive substrate, the molding thickness, etc., but the heating temperature is in the range of 120 to 190 ° C., and the compression pressure is in the range of 1 to 40 MPa. It is preferable to set by.
  • the molded body 1 may be manufactured by molding a single molding sheet, or the molded body 1 may be manufactured by stacking a plurality of molding sheets.
  • the molding sheet By forming the molding sheet in this way, it is possible to manufacture the thin molded body 1, particularly the separator 20 having a thickness in the range of 0.2 to 1.0 mm. By using the molding sheet, even when the thin separator 20 is manufactured, it becomes easy to arrange the molding material thinly and uniformly and mold it, and the moldability and thickness accuracy are improved.
  • a molding sheet and an appropriate conductive substrate may be laminated and molded.
  • the mechanical strength of the separator 20 can be improved.
  • compression / thermosetting can be performed in a state in which molding sheets (including a laminate of a plurality of molding sheets) are laminated on both sides of the conductive substrate, or Compression / thermosetting can be performed in a state where conductive substrates are laminated on both sides of a molding sheet (including a laminate of a plurality of molding sheets).
  • the conductive substrate examples include carbon paper, carbon prepreg, carbon felt, and the like.
  • these electroconductive base materials may contain base material components, such as glass and resin, in the range which does not impair electroconductivity.
  • the thickness of the conductive substrate is preferably in the range of 0.03 to 0.5 mm, and more preferably in the range of 0.05 to 0.2 mm.
  • the molded body 1 formed in this way when a thermosetting resin containing an epoxy resin is used and a curing agent containing a phenolic compound is used, hydroxyl groups generated in the cured product are distributed on the surface of the molded body 1. Become. In particular, by setting the equivalent ratio of the epoxy resin to the phenolic compound to be 0.8 to 1.2, the hydrophilicity of the molded body 1 is greatly improved by the surface treatment on the molded body 1 as described later, and the hydrophilicity is increased. Will last for a long time. If the equivalent ratio is greater than 1.2, the above-described effects cannot be obtained, and this is considered to be because the hydroxyl groups distributed in the molded body 1 are insufficient.
  • the equivalent ratio is particularly preferably in the range of 0.8 to 1.0. In this case, the equivalent of hydroxyl groups becomes excessive, and many hydroxyl groups can be distributed on the surface of the molded body 1. More preferably, the equivalent ratio is in the range of 0.8 to 0.9.
  • thermosetting resin containing a thermosetting phenol resin when used, hydroxyl groups derived from the thermosetting phenol resin are distributed on the surface of the molded body 1 in the molded body 1. Thereby, the effect of the hydrophilicity improvement by the surface treatment with respect to the molded object 1 improves as mentioned later.
  • the surface of the molded body 1 is subjected to a surface treatment including a wet blast treatment and a remote atmospheric pressure plasma treatment as described below. This surface treatment is applied to at least the surface of the molded body 1 where the gas supply / discharge grooves 2 are formed.
  • a slurry prepared by dispersing abrasive grains in a liquid such as water is sprayed onto the surface of the molded body 1 to remove the skin layer on the surface layer of the molded body 1 and Adjust the surface roughness.
  • dust is not scattered, so that the processing area can be increased, the processing efficiency is increased, and a process using fine abrasive grains is also possible. For this reason, the surface roughness of the molded object 1 can be easily adjusted to a desired range.
  • the arithmetic average height Ra (JIS B0601: 2001) of the surface of the molded body 1 is set in the range of 0.4 to 1.6 ⁇ m by the wet blast treatment.
  • the uniformity of the surface treatment is further improved, and the hydrophilicity of the surface of the separator 20 can be further improved.
  • the surface roughness of the molded body 1 is within the above range, gas leakage at the joint portion between the separator 20 and the gasket 12 obtained from the molded body 1 can be suppressed. For this reason, it is not necessary to mask the part joined to the gasket 12 in the molded body 1 during the wet blasting process, and the production efficiency of the separator 20 is improved.
  • the arithmetic average height Ra of the surface of the molded body 1 is 1.2 ⁇ m or less, the hydrophilicity of the surface of the separator 20 can be further improved. Furthermore, if the arithmetic average height Ra of the surface of the molded body 1 is less than 1.0 ⁇ m, the gas leak is particularly suppressed. In this case, the gas leak can be sufficiently suppressed even if the fastening force at the time of manufacturing the cell stack is lowered as the separator 20 is made thinner. If the arithmetic average height Ra of the surface of the molded body 1 is particularly 0.6 ⁇ m or more, the hydrophilicity of the surface of the separator 20 can be further improved.
  • the molded body 1 after the wet blast treatment may be washed with ion-exchanged water or the like.
  • the molded body 1 It is preferable to dry the molded body 1 by subjecting the molded body 1 after the wet blast treatment to a drying treatment prior to the atmospheric pressure plasma treatment.
  • a drying treatment it is preferable to air dry the molded body 1 by air blow or the like.
  • air blow with normal temperature or warm air can be performed as necessary, or air blow with warm air may be additionally performed after air blow at normal temperature.
  • the molded body 1 is allowed to stand in a desiccator containing a desiccant such as silica gel, and the molded body 1 is allowed to stand in a drier having a temperature of room temperature or higher (for example, 50 ° C.). You may employ
  • the atmospheric pressure plasma treatment in the remote system is a treatment in which a gas flow containing plasma is blown toward the molded body 1 under atmospheric pressure or near atmospheric pressure.
  • a discharge space 10 having an outlet 9 and discharge electrodes 6 and 6 for generating an electric field in the discharge space 10 are provided.
  • a plasma processing apparatus is used. In this plasma processing apparatus, the plasma generating gas 7 is supplied to the discharge space 10, the pressure in the discharge space 10 is maintained near atmospheric pressure, and a voltage is applied to the discharge electrodes 6, 6. When a discharge is generated in the discharge space 10, plasma is generated in the discharge space 10.
  • Plasma treatment can be performed by blowing the gas stream 8 containing plasma from the blowout opening 9 and spraying it on the molded body 1.
  • a plasma processing apparatus include the APT series manufactured by Sekisui Chemical Co., Ltd., but an appropriate plasma processing apparatus provided by Panasonic Electric Works Co., Ltd., Yamato Material Co., Ltd. or the like can also be used.
  • plasma is sprayed toward the surface of the molded body 1, so that the inner surface of the gas supply / discharge groove 2 of the molded body 1 is sufficiently processed.
  • the molded body 1 is not exposed to electric discharge during the plasma treatment, thereby preventing the molded body 1 from being damaged during the plasma treatment.
  • the atmospheric pressure plasma process supplies the plasma generating gas 7 around the object 11 as shown in FIG. 6 and discharges the electrode 6 around the object 11 as shown in FIG. , 6, there is also a direct method for generating plasma by generating a discharge.
  • the direct method since the molded body 1 is conductive, the molded body 1 is finely damaged by discharge, and the inner surface of the gas supply / discharge groove 2 is sufficiently processed. This is not preferable because it is difficult.
  • the atmospheric pressure plasma treatment by the remote method can be performed under conditions appropriately set so that desired hydrophilicity can be imparted to the surface of the molded body 1.
  • the plasma generating gas 7 in this atmospheric pressure plasma treatment is preferably nitrogen gas, and the oxygen content in the nitrogen gas is particularly preferably 2000 ppm or less. In this case, particularly high hydrophilicity is imparted to the separator 20 by the atmospheric pressure plasma treatment.
  • the atmospheric pressure plasma treatment is preferably performed under conditions where the temperature of the molded body 1 and the ambient temperature are adjusted so that dew condensation does not occur on the surface of the molded body 1. In this case, it is possible to prevent the plasma from being consumed by water droplets adhering to the surface of the molded body 1 and improve the processing efficiency.
  • the temperature of the molded body 1 is preferably equal to or higher than the temperature at which dew condensation does not occur on the surface of the molded body 1 (dew point temperature). preferable.
  • the temperature of the plasma unit portion of the plasma processing apparatus is usually adjusted. Depending on the configuration of the plasma processing apparatus, the temperature of the stage that supports the molded body 1 during the plasma processing is adjusted.
  • the molded body 1 after the atmospheric pressure plasma treatment may be left in the atmosphere as it is, but the molded body 1 is brought into contact with the surface of the molded body 1 by immersing the molded body 1 in water such as ion exchange water. It is preferable to perform a water contact treatment.
  • the hydrophilicity of the surface of the molded body 1 is improved. This high hydrophilicity is maintained over a long period of time.
  • the details of the hydrophilization mechanism are not clear, but hydroxyl groups are distributed on the surface of the molded body 1 so that moisture is adsorbed on the surface and functional groups are easily generated. Contaminants are removed from the surface of 1 to be in a highly active state, and hydrophilic functional groups such as hydroxyl groups are introduced to the activated surface, and the surface of the molded body 1 has many hydrophilic functional groups. It is thought that this is formed and this contributes to the improvement of hydrophilicity.
  • the atmospheric plasma treatment to the molded body 1 is inhibited from being inhibited by water molecules, and the efficiency of the atmospheric pressure plasma treatment is suppressed. Will improve.
  • the hydrophilicity of the surface of the molded body 1 is further improved.
  • the detailed mechanism is not clear, it is considered that the hydrophilicity of the surface of the molded body 1 is improved due to the adsorption of water molecules on the surface of the molded body 1 activated by the atmospheric pressure plasma treatment.
  • the surface treatment may include a cleaning treatment.
  • impurities such as various inorganic substances, organic substances, metal ions and the like that cause deterioration of the performance of the fuel cell are removed from the surface of the molded body 1.
  • the cleaning process is performed on the molded body 1 after the wet blast process and before the atmospheric pressure plasma process in the remote system. In this case, impurities adhering to the molded body 1 by the wet blasting process are sufficiently removed by the cleaning process.
  • the molded body 1 is preferably subjected to the above-described drying process before the atmospheric pressure plasma process by the remote method.
  • ultrasonic vibration is applied to the liquid, and then the liquid is discharged toward the molded body 1.
  • ultrasonic vibration is applied to the liquid in a container to which the liquid is supplied, and the liquid is discharged from the container toward the molded body 1.
  • Water is an example of the liquid used in the cleaning process.
  • This liquid may be a mixed liquid of water and a hydrophilic organic solvent such as ethanol.
  • water it is particularly preferable to use pure water, ion exchange water, RO water (water treated by a reverse osmosis membrane), or ozone water.
  • ozone water having an ozone concentration of 50 ppm or more is used, the hydrophilicity of the surface of the separator 20 is particularly improved and the contact resistance of the surface of the separator 20 is reduced. More preferably, the ozone concentration is 80 ppm or more.
  • the upper limit of the concentration of ozone water is not particularly limited, but the substantial upper limit is 110 ppm.
  • the liquid used in the cleaning treatment is alkaline ionized water. In this case, impurities are more efficiently removed from the molded body 1.
  • the dimension between the nozzle for discharging the liquid from the container and the molded body 1 is adjusted to a range of 2 to 20 mm, for example.
  • the frequency of the ultrasonic vibration applied to the liquid is preferably 900 kHz or more, for example, in the range of 900 to 1000 kHz.
  • the output of ultrasonic vibration applied to the liquid is preferably in the range of 100 to 650 W. Under such conditions, damage to the molded body 1 is particularly suppressed.
  • the processing time of the molded body 1 is appropriately adjusted according to the output of the ultrasonic vibration applied to the liquid. It is preferable. For example, the processing time is adjusted to a range of 0.2 to 3 minutes at an output of 100 to 600 W. Further, in the continuous processing in which the liquid is discharged to the molded body 1 while the molded body 1 is continuously conveyed, the conveyance speed of the molded body 1 is adjusted to a range of 5 to 20 mm / sec and applied to the liquid. The output of the ultrasonic vibration is preferably adjusted to a range of 100 to 650 W.
  • the ratio (A / B) between the width (A) and the depth (B) of the gas supply / discharge groove 2 formed on the surface of the molded body 1 on which the surface treatment is performed is preferably 1 or more.
  • the gas flow 8 including the slurry at the time of the surface blast treatment and the plasma at the time of the atmospheric pressure plasma treatment easily reaches the inside of the gas supply / discharge groove 2.
  • the upper limit of the ratio (A / B) is not particularly limited, but in order to form the gas supply / discharge grooves 2 with high density, it is preferably 10 or less in practice.
  • the static contact angle with water on the surface of the molded body 1 after the treatment is in a range of 0 ° to 50 ° by the surface treatment.
  • the static contact angle is particularly preferably in the range of 0 ° to 10 °, and more preferably in the range of 0 ° to 5 °.
  • the static contact angle with water can be adjusted by appropriately setting the surface treatment conditions. Thereby, sufficiently high hydrophilicity can be imparted to the surface of the molded body 1.
  • the contact resistance of the surface-treated surface of the molded body 1 is 15 m ⁇ cm 2 or less by surface treatment. This contact resistance can also be adjusted by appropriately setting the surface treatment conditions. Thereby, the function of the separator 20 for transmitting the electric energy generated by the fuel cell to the outside can be maintained at a high level.
  • a fuel cell can be manufactured using the separator 20 manufactured as described above.
  • FIG. 1 shows an example of a solid polymer fuel cell. Between two separators 20 and 20, an electrolyte 4 such as a solid polymer electrolyte membrane and a gas diffusion electrode (a fuel electrode 31 and an oxidant electrode 32).
  • a unit cell (unit cell) is formed with a membrane-electrode assembly (MEA) 5 made of, for example.
  • MEA membrane-electrode assembly
  • a battery body (cell stack) can be formed by arranging several tens to several hundreds of unit cells.
  • FIG. 2 shows an example of the structure of a single cell of a solar battery configured using the gasket 12.
  • This single cell is configured by stacking separators 20 and 20, gaskets 12 and 12, and membrane-electrode assembly 5.
  • first fuel through holes 131, 131 and first oxidant through holes 132, 132 are formed in an outer peripheral portion surrounding a region where the convex portion 21 and the gas supply / discharge groove 2 are formed. Is formed.
  • Two first fuel through holes 131 and 131 are formed, and the first fuel through holes 131 and 131 are respectively formed at both ends of the gas supply / discharge groove 2 on the surface of the separator 20 that overlaps the fuel electrode 31. Communicate.
  • first oxidant through holes 132, 132 are also formed, and each first oxidant through hole 132, 132 is formed in the gas supply / discharge groove 2 on the surface overlapping the oxidant electrode 32 of the separator 20. It communicates with both ends.
  • a first cooling through-hole 133 is also formed in the outer peripheral portion.
  • the gasket 12 for sealing is laminated on the outer peripheral portion of the separator 20.
  • the gasket 12 has an opening 15 for accommodating the fuel electrode 31 and the oxidant electrode 32 in the membrane-electrode assembly 5 at a substantially central portion thereof, and the gas supply / discharge groove 2 of the separator 20 is exposed in the opening 15.
  • a second fuel-use fuel is provided at a position matching the first fuel through-hole 131, the first oxidant through-hole 132, and the first cooling through-hole 133.
  • a through hole 141, a second oxidant through hole 142, and a second cooling through hole 143 are formed.
  • the outer peripheral portion of the electrolyte 4 in the membrane-electrode assembly 5 also matches the first fuel through hole 131, the first oxidant through hole 132, and the first cooling through hole 133 of the separator.
  • a third fuel through-hole 161, a third oxidant through-hole 162, and a third cooling through-hole 163 are respectively formed at the positions.
  • the separator 20, the gasket 12, and the first fuel through hole 131, the second fuel through hole 141, and the third fuel through hole 161 of the electrolyte 4 communicate with each other, so that the fuel electrode A fuel flow path for supplying and discharging fuel to and from is formed.
  • the first oxidant through-hole 132, the second oxidant through-hole 142, and the third oxidant through-hole 162 communicate with each other to supply and discharge the oxidant to the oxidant electrode.
  • the oxidizing agent flow path is configured.
  • the first cooling through-hole 133, the second cooling through-hole 143, and the third cooling through-hole 163 communicate with each other to form a cooling channel through which cooling water or the like flows.
  • the fuel electrode 31, the oxidant electrode 32, and the electrolyte 4 are formed of a known material corresponding to the type of the fuel cell.
  • the fuel electrode 31 and the oxidant electrode 32 are configured by carrying a catalyst on a base material such as carbon cloth, carbon paper, carbon felt or the like.
  • the catalyst in the fuel electrode 31 include a platinum catalyst, a platinum / ruthenium catalyst, and a cobalt catalyst.
  • the catalyst in the oxidant electrode 32 include a platinum catalyst and a silver catalyst.
  • the electrolyte 4 is formed of, for example, a proton conductive polymer membrane.
  • the proton conductivity is high, and the electronic conductivity and methanol permeability are high. It is formed from a fluorine resin or the like that is hardly shown.
  • the gasket 12 is, for example, natural rubber, silicone rubber, SIS copolymer, SBS copolymer, SEBS, ethylene-propylene rubber, ethylene-propylene-diene rubber (EPDM), acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber. (HNBR), chloroprene rubber, acrylic rubber, fluorine rubber, and the like.
  • This rubber material may contain a tackifier.
  • ethylene-propylene-diene rubber (EPDM) is preferably used from the viewpoint of achieving cost reduction, and fluoro-based rubber (FKM) from the viewpoint of particularly improving the durability of the gasket 12. Is preferably used.
  • FIG. 4 shows an example of a fuel cell C (cell stack) composed of a plurality of single cells.
  • the fuel cell C communicates with a fuel supply port 171 and a discharge port 172 communicating with the fuel flow channel, an oxidant supply port 181 and a discharge port 182 communicating with the oxidant flow channel, and a cooling flow channel.
  • the hydrophilicity is imparted to the surface of the separator 20, so that the gas supply / discharge groove 2 in the separator 20 is less likely to be clogged with water droplets, thereby suppressing a decrease in power generation efficiency of the fuel cell. be able to. Further, since the hydrophilicity of the separator 20 can be maintained for a long time, the power generation efficiency of the fuel cell can be maintained high for a long time.
  • a straight type gas supply / discharge groove 2 is formed in the separator 20.
  • the gas supply / discharge groove 2 in the separator 20 includes a serpentine type groove having a bend and a straight type groove having no bend.
  • the gas flow rate may be uneven in the gas supply / discharge groove 2.
  • the gas flow non-uniformity can be alleviated by a design such as reducing the number of grooves on the downstream side of the gas supply / discharge groove 2. It is difficult to eliminate uniformity.
  • the surface of the separator 20 on which the gas supply / discharge groove 2 is formed is subjected to a remote atmospheric pressure plasma treatment.
  • a fuel cell separator 30 with a gasket as shown in FIG. 3 is obtained.
  • the gasket 12 can be laminated on the separator 20 by bonding the gasket 12 previously formed in a sheet shape or a plate shape to the separator 20 by bonding or fusing.
  • the gasket 12 can be laminated on the separator 20 by molding a material for forming the gasket 12 on the surface of the separator 20.
  • the material used for forming the gasket 12 include an unvulcanized rubber material. This unvulcanized rubber material is applied to a predetermined position on the surface of the separator 20 by screen printing or the like, and a coating film of this rubber material is vulcanized to form a desired shape on the surface of the separator 20.
  • a gasket 12 can be formed.
  • the gasket 12 can be easily laminated even on the thin separator 20.
  • the separator 20 is set in a mold, and an unvulcanized rubber material is injected into a predetermined position on the surface of the separator 20 and is vulcanized by heating the rubber material. It is also possible to form a gasket 12 having a desired shape at a predetermined position on the surface.
  • molding, compression molding, injection molding, etc. can be employ
  • the atmospheric pressure plasma treatment by the remote method can be performed in the same manner as the atmospheric pressure plasma treatment in the surface treatment of the molded body 1.
  • the gasketed fuel cell separator 30 after the atmospheric pressure plasma treatment may be washed with ion-exchanged water heated as necessary.
  • the fuel cell separator 30 with a gasket when the fuel cell separator 30 with a gasket is obtained, even if the volatile matter or hydrophobic component from the gasket 12 adheres to the surface of the separator 20 when the gasket 12 is laminated on the separator 20, the volatile matter or hydrophobic component, etc. Is efficiently removed by atmospheric pressure plasma treatment.
  • volatile matter or hydrophobic components from the gasket 12 may adhere to the separator 20 and cause a decrease in hydrophilicity.
  • the atmospheric pressure plasma treatment by the remote method is performed after the gasket 12 is laminated as described above, the high hydrophilicity of the separator 20 is recovered. For this reason, the hydrophilicity of the separator 20 incorporated in the fuel cell can be further improved, whereby the long-term durability of the fuel cell can be further improved.
  • the separator 20 is subjected to the same cleaning treatment as in the above surface treatment. In this case, impurities attached to the separator 20 by the gasket 12 are sufficiently removed by the cleaning process. It is also preferable that after the gasket 12 is attached to the separator 20, a cleaning process is performed following the atmospheric pressure plasma process in the remote system.
  • the separator 20 When the surface treatment includes a cleaning process, or when the separator 20 is subjected to a cleaning process after the gasket 12 is attached to the separator 20, in the fuel cell C including such a separator 20, the separator 20 has a cleaning process. Since impurities that cause deterioration of the fuel cell C are removed from the surface, performance deterioration with time due to elution of impurities from the separator 20 is suppressed. In addition, since the separator 20 is prevented from being damaged due to the dropping of the graphite particles due to the cleaning treatment, the performance deterioration of the fuel cell C due to the dropping of the graphite particles from the separator 20 is also suppressed.
  • Examples 1 to 21, Comparative Examples 1 to 4 For each Example and Comparative Example, the components shown in Tables 1 and 2 were added to a stirring mixer ("5XDMV-rr type" manufactured by Dalton) so as to have the composition shown in Tables 1 and 2, and mixed to obtain. The mixture was pulverized to a particle size of 500 ⁇ m or less with a granulator.
  • a stirring mixer (“5XDMV-rr type” manufactured by Dalton) so as to have the composition shown in Tables 1 and 2, and mixed to obtain.
  • the mixture was pulverized to a particle size of 500 ⁇ m or less with a granulator.
  • the obtained pulverized product was compression molded under the conditions of a mold temperature of 185 ° C., a molding pressure of 35.3 MPa, and a molding time of 2 minutes. Next, the pressure was released with the mold closed, and after holding for 30 seconds, the mold was opened and the molded body 1 was taken out.
  • the shape of the obtained molded body 1 was 200 mm ⁇ 250 mm and the thickness was 1.5 mm.
  • One surface of the molded body 1 has 57 gas supply / discharge grooves 2 having a length of 250 mm, a width of 1 mm, and a depth of 0.5 mm, and the other surface is a gas having a length of 250 mm, a width of 0.5 mm, and a depth of 0.5 mm.
  • 58 supply / discharge grooves 2 were formed.
  • the surface of the molded body 1 was subjected to wet blasting using a commercially available slurry for wet blasting except for Comparative Example 1.
  • the molded body 1 was subjected to a drying process.
  • the drying process water droplets on the surface of the molded body 1 were removed by performing an air blowing process for blowing air at 60 ° C. on the surface of the molded body 1.
  • Tables 1 and 2 show the moisture absorption rate of the molded body 1 after the above treatment. This moisture absorption was derived based on the weight change of the molded body 1 when the molded body 1 was heated at 90 ° C. for 1 hour.
  • the molded body 1 was subjected to atmospheric pressure plasma treatment.
  • a remote method was used except for Comparative Example 2, and a direct method was used in Comparative Example 2.
  • AP-T series manufactured by Sekisui Chemical Co., Ltd. was used as the plasma processing apparatus.
  • the processing conditions are as shown in Tables 1 and 2.
  • “processing temperature” is the temperature of the molded body 1 during atmospheric pressure plasma processing, and 60 ° C. is a temperature above the dew point.
  • the thickness of the separator 20 is formed to 2 mm, carbon paper is disposed above and below the separator 20, copper plates are disposed above and below the separator 20, and a surface pressure of 1.0 MPa is applied in the vertical direction. I took it. Next, the voltage between the two carbon papers was measured with a voltmeter and the current between the two copper plates was measured with an ammeter, and the resistance (average value) was calculated from the result.
  • the carbon paper used is TGP-HM series (090M: thickness 0.28 mm, 120M: thickness 0.38 mm) manufactured by Toray.
  • Contact resistance evaluation 2 In the contact resistance evaluation 1, the surface pressure in the vertical direction during measurement was changed to 0.5 MP.
  • the molded body 1 in each example and comparative example was first washed with methanol for 1 minute and then washed with ion-exchanged water for 1 minute. Next, the molded body 1 and ion-exchanged water were placed in a glass container so that the amount of ion-exchanged water was 100 ml with respect to 10 g of the molded body 1 and treated at 90 ° C. for 50 hours.
  • the amount of organic carbonic acid is measured using a wet oxidation-infrared TOC measurement method (“Toray Engineering TOC Automatic Analyzer MODEL1800” manufactured by Toray Engineering Co., Ltd.). Was measured.
  • the separator 20 was poured into warm water at 90 ° C. and allowed to stand for a certain time, and then dried.
  • the standing time was 500 hours, 1000 hours, 1500 hours, and 2000 hours.
  • channel 2 for gas supply / discharge was measured similarly to the above.
  • the separator 20 was poured into warm water at 90 ° C. and allowed to stand for a certain time, and then dried.
  • the standing time was 500 hours, 1000 hours, 1500 hours, and 2000 hours.
  • the static contact angle with water was measured similarly to the above.
  • the separator 20 was poured into warm water at 100 ° C. and left for 1 hour, and then the process of heating and drying at 90 ° C. for 2 hours to make one cycle was repeated.
  • the number of treatment cycles was 50 times, 100 times, 200 times and 500 times.
  • the static contact angle with water was measured similarly to the above.
  • the molded body 1 in each example and comparative example was washed with methanol for 1 minute, and then washed with ion-exchanged water for 1 minute. Next, the molded body 1 and ion-exchanged water were placed in a polyethylene container so that the amount of ion-exchanged water was 100 ml with respect to 10 g of the molded body 1 and treated at 90 ° C. for 50 hours.
  • the Na ion concentration and Cl ion concentration of the ion-exchanged water (extracted water) after the treatment were measured by ion chromatography (“CDD-6A” manufactured by Shimadzu Corporation).
  • the molded body 1 in each example and comparative example was washed with methanol for 1 minute, and then washed with ion-exchanged water for 1 minute. Next, the molded body 1 and ion-exchanged water were placed in a polyethylene container so that the amount of ion-exchanged water was 100 ml with respect to 10 g of the molded body 1 and treated at 90 ° C. for 50 hours. The ion-exchanged water (extracted water) after the treatment was measured with a conductivity meter.
  • the gasket 12 was formed by heat vulcanization. Thereby, a fuel cell separator 30 with a gasket was obtained.
  • a membrane-electrode assembly 5 comprising an electrolyte 4 and a gas diffusion electrode (a fuel electrode 31 and an oxidizer electrode 32) is interposed between the fuel cell separator 30 with a gasket, and a standard unit of Japan Automobile Research Institute is incorporated.
  • a fuel cell C composed of a cell (electrode area 25 cm 2 ) was produced.
  • the fuel cell C is supplied with air as a fuel gas at a flow rate of 2.0 NL / min and hydrogen as an oxidant gas at a flow rate of 0.5 NL / min with an external circuit connected to the fuel cell C.
  • C was operated continuously for 1000 hours.
  • the state of fluctuation with time of the electromotive voltage (V) during the operation of the fuel cell C was investigated.
  • the result was expressed as a percentage of the electromotive force after the fluctuation with respect to the initial value ((E1 / E0) ⁇ 100 (%)), where E1 is the electromotive voltage after the fluctuation, and E0 is the initial electromotive voltage.
  • Example 1 to 19 after attaching the gasket 12 to the separator 20, the separator 20 is subjected to a remote atmospheric pressure plasma treatment under the same conditions as the surface treatment in Example 1, thereby providing a gasket.
  • the attached fuel cell separator 30 was obtained.
  • a fuel cell having the structure shown in FIG. 4 was produced in the same manner as described above.
  • the electromotive voltage fluctuation was measured by the same method as described above.
  • This fuel cell C was run under conditions of an oxygen utilization rate of 40% and a current density of 0.15 A / cm 2 , increasing the fuel utilization rate by 50% from 50%. As a result, the cell voltage, which was 700 mV or more at the beginning, suddenly decreased at a certain fuel utilization rate. The test was stopped when the cell voltage fell below 600 mV. An operation test was conducted for 5 hours at a fuel utilization rate of every 5%, and the highest fuel utilization rate at which the cell voltage did not fluctuate and could be stably operated was defined as the critical fuel utilization rate.
  • the fuel cell C was increased by 5% from 30% oxygen utilization under the conditions of a fuel utilization of 60% and a current density of 0.3 A / cm 2 , and the test was stopped when the cell voltage fell below 600 mV. .
  • An operation test of 5 hours was performed at each oxygen utilization rate, and the highest oxygen utilization rate at which the cell voltage did not fluctuate and could be stably operated was defined as the critical oxygen utilization rate.
  • this limiting oxygen utilization rate is high, it can be said that the stability of power generation is enhanced by suppressing the gas supply / discharge groove 2 of the separator 20 from being blocked by the adhesion of water droplets.
  • Epoxy resin A cresol novolak type epoxy resin (“EOCN-1020-75” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 199, melting point 75 ° C.)
  • Epoxy resin B Bisphenol F type epoxy resin ("830CRP” manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 171, liquid at 25 ° C)
  • Curing agent A Novolac type phenolic resin ("PSM6200” manufactured by Gunei Chemical Co., OH equivalent 105)
  • Curing agent B polyfunctional phenol resin (Maywa Kasei Co., Ltd.
  • Phenol resin A Resol type phenol resin (“Sample A” manufactured by Gunei Chemical Co., Ltd., melting point 75 ° C., ortho-ortho 25 to 35% by 13C-NMR analysis, ortho-para 60 to 70%, para-para 5 to 10%)
  • Curing accelerator A Triphenylphosphine (“TPP” manufactured by Hokuko Chemical Co., Ltd.)
  • Curing accelerator B 2-heptadecylimidazole (Shikoku Chemicals), weight loss 3.1%
  • Curing accelerator C 2-undecylimidazole (Shikoku Chemicals), weight loss 3.2%
  • Natural graphite (“WR50A” manufactured by Chuetsu Graphite Industries Co., Ltd., average particle size 50 ⁇ m, ash content 0.05%, sodium ion 4 ppm, chloride ion 2 ppm)
  • Artificial graphite (“SGP100” manufactured by ESC Corporation, average particle size 100 ⁇ m,
  • Example 1-21 Evaluation of groove depth / width
  • the depth (B) of the gas supply / discharge groove 2 is 1 mm and the ratio (A / B) of the width (A) to the depth (B) is 0.8, 1, 5 10 were produced.
  • the static contact angle of the inner surface of the gas supply / discharge groove 2 of each separator 20 was evaluated. As a result, in any of Examples 1-21, the static contact angle with water is 25 ° when A / B is 0.8, and when A / B is 1, 5, and 10. It was 20 °.
  • Example 4 In Example 4, after performing the wet blasting process on the molded body 1 and before performing the drying process, ultrasonic vibration was applied to pure water using a trade name “Hymegasonic US shower” manufactured by Kaijo Corporation. The molded body 1 was washed by discharging pure water from the nozzle toward the surface of the molded body 1. In Examples 20 to 24, a liquid to which ultrasonic vibration was applied was discharged from a nozzle disposed above the molded body 1 while the molded body 1 was stationary. In Examples 25 to 33, a liquid to which ultrasonic vibration was applied was discharged from a nozzle disposed above the movement path of the molded body 1 while the molded body 1 was being conveyed. Pure water or alkaline ion water was used as the liquid, and RUMIC EKO-205 (distributor: Kaijo Corporation) was used as the alkaline ion water. The conditions for the cleaning treatment in each example are as shown in Table 5.
  • the molded body 1 was sequentially subjected to a drying treatment, an atmospheric pressure plasma treatment by a remote method, and a water contact treatment, and a gasket 12 was attached to the separator 20 by the method described in the above-described evaluation of variation in electromotive voltage of the fuel cell.
  • the separator 20 was subjected to a cleaning process under the same conditions as described above before performing a remote atmospheric pressure plasma process.
  • the separator 20 is dried with hot air, and then subjected to a remote atmospheric pressure plasma treatment under the same conditions as the surface treatment in Example 1, and then a water contact treatment, thereby obtaining a fuel cell separator 30 with a gasket. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、表面に高い親水性を付与すると共にこの親水性を長期間維持することができ、燃料電池の高い発電効率を維持することができる燃料電池セパレータの製造方法を提供する。 エポキシ樹脂を含む熱硬化性樹脂、フェノール系化合物を含む硬化剤、及び黒鉛粒子を含有し、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8~1.2の範囲である成形用組成物を成形する。得られた成形体1の表面に、ウエットブラスト処理と、このウエットブラスト処理後のリモート方式での大気圧プラズマ処理とを含む表面処理を施す。

Description

燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法
 本発明は、燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法に関する。
 一般に燃料電池は複数の単位セルを数十~数百個直列に重ねて構成されるセルスタックから成り、これにより所定の電圧を得ている。
 単位セルの最も基本的な構造は、「セパレータ/燃料電極(アノード)/電解質/酸化剤電極(カソード)/セパレータ」という構成を有している。この単位セルにおいては、電解質を介して対向する一対の電極のうち燃料電極に燃料が、酸化剤電極に酸化剤が、それぞれ供給される。電気化学反応により燃料が酸化されることで、反応の化学エネルギーが直接電気化学エネルギーに変換される。
 このような燃料電池は、電解質の種類によりいくつかのタイプに分類される。近年、高出力が得られる燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。
 図1は固体高分子型燃料電池の一例を示す。左右両側面に複数個の凸部(リブ)21を有する2枚の燃料電池セパレータ20,20の間に、電解質4(固体高分子電解質膜)とガス拡散電極(燃料電極31と酸化剤電極32)とで構成される膜-電極複合体(MEA)5が介在し、単電池(単位セル)が構成されている。この単位セルを数十個~数百個並設することで電池本体(セルスタック)が構成される。前記燃料電池セパレータ20における隣り合う凸部21同士の間には、燃料である水素ガス又は酸化剤である酸素ガスの流路であるガス供給排出用溝2が形成されている。
 このようなセルスタックは、例えば家庭用定置型の場合に50~100個の単位セルで構成され、自動車積載用の場合に400~500個の単位セルで構成され、ノートパソコン搭載用の場合に10~20個の単位セルで構成される。
 この固体高分子型燃料電池は、燃料電極に水素ガスを、酸化剤電極に酸素ガスをそれぞれ供給することにより、外部回路より電流を取り出す。この際、各電極においては下記式に示したような反応が生じる。
燃料電極反応 : H→2H++2e-…(1)
酸化剤電極反応 : 2H++2e-+1/2O→HO…(2)
全体反応 : H+1/2O→H
 即ち、燃料電極上で水素(H)はプロトン(H+)となり、このプロトンが固体高分子電解質膜中を移動して酸化剤電極まで至り、酸化剤電極上で酸素(O)と反応して水(HO)を生ずる。従って、固体高分子型燃料電池の運転時には、ガスの供給と排出、電流の取り出しが必要となる。
 また、固体高分子型燃料電池は、通常、室温以上120℃以下の範囲での湿潤雰囲気下での運転が想定されており、そのため水を液体状態で扱うことが多くなるので、燃料電極への液体状態の水の補給管理と酸化剤電極からの液体状態の水の排出が必要となる。
 また、固体高分子型燃料電池の一種であるメタノール直接型燃料電池(DMFC)では、燃料として水素の代わりにメタノール水溶液が使用される。この場合、各電極においては下記式に示したような反応が生じている。酸化剤電極反応では酸素還元反応(水素を燃料とする場合と同じ反応)が起こっている。
燃料電極反応 : CHOH+HO→CO+6H++6e-…(1’)
酸化剤電極反応 : 3/2O+6H++6e-→3HO…(2’)
全体反応 : CHOH+3/2O→CO+2H
 メタノール直接型燃料電池(DMFC)と通常の固体高分子型燃料電池との全体反応同士を比較すると、メタノール直接型燃料電池では6倍の水が発生しているので、酸化剤電極からの液体状態の水の排出が更に重要となる。
 燃料電池を構成する部品のうち、燃料電池セパレータ20は、図1(a),(b)に示すように、薄肉の板状体の片面又は両面に複数個のガス供給排出用溝2を有する特異な形状を有する。この燃料電池セパレータ20は、燃料電池内を流れる燃料ガス、酸化剤ガス及び冷却水が混合しないように分離する働きを有すると共に、燃料電池で発電した電気エネルギーを外部へ伝達したり、燃料電池で生じた熱を外部へ放熱するという重要な役割を担う。
 この固体高分子型燃料電池においては、燃料ガス、酸化剤ガスは、固体電解質の乾燥を防ぐためにしばしば加湿されており、更に上記反応により酸化剤電極側で水が生成する。これらの水分がセパレータ20の酸化剤電極側並びに燃料電極側の表面に付着すると、ガス供給排出用溝2が閉塞されて酸素ガスや燃料ガスの流量が低下し、発電効率が低下するというフラッディングの問題が生じる。このため、セパレータ20表面に付着した水を効率よく排出するために活発な検討がなされている。
 例えば特許文献1では、セパレータの表面に真空紫外光照射装置から真空紫外光を照射することで、セパレータの表面の濡れ性を向上させることが提案されているが、生産性に乏しく実用に適さないという問題がある。
 特許文献2ではセパレータ表面に親水性フェノール樹脂や親水性エポキシ樹脂を成膜することが提案され、特許文献3では親水性作用基を有するシラン化合物を成膜することが提案されている。しかし、特許文献2の場合はセパレータの電気特性が悪化する恐れがあり、特許文献3の場合はシラン化合物を成膜する工程が複雑であって、いずれも実用に適さない。
 特許文献4ではケイ素化合物を含有する成形材料からセパレータを形成することが提案されているが、成形性が低下してしまうという欠点を有している。
 特許文献5において、セパレータをまず加熱炉中で加熱する前処理した後、バーナーからの火炎でフレーム処理を施すことにより、セパレータの親水性の向上を図っているが、親水性を長時間持続させることはできていない。
 特許文献6において、ケイ素化合物等を含む気体を燃焼させながらセパレータ表面に吹き付けることが提案されている。この方法は、処理効率が高く、また処理後のセパレータの表面には高い親水性が付与される。しかし、この方法であっても、セパレータの表面の親水性は経時的に悪化してしまい、親水性を長期間持続させることはできない。
 特許文献7において、親水性ガスでの親水性付与が提案されているが、実用的なレベルに達しているとはいえない。また特許文献7には親水性ガスとしてフッ素ガスを使用することが記載されているものの、セパレータの表面の親水性を充分に向上すると共にその親水性を長期間維持するための手法は未だ見出されていない。
 特許文献8では、燃料電池セパレータを常圧放電プラズマ処理を施すことが提案されているが、処理後の表面の耐久性に乏しく、親水性および排水性が経時的に著しく低下するという問題がある。
 更に、特許文献9において、セパレータ表面に粗面化処理と大気圧プラズマ処理とを施すことで、親水性および濡れ性の経時劣化の抑制を図ることが提案されている。しかし、本来必要なガス供給排出用溝内部の親水性が十分でないなど、実用化レベルとは言えないのが実情である。
 このように、セパレータの表面の親水性を充分に向上すると共にその親水性を長期間維持するための有効な手法は未だ見出されていない。
日本国特許出願公開公報第2003-142116号 日本国特許出願公開公報第2000-251903号 日本国特許出願公開公報第2007-299754号 日本国特許出願公開公報第2008-186642号 日本国特許出願公開公報第2002-313356号 日本国特許出願公開公報第2006-185729号 国際公開第WO99/40642号 日本国特許出願公開公報第2002-25570号 日本国特許出願公開公報第2006-331673号
 本発明は上記の点に鑑みてなされたものであり、燃料電池セパレータの表面に高い親水性を付与すると共にこの親水性を長期間維持することができ、ガス供給排出用溝が水滴により閉塞されることを防いで燃料電池の高い発電効率を維持することができる燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法を提供することを目的とする。
 本発明者らは、鋭意研究の結果、燃料電池セパレータの親水性を向上するにあたり、燃料電池セパレータの親水性を長期間維持するための手法を見出し、本発明の完成に至った。
 本発明に係る第一の燃料電池セパレータの製造方法では、エポキシ樹脂を含む熱硬化性樹脂、フェノール系化合物を含む硬化剤、及び黒鉛粒子を含有し、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8~1.2の範囲である成形用組成物を成形する。得られた成形体の表面に、ウエットブラスト処理と、このウエットブラスト処理後のリモート方式での大気圧プラズマ処理とを含む表面処理を施す。
 このため、成形用組成物中にエポキシ樹脂とフェノール系化合物とを配合すると共にその配合比を調整するという非常に簡易な手法によって、表面処理前の成形体の表面に水酸基を分布させることができる。この成形体の表面に表面処理を施すことにより、燃料電池セパレータの表面の親水性が向上すると共にこの高い親水性が長期間維持される。
 前記エポキシ樹脂がクレゾールノボラック型エポキシ樹脂であり、前記フェノール系化合物がノボラック型フェノール樹脂であることが好ましい。
 本発明に係る第二の燃料電池セパレータの製造方法では、熱硬化性フェノール樹脂を含む熱硬化性樹脂、及び黒鉛粒子を含有する成形用組成物を成形する。得られた成形体の表面に、ウエットブラスト処理と、このウエットブラスト処理後のリモート方式での大気圧プラズマ処理とを含む表面処理を施す。
 このため、成形用組成物中に熱硬化性フェノール樹脂を配合するという非常に簡易な手法によって、表面処理前の成形体の表面に水酸基を分布させることができる。この成形体1の表面に表面処理を施すことにより、燃料電池セパレータの表面の親水性が向上すると共にこの高い親水性が長期間維持される。
 本発明においては、ウエットブラスト処理により成形体の表面の算術平均高さRa(JIS B0601:2001)を0.4~1.6μmの範囲とすることが好ましい。
 この場合、成形体に対する前記表面処理の処理効率が高くなり、燃料電池セパレータの表面の親水性を更に向上すると共にこの高い親水性を更に長期間維持することができるようになる。
 この成形体の表面の算術平均高さRaは更に1.2μm以下であることが好ましい。この場合、リモート方式での大気圧プラズマ処理により燃料電池セパレータの親水性が更に向上すると共にこの高い親水性を更に長期間維持することができ、また燃料電池セパレータ20の表面のシール性を向上することができる。この算術平均高さRaが更に1.0μm未満であれば燃料電池セパレータの表面のシール性が更に向上する。また、成形体の表面の算術平均高さRaが特に0.6μm以上であれば、リモート方式での大気圧プラズマ処理により燃料電池セパレータの親水性が更に向上する。
 本発明においては、前記大気圧プラズマ処理におけるプラズマ生成用ガスが、酸素ガス含有量2000ppm以下の窒素ガスであることが好ましい。
 この場合、前記大気圧プラズマ処理によって燃料電池セパレータに特に高い親水性が付与される。
 本発明においては、前記成形用組成物が内部離型剤を含有することが好ましい。
 この場合、成形用組成物の成形時に均一な離型性を発揮させると共に成形時に外部離型剤が不要となることで成形体の生産性を向上することができる。しかも外部離型剤が成形体の表面に偏在して残存することがなくなり、この外部離型剤によって成形体の表面の親水性に悪影響が及ぶことが防止される。
 本発明においては、前記成形用組成物が、測定開始温度30℃、昇温速度10℃/分、保持温度120℃、保持温度での保持時間30分の条件で加熱される場合の重量減少が5%以下であり、且つ2位に炭化水素基を有する置換イミダゾールを含有することが好ましい。
 本発明においては、前記成形用組成物が、トリフェニルホスフィンを含有することも好ましい。
 本発明においては、前記表面処理が乾燥処理を含むことが好ましい。この乾燥処理では、前記ウエットブラスト処理後、大気圧プラズマ処理前に、前記成形体を吸湿率0.1%以下まで乾燥する。
 この場合、水分子によって成形体への大気圧プラズマ処理が阻害されることを抑制し、大気圧プラズマ処理の効率を向上することができる。
 本発明においては、前記表面処理が、前記大気圧プラズマ処理後に前記成形体の表面を水と接触させる水接触処理を含むことが好ましい。前記水は、特にイオン交換水又は純水であることが好ましい。
 この場合、成形体の表面の親水性を更に向上することができる。
 本発明においては、前記表面処理前の成形体の、表面処理が施される面に、幅(A)と深さ(B)との比(A/B)が1以上であるガス供給排出用溝を形成することが好ましい。
 この場合、成形体の表面にガス流路となるガス供給排出用溝を形成しつつ、この成形体に対する前記表面処理の処理効率を高く維持することができ、燃料電池セパレータの表面の親水性を更に向上すると共にこの高い親水性を更に長期間維持することができるようになる。
 本発明においては、前記表面処理により、前記成形体の表面の接触抵抗を15mΩcm以下とすることが好ましい。
 この場合、燃料電池セパレータの親水性を向上すると共に、この燃料電池セパレータによる燃料電池で発電した電気エネルギーを外部へ伝達する機能を高いレベルで維持することができる。
 本発明においては、前記表面処理により、前記成形体の表面の水との静的接触角を0~50°の範囲とすることが好ましい。
 この場合、燃料電池セパレータの表面の親水性を特に向上することができる。
 本発明において、前記表面処理が、液体に超音波振動を印加すると共にこの液体を前記成形体へ向けて吐出する洗浄処理を含んでもよい。
 前記洗浄処理において、前記液体に印加する超音波振動の周波数が900kHz以上であってもよい。
 前記洗浄処理において、前記液体がアルカリイオン水であってもよい。
 本発明に係る燃料電池セパレータは、前記方法により製造されたことを特徴とする。
 本発明に係るガスケット付き燃料電池セパレータの製造方法では、前記方法により製造された燃料電池セパレータにガスケットを積層した後、この燃料電池セパレータの表面にリモート方式での大気圧プラズマ処理を施す。
 本発明に係るガスケット付き燃料電池セパレータの製造方法では、前記方法により製造された燃料電池セパレータにガスケットを積層した後、この燃料電池セパレータの表面に、液体に超音波振動を印加すると共にこの液体を前記燃料電池セパレータへ向けて吐出する洗浄処理を施してもよい。
 また、本発明に係る燃料電池の製造方法では、前記方法により製造された燃料電池セパレータにガスケットを積層し、この燃料電池セパレータの表面にリモート方式での大気圧プラズマ処理を施した後、この燃料電池セパレータを膜-電極複合体と積層する。
 このため、ガスケットに起因する揮発分や疎水成分を大気圧プラズマ処理によりセパレータの表面から除去することができ、セパレータの親水性を更に向上することができ、これにより燃料電池の長期耐久性を更に向上することができる。
 本発明によれば、燃料電池セパレータの表面の親水化処理を簡便な手法により高効率でおこなうことができると共にこの燃料電池セパレータの親水性を長期間に亘って維持することができる。このため、燃料電池セパレータにおけるガス供給排出用溝が水滴により閉塞されることを防いでこの燃料電池セパレータを組み込んだ燃料電池の発電効率を長期間に亘って高く維持することができるようになる。
(a)は燃料電池の単位セルを、(b)は前記単位セルにおける燃料電池セパレータをそれぞれ示す概略の斜視図である。 ガスケットを使用して構成される燃料電池の単位セルの一例を示す分解斜視図である。 ガスケット付き燃料電池セパレータの一例を示す斜視図である。 燃料電池の一例を示す斜視図である。 リモート方式での大気圧プラズマ処理装置の一例を示す概略図である。 ダイレクト方式での大気圧プラズマ処理装置の一例を示す概略図である。
 以下本発明の実施の形態を説明する。
 燃料電池セパレータ20(以下、セパレータ20という)を製造するための成形用組成物は、熱硬化性樹脂及び黒鉛粒子を、必須成分として含有する。
 成形用組成物は、第一アミン及び第二アミンを含有しないことが好ましい。すなわち、この成形用組成物中には、置換基-NH及び-NH2を有する化合物は含有させないことが好ましい。また、更に成形用組成物には第三アミンを含有させないようにすることが好ましい。このため、この成形用組成物から形成されるセパレータ20は、燃料電池中の白金触媒を被毒することがなくて、燃料電池を長時間使用した場合の起電力の低下を抑制することができる。
 前記熱硬化性樹脂はエポキシ樹脂と熱硬化性フェノール樹脂のうち少なくとも一方を必須成分とする。エポキシ樹脂及び熱硬化性フェノール樹脂は良好な溶融粘度を有すると共に不純物が少なく、特にイオン性不純物が少ない点で優れている。
 熱硬化性樹脂全量に対するエポキシ樹脂及び熱硬化性フェノール樹脂の含有量は50~100質量%の範囲にあることが好ましい。熱硬化性樹脂がエポキシ樹脂のみ、熱硬化性フェノール樹脂のみ、或いはエポキシ樹脂と熱硬化性フェノール樹脂のみであれば特に好ましい。
 エポキシ樹脂は固形状であることが好ましく、特にその融点が70~90℃の範囲であることが好ましい。これにより、材料の変化が少なく成形時の取り扱い性が向上する。この融点が70℃未満であると、成形用組成物中で凝集が生じやすくなって、成形用組成物の取り扱い性が悪くなるおそれがある。また、エポキシ樹脂として溶融粘度が低粘度の樹脂を選択すれば、成形性用組成物の良好な成形性を維持しつつ、成形用組成物及びセパレータ20中に黒鉛粒子を高充填することができる。尚、前記作用が発揮される範囲内でエポキシ樹脂の一部が液状であってもよい。
 エポキシ樹脂としては、オルトクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等が好ましい。これらの樹脂は良好な溶融粘度を有すると共に不純物が少なく、特にイオン性不純物が少ない点で優れている。
 特にエポキシ樹脂がオルトクレゾールノボラック型エポキシ樹脂のみからなるエポキシ樹脂成分を含むことが好ましい。或いはエポキシ樹脂が、オルトクレゾールノボラック型エポキシ樹脂と、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、及びビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂から選択される少なくとも一種とからなるエポキシ樹脂成分を含むことが好ましい。オルトクレゾールノボラック型エポキシ樹脂が必須の成分であると、成形用組成物が成形性に優れたものになると共に、セパレータ20が耐熱性に優れたものとなる。更に、製造コストの低減も可能になる。エポキシ樹脂成分中のオルトクレゾールノボラック型エポキシ樹脂の割合は、前記成形性の向上、セパレータ20の耐熱性の向上、製造コストの低減の観点から、50~100質量%の範囲であることが好ましく、特に50~70質量%の範囲であることが好ましい。
 溶融粘度の更なる低減や、薄型のセパレータ20の靱性向上のために、オルトクレゾールノボラック型エポキシ樹脂と共に、ビスフェノール型エポキシ樹脂やビフェニル型エポキシ樹脂やビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を併用することも好ましい。
 特にビスフェノールF型エポキシ樹脂を使用すると、成形用組成物の粘度を低減し、成形性の特に高い成形用組成物を得ることができる。この場合のエポキシ樹脂成分中におけるビスフェノールF型エポキシ樹脂の含有量は30~50質量%の範囲であることが好ましい。
 また、ビフェニル型エポキシ樹脂を使用すると、このビフェニル型エポキシ樹脂は溶融粘度が低いため、成形用組成物の流動性が著しく向上し、薄型成形性が特に向上する。この場合のエポキシ樹脂成分中におけるビフェニル型エポキシ樹脂の含有量は30~50質量%の範囲であることが好ましい。
 また、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を使用すると、セパレータ20の強度及び靱性を向上することができ、更にセパレータ20の吸湿性を低減することができる。このため、セパレータ20の機械的特性、導電性、長期使用時の特性の安定性が優れたものとなる。この場合のエポキシ樹脂成分中におけるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂の割合は、30~50質量%の範囲であることが好ましい。
 また、成形用組成物中の熱硬化性樹脂全量に対するエポキシ樹脂成分の含有量は50~100質量%の範囲にあることが好ましい。
 前記エポキシ樹脂成分は熱硬化性樹脂中のエポキシ樹脂の少なくとも一部として成形用組成物中に含有される。すなわち、このエポキシ樹脂成分以外の他の熱硬化性樹脂として、例えば前記エポキシ樹脂成分以外のエポキシ樹脂、熱硬化性フェノール樹脂、ビニルエステル樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等から選択される一種又は複数種の樹脂が用いられてもよい。但し、エステル結合を含む樹脂は耐酸性環境下で加水分解するおそれがあるため、使用しないことが望ましい。また、熱硬化性樹脂として、セパレータ20の耐熱性や耐酸性の向上に寄与する点で、ポリイミド樹脂を用いることも適している。このようなポリイミド樹脂としては、特にビスマレイミド樹脂などを用いることも好ましく、このビスマレイミド樹脂としては例えば、4,4-ジアミノジフェニルビスマレイミドが挙げられる。これを併用することでセパレータ20の耐熱性を更に高めることができる。
 熱硬化性フェノール樹脂を用いる場合には、特に開環重合により重合反応が進行するフェノール樹脂を用いることが好ましい。このようなフェノール樹脂としては、例えばベンゾオキサジン樹脂等を挙げることができる。この場合は、成形工程で脱水によるガスが発生しないので成形品中にボイドが発生せず、ガス透過性の低下を抑制することができる。また、レゾール型フェノール樹脂を用いることも好ましく、例えば13C-NMR分析で、オルト-オルト25~35%、オルト-パラ60~70%、パラ-パラ5~10%の構造を有するレゾール型フェノール樹脂を用いることが好ましい。レゾール樹脂は通常液状であるが、レゾール型フェノール樹脂は軟化点を容易に調整することができて、融点が70~90℃のレゾール型フェノール樹脂を容易に得ることができる。これにより、材料の変化が少なくなり、成形時の成形用組成物の取り扱い性が向上する。この融点が70℃未満であると、成形用組成物中で凝集が生じやすくなって、取り扱い性が悪くなるおそれがある。
 エポキシ樹脂及び熱硬化性フェノール樹脂以外の他の樹脂を併用してもよい。例えばポリイミド樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等から選択される一種又は複数種の樹脂を用いることができる。但し、エステル結合を含む樹脂は耐酸性環境下で加水分解する恐れがあるため、使用しないことが望ましい。
 熱硬化性樹脂としてポリイミド樹脂を用いることも、セパレータ20の耐熱性や耐酸性の向上に寄与する点で適している。このようなポリイミド樹脂としては、特にビスマレイミド樹脂などを用いることも好ましく、その具体例として例えば、4,4-ジアミノジフェニルビスマレイミドが挙げられる。このような他の樹脂を併用することでセパレータ20の耐熱性を更に高めることができる。
 エポキシ樹脂を使用する場合、成形用組成物は硬化剤を必須成分とし、この硬化剤はフェノール系化合物を必須成分とする。このフェノール系化合物としては、ノボラック型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、アラルキル変性フェノール樹脂等が挙げられる。
 硬化剤全量に対するフェノール系化合物の含有量は、エポキシ樹脂の使用量に依存して決定される。硬化剤がフェノール系化合物のみであれば特に好ましい。
 また、成形用組成物の固形分中の熱硬化性樹脂と硬化剤の含有量は、その合計量が14~24.1質量%の範囲であることが好ましい。
 フェノール系化合物以外の他の硬化剤を併用する場合、他の硬化剤は非アミン系の化合物であることが好ましい。この場合、セパレータ20の電気伝導度を高い状態に維持することができると共に、燃料電池の触媒の被毒を抑制することができる。硬化剤として酸無水物系の化合物も用いないようにすることも好ましい。酸無水物系の化合物を使用する場合は硫酸酸性環境下等の酸性環境下で加水分解して、セパレータ20の電気伝導度の低下を引き起こしたり、セパレータ20からの不純物の溶出が増大してしまうおそれがある。
 熱硬化性樹脂としてエポキシ樹脂を用いる場合は、熱硬化性樹脂と硬化剤とを配合するにあたり、熱硬化性樹脂におけるエポキシ樹脂と硬化剤におけるフェノール系化合物とは、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8~1.2の範囲となるようにすることが好ましい。
 黒鉛粒子は、セパレータ20の電気比抵抗を低減して、セパレータ20の導電性を向上させるために使用される。黒鉛粒子の含有量は、成形用組成物全量に対して75~90質量%の範囲であることが好ましい。黒鉛粒子の含有量が75質量%以上となるとセパレータ20に充分に優れた導電性が付与されるようになる。またこの含有量が90質量%以下となると成形用組成物に充分に優れた成形性が付与されると共にセパレータ20に充分に優れたガス透過性が付与される。
 黒鉛粒子の種類には、高い導電性を有するのであれば特に制限はない。黒鉛粒子として、例えばメソカーボンマイクロビーズなどの炭素質を黒鉛化して得られる黒鉛粒子、石炭系コークスや石油系コークスを黒鉛化して得られる黒鉛粒子、黒鉛電極や特殊炭素材料の加工粉、天然黒鉛、キッシュ黒鉛、膨張黒鉛など、適宜のものを用いることができる。このような黒鉛粒子は、一種のみを用いるほか、複数種を併用することもできる。
 黒鉛粒子は、人造黒鉛粉、天然黒鉛粉のいずれでもよい。天然黒鉛粉は導電性が高いという利点を有し、また人造黒鉛粉は天然黒鉛粉に比べて導電性は多少劣るものの、異方性が少ないという利点がある。
 黒鉛粒子は、天然黒鉛粉、人造黒鉛粉のいずれの場合であっても、精製されたものであることが好ましい。この場合は、灰分やイオン性不純物が低いため、成形品であるセパレータ20からの不純物の溶出を抑制することができる。
 黒鉛粒子における灰分は0.05質量%以下であることが好ましい。灰分が0.05質量%を超えると、セパレータ20を用いて作製される燃料電池の特性低下が引き起こされるおそれがある。
 黒鉛粒子の平均粒径は15~100μmの範囲であることが好ましい。この平均粒径が10μm以上であることで成形用組成物の成形性が優れたものとなり、この平均粒径が100μm以下であることで成形体1の表面平滑性を向上することができる。成形性を特に向上するためには前記平均粒径が30μm以上であることが好ましい。また成形体1の表面平滑性を特に向上して後述するように成形体1の表面の算術平均高さRa(JIS B0601:2001)が0.4~1.6μmの範囲となるようにするためには前記平均粒径が70μm以下であることが好ましい。
 特に薄型のセパレータ20を得る場合には、黒鉛粒子は100メッシュ篩(目開き150μm)を通過する粒径を有することが好ましい。この黒鉛粒子中に100メッシュ篩を通過しない粒子が含まれていると、成形用組成物中に粒径の大きい黒鉛粒子が混入してしまい、特に成形用組成物を薄型のシート状に成形する際の成形性が低下してしまう。
 黒鉛粒子のアスペクト比が10以下であることが好ましい。この場合、成形体1に異方性が生じることを防止すると共にこの成形体1に反りなどの変形が生じることも防ぐことができる。
 尚、成形体1の異方性の低減にあたっては、成形体1における成形時の成形用組成物の流動方向と、この流動方向と直交する方向との間での接触抵抗の比が、2以下となることが好ましい。
 黒鉛粒子としては、特に2種以上の粒度分布を有する黒鉛粒子、すなわち平均粒径の異なる2種以上の粒子群を混合して得られる黒鉛粒子を用いることも好ましい。この場合、特に平均粒径1~50μmの範囲の黒鉛粒子と、平均粒径30~100μmの黒鉛粒子とを混合することが好ましい。このような粒度分布を有する黒鉛粒子を用いると、粒径の大きい粒子は表面積が小さいため、少量の樹脂量でも混練を可能とすることが期待され、更に粒径の小さい粒子によって、黒鉛粒子同士の接触性を高める一方、成形品の強度を高めることが期待される。これにより、セパレータ20の嵩密度の向上、導電性の向上、ガス不透過性の向上、強度の向上等といった、性能の向上を図ることができる。平均粒径1~50μmの粒子と平均粒径30~100μmとの粒子の混合比は、適宜調整されるが、特に前者対後者の混合質量比が40:60~90:10、特に65:35~85:15であることが好ましい。
 尚、黒鉛粒子の平均粒径は、レーザー回折・散乱式粒度分析計(日機装株式会社製のマイクロトラックMT3000IIシリーズなど)を用いたレーザー回折散乱法により測定される体積平均粒径である。
 また、成形用組成物中には、必要に応じて硬化触媒(硬化促進剤)、ワックス(離型剤)、カップリング剤等の添加剤を含有させることができる。
 成形用組成物は、適宜の硬化触媒を含有することができる。但し、成形用組成物に第一アミン及び第二アミンを含有させないようにするために、非アミン系の硬化触媒を用いることが好ましい。例えば、アミン系のジアミノジフェニルメタンなどは残存物が燃料電池の触媒を被毒する恐れがあり、好ましくない。また、イミダゾール類は硬化後、塩素イオンを放出しやすくなるので不純物溶出の恐れがあり、あまり好ましくない。
 但し、測定開始温度30℃、昇温速度10℃/分、保持温度120℃、保持温度での保持時間30分の条件で加熱される場合の重量減少が5%以下であり、且つ2位に炭化水素基を有する置換イミダゾールを用いることは、成形用組成物の保存安定性を向上することができる点で好ましい。特に薄型のセパレータ20を得る場合には、ワニス状に調製された成形用組成物からシート状の成形体1を形成する際の揮発性、前記成形体1の平滑性などが良好となる。この置換イミダゾールとして、特に2位の炭化水素基の炭素数が6~17の置換イミダゾールを使用することが好ましい。その具体例としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。このうち、2-ウンデシルイミダゾール及び2-ヘプタデシルイミダゾールが好適である。これらの化合物は一種単独で用いられ、或いは二種以上が併用される。このような置換イミダゾールの含有量は適宜調整され、それにより成形硬化時間を調整することができる。この置換イミダゾールの含有量は好ましくは成形用組成物中の熱硬化性樹脂と硬化剤の合計量に対して、0.5~3質量%の範囲であることが好ましい。
 硬化触媒として、リン系化合物を用いることも好ましい。リン系化合物と前記置換イミダゾールとを併用してもよい。リン系化合物の一例としては、トリフェニルホスフィンを挙げることができる。このようなリン系化合物を成形用組成物に含有させると、成形品であるセパレータ20からの塩素イオンの溶出を抑制することができる。
 成形用組成物中の硬化触媒の含有量は適宜調整されるが、好ましくはエポキシ樹脂に対して0.5~3質量部の範囲とする。
 カップリング剤としては、適宜のものが用いられるが、成形用組成物中に第一アミン及び第二アミンを含有させないようにするために、アミノシランを用いないことが好ましい。アミノシランを用いる場合には、燃料電池の触媒が被毒される恐れがあり好ましくない。カップリング剤としてメルカプトシランも用いないことも好ましい。このメルカプトシランを用いた場合も、同様に燃料電池の触媒が被毒される恐れがある。
 カップリング剤の例としては、シリコン系のシラン化合物、チタネート系、アルミニウム系のカップリング剤が挙げられる。シリコン系のカップリング剤としては、エポキシシランが適している。
 エポキシシランカップリング剤を使用する場合の使用量は、成形用組成物の固形分中の含有量が0.5~1.5質量%となる範囲であることが好ましい。この範囲において、カップリング剤がセパレータ20の表面にブリードすることを充分に抑制することができる。
 カップリング剤は黒鉛粒子の表面に予め噴霧等により付着させておいてもよい。その場合のカップリング剤の添加量は、黒鉛粒子の比表面積と、カップリング剤の単位質量当たりの被覆面積とを考慮して適宜設定されるが、好ましくは、カップリング剤の被覆面積の総量が、黒鉛粒子の表面積の総量に対して、0.5~2倍の範囲となるようにする。この範囲において、カップリング剤が成形体1の表面にブリードすることを充分に抑制して、金型表面の汚染を抑制することができる。
 ワックス(内部離型剤)としては適宜のものが用いられるが、特に120~190℃において、成形用組成物中の熱硬化性樹脂及び硬化剤と相溶せずに相分離する内部離型剤が好ましい。このような内部離型剤として、ポリエチレンワックス、カルナバワックス、および長鎖脂肪酸系のワックスから選ばれる少なくとも一種が挙げられる。このような内部離型剤は、成形用組成物の成形過程で熱硬化性樹脂及び硬化剤と相分離することで、離型性を良好に発揮する。
 成形用組成物中の内部離型剤の含有量はセパレータ20の形状の複雑さ、溝深さ、抜き勾配など金型面との離形性の容易さなどに応じて適宜設定されるが、成形用組成物全量に対して0.1~2.5質量%の範囲であることが好ましい。この含有量が0.1質量%以上であることで金型成形時に十分な離型性を発揮し、この含有量が2.5質量%以下であることでワックスによってセパレータ20の親水性が阻害されることが十分に抑制される。このワックスの含有量は0.1~1質量%の範囲であれば更に好ましく、0.1~0.5質量%の範囲であれば特に好ましい。
 特に薄型のセパレータ20を得る場合には、成形用組成物に溶媒を含有させることで、この成形用組成物を液状(ワニス状及びスラリー状を含む)に調製してもよい。溶媒としては、たとえばメチルエチルケトン、メトキシプロパノール、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒を用いることが好ましい。溶媒は一種のみを用いるほか、二種以上を併用してもよい。溶媒の使用量は、成形用組成物からシート状の成形体1を作製する際の成形性を考慮して適宜設定されるが、好ましくは成形用組成物の粘度が1000~5000cpsの範囲となるように設定される。尚、溶媒は必要に応じて使用すればよく、熱硬化性樹脂として液状樹脂を使用することなどによって成形用組成物を液状に調製できるならば、溶媒を使用しなくてもよい。
 成形用樹脂組成物から得られる成形体1中のイオン性不純物の含有量については、成形体1全量に対する質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下となるようにすることが好ましい。そのためには、成形用組成物中のイオン性不純物の含有量については、成形用組成物全量に対する質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下であることが好ましい。この場合、セパレータ20からのイオン性不純物の溶出を抑制することができ、不純物の溶出による燃料電池の起動電圧低下等の特性低下を抑制することができる。
 成形体1及び成形用組成物のイオン性不純物の含有量を上記のように低減するためには、成形用組成物を構成する熱硬化性樹脂、硬化剤、黒鉛、その他添加剤等の各成分として、それぞれイオン性不純物の含有量が、各成分に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下である成分を用いることが好ましい。
 前記イオン性不純物の含有量は、対象物の抽出水中のイオン性不純物の量に基づいて導出される。前記抽出水は、イオン交換水中に対象物を、対象物10gに対してイオン交換水が100mlとなる割合で投入し、90℃で50時間加熱することで得られる。抽出水中のイオン性不純物の含有量は、イオンクロマトグラフィにて評価される。これにより導出される抽出水中のイオン性不純物量に基づいて、対象物中のイオン性不純物の量を、対象物に対する質量比に換算して導出することができる。
 成形用組成物は、この成形用組成物から形成される成形体1のTOC(total organic carbon)が100ppm以下となるように調製されることが好ましい。
 TOCは、イオン交換水中に成形体を、成形体10gに対してイオン交換水が100mlとなる割合で投入し、90℃で50時間処理することで得られる水溶液を用いて測定される数値である。このTOCは、例えばJIS K0102に準拠して、株式会社島津製作所製の全有機炭素分析装置「TOC-50」などを用いて測定することができる。測定にあたっては、サンプルの燃焼により発生したCO濃度を非分散型赤外線ガス分析法で測定して、サンプル中の炭素濃度を定量する。炭素濃度を測定することによって、間接的に有機物質濃度を測定できる。サンプル中の無機炭素(IC)、全炭素(TC)を測定し、全炭素と無機炭素の差(TC-IC)から全有機炭素(TOC)を計測する。
 上記のTOCを100ppm以下とすることで、燃料電池としての特性低下を更に抑制することができる。
 TOCの値は、成形用組成物を構成する各成分として高純度の成分を選択したり、更に樹脂の当量比を調整したり、成形時に後硬化処理をおこなったりすることで低減することができる。
 成形用組成物は、上記のような各成分を適宜の手法で混合し、必要に応じて混練・造粒等することで調製される。
 この成形用組成物を成形して、セパレータ20となる成形体1を得ることができる。成形法としては、射出成形や圧縮成形など、適宜の手法を採用することができる。セパレータ20には例えば図1に示すように、両面に複数個の凸部(リブ)21を形成することで、隣り合う凸部21同士の間に、燃料である水素ガスと、酸化剤である酸素ガスの流路であるガス供給排出用溝2を形成する。
 尚、セパレータ20は、片面のみにガス供給排出用溝2を有するアノード側セパレータと、前記アノード側セパレータとは反対側の片面のみにガス供給排出用溝2を有するカソード側セパレータとで構成されてもよい。このアノード側セパレータとカソード側セパレータとを重ねることで、図1に示すような両面にガス供給排出用溝2を有するセパレータ20が構成される。アノード側セパレータとカソード側セパレータとの間には冷却水が流通する流路が形成されてもよい。この場合、アノード側セパレータとカソード側セパレータとの間にはガスケットを介在させることが好ましい。
 液状に調製された成形用組成物から薄型のセパレータ20を得る場合には、まず成形用組成物をシート状に成形して、燃料電池セパレータ成形用シート(成形用シート)を得る。成形用組成物は、例えばキャスティング(展進)成形によりシート状に成形される。この際には、複数種の膜厚調節手段が適用されてもよい。このような複数種の膜厚調節手段を用いるキャスティング法は、例えばすでに実用化されているマルチコータを用いることによって実現することができる。膜厚調節手段としては、スリットダイとともに、ドクターナイフおよびワイヤーバーの少なくともいずれか、すなわちいずれか一方もしくは両方を用いることが好ましい。この成形用シートの厚みは、0.05mm以上であることが好ましく、0.1mm以上であれば更に好ましい。この厚みは特に0.5mm以下であることが好ましく、0.3mm以下であれば更に好ましい。このように成形用シートの厚みを0.5mm以下とすることで、セパレータ1の薄型化や軽量化、並びにそれによる低コスト化を達成することができ、特に厚みが0.3mm以下であれば溶媒を使用する場合の成形用シート内部の溶媒の残存を効果的に抑制することができる。またこの厚みが0.05mm未満の場合にはセパレータ20の製造にあたっての有利さが充分に発揮されなくなり、特に成形性を考慮するとこの厚みは0.1mm以上であることが好ましい。
 この成形用シートを、キャスティングにともなう乾燥によって半硬化(Bステージ)状態とし、これを圧縮・熱硬化成形するなどして、両面に複数個の凸部(リブ)21を形成すると共にこの凸部(リブ)21間にガス供給排出用溝2を形成する。これにより成形体1を得ることができる。このとき、成形体1を波板状に形成することで、その一面側の凸部21の裏側に他面側のガス供給排出用溝2を形成することができる。この場合薄型でありながら両面に複数個の凸部(リブ)21を有すると共にこの凸部(リブ)21間にガス供給排出用溝2を有する成形体1を得ることができる。
 この成形用シートの圧縮・熱硬化成形時には、まず成形用シートを必要に応じて所定の平面寸法に切断もしくは打ち抜いた後、金型内において圧縮成形機で熱硬化させる。この圧縮・熱硬化成形の条件は、成形用組成物の組成、導電性基材の種類、成形厚みなどにもよるが、加熱温度を120~190℃の範囲、圧縮圧力を1~40MPaの範囲で設定することが好ましい。
 成形体1の作製にあたっては、一枚の成形用シートを成形して成形体1を作製してもよく、また成形用シートを複数枚重ねて成形して成形体1を作製してもよい。
 このように成形用シートを成形することで、薄型の成形体1、特に厚み0.2~1.0mmの範囲のセパレータ20を製造することができる。成形用シートを使用することで、薄型のセパレータ20を製造する場合でも成形材料を薄く且つ均一に配置して成形することが容易となり、成形性や厚み精度が高くなる。
 尚、成形体1の作製時には、成形用シートと適宜の導電性基材とを積層して成形してもよい。導電性基材を用いると、セパレータ20の機械的強度を向上することができる。導電性基材を用いる場合には、導電性基材の両側にそれぞれ成形用シート(複数枚の成形用シートの積層物を含む)を積層した状態で圧縮・熱硬化成形することができ、或いは成形用シート(複数枚の成形用シートの積層物を含む)の両側にそれぞれ導電性基材を積層した状態で圧縮・熱硬化成形することができる。
 前記導電性基材としては、たとえば、カーボンペーパー、カーボンプリプレグ、カーボンフェルト等を例示することができる。また、これらの導電性基材は、導電性を損なわない範囲で、ガラス、樹脂等の基材成分を含有してもよい。導電性基材の厚みは、0.03~0.5mmの範囲が好ましく、0.05~0.2mmの範囲がより好ましい。
 このように形成される成形体1では、エポキシ樹脂を含む熱硬化性樹脂を用いると共にフェノール系化合物を含む硬化剤を用いる場合、硬化物中に生じる水酸基が成形体1の表面に分布することになる。特にフェノール系化合物に対するエポキシ樹脂の当量比が0.8~1.2となるようにすることで、後述するとおり成形体1に対する表面処理により成形体1の親水性が大きく向上すると共にこの親水性が長期間持続するようになる。この当量比が1.2より大きいと前記のような効果が得られないものであり、これは成形体1に分布する水酸基が不足してしまうためと考えられる。またこの当量比が0.8未満の場合も、理由は不分明ではあるが、前記のような効果が得られなくなってしまう。表面処理による効果を著しく発揮させるためには、特に前記当量比が0.8~1.0の範囲であることが好ましい。この場合、水酸基の当量が過剰となって多くの水酸基を成形体1の表面に分布させることができるようになる。前記当量比が0.8~0.9の範囲であれば更に好ましい。
 また熱硬化性フェノール樹脂を含む熱硬化性樹脂を用いる場合も、成形体1中に熱硬化性フェノール樹脂に起因する水酸基が成形体1の表面に分布することになる。これにより、後述するとおり成形体1に対する表面処理による親水性向上の効果が向上する。
 この成形体1の表面に対し、次に示すようなウエットブラスト処理とリモート方式での大気圧プラズマ処理とを含む表面処理を施す。この表面処理は、少なくとも成形体1におけるガス供給排出用溝2が形成されている面に施される。
 ウエットブラスト処理では、水などの液体に砥粒を分散させて調製されたスラリーを、成形体1の表面へ噴射することで、成形体1の表層のスキン層を除去すると共にこの成形体1の表面粗さを調整する。ウエットブラスト処理では粉塵の飛散が生じないことから、処理面積を大きくすることが可能となって処理効率が高くなり、また微細な砥粒を使用した処理も可能である。このため、成形体1の表面粗さを所望の範囲に容易に調整することができる。
 このウエットブラスト処理により、成形体1の表面の算術平均高さRa(JIS B0601:2001)を0.4~1.6μmの範囲とすることが好ましい。この場合、表面処理の均一性が更に高くなり、セパレータ20の表面の親水性を更に向上することができる。また、この成形体1の表面粗さを前記範囲とすると、この成形体1から得られるセパレータ20とガスケット12との接合部でのガスリークを抑制することもできる。このためウエットブラスト処理時に成形体1におけるガスケット12と接合する部位をマスクする必要がなくなり、セパレータ20の生産効率が向上する。尚、前記算術平均高さRaを0.4μm未満にすることは困難であり、またこの値が1.6μmより大きいと前記ガスリークを充分に抑制することができなくなるおそれがある。この成形体1の表面の算術平均高さRaが特に1.2μm以下であればセパレータ20の表面の親水性を更に向上することができる。更にこの成形体1の表面の算術平均高さRaが1.0μm未満であれば、前記ガスリークが特に抑制される。この場合、セパレータ20の薄型化に伴ってセルスタック作製時の締結力を下げたとしても、前記ガスリークを充分に抑制することができるようになる。成形体1の表面の算術平均高さRaが特に0.6μm以上であれば、セパレータ20の表面の親水性を更に向上することができる。
 また必要に応じてウエットブラスト処理後の成形体1をイオン交換水等を用いて洗浄してもよい。
 このウエットブラスト処理後の成形体1に、大気圧プラズマ処理に先立って乾燥処理を施すことで、成形体1を乾燥することが好ましい。この乾燥処理では、成形体1をエアブローなどにより風乾することが好ましい。この場合、必要に応じて常温若しくは温風によるエアブローをおこなうことができ、或いは常温でのエアブローの後に温風によるエアブローを追加的に施してもよい。また、乾燥処理にあたっては、成形体1をシリカゲル等の乾燥剤を入れたデシケータ中に静置する方法、成形体1を室温以上(例えば50℃)に温度をかけた乾燥機中に静置する方法、真空乾燥機を使用して成形体1から水分を除去する方法等を採用してもよい。この乾燥処理により、成形体1を、その吸湿率が0.1%以下になるまで乾燥することが好ましい。
 次に、この成形体1の表面に、リモート方式での大気圧プラズマ処理を施す。リモート方式での大気圧プラズマ処理は、大気圧下或いは大気圧近傍下で成形体1へ向けて、プラズマを含むガス流を吹き付ける処理である。このリモート方式での大気圧プラズマ処理では、例えば図5に示されるような、吹き出し口9を有する放電空間10と、この放電空間10に電界を発生させるための放電用電極6,6とを備えるプラズマ処理装置を用いる。このプラズマ処理装置では、前記放電空間10にプラズマ生成用ガス7を供給すると共にこの放電空間10内の圧力を大気圧近傍に維持し、更に前記放電用電極6,6に電圧を印加することで放電空間10に放電を発生させると、放電空間10内でプラズマが生成する。このプラズマを含むガス流8を吹き出し口9から吹き出して成形体1に吹き付けることによって、プラズマ処理を行うことができる。このようなプラズマ処理装置としては、例えば積水化学工業株式会社製のAPTシリーズが挙げられるが、パナソニック電工株式会社、ヤマトマテリアル株式会社などから提供されている適宜のプラズマ処理装置を用いることもできる。
 このようなリモート方式を採用することで、成形体1の表面に向けてプラズマが吹き付けられ、このため成形体1のガス供給排出用溝2の内面まで充分に処理がなされる。またプラズマ処理時に成形体1が放電に曝されず、これにより成形体1がプラズマ処理時に損傷することを防止することができる。
 尚、大気圧プラズマ処理には、リモート方式以外にも、図6に示されるような処理対象物11の周囲にプラズマ生成用ガス7を供給すると共にこの処理対象物11の周囲で放電用電極6,6により放電を生じさせてプラズマを生成するダイレクト方式もある。しかしダイレクト方式で成形体1を処理すると、成形体1が導電性を有することから放電により成形体1に微細な損傷が生じてしまい、またガス供給排出用溝2の内面まで充分に処理を施すことが困難であるため、好ましくない。
 リモート方式での大気圧プラズマ処理は、成形体1の表面に所望の親水性を付与できるように適宜設定された条件でおこなうことができる。この大気圧プラズマ処理におけるプラズマ生成用ガス7は、窒素ガスであることが好ましく、特にこの窒素ガス中の酸素含有量が2000ppm以下であることが好ましい。この場合、大気圧プラズマ処理によってセパレータ20に特に高い親水性が付与される。
 また、この大気圧プラズマ処理は、成形体1の表面に結露が生じないように成形体1の温度及び雰囲気温度が調整された条件下で行われることが好ましい。この場合、成形体1の表面に付着した水滴によりプラズマが消費されてしまうことを防止して、処理効率を向上することができる。成形体1の温度は、前記のとおりこの成形体1の表面に結露が生じない温度(露点温度)以上であることが好ましく、安定した大気圧プラズマ処理のためには70℃以下であることが好ましい。大気圧プラズマ処理の安定のためには、成形体1の温度及び雰囲気温度が一定に保たれることも重要である。雰囲気温度の調節にあたっては、通常、プラズマ処理装置のプラズマユニット部分の温度が調節され、プラズマ処理装置の構成によってはプラズマ処理時に成形体1を支える台の温度が調節される。
 大気圧プラズマ処理後の成形体1は、そのまま大気中に放置してもよいが、この成形体1をイオン交換水などの水に浸漬するなどして、この成形体1の表面と水と接触させる水接触処理を施すことが好ましい。
 このようにして成形体1における水酸基が分布する表面に対してウエットブラスト処理とリモート方式での大気圧プラズマ処理とを含む表面処理を施すと、成形体1の表面の親水性が向上すると共に、この高い親水性が長期に亘って維持されるようになる。この親水化のメカニズムの詳細は不明であるが、成形体1の表面に水酸基が分布することでこの表面に水分が吸着して官能基が生成しやすくなり、更に大気圧プラズマ処理により、成形体1の表面から汚染物質が除去されて活性の高い状態となると共にこの活性化された表面に水酸基等の親水性の官能基が導入されて、成形体1の表面に親水性の官能基が多く形成され、これが親水性向上に寄与していると考えられる。
 また、表面処理時において、成形体1に上記のような乾燥処理を施す場合には、水分子によって成形体1への大気圧プラズマ処理が阻害されることが抑制され、大気圧プラズマ処理の効率が向上する。
 またこの表面処理において、大気圧プラズマ処理後の成形体1に上記のような水接触処理を施すと、成形体1の表面の親水性が更に向上する。その詳細なメカニズムは明らかではないが、大気圧プラズマ処理によって活性化された成形体1の表面に水分子が吸着することに起因して成形体1の表面の親水性が向上すると考えられる。
 表面処理は、洗浄処理を含んでもよい。この洗浄処理により成形体1の表面から、燃料電池の性能劣化の原因となる各種の無機物、有機物、金属イオン等の不純物が除去される。洗浄処理は、例えばウエットブラスト処理の後、リモート方式での大気圧プラズマ処理の前に、成形体1に施される。この場合、ウエットブラスト処理により成形体1に付着した不純物が、洗浄処理によって充分に除去される。洗浄処理の後、リモート方式での大気圧プラズマ処理の前に、成形体1に上記の乾燥処理が施されることが好ましい。
 洗浄処理にあたっては、まず液体に超音波振動が印加されてから、この液体が成形体1へ向けて吐出される。例えば液体が供給される容器内でこの液体に超音波振動が印加され、この容器から成形体1に向けて液体が吐出される。このような手法により成形体1が洗浄されることで、成形体1の損傷が抑制されて成形体1から黒鉛粒子が脱落するなどの不良が抑制されつつ、成形体1が充分に洗浄されて成形体1の表面から不純物が除去される。
 洗浄処理で使用される液体としては水が挙げられる。この液体は、水とエタノール等の親水性の有機溶剤との混合液であってもよい。水としては、特に純水、イオン交換水、RO水(逆浸透膜により処理された水)、又はオゾン水が用いられることが好ましい。オゾン濃度50ppm以上のオゾン水が用いられると、セパレータ20の表面の親水性が特に向上すると共にセパレータ20の表面の接触抵抗が低減する。このオゾン濃度が80ppm以上であれば更に好ましい。オゾン水の濃度の上限は特に制限されないが、実質的な上限は110ppmである。
 洗浄処理で使用される液体は、アルカリイオン水であることも好ましい。この場合、成形体1から不純物が更に効率良く除去される。
 容器から液体を吐出するためのノズルと成形体1との間の寸法は、例えば2~20mmの範囲に調整される。液体に印加される超音波振動の周波数は900kHz以上であることが好ましく、例えば900~1000kHzの範囲が好ましい。また、液体に印加される超音波振動の出力は100~650Wの範囲であることが好ましい。このような条件において、成形体1の損傷が特に抑制される。
 成形体1から不純物が充分に除去されると共に成形体1の損傷が特に抑制されるためには、成形体1の処理時間が、液体に印加される超音波振動の出力に応じて適宜調整されることが好ましい。例えば出力100~600Wで処理時間が0.2~3分の範囲に調整される。また、成形体1が連続的に搬送されながらこの成形体1へ液体が吐出される連続処理においては、成形体1の搬送速度が5~20mm/secの範囲に調整されると共に液体に印加される超音波振動の出力が100~650Wの範囲に調整されることが好ましい。
 成形体1における表面処理が施される面に形成されているガス供給排出用溝2の幅(A)と深さ(B)との比(A/B)は、1以上であることが好ましい。この場合、表面処理時におけるウエットブラスト処理時のスラリーや、大気圧プラズマ処理時のプラズマを含むガス流8がガス供給排出用溝2の内部に行き渡りやすくなる。これにより表面処理の均一性が更に高くなってガス供給排出用溝2の内面が充分に親水化される。前記比(A/B)の値の上限は特に制限されないが、ガス供給排出用溝2を高密度に形成するためには、実用上、10以下であることが好ましい。
 表面処理により、処理後の成形体1の表面の水との静的接触角が0°~50°の範囲となるようにすることが好ましい。この静的接触角は特に0°~10°の範囲であることが好ましく、0°~5°の範囲であれば更に好ましい。この水との静的接触角は、表面処理条件を適宜設定することにより調整することができる。これにより、成形体1の表面に充分に高い親水性を付与することができる。
 表面処理により、成形体1の前記表面処理された面の接触抵抗が15mΩcm以下となるようにすることが好ましい。この接触抵抗も、表面処理条件を適宜設定することにより調整することができる。これにより、燃料電池で発電した電気エネルギーを外部へ伝達するというセパレータ20の機能を高いレベルで維持することができる。
 以上のようにして製造されるセパレータ20を用い、燃料電池を製造することができる。図1は固体高分子型燃料電池の一例を示すものであり、2枚のセパレータ20,20の間に、固体高分子電解質膜などの電解質4とガス拡散電極(燃料電極31と酸化剤電極32)などからなる膜-電極複合体(MEA)5を介在させて、単電池(単位セル)が構成されている。この単位セルを数十個~数百個並設して電池本体(セルスタック)を構成することができる。
 図2は、ガスケット12を使用して構成される太陽電池の単セルの構造の一例を示す。この単セルは、セパレータ20,20、ガスケット12,12、膜-電極複合体5を重ねることで構成されている。セパレータ20には、凸部21及びガス供給排出用溝2が形成されている領域を取り囲む外周部分に、第一の燃料用貫通孔131,131と第一の酸化剤用貫通孔132,132とが形成されている。第一の燃料用貫通孔131,131は二つ形成されており、各第一の燃料用貫通孔131,131はセパレータ20の燃料電極31と重なる面におけるガス供給排出用溝2の両端にそれぞれ連通する。第一の酸化剤用貫通孔132,132も二つ形成されており、各第一の酸化剤用貫通孔132,132はセパレータ20の酸化剤電極32と重なる面におけるガス供給排出用溝2の両端にそれぞれ連通する。また、この外周部分には、第一の冷却用貫通孔133も形成されている。
 セパレータ20の外周部分に、シーリングのためのガスケット12が積層される。このガスケット12はその略中央部に膜-電極複合体5における燃料電極31や酸化剤電極32を収容するための開口15を有し、この開口15においてセパレータ20のガス供給排出用溝2が露出する。この開口15の外周側には、前記セパレータの第一の燃料用貫通孔131、第一の酸化剤用貫通孔132及び第一の冷却用貫通孔133と合致する位置に、第二の燃料用貫通孔141、第二の酸化剤用貫通孔142及び第二の冷却用貫通孔143がそれぞれ形成されている。
 また、膜-電極複合体5における電解質4の外周部分にも、前記セパレータの第一の燃料用貫通孔131、第一の酸化剤用貫通孔132及び第一の冷却用貫通孔133と合致する位置に、第三の燃料用貫通孔161、第三の酸化剤用貫通孔162及び第三の冷却用貫通孔163がそれぞれ形成されている。
 この単セル構造では、セパレータ20、ガスケット12、及び電解質4の第一の燃料用貫通孔131,第二の燃料用貫通孔141,第三の燃料用貫通孔161が連通することで、燃料電極への燃料の供給及び排出のための燃料用流路が構成される。また、第一の酸化剤用貫通孔132,第二の酸化剤用貫通孔142,第三の酸化剤用貫通孔162が連通することで、酸化剤電極への酸化剤の供給及び排出のための酸化剤用流路が構成される。また、第一の冷却用貫通孔133,第二の冷却用貫通孔143,第三の冷却用貫通孔163が連通することで、冷却水等が流通する冷却用流路が構成される。
 このような燃料電池の単セル構造において、燃料電極31と酸化剤電極32、並びに電解質4は、燃料電池のタイプに応じた公知の材料で形成される。固体高分子型燃料電池の場合、燃料電極31及び酸化剤電極32は例えばカーボンクロス、カーボンペーパー、カーボンフェルト等の基材に、触媒を担持させて構成される。燃料電極31における触媒としては例えば白金触媒、白金・ルテニウム触媒、コバルト触媒等が挙げられ、酸化剤電極32における触媒としては白金触媒、銀触媒等が挙げられる。また、固体高分子型燃料電池の場合、電解質4は例えばプロトン伝導性の高分子膜から形成され、特にメタノール直接型燃料電池の場合は例えばプロトン伝導性が高く、電子導電性やメタノール透過性を殆ど示さないフッ素系樹脂等から形成される。
 また、ガスケット12は、例えば天然ゴム、シリコーンゴム、SIS共重合体、SBS共重合体、SEBS、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、アクリロニトリル-ブタジエンゴム、水素化アクリロニトリル-ブタジエンゴム(HNBR)、クロロプレンゴム、アクリルゴム、フッ素系ゴム等などから選択されるゴム材料から形成される。このゴム材料には粘着付与剤が配合されてもよい。これらのゴム材料のうち、低コスト化を達成する観点からはエチレン-プロピレン-ジエンゴム(EPDM)が用いられることが好ましく、ガスケット12の耐久性を特に向上する観点からはフッ系素ゴム(FKM)が用いられることが好ましい。
 図4は複数の単セルからなる燃料電池C(セルスタック)の一例を示す。この燃料電池Cは、燃料用流路に連通する燃料の供給口171及び排出口172と、酸化剤用流路に連通する酸化剤の供給口181及び排出口182と、冷却用流路に連通する冷却水の供給口191及び排出口192とを有する。
 このような燃料電池Cでは、セパレータ20の表面に親水性が付与されていることで、セパレータ20におけるガス供給排出用溝2が水滴により閉塞されにくくなり、燃料電池の発電効率の低下を抑制することができる。また、このセパレータ20の親水性を長期間維持することができることから、燃料電池の発電効率を長期に亘って高く維持することができるようになる。
 ところで、本実施形態では、図2に示されるように、セパレータ20にはストレートタイプのガス供給排出用溝2が形成されている。一般に、セパレータ20におけるガス供給排出用溝2としては、屈曲を有するサーペンタインタイプの溝と屈曲を有さないストレートタイプの溝とがある。セパレータ20のガス供給排出用溝2の内部にガスを流通させる場合には、このガス供給排出用溝2の内部においてガス流量が不均一になることがある。サーペンタインタイプの溝の場合には、ガス供給排出用溝2の下流側で溝の数を減らすなどの設計によりガス流量の不均一を緩和することもできるが、ストレートタイプの場合にはガス流量の不均一を解消することは難しい。ガス流量の不均一によりガス供給排出用溝2内にガス流量が少ない部分が生じ、この部分に水滴が付着すると、この水滴をガス供給排出用溝2から排出することが難しくなる。しかし、このようにガス供給排出用溝2の内部でガス流量が不均一になる場合であっても、本実施形態ではセパレータ20の表面の親水性が向上することで、ガス供給排出用溝2における水分の排出が促進され、ガス供給排出用溝が水滴により閉塞されることが防止される。勿論、図2に示されるセパレータ20にサーペンタインタイプのガス供給排出用溝2を形成してもよい。
 また、燃料電池を製造するにあたっては、セパレータ20にガスケット12を積層した後、このセパレータ20のガス供給排出用溝2が形成されている表面に、リモート方式での大気圧プラズマ処理を施すことが好ましい。この場合、図3に示すようなガスケット付き燃料電池セパレータ30が得られる。このガスケット付き燃料電池セパレータ30を膜-電極複合体5と積層することで単セル構造を構成することができる。
 例えば予めシート状又は板状に形成されたガスケット12をセパレータ20に接着や融着するなどして接合することによって、セパレータ20にガスケット12を積層することができる。セパレータ20の表面上でガスケット12を形成するための材料を成形することによって、セパレータ20にガスケット12を積層することもできる。ガスケット12の形成に用いられる材料としては未加硫のゴム材料が挙げられる。この未加硫のゴム材料をスクリーン印刷等によりセパレータ20の表面上の所定位置に塗布し、このゴム材料の塗膜を加硫することで、セパレータ20の表面上の所定位置に所望の形状のガスケット12を形成することができる。前記加硫にあたっては、加熱、電子線などの放射線の照射、或いはその他適宜の加硫方法が採用される。この場合、薄型のセパレータ20に対してもガスケット12を容易に積層することができる。また、セパレータ20を金型内にセットし、このセパレータ20の表面上の所定位置に未加硫のゴム材料を射出すると共にこのゴム材料を加熱するなどして加硫することで、セパレータ20の表面上の所定位置に所望の形状のガスケット12を形成することもできる。このように金型成形によりガスケット12を形成するにあたっては、トランスファー成形のほか、コンプレッション成形、インジェクション成形等が採用され得る。
 またリモート方式での大気圧プラズマ処理は、上記成形体1への表面処理における大気圧プラズマ処理と同様にしておこなうことができる。この大気圧プラズマ処理後のガスケット付き燃料電池セパレータ30を、必要に応じて加温されたイオン交換水で洗浄してもよい。
 このようにガスケット付き燃料電池セパレータ30を得ると、セパレータ20へのガスケット12の積層時にガスケット12からの揮発分や疎水成分などがセパレータ20の表面に付着しても、この揮発分や疎水成分などが大気圧プラズマ処理により効率よく除去される。セパレータ20へのガスケット12の積層時には、ガスケット12からの揮発分や疎水成分などがセパレータ20に付着して親水性の低下を招くおそれがある。しかし前記のようにガスケット12の積層後にリモート方式での大気圧プラズマ処理を施すと、セパレータ20の高い親水性が回復する。このため、燃料電池に組み込まれたセパレータ20の親水性を更に向上することができ、これにより燃料電池の長期耐久性を更に向上することができる。
 セパレータ20にガスケット12が取り付けられた後に、セパレータ20に上記の表面処理における場合と同様の洗浄処理が施されることも好ましい。この場合、ガスケット12の取り付けによりセパレータ20に付着した不純物が、洗浄処理によって充分に除去される。セパレータ20にガスケット12が取り付けられた後、リモート方式での大気圧プラズマ処理に続いて、洗浄処理が施されることも好ましい。
 表面処理に洗浄処理が含まれる場合、或いはセパレータ20にガスケット12が取り付けられた後にセパレータ20に洗浄処理が施される場合、このようなセパレータ20を備える燃料電池Cでは、洗浄処理によってセパレータ20の表面から燃料電池Cの劣化の原因となる不純物が除去されているので、セパレータ20からの不純物の溶出等による経時的な性能劣化が抑制される。しかも、このセパレータ20は洗浄処理による黒鉛粒子の脱落等の破損が抑制されているため、セパレータ20からの黒鉛粒子の脱落等による燃料電池Cの性能低下も抑制される。
 以下、本発明を実施例に基づいて詳細に説明する。
 [実施例1~21、比較例1~4]
 各実施例及び比較例につき、表1、2に示す成分を攪拌混合機(ダルトン製「5XDMV-rr型」)に表1、2に示す組成となるように入れて攪拌混合し、得られた混合物を整粒機で粒径500μm以下に粉砕した。
 得られた粉砕物を、金型温度185℃、成形圧力35.3MPa、成形時間2分の条件で圧縮成形した。次に金型を閉じたまま除圧し、30秒間保持した後に金型を開き、成形体1を取り出した。
 得られた成形体1の形状は、200mm×250mm、厚み1.5mmであった。成形体1の一面には長さ250mm、幅1mm、深さ0.5mmのガス供給排出用溝2を57本、他面には長さ250mm、幅0.5mm、深さ0.5mmのガス供給排出用溝2を58本形成した。
 この成形体1の表面に、比較例1を除いて、市販のウエットブラスト用スラリーを用いたウエットブラスト処理を施した。
 この成形体1の算術平均高さRa(JIS B0601:2001)を測定した結果を表1、2に示す。
 ウエットブラスト処理後、実施例4,5については、成形体1に乾燥処理を施した。この乾燥処理にあたっては、成形体1の表面に60℃のエアを吹き付けるエアブロー処理を施すことで成形体1の表面上の水滴を除去した。
 以上の処理後の成形体1の吸湿率を表1、2に示す。この吸湿率は、成形体1を90℃で1時間加熱した場合の成形体1の重量変化に基づいて導出した。
 次に、成形体1に対して大気圧プラズマ処理を施した。大気圧プラズマ処理にあたり、比較例2以外ではリモート方式で処理し、比較例2ではダイレクト方式で処理した。プラズマ処理装置としては積水化学工業株式会社製のAP-Tシリーズを使用した。処理条件は表1、2に示すとおりである。尚、表1、2中の「処理時温度」は大気圧プラズマ処理時の成形体1の温度であり、60℃は露点以上の温度である。
 大気圧プラズマ処理後、実施例5~7では成形体1をイオン交換水中に浸漬して水接触処理を施した。
 [評価試験]
 各実施例及び比較例について、次に示す評価試験を実施した。その結果を表3,4に示す。
 (曲げ強度評価)
 各実施例及び比較例において、セパレータ20を作製する場合と同じ方法で80mm×10mm×4mmの寸法の曲げ強度測定用の成形品を作製し、JIS K6911に準拠して曲げ強度を測定した。支点間距離は64mm、クロスヘッドスピードは2mm/分とした。
 (接触抵抗評価1)
 各実施例及び比較例において、セパレータ20の厚みを2mmに形成し、このセパレータ20の上下にカーボンペーパーを配置し、更にその上下に銅板を配置し、上下方向に面圧1.0MPaの圧力をかけた。次に、前記2枚のカーボンペーパー間の電圧を電圧計で測定すると共に2枚の銅板間の電流を電流計で測定し、その結果から抵抗(平均値)を計算した。尚、使用したカーボンペーパーは、東レ社製のTGP-H-Mシリーズ(090M:厚さ0.28mm、120M:厚さ0.38mm)である。
 (接触抵抗評価2)
 上記接触抵抗評価1において、測定時の上下方向の面圧を0.5MPに変更した。
 (TOC評価)
 JIS K0551-4.3に準拠し、まず各実施例及び比較例における成形体1をメタノールで1分間洗浄した後、イオン交換水にて1分間洗浄した。次いで、ガラス製容器中に成形体1とイオン交換水とを、成形体1の質量10gに対してイオン交換水が100mlとなるように入れ、90℃で50時間処理した。処理後のイオン交換水中に燐酸を添加してpH2以下に調整した後、湿式酸化-赤外線式TOC測定法(東レエンジニアリング社製「東レアストロTOC自動分析計MODEL1800」を使用)にて、有機炭酸量を測定した。
 (親水性評価)
 各実施例及び比較例で得られたセパレータ20の、幅0.5mm、深さ0.5mmのガス供給排出用溝2内に、1μLのイオン交換水を垂らし、この水滴の、ガス供給排出用溝2の長手方向に沿った方向の広がり長さを測定した。
 また、このセパレータ20を90℃の温水中に投入して一定時間放置した後、乾燥した。放置時間は500時間、1000時間、1500時間及び2000時間とした。この処理後のセパレータ20について、前記と同様にガス供給排出用溝2内での水滴の広がり長さを測定した。
 (静的接触角評価1)
 各実施例及び比較例で得られたセパレータ20を水平に配置し、このセパレータ20の凸部(リブ)21の上にスポイトでイオン交換水を垂らし、協和界面科学株式会社製の測定器(品番「CA-W150」)を用いて、水との静的接触角を測定した。
 また、このセパレータ20を90℃の温水中に投入して一定時間放置した後、乾燥した。放置時間は500時間、1000時間、1500時間及び2000時間とした。この処理後のセパレータ20について、前記と同様に水との静的接触角を測定した。
 (静的接触角評価2)
 各実施例及び比較例で得られたセパレータ20を水平に配置し、このセパレータ20の凸部(リブ)21の上にスポイトでイオン交換水を垂らし、協和界面科学株式会社製の測定器(品番「CA-W150」)を用いて、水との静的接触角を測定した。
 また、このセパレータ20を100℃の温水中に投入して1時間放置した後、90℃で2時間加熱して乾燥することを1サイクルとする処理を繰り返した。処理サイクル数は、50回、100回、200回及び500回とした。この処理後のセパレータ20について、前記と同様に水との静的接触角を測定した。
 (水溶性イオン分析)
 各実施例及び比較例における成形体1をメタノールにて1分間洗浄した後、イオン交換水で1分間洗浄した。次いで、ポリエチレン製容器中に成形体1とイオン交換水とを、成形体1の質量10gに対してイオン交換水が100mlとなるように入れ、90℃で50時間処理した。処理後のイオン交換水(抽出水)のNaイオン濃度及びClイオン濃度を、イオンクロマトグラフィ(株式会社島津製作所製「CDD-6A」)で測定した。
 (電気伝導度評価)
 各実施例及び比較例における成形体1をメタノールにて1分間洗浄した後、イオン交換水で1分間洗浄した。次いで、ポリエチレン製容器中に成形体1とイオン交換水とを、成形体1の質量10gに対してイオン交換水が100mlとなるように入れ、90℃で50時間処理した。処理後のイオン交換水(抽出水)を導電率計で測定した。
 (燃料電池の起電圧変動評価)
 各実施例及び比較例で得られたセパレータ20上の外周部分にエチレン-プロピレン-ジエンゴムをスクリーン印刷により塗布した後、加熱加硫することでガスケット12を形成した。これによりガスケット付き燃料電池セパレータ30を得た。更にこのガスケット付き燃料電池セパレータ30の間に、電解質4とガス拡散電極(燃料電極31と酸化剤電極32)とからなる膜-電極複合体5を介在させて、財団法人日本自動車研究所標準単セル(電極面積25cm)からなる燃料電池Cを作製した。この燃料電池Cに、外部回路を接続した状態で、燃料ガスとして空気を2.0NL/minの流量で、酸化剤ガスとして水素を0.5NL/minの流量でそれぞれ供給することで、燃料電池Cを1000時間連続的に動作させた。この燃料電池Cの作動時の起電圧(V)の経時的な変動の様子を調査した。その結果を、変動後の起電圧の、初期値に対する百分率((E1/E0)×100(%)の値で表示した。前記E1は変動後の起電圧、E0は初期の起電圧である。
 また、実施例1~19について、セパレータ20にガスケット12を取り付けた後、このセパレータ20に対して、実施例1における表面処理と同じ条件でリモート方式での大気圧プラズマ処理を施すことで、ガスケット付き燃料電池セパレータ30を得た。このガスケット付き燃料電池セパレータ30を用い、前記と同様にして、図4に示す構造の燃料電池を作製した。この燃料電池についても、前記と同じ方法で起電圧変動を測定した。
 (限界酸素利用率評価)
 各実施例及び比較例で得られたセパレータ20を用い、前記燃料電池の起電圧変動評価の場合と同じ構成を有する燃料電池Cを作製した。
 この燃料電池Cを、酸素利用率40%、電流密度0.15A/cmの条件で、燃料利用率50%から5%ずつ燃料利用率を上げて行った。そうすると、当初700mV以上あったセル電圧がある燃料利用率で急激に低下した。そして、セル電圧が600mVを下回ったところで試験を中止した。5%毎の燃料利用率で5時間の運転試験を行い、セル電圧の振れがみられず安定的に運転できる最も高い燃料利用率を限界燃料利用率とした。
 また、この燃料電池Cを、燃料利用率60%、電流密度0.3A/cmの条件で酸素利用率30%から5%ずつ上げていき、セル電圧が600mVを下回ったところで試験を中止した。各酸素利用率で5時間の運転試験を行い、セル電圧の振れがみられず安定的に運転できる最も高い酸素利用率を限界酸素利用率とした。この限界酸素利用率が高い場合、セパレータ20のガス供給排出用溝2が水滴の付着によって閉塞されることが抑制されることで、発電の安定性が高くなっているといえる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表中の各成分の詳細は次の通りである
 〈組成〉
・エポキシ樹脂A:クレゾールノボラック型エポキシ樹脂(日本化薬社製「EOCN-1020-75」、エポキシ当量199、融点75℃)
・エポキシ樹脂B:ビスフェノールF型エポキシ樹脂(大日本インキ化学工業社製「830CRP」、エポキシ当量171、25℃で液状)
・硬化剤A:ノボラック型フェノール樹脂(群栄化学社製「PSM6200」、OH当量105)
・硬化剤B:多官能フェノール樹脂(明和化成株式会社製「MEH-7500」、OH当量100)
・フェノール樹脂A:レゾール型フェノール樹脂(群栄化学社製「サンプルA」、融点75℃、13C-NMR分析によるオルト-オルト25~35%、オルト-パラ60~70%、パラ-パラ5~10%)
・硬化促進剤A:トリフェニルホスフィン(北興化学社製「TPP」)
・硬化促進剤B:2-ヘプタデシルイミダゾール(四国化成工業)、重量減少3.1%
・硬化促進剤C:2-ウンデシルイミダゾール(四国化成工業)、重量減少3.2%
・天然黒鉛(中越黒鉛工業所社製「WR50A」、平均粒径50μm、灰分0.05%、ナトリウムイオン4ppm、塩化物イオン2ppm)
・人造黒鉛(エスイーシー社製「SGP100」、平均粒径100μm、灰分0.05%、ナトリウムイオン3ppm、塩化物イオン1ppm)
・カップリング剤:エポキシシラン(日本ユニカー社製「A187」)
・ワックスA:天然カルナバワックス(大日化学社製「H1-100」、融点83℃)
・ワックスB:モンタン酸ビスアマイド(大日化学社製「J-900」、融点123℃)
 尚、硬化促進剤B及びCの重量減少は、硬化促進剤B及びCを測定開始温度30℃、昇温速度10℃/分、保持温度120℃、保持温度での保持時間30分の条件で加熱した場合の、重量の減少割合である。
 (溝の深さ/幅評価)
 実施例1-21において、ガス供給排出用溝2の深さ(B)を1mmとすると共に幅(A)と深さ(B)との比(A/B)を0.8、1、5、10としたセパレータ20をそれぞれ作製した。
 この各セパレータ20のガス供給排出用溝2の内面について静的接触角評価をおこなった。この結果、実施例1-21のいずれの場合においても、水との静的接触角は、A/Bが0.8の場合に25°となり、A/Bが1及び5及び10の場合は20°となった。
 [実施例22~35]
 実施例4において、成形体1にウエットブラスト処理を施した後、乾燥処理を施す前に、株式会社カイジョー製の商品名ハイメガソニックUSシャワーを用いて、純水に超音波振動を印加し、この純水をノズルから成形体1の表面へ向けて吐出することで、成形体1に洗浄処理を施した。実施例20~24では成形体1を静止させた状態で、この成形体1の上方に配置されているノズルから、超音波振動が印加された液体を吐出した。実施例25~33では成形体1を搬送しながら、この成形体1の移動経路の上方に配置されているノズルから、超音波振動が印加された液体を吐出した。液体としては純水又はアルカリイオン水を用い、アルカリイオン水としてはRUMIC EKO-205(販売元:株式会社カイジョー)を用いた。各実施例における洗浄処理の条件は、表5に示すとおりである。
 この成形体1に乾燥処理、リモート方式での大気圧プラズマ処理、水接触処理を順次施し、更に上記の燃料電池の起電圧変動評価に記載されている方法でセパレータ20にガスケット12を取り付けた。続いて、リモート方式での大気圧プラズマ処理を施す前に、このセパレータ20に前記と同じ条件で洗浄処理を施した。続いてこのセパレータ20を温風乾燥した後、実施例1における表面処理と同じ条件でリモート方式での大気圧プラズマ処理を施し、更に水接触処理を施すことで、ガスケット付き燃料電池セパレータ30を得た。
 [外観評価]
 実施例4、並びに実施例22~35で得られたガスケット付き燃料電池セパレータ30の外観を観察し、異常が認められない場合を○、黒色の筋などの異常が認められた場合を×と評価した。その結果を下記表5に示す。
 [不純物溶出性評価]
 実施例4、並びに実施例22~35で得られたガスケット付き燃料電池セパレータ30から、平面視50mm×1mmの寸法の試料(10g)を切り出し、この試料を90℃のイオン交換水90g中に、100時間浸漬した。この処理後のイオン交換水の導電率を測定し、その値をガスケット付き燃料電池セパレータ30からの不純物溶出性の指標とした。その結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (21)

  1.  エポキシ樹脂を含む熱硬化性樹脂、フェノール系化合物を含む硬化剤、及び黒鉛粒子を含有し、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8~1.2の範囲である成形用組成物を成形し、得られた成形体の表面に表面処理を施す工程を含み、前記表面処理が、ウエットブラスト処理と、このウエットブラスト処理後のリモート方式での大気圧プラズマ処理とを含む燃料電池セパレータの製造方法。
  2.  前記エポキシ樹脂がクレゾールノボラック型エポキシ樹脂であり、前記フェノール系化合物がノボラック型フェノール樹脂である請求項1に記載の燃料電池セパレータの製造方法。
  3.  熱硬化性フェノール樹脂を含む熱硬化性樹脂、及び黒鉛粒子を含有する成形用組成物を成形し、得られた成形体の表面に表面処理を施す工程を含み、前記表面処理が、ウエットブラスト処理と、このウエットブラスト処理後のリモート方式での大気圧プラズマ処理とを含む燃料電池セパレータの製造方法。
  4.  前記ウエットブラスト処理により成形体の表面の算術平均高さRa(JIS B0601:2001)を0.4~1.6μmの範囲とする請求項1乃至3のいずれか一項に記載の燃料電池セパレータの製造方法。
  5.  前記ウエットブラスト処理により成形体の表面の算術平均高さRa(JIS B0601:2001)を0.4μm以上、1.0μm未満の範囲とすることを特徴とする請求項4に記載の燃料電池セパレータの製造方法。
  6.  前記大気圧プラズマ処理におけるプラズマ生成用ガスが、酸素ガス含有量2000ppm以下の窒素ガスである請求項1乃至5のいずれか一項に記載の燃料電池セパレータの製造方法。
  7.  前記成形用組成物が内部離型剤を含有する請求項1乃至6のいずれか一項に記載の燃料電池セパレータの製造方法。
  8.  前記成形用組成物が、測定開始温度30℃、昇温速度10℃/分、保持温度120℃、保持温度での保持時間30分の条件で加熱される場合の重量減少が5%以下であり、且つ2位に炭化水素基を有する置換イミダゾールを含有する請求項1乃至7のいずれか一項に記載の燃料電池セパレータの製造方法。
  9.  前記成形用組成物が、トリフェニルホスフィンを含有する請求項1乃至8のいずれか一項に記載の燃料電池セパレータの製造方法。
  10.  前記表面処理が、前記ウエットブラスト処理後、大気圧プラズマ処理前に、前記成形体を吸湿率0.1%以下まで乾燥する乾燥処理を含む請求項1乃至9のいずれか一項に記載の燃料電池セパレータの製造方法。
  11.  前記表面処理が、前記大気圧プラズマ処理後に前記成形体の表面を水と接触させる水接触処理を含む請求項1乃至10のいずれか一項に記載の燃料電池セパレータの製造方法。
  12.  前記表面処理前の成形体の、表面処理が施される面に、幅(A)と深さ(B)との比(A/B)が1以上であるガス供給排出用溝を形成する請求項1乃至11のいずれか一項に記載の燃料電池セパレータの製造方法。
  13.  前記表面処理により、前記成形体の表面の接触抵抗を15mΩcm以下とする請求項1乃至12のいずれか一項に記載の燃料電池セパレータの製造方法。
  14.  前記表面処理により、前記成形体の表面の水との静的接触角を0~50°の範囲とする請求項1乃至13のいずれか一項に記載の燃料電池セパレータの製造方法。
  15.  前記表面処理が、液体に超音波振動を印加すると共にこの液体を前記成形体へ向けて吐出する洗浄処理を含む請求項1乃至14のいずれか一項に記載の燃料電池セパレータの製造方法。
  16.  前記洗浄処理において、前記液体に印加する超音波振動の周波数が900kHz以上である請求項15に記載の燃料電池セパレータの製造方法。
  17.  前記洗浄処理において、前記液体がアルカリイオン水である請求項15又は16に記載の燃料電池セパレータの製造方法。
  18.  請求項1乃至17のいずれか一項に記載の方法により製造される燃料電池セパレータ。
  19.  請求項1乃至17のいずれか一項に記載の方法により製造された燃料電池セパレータにガスケットを積層した後、この燃料電池セパレータの表面にリモート方式での大気圧プラズマ処理を施すガスケット付き燃料電池セパレータの製造方法。
  20.  請求項1乃至17のいずれか一項に記載の方法により製造された燃料電池セパレータにガスケットを積層した後、この燃料電池セパレータの表面に、液体に超音波振動を印加すると共にこの液体を前記燃料電池セパレータへ向けて吐出する洗浄処理を施すガスケット付き燃料電池セパレータの製造方法。
  21.   請求項1乃至17のいずれか一項に記載の方法により製造された燃料電池セパレータにガスケットを積層した後、この燃料電池セパレータの表面に更にリモート方式での大気圧プラズマ処理を施し、続いてこの燃料電池セパレータを膜-電極複合体と積層する工程を含む燃料電池の製造方法。
PCT/JP2010/067063 2010-01-20 2010-09-30 燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法 WO2011089758A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127021747A KR101195104B1 (ko) 2010-01-20 2010-09-30 연료 전지 세퍼레이터의 제조 방법, 연료 전지 세퍼레이터, 개스킷을 가지는 연료 전지 세퍼레이터의 제조 방법, 및 연료 전지의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-010455 2010-01-20
JP2010010455A JP5879553B2 (ja) 2010-01-20 2010-01-20 燃料電池セパレータの製造方法、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法
JP2010119623A JP2011249085A (ja) 2010-05-25 2010-05-25 燃料電池セパレータの製造方法、燃料電池セパレータ、及び燃料電池の製造方法。
JP2010-119623 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011089758A1 true WO2011089758A1 (ja) 2011-07-28

Family

ID=44306574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067063 WO2011089758A1 (ja) 2010-01-20 2010-09-30 燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法

Country Status (2)

Country Link
KR (1) KR101195104B1 (ja)
WO (1) WO2011089758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162165A1 (en) * 2012-12-11 2014-06-12 Samsung Electronics Co., Ltd. Fuel cell stack including cooling plate for improving temperature distribution

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204120A (ja) * 1998-01-19 1999-07-30 Toyota Motor Corp 燃料電池用セパレータの製造方法および燃料電池用セパレータ
JP2004213997A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池
JP2004259497A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータの製造方法、及び、固体高分子型燃料電池用セパレータ
JP2006019252A (ja) * 2004-05-31 2006-01-19 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池用セパレータ、高分子電解質形燃料電池、高分子電解質形燃料電池用セパレータの評価方法、及び、高分子電解質形燃料電池用セパレータの製造方法
JP2006066138A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 燃料電池用セパレータ及びその製造方法及びそれを用いた固体高分子型燃料電池
JP2006066139A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 燃料電池セパレータおよびそれを用いた燃料電池
JP2006164770A (ja) * 2004-12-08 2006-06-22 Nichias Corp 燃料電池用セパレータ及びその製造方法
JP2006318717A (ja) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池、その製造方法
JP2006331673A (ja) * 2005-05-23 2006-12-07 Nisshinbo Ind Inc 燃料電池セパレータ
JP2008053052A (ja) * 2006-08-24 2008-03-06 Nisshinbo Ind Inc 固体高分子型燃料電池セパレータ
JP2009181936A (ja) * 2008-02-01 2009-08-13 Toyota Motor Corp 燃料電池用セパレータと燃料電池
WO2009113717A1 (ja) * 2008-03-14 2009-09-17 昭和電工株式会社 燃料電池用セパレータおよびその製造方法
JP2009218170A (ja) * 2008-03-12 2009-09-24 Panasonic Electric Works Co Ltd 燃料電池セパレータ
JP2009218171A (ja) * 2008-03-12 2009-09-24 Panasonic Electric Works Co Ltd 燃料電池セパレータ
JP2010092638A (ja) * 2008-10-06 2010-04-22 Nisshinbo Holdings Inc 燃料電池用セパレータ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204120A (ja) * 1998-01-19 1999-07-30 Toyota Motor Corp 燃料電池用セパレータの製造方法および燃料電池用セパレータ
JP2004213997A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池
JP2004259497A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータの製造方法、及び、固体高分子型燃料電池用セパレータ
JP2006019252A (ja) * 2004-05-31 2006-01-19 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池用セパレータ、高分子電解質形燃料電池、高分子電解質形燃料電池用セパレータの評価方法、及び、高分子電解質形燃料電池用セパレータの製造方法
JP2006066138A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 燃料電池用セパレータ及びその製造方法及びそれを用いた固体高分子型燃料電池
JP2006066139A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 燃料電池セパレータおよびそれを用いた燃料電池
JP2006164770A (ja) * 2004-12-08 2006-06-22 Nichias Corp 燃料電池用セパレータ及びその製造方法
JP2006318717A (ja) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池、その製造方法
JP2006331673A (ja) * 2005-05-23 2006-12-07 Nisshinbo Ind Inc 燃料電池セパレータ
JP2008053052A (ja) * 2006-08-24 2008-03-06 Nisshinbo Ind Inc 固体高分子型燃料電池セパレータ
JP2009181936A (ja) * 2008-02-01 2009-08-13 Toyota Motor Corp 燃料電池用セパレータと燃料電池
JP2009218170A (ja) * 2008-03-12 2009-09-24 Panasonic Electric Works Co Ltd 燃料電池セパレータ
JP2009218171A (ja) * 2008-03-12 2009-09-24 Panasonic Electric Works Co Ltd 燃料電池セパレータ
WO2009113717A1 (ja) * 2008-03-14 2009-09-17 昭和電工株式会社 燃料電池用セパレータおよびその製造方法
JP2010092638A (ja) * 2008-10-06 2010-04-22 Nisshinbo Holdings Inc 燃料電池用セパレータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162165A1 (en) * 2012-12-11 2014-06-12 Samsung Electronics Co., Ltd. Fuel cell stack including cooling plate for improving temperature distribution

Also Published As

Publication number Publication date
KR101195104B1 (ko) 2012-10-29
KR20120104639A (ko) 2012-09-21

Similar Documents

Publication Publication Date Title
JP6052670B2 (ja) 燃料電池セパレータ及びその製造方法
JP5879553B2 (ja) 燃料電池セパレータの製造方法、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法
JP5391005B2 (ja) 燃料電池セパレータの製造方法及び燃料電池セパレータ
JP5033269B2 (ja) 燃料電池セパレータ成形用組成物、燃料電池セパレータ、燃料電池セパレータの製造方法、及び燃料電池
JP4965832B2 (ja) 燃料電池セパレータの製造方法及び燃料電池セパレータ
JP5502552B2 (ja) 燃料電池セパレータ用組成物、燃料電池セパレータ、及び燃料電池の製造方法
JP6132247B2 (ja) ガスケット付き燃料電池セパレータの製造方法
JP6145781B2 (ja) 燃料電池セパレータ
WO2011089758A1 (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法
JP2003297385A (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ、および固体高分子型燃料電池
JP5624298B2 (ja) 燃料電池セパレータの製造方法及び燃料電池セパレータ
JP5662687B2 (ja) 燃料電池セパレータの製造方法、及びこの方法により製造された燃料電池セパレータを備える燃料電池
JP2017143078A (ja) 燃料電池セパレータの製造方法及び燃料電池セパレータ
JP5845458B2 (ja) 燃料電池セパレータの製造方法
JP5979529B2 (ja) 燃料電池セパレータの製造方法
JP2006066139A (ja) 燃料電池セパレータおよびそれを用いた燃料電池
JP5838341B2 (ja) 燃料電池用セパレータの製造方法、前記方法により製造される燃料電池用セパレータ、及び前記方法で使用される燃料電池用セパレータ製造用圧縮成形金型
JP5520104B2 (ja) 燃料電池セパレータの製造方法
JP5681565B2 (ja) 燃料電池セパレータ用成形材料、燃料電池セパレータの製造方法、及び燃料電池セパレータ
JP2011249085A (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ、及び燃料電池の製造方法。
JP2014032906A (ja) 燃料電池セパレータ成形用組成物、燃料電池セパレータ、燃料電池セパレータの製造方法、及び燃料電池
JP5991470B2 (ja) 燃料電池セパレータ
JP6202420B2 (ja) 燃料電池セパレータの製造方法
JP5849229B2 (ja) 燃料電池用セパレータ、及び燃料電池
JP2012155942A (ja) 燃料電池用セパレータ、燃料電池用セパレータの製造方法、及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021747

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10843922

Country of ref document: EP

Kind code of ref document: A1