WO2011089742A1 - 金属ガラス締結ねじ - Google Patents

金属ガラス締結ねじ Download PDF

Info

Publication number
WO2011089742A1
WO2011089742A1 PCT/JP2010/060540 JP2010060540W WO2011089742A1 WO 2011089742 A1 WO2011089742 A1 WO 2011089742A1 JP 2010060540 W JP2010060540 W JP 2010060540W WO 2011089742 A1 WO2011089742 A1 WO 2011089742A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
fastening
glass
metallic glass
bulk
Prior art date
Application number
PCT/JP2010/060540
Other languages
English (en)
French (fr)
Inventor
茂 山中
政広 茶谷
早乙女 康典
網谷 健児
Original Assignee
株式会社丸ヱム製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社丸ヱム製作所, 国立大学法人東北大学 filed Critical 株式会社丸ヱム製作所
Priority to EP10843906.8A priority Critical patent/EP2527059B1/en
Priority to KR1020127018104A priority patent/KR101718179B1/ko
Priority to US13/574,498 priority patent/US9095890B2/en
Priority to CN201080062161.3A priority patent/CN102844130B/zh
Publication of WO2011089742A1 publication Critical patent/WO2011089742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • B21H3/022Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling combined with rolling splines, ribs, grooves or the like, e.g. using compound dies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/003Amorphous alloys with one or more of the noble metals as major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/006Non-metallic fasteners using screw-thread
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • B21H3/06Making by means of profiled members other than rolls, e.g. reciprocating flat dies or jaws, moved longitudinally or curvilinearly with respect to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts

Definitions

  • the present invention relates to a bulk metal glass made of amorphous material, a molding method thereof, and a fastening screw characterized by characteristics created by the molding method.
  • Bulk metallic glass is an amorphous alloy, and generally has a high strength (high yield stress) and an elastic limit strain (yield strain) nearly 10 times that of ordinary metals.
  • the combination can change the strength and elastic modulus (Young's modulus), and can be formed into a cylindrical shape having a critical diameter or less determined by the chemical component contained by casting.
  • a rotational centrifugal force is used in order to apply amorphous bulk metal glass to small mechanical parts, etc.
  • a rotational centrifugal force is used in the casting method taking advantage of its small solidification shrinkage.
  • Various tools, apparatuses, methods and the like for improving the filling property have been proposed.
  • Patent Document 2 After heating the surface of a cylindrical material having a bulk metallic glass on the surface to a glass transition temperature (Tg) or higher at which the bulk metallic glass causes viscous flow, the viscous fluidity is utilized. There has been proposed a method of forming by pressing against an uneven die. (For example, refer to Patent Documents 3 and 4) In addition, by thermally spraying metal glass on the surface of the product, a proposal has been made to give the surface the characteristics of bulk metal glass while leaving the characteristics of the conventional material inside. . (For example, see Patent Documents 5 and 6)
  • JP 2008-238214 A JP 2008-126313 A Japanese Patent Laid-Open No. 2008-200734 JP 2005-173558 A JP 2007-131952 A JP 2005-201789 A
  • the fastening screw fixes the material to be fastened so as not to loosen by using the frictional force generated on the contact bearing surface and the screw surface of the meshing portion of the screw by the axial force remaining after the fastening.
  • the prevention of screw loosening has been done mainly by making the nut a special shape or special structure.
  • the screw itself is difficult to loosen, it can be easily removed and used repeatedly, and there are fields where it can be used. spread.
  • the strength is increased so that the tightening force at the time of fastening can be increased, and at the same time the elastic modulus of the screw is lowered to facilitate deformation and the contact area with the fastened body can be increased, the frictional force is increased.
  • the strength is increased so that the tightening force at the time of fastening can be increased, and at the same time the elastic modulus of the screw is lowered to facilitate deformation and the contact area with the fastened body can be increased, the frictional force is increased.
  • a screw that is difficult to loosen is realized, but
  • Bulk metallic glass is made of an amorphous material and generally has high strength and an elastic limit strain approximately 10 times that of a normal metal, and the elastic modulus can be changed by a combination of kinds of constituent elements. If bulk metal glass can stably form a screw shape without harmful defects, it can be used for conventional screws by utilizing the high strength, low elastic modulus, and high elastic limit strain of bulk metal glass. Screws that are less likely to loosen can be made. However, since bulk metallic glass is not a crystalline metal, plastic deformation (deformation with permanent strain) due to dislocations (linear defects peculiar to crystalline metals introduced by processing) does not occur, and various deformation mechanisms have been devised.
  • the ductility is considered to be extremely poor near room temperature
  • the processing method is a casting method (transfer processing using molten metal), or a supercooled liquid temperature range (generally 400) that causes a viscous flow inherent to bulk metallic glass at a temperature above the glass transition temperature. In the vicinity of °C, it is mainly molded in a range of plus or minus several tens of °C. Below this glass transition temperature, the degree of processing is particularly large, and the strain gradient of the processed part (adjacent part) It was thought that it was difficult to apply to the rolling process (one of the processing methods using plastic deformation) of a screw having a large strain difference. *
  • Bulk metal glass is a difficult-to-cut material for cutting blades.
  • the wear of the blade edge is marked and stable. It is very difficult to produce. Moreover, material loss arises and it is not preferable economically.
  • the fastening screw used in contact with the inside of the living body and the outside of the living body is manufactured by cutting and has a problem in productivity.
  • the property of being difficult to loosen is very important for a living body, but has not been emphasized so far.
  • a metal glass fastening screw which is difficult to loosen utilizing the characteristics of bulk metal glass can be stably manufactured, and a process for improving the ductility of the surface at the time of molding and imparting reliability to the metal glass fastening screw is provided.
  • the purpose is to provide.
  • a bulk metallic glass made of amorphous material exhibits little ductility in the uniaxial tensile test below the glass transition temperature at which viscous flow starts, but slightly ductility is seen in the uniaxial compression test.
  • it is not suitable for all screws, but has a thread angle that can be used as a practical screw.
  • the plastic deformation region is under compressive stress during the process.
  • it is considered that the opening of cracks generated during deformation is suppressed, and a considerable amount of deformation is achieved without progressing cracks.
  • slip band a phenomenon that occurs on the surface that generates the maximum shear stress and is a deformation band of several tens of nanometers that enables plastic deformation, a characteristic phenomenon seen in bulk metallic glass. It is said that it causes plastic strain (plastic strain is accumulated (integrated) and becomes plastic deformation).
  • this slip is local and non-uniform, unlike normal deformation due to dislocation of a normal crystalline metal, it separates and breaks when a tensile force is applied.
  • the present invention is characterized in that in processing of screw threads and screw grooves, amorphous bulk metallic glass is formed by rolling at a temperature equal to or lower than the glass transition temperature of bulk metallic glass as a workpiece. It is a metal glass fastening screw.
  • Bulk metallic glass has a characteristic that the ductility of the portion including the slip band is improved by introducing plastic strain by plastic working such as rolling.
  • the present invention makes effective use of this to form a rolling process in order to relieve the stress concentration of the tensile stress generated in the bottom region of the screw groove due to the tensile force (axial force) applied to the screw during fastening.
  • a metal glass fastening screw having a relationship of d> 0.022 ⁇ D, where d is the depth from the bottom of the thread groove in the region where plastic strain is introduced by D and D is the outer diameter of the male screw It is. *
  • the present invention is a metallic glass fastening screw characterized by being a triangular screw having a thread angle in a range of 40 to 70 degrees.
  • the present invention is the metallic glass fastening screw, wherein the bulk metallic glass includes at least one of a Ti group, a Pd group, or a Zr group, and is used for a living body.
  • the bulk metallic glass when fastening a fastened material having a low yield point and a low elastic modulus, the bulk metallic glass is fastened in order to prevent loosening due to permanent strain (depression) of the fastened material during fastening.
  • It is a metallic glass fastening screw characterized by including any of Mg group, Pt group, Ti group, and Zr group having an elastic modulus equal to or lower than that of the material.
  • the average stress in the region where the plastic deformation of the bulk metallic glass is a compressive stress or a tensile stress that is one third or less of the tensile breaking strength of the bulk metallic glass is formed by rolling. This is a method for manufacturing a metallic glass fastening screw.
  • a high-strength, low-elastic modulus, high-elastic limit strain which is a common characteristic of amorphous bulk metallic glass, and a high elastic limit strain are realized in the screw, thereby providing a fastening screw that is difficult to loosen.
  • it has stable quality and productivity by rolling at room temperature and a relatively low temperature that is higher than room temperature but below the glass transition temperature.
  • Bulk metallic glass has the characteristics of high strength but low elastic modulus and high elastic limit strain that is not found in ordinary metals, so when this is applied to a fastening screw, it depends on the strain of the material to be fastened. Axial force change can be kept small. For example, even if the material to be fastened is compressed and deformed by an external force or vibration, the reduction of the axial force is suppressed, and a screw with a stable axial force and less loosening can be realized compared to a steel screw with a high elastic modulus.
  • Light metal materials generally have a low yield point and a low elastic modulus.
  • deformation is caused on the side of the material to be fastened on the seating surface, causing loosening.
  • the screw-side seating surface will be deformed in the same way as the material to be fastened.
  • the contact area is increased, the contact pressure is lowered to suppress the depression, and the frictional force is increased, so that it is possible to perform the fastening which is difficult to loosen.
  • Rolling process reduces material loss, which is a general characteristic of plastic processing, and mechanically crushes micro defects introduced in casting (forging effect), so part of defects near the surface This makes it possible to make a highly reliable screw.
  • bulk metallic glass has a combination of components that have corrosion resistance and biocompatibility (the human body does not show a rejection reaction when incorporated into the human body). By combining the components, it is possible to achieve fastening that is difficult to loosen in a wide range of application fields.
  • the screw applied here is applied not only to a normal fastening screw having a screw head but also to a general screw used by applying an axial force to the screw portion.
  • FIGS. 1 to 5 An embodiment of the present invention will be described with reference to FIGS. 1 to 5, and a method for manufacturing the present screw will be described. The test results are shown in FIGS. *
  • the bulk metal glass used as a material has the common advantage of being a high-strength, low elastic modulus and high elastic limit strain that is advantageous for fastening screws that are difficult to loosen.
  • the metal component is selected by selecting an alloy component of the bulk metallic glass that is suitable for the material to be fastened, the fastening conditions, and the environment. Glass fastening screws can be made.
  • the modulus of elasticity is low in order to prevent loosening due to permanent strain (depression) of the material to be fastened.
  • Bulk metal glass such as Mg group, Pt group, Ti group, Zr group or the like which is equal or low is selected as the material of the fastening screw.
  • FIG. 1 shows a method of forming a bulk metallic glass into an intermediate processed product before being rolled into a screw.
  • Bulk metal glass can be cast into a columnar shape after the component elements are heated and melted to a melting point or higher by arc melting or the like.
  • the bulk metallic glass round bar 1 of FIG. 1 (a) cast into a cylindrical shape is formed by cutting like the intermediate shape product 2 of the machined screw of FIG. 1 (a).
  • the previous intermediate product can be made.
  • bulk metal glass is not easy to cut, loss due to cutting occurs, and if it is necessary to drill holes in the head like hexagon socket head screws, it is difficult to do so.
  • the screw head 41 and the screw shaft portion 42 are It is preferable to cast an intermediate processed product before rolling, such as the intermediate shape product 4 of the screw by casting in FIG. *
  • FIG. 2 shows the mechanism of the rolling process.
  • FIG. 2 (a) shows that an intermediate shape product 4 of a screw by casting is inserted between two molds (rolling die moving side P1 and rolling die fixing side P2) having a thread and a groove shape. Thus, the rolling process is performed by rolling down the screw shaft portion 42.
  • FIG. 2 (b) shows the rolling process by gradually transferring the die shape from the intermediate shape product 4 of the screw to the screw as in the initial stage 5 of the rolling process and the middle stage 6 of the rolling process. This is a rolling process in which the completed screw 7 is formed. *
  • the average stress is an average value of normal stresses generated in planes orthogonal to each other at a certain point. Whether the point is in a compressed state (having a negative value) or in a tensile state (having a positive value). This is also called average normal stress. Equivalent stress is a value related to shear stress that occurs in a direction parallel to the surface. Generally, in order to make it easy to understand the state of multiaxial stress that is not uniform, when a simple round bar is pulled (uniaxial) It corresponds to the stress of tension or uniaxial tension.
  • the equivalent strain is a general non-uniform strain state corresponding to a uniaxial tensile strain.
  • the tensile breaking strength is a value obtained by dividing a tensile breaking load by a cross-sectional area and converting it to a value per unit area, and has the same unit as stress.
  • FIG. 3 shows the stress distribution of the thread cross section generated during the rolling process calculated by the finite element method analysis.
  • the contents will be described with FIG. 2 showing the rolling process.
  • the rolling process is performed between two dies of a rolling die moving side P1 and a rolling die fixing side P2 having shapes corresponding to threads and screw grooves. Is rolled while pressing the screw shaft portion 42, whereby the mold shape is transferred to this, and the thread and the thread groove are formed.
  • a rigid and completely plastic model that does not work harden (a model that assumes that the equivalent stress that initiates plastic deformation takes a constant value) is adopted.
  • FIG. 3 (b) showing the average stress distribution of the thread cross section shows the average stress distribution at the same processing time.
  • Most of the average stress is on the screw thread and screw groove side (right side in the figure) from the contour line Q1 of 0 MPa. It can be seen that the mean stress is negative, it is under compressive stress, and the contour line Q2 having an equivalent stress indicating the boundary of the plastic deformation region of 1800 MPa is also included in this.
  • FIG. 3 (b) there is a portion where the average stress slightly exceeds 0 MPa in the vicinity of the tip of the screw thread that is not in contact with the mold at this time of processing. It can be seen that it is 600 MPa or less, which is one third of the strength (1800 MPa). Thus, it was theoretically shown that the rolling process has the effect of suppressing the breakage due to the progress of cracks. *
  • the thread portion of the screw and the thread groove portion receive a force through the mold during the rolling process, but due to the shape of the screw, the state of the stress generated in the bulk metallic glass that is the workpiece during the rolling process, That is, whether the average stress during processing is negative (compression) or positive (tensile) is determined.
  • the thread angle Q3 of the triangular screw in FIG. 4 (a) showing the cross section of the screw thread cannot sufficiently hold the axial force at 40 degrees or less, and if it exceeds 70 degrees, Frictional force decreases and becomes easier to loosen. Therefore, in order to maximize the function as a fastening screw, the thread angle needs to be in the range of 40 to 70 degrees. Further, in the screw having these thread angles, the average stress in the region in which plastic strain occurs during plastic forming and plastic deformation is a tensile stress that is one third or less of the compression or tensile breaking strength. As shown by finite element method analysis and experiment, respectively, bulk metal glass can be rolled at or below the glass transition temperature. *
  • the screw Since the screw has a thread groove, when it is fastened and a tensile force (axial force) acts on the screw, high stress due to the groove shape is generated in the vicinity of the thread groove (the thread groove has a V shape). And is similar to the notch shape). Especially, the bottom vicinity of the groove
  • FIG. 5 shows a cross-sectional view of a screw made by rolling.
  • a region where plastic strain is introduced by rolling that is, a region 12 including a slip band peculiar to bulk metallic glass is indicated by hatching.
  • a tensile force axial force
  • the bottom portion of the screw groove where the high tensile stress is generated is also included in the region 12 including the slip band.
  • FIG. 5A is enlarged. .
  • a calculation method for obtaining the size of the tensile plastic deformation region 13 will be described below with reference to FIG. From the enlarged view of the thread groove portion of FIG. 5B, if the depth (distance) from the thread groove bottom of the tensile plastic deformation region 13 is r as shown in FIG. R when a tensile load is applied to the critical stress using a critical stress intensity factor Kc (described later), an elastic limit stress (a value obtained by dividing an elastic limit tensile load by an effective cross-sectional area) ⁇ l, and a circumference ratio ⁇ , Can be roughly estimated.
  • the Kc can be obtained as follows from the shape of the portion where the crack occurs and the elastic limit stress ⁇ l.
  • the position of the depth r of the tensile plastic deformation region 13 of the thread groove is included in the region where plastic strain is introduced by rolling and the slip band is accumulated, and it is necessary that the ductility is improved. That is, when d is the depth of the region where plastic strain is introduced by rolling, d needs to be larger than r. That is, d> r (4), that is, d> 0.022 ⁇ D (5) from the equations (3) and (4). In order to obtain a stable effect, the depth d of the region 12 including the slip band in which plastic strain is introduced by rolling processing is 1.5 times or more of this minimum value in consideration of variation and the like. Is desirable.
  • the glass transition temperature varies depending on the type of bulk metallic glass, but is usually 300 ° C. or higher. Although the temperature range according to the present invention is not higher than the glass transition temperature, it is preferably performed at a temperature of 200 ° C. or lower that eliminates the need for strict thermal management, a special lubricant, and an antioxidant device in consideration of productivity. . *
  • the processing speed is set in consideration of avoiding seizure between the molds on the surface and crystallization of the bulk metallic glass due to temperature rise. For example, even if it is below the glass transition temperature, if the processing speed is too high, the part to be processed becomes adiabatic and the temperature rises, and the part may crystallize and become brittle, so the strain rate is set to 100 s ⁇ 1. It is preferable to keep it below.
  • the metal glass fastening screw subjected to the rolling process can determine the amorphous ratio by analyzing the microscopic structure of the thread and the screw groove that are rolled by the X-ray diffraction method (XRD).
  • XRD X-ray diffraction method
  • it is preferable that 50% or more of the threaded shaft portion 71 formed by rolling is amorphous. Since the screw head 41 is hardly involved in the axial force, it may be less than this.
  • the fastening screw to be manufactured is a hexagon socket head cap screw (cap screw) whose size is stipulated in JIS with a crest angle of 60 degrees, and a total length of 8 mm under the neck of the screw (a thread on the entire shaft). And screws with thread grooves).
  • a Zr-based bulk metallic glass Zr55Al10Cu30Ni5 (numbers indicate ratios of components) having high strength, high glass forming ability, and high impact value was used.
  • This bulk metallic glass has a glass transition temperature of 410 ° C. *
  • Fe group and Ni group next to it are desirable, but Fe group is brittle, and Ni group has a critical diameter (maximum diameter at which bulk metal glass becomes amorphous when cast). It is not preferable because it is small and easily crystallized.
  • the Zr group has a high glass forming ability, and the tensile fracture strength is 1800 MPa, which is a sufficiently high strength for a screw.
  • the elastic modulus is 90 GPa (90000 MPa), the yield strain is 2.0%, and the elastic range is large. Therefore, it is possible to realize a fastening that is difficult to loosen by using a wide range of materials, such as a low elastic modulus material such as a light metal, and a high elastic modulus material such as ceramics.
  • the material is produced by casting using a bulk metal glass round bar 1 having a diameter of ⁇ 5.25 and a length of 200 mm, and then cut into a volume equivalent to the target screw. Made material 3. *
  • the casting material 3 is heated to 920 ° C. by high-frequency induction heating and re-dissolved in an atmosphere replaced with argon gas after evacuation to form a mold for forming the screw head portion 41 and the screw shaft portion 42.
  • the intermediate shape product 4 of the screw by casting was manufactured.
  • steel having an appropriate thermal conductivity and mold life was selected as the die.
  • FIG. 6 is a scanning electron microscope image of the appearance of the screw 7 that has been rolled at room temperature.
  • FIG. 6A is an overall image
  • FIG. 6B is an enlarged image of the threaded portion.
  • FIG. 7 shows the results of an X-ray diffraction test (XRD) using Cr—K ⁇ rays.
  • the vertical axis indicates the intensity of the X-ray
  • the horizontal axis indicates the incident angle
  • the test results of the two parts of the thread portion and the screw head are indicated as A and B, respectively.
  • FIG. 8 shows the threads during the rolling process. From this, the slip band 15 is seen in a streak shape at the portion where two threads are being formed. These slip bands are accumulated in the vicinity of the thread and the groove as the rolling process proceeds, and the ductility of this portion is improved. *
  • FIG. 9 shows the equivalent strain distribution of the thread cross section. Using this, it is possible to theoretically obtain the depth d of the region 12 including the slip band by introducing plastic strain by the rolling process shown in FIG. (In FIG. 3, the equivalent stress can be obtained from the contour line Q2 of 1800 MPa, but here, the equivalent strain distribution is used for easier understanding.) That is, the surface side of the screw from the contour line B in FIG. Since the equivalent strain is 0.24 or more and exceeds the elastic limit strain 0.02 of the target bulk metallic glass, it can be seen that the region is a region where plastic strain is introduced.
  • the contour line B has a depth of about 0.3 mm from the screw groove, the depth d of the region 12 including the slip band is introduced at least by plastic strain, and is deeper than 0.3 mm, and is larger than 0.3 mm. You can see that it takes a value.
  • d becomes four times or more than r, and d> r in equation (4), that is, the relationship of equation (5) d> 0.022D is established, so that a tensile plastic deformation portion generated when a tensile load is applied. 13 is included in the region 12 including the slip band that gives the ductility introduced by rolling, and can relieve the tensile stress generated at the bottom of the thread groove.
  • FIG. 10 shows the results of the Vickers hardness test of the thread cross section.
  • the vertical axis represents the Vickers hardness due to a load of 100 g
  • the horizontal axis represents the depth from the bottom of the screw groove toward the center of the screw shaft in the longitudinal section of the screw.
  • the measurement was performed at intervals of 0.05 mm, and a line graph as shown in FIG. 10 was drawn.
  • the depth from the groove bottom decreases from 0.36 mm toward the surface, and the hardness decreases.
  • the depth d of the region 12 including the slip band due to plastic strain introduced by the rolling process is obtained.
  • Can be considered. This value is almost the same as the analysis result of the equivalent strain by the finite element method, and it can be seen from this result that the relationship of d> 0.022D is established.
  • FIG. 11 shows a cut metal glass M3 having the same size in which a thread 7 and a screw groove are formed by cutting a screw 7 that has been rolled using bulk metal glass and an intermediate shape 4 of a screw by casting. It is the result of having done the test of the tensile breaking strength of a screw about a fastening screw.
  • the tensile breaking strength of a screw is represented by a value obtained by dividing the maximum breaking load in tension by the effective sectional area of the screw (the area of a circle drawn by the diameter of (screw pitch diameter + thread groove diameter) / 2).
  • the elongation of the screw (the amount of change in the length from the bottom of the screw to the nut seat until the tensile fracture occurs) is the respective magnification when the average elongation of the cut metal glass fastening screw is 1.0. Indicated.
  • the cold rolled and warm rolled metal glass fastening screws exhibit 1.7 to 1.8 times the elongation of the cut metal glass fastening screws. *
  • FIG. 12 shows a load-displacement diagram in a tensile test of a metallic glass fastening screw rolled at room temperature and a metallic glass fastening screw by cutting.
  • the horizontal axis is the displacement in the tensile direction representing the elongation of the screw, and the vertical axis is the load at that time, and the relationship is shown when each screw is pulled until the screw breaks.
  • the cutting metal glass fastening screw shown with a broken line does not have the area
  • the metal glass fastening screw formed by rolling slightly deviates from linearity in the middle as the displacement increases, and exhibits a convex non-linear curve. This is because tensile plastic elongation occurred in the tensile plastic deformation portion 13 in FIG. 5B at the bottom of the thread groove, indicating that ductility as a screw appeared.
  • the breaking load of the metal glass fastening screw by rolling is larger than that of the cutting metal glass fastening screw. This is because the metal glass fastening screw formed by rolling relaxes the stress concentration in the thread groove, so that it does not break suddenly like a brittle material in the middle of a straight line like a cutting screw, that is, in the middle of an elastic region. Inside the screw, the strength of the as-cast bulk metal glass is maintained, and in the vicinity of the screw thread and the screw groove, a plastic strain is introduced by rolling and an area 12 including a slip band is arranged. By imparting ductility, these work in a balanced manner and the breaking strength is improved. *
  • FIG. 13 shows a comparison of the tensile rupture strength of screws with other screws in JIS M3 screws.
  • the tensile rupture strengths of SUSXM7 austenitic stainless steel screw
  • Hiten high tensile bolt for machine fastening
  • beta titanium high strength beta titanium screw
  • the metal glass fastening screws produced by rolling according to the present invention by rolling (180 ° C.) and by rolling at room temperature are shown using two samples, both of which are comparative screws. The strength is about 1.3 times higher than the highest strength high tensile screw.
  • the metal glass fastening screw of this size M3 has a tensile breaking load of a screw corresponding to M4, which is a screw size that is almost one higher in Hi-Ten. *
  • the cut metal glass fastening screws showed a variation in the tensile break strength within a range of about 15% of the average tensile break strength.
  • the metal glass fastening screw by rolling was as small as 3%. This indicates that in the metal glass fastening screw produced by rolling, the ductility of the thread groove portion is improved, the stress concentration is relaxed, and the breaking load is stabilized.
  • the metal glass fastening screw formed by rolling at a temperature lower than the glass transition temperature has a larger tensile break strength than that of other high-strength screws, and has a bulk metal glass. Since it has the characteristic of large elastic limit strain, the axial force is stable, the contact area with the fastened body increases, and the frictional force increases. By improving the ductility, the stress concentration in the thread groove is relaxed and stable strength can be maintained, so that a highly reliable fastening screw is provided.
  • Ceramics are used as members in high-speed processing machines, around water, and in corrosive environments, and this contributes widely to the industry by realizing metal glass fastening screws that do not easily loosen against these members.

Abstract

 【課題】 ねじ自身にゆるみ難い性質を付与し、軽量部材を含め幅広い分野で、高強度で信頼性の高い締結を実現する金属ガラス締結ねじを提供する。【解決手段】 ねじのねじ山及びねじ溝の加工において、非晶質からなるバルク金属ガラスを、被加工材であるバルク金属ガラスのガラス転移温度以下で、転造加工により成形する。バルク金属ガラスは、転造加工のような塑性加工により、塑性ひずみが導入されてすべり帯含む部分の延性が向上するという特性をもつ。これを効果的に利用して、締結の際に、ねじにかかる引張り力(軸力)によりねじ溝の底の領域で生じる引張り応力の応力集中を緩和させるために、転造加工により塑性ひずみが導入される領域のねじ溝の底からの深さをdとし、 ねじ外径をDとしたとき、d>0.022×Dの関係にする。 

Description

金属ガラス締結ねじ
本発明は、非晶質(アモルファス)からなるバルク金属ガラスを素材とし、その成形方法、およびその成形方法より創製される特性に特徴をもつ締結ねじに関するものである。
バルク金属ガラスは、非晶質(アモルファス)からなる合金であり、一般に高い強度(高い降伏応力)と、通常の金属のおよそ10倍近い弾性限ひずみ(降伏ひずみ)をもち、また、構成元素の組み合わせにより、強度および弾性率(ヤング率)を変化させることが可能であり、鋳造法により、含有する化学成分で決まる臨界直径以下の円柱形状に成形することができる。(例えば、特許文献1参照) 非晶質からなるバルク金属ガラスを小型の機械部品などに応用するために、その凝固収縮が小さいという特徴を生かした鋳造法において、回転遠心力等を利用して充填性を向上させるための様々な工具、装置、方法などが提案されている。(例えば、特許文献2参照) バルク金属ガラスを表面にもつ円筒状の素材の表面を、そのバルク金属ガラスが粘性流動を生じるガラス転移温度(Tg)以上に加熱した後、粘性流動性を利用して凹凸を有するダイスに押し当てて成形する方法が提案されている。(例えば、特許文献3,4参照)また、製品の表面に金属ガラスを溶射することにより、内部は従来の素材の特徴を残したまま、表面にバルク金属ガラスの特徴をもたせる提案がなされている。(例えば、特許文献5,6参照)
特開2008-238214号公報 特開2008-126313号公報 特開2008-200734号公報 特開2005-173558号公報 特開2007-131952号公報 特開2005-201789号公報
締結ねじは、締め付け後に残存する軸力により、接触する座面およびねじの噛み合い部のねじ表面に生じる摩擦力を利用して被締結材をゆるまないように固定する。これまで、ねじのゆるみ防止は、主にナットを特殊形状あるいは特殊構造にすることにより行われてきたが、ねじ自身をゆるみ難いものにすれば、取り外しや繰り返し使用が容易となり、使用できる分野が広がる。そのためには、締結時の締め付け力を大きくすることができるように強度を上げ、同時に、ねじの弾性率を下げて変形しやすくして被締結体との接触面積を増大できれば、摩擦力が大きくなり、ゆるみ難いねじが実現されるが、このようなねじは、これまで生産されなかった。 
バルク金属ガラスは、非晶質からなり、一般に高い強度と通常の金属のおよそ10倍の弾性限ひずみをもち、また、構成元素の種類の組み合わせにより、弾性率を変化させることが可能である。バルク金属ガラスにて、有害な欠陥がなく安定してねじの形状の成形できれば、バルク金属ガラスのもつ高強度で低弾性率、また、高弾性限ひずみという特長を利用して、従来のねじに比してゆるみ難いねじを作ることができる。しかし、バルク金属ガラスは結晶金属でないため、転位(加工により導入される結晶金属特有の線欠陥)による塑性変形(永久ひずみをともなう変形)を生じず、様々な変形機構が考案されているが、基本的に室温付近では延性がきわめて乏しいとされ、加工方法としては鋳造法(溶湯による転写加工)、あるいはガラス転移温度以上で、バルク金属ガラス固有の粘性流動を起こす過冷却液体温度領域(一般に400℃付近で、プラスマイナス数10℃の範囲に存在する)で成形するのが主であり、このガラス転移温度以下において、特に加工度が大きく、加工された部分のひずみの勾配(隣接する部分のひずみの差)が大きいねじの転造加工(塑性変形をもちいた加工方法の一つ)に適用することは難しいと考えられていた。 
バルク金属ガラスは、切削刃物にとって難切削加工材料であり、円柱状に鋳込まれたバルク金属ガラスロッド等を切削加工によりねじ山及びねじ溝を成形しようとすると、刃先の摩耗が著しく、安定して生産することは非常に難しい。また、材料ロスが生じて経済的にも好ましくない。 
鋳造加工では、ねじ山のように形状が尖鋭な部分へのバルク金属ガラスの充填が、その表面張力などの影響により容易でなく、たとえ加圧力や回転遠心力を与えても安定したねじ形状を得ることは難しく、また、高温で発生するガスが混入して欠陥を生じる可能性があるため、鋳造加工のみで作られたねじは信頼性が低いと考えられていた。 
一般に、鋳造加工されたものは脆いため、これを転造加工して信頼性の高い締結ねじを作るという発想はなく、転造加工には延性の高い展伸材を必要としていた。バルク金属ガラスに対しても、一般の鋳造品と同様の考え方から、室温での塑性加工は困難と考えられていた。そのため、これに替わり、ガラス転移温度以上の過冷却液体温度領域に加熱して粘性流動を利用することが検討されているが、加工速度が低く、また、加工温度範囲が狭いため厳しい温度制御が必要となり、さらに高温になるので酸化防止のための真空装置等が必要となり、この方法で生産を行うことは容易ではなかった。 
また、ガラス転移温度以上の粘性流動領域における加工では、表面から中心まで粘性流動を起こすので、中心付近にまで変形を生じて断面の形状が歪(いびつ)になり、ねじの規格を満足する形状を得ることは難しい。このように粘性流動領域での転造加工によるねじの成形は好ましくない。 
通常の金属材料を所定の形状に加工後、表面に金属ガラスを溶射することが試みられているが、これは表面のみがバルク金属ガラスの特性を有する。しかし、締結の際にねじに発生する軸力はねじの横断面全体に及ぶため、内部までバルク金属ガラスでなければ、バルク金属ガラスの特性である高強度で低弾性率であり、高弾性限ひずみを有するという特徴が、ねじにおいて発揮できない。 
一般の結晶からなる金属における転造加工は、高速という生産性の長所以外に、加工された部分に転位が導入されることにより硬化する現象(加工硬化あるいはひずみ硬化という)を利用した強度の向上を図っている。バルク金属ガラスでは、こうした加工硬化は生じないので、機械特性を向上させる目的で、これに転造を適用することはなかった。 
一般に、延性を十分に有した結晶からなる金属のねじでは、ねじがねじ軸の方向に引っ張られたとき、切り欠き形状をしたねじ溝の底の領域に集中する応力は、その部分が転位を介した塑性変形をわずかに起こすことにより応力が緩和され、安定した締結を可能にしている。バルク金属ガラスにより作られる締結ねじは、素材であるバルク金属ガラスに延性が乏しいので、切削や鋳造により締結ねじに成形した場合、ねじ軸の方向に引っ張られたときの応力集中を緩和するための塑性変形が不十分であり、素材の強度よりかなり小さい引張り力でそこから破断する危険性があり、ねじとしての信頼性が乏しいと考えられていた。 
これまで、ねじ、および一般の機械部品においては、表面に炭素を滲み込ませる浸炭処理、窒素を導入する窒化処理など、主に、内部の硬さを上げずに表面を硬化して、部品としての強度とじん性を持たせることが考えられてきたが、表面に延性を与えて、強度とじん性(脆くない性質)を与える考え方は、特に締結ねじにおいてはなかった。 
生体内および生体の外部と接触して使用される締結ねじは、切削で製作され、生産性に問題があった。また、ゆるみ難いという特性は、生体にとって非常に重要であるが、これまであまり強調されることがなかった。 
アルミニウム合金やマグネシウム合金のような降伏点が低く、弾性率も低い被締結材を、それより降伏点が高く、弾性率も高い通常のスチールのねじにて締結する場合、被締結材側の座面に永久ひずみ(陥没)が発生しやすいため、大きな軸力を与えることができず、ねじを締結するに十分な摩擦力を得ることが難しかった。さらに、使用中に発生する外力、特に振動により、同様の永久ひずみを生じて軸力が低下し、ねじのゆるみを促進して大きな問題となっていた。 
そこで本発明では、バルク金属ガラスの特性を活かしたゆるみ難い金属ガラス締結ねじを、安定した製造が可能で、且つ成形時に表面の延性を改善して金属ガラス締結ねじに信頼性を付与する工程とともに、提供することを目的とする。
非晶質からなるバルク金属ガラスは、粘性流動を開始するガラス転移温度以下では、単軸引張り試験において延性をほとんど示さないが、単軸圧縮試験では、わずかに延性が見られる。この事実に基づき、有限要素法を用いた数値解析による加工中の応力の解析と、基礎実験を行った結果、すべてのねじでは適当でないが、実用ねじとして使用できる範囲のねじ山の角度をもつねじの転造加工において、加工中は塑性変形する領域が圧縮応力下にあることを見出した。このように、圧縮下で塑性加工が行われる場合は、変形の際に発生するクラックの開口が抑えられ、クラックが進展することなく相当量の変形が達成されるものと考え、加工実験および応力解析を繰り返すことにより、粘性流動を利用せずとも、ガラス転移温度以下で、正常なねじ山及びねじ溝の成形が転造加工で可能であるということを明らかにした。 
バルク金属ガラスでは、すべり帯(最大せん断応力を生じる面に発生し、塑性変形を可能にする数10ナノレベルの変形帯で、バルク金属ガラスにみられる特有の現象)と呼ばれる変形帯で滑りを生じることで、塑性ひずみ(塑性ひずみが累積(積分)されて塑性変形となる)を生じるといわれている。ただし、この滑りは、通常の結晶金属の転位による均一な変形と異なり、局部的で不均一なものであるため、引張りの力が働くと分離して破断してしまう。ただし、ガラス転移温度以下で、塑性加工により塑性ひずみが導入されてすべり帯を含む部分は、そのすべり帯を起点として新たなすべり帯が発生しやすくなるので、その部分の延性が向上するといわれている。こうして、締結ねじのねじ溝の底の領域ように、ねじに軸力が働いた場合に、応力集中部となる箇所に、このすべり帯が導入されていると、その部分の延性が向上して応力集中が緩和される。 
以上をもとに、課題を解決するために以下のような手段を講じる。 
本発明は、ねじのねじ山及びねじ溝の加工において、非晶質からなるバルク金属ガラスを、被加工材であるバルク金属ガラスのガラス転移温度以下で、転造加工により成形することを特徴とする金属ガラス締結ねじである。 
バルク金属ガラスは、転造加工のような塑性加工により、塑性ひずみが導入されてすべり帯含む部分の延性が向上するという特性をもつ。本発明は、これを効果的に利用して、締結の際に、ねじにかかる引張り力(軸力)によりねじ溝の底の領域で生じる引張り応力の応力集中を緩和させるために、転造加工により塑性ひずみが導入される領域のねじ溝の底からの深さをdとし、 ねじ外径をDとしたとき、d>0.022×Dの関係にあることを特徴とする金属ガラス締結ねじである。 
本発明は、ねじ山角が40~70度の範囲にある三角ねじであることを特徴とする金属ガラス締結ねじである。 
本発明は、前記バルク金属ガラスが、Ti基,Pd基、又はZr基のうち少なくとも一つを含むことにより、生体用に使用されることを特徴とする金属ガラス締結ねじである。 
本発明は、前記バルク金属ガラスが、降伏点が低く、弾性率の低い被締結材を締結する場合は、締結時に、被締結材の永久ひずみ(陥没)によるゆるみを防止するために、被締結材と同等もしくは低い弾性率を有するMg基、Pt基、Ti基,Zr基の何れかを含むことを特徴とする金属ガラス締結ねじである。 
本発明は、前記バルク金属ガラスの塑性変形を生じる領域の平均応力が圧縮応力であるか、又は前記バルク金属ガラ
スの引張り破断強度の3分の1以下の引張り応力で、転造加工により成形される金属ガラス締結ねじの製造方法である。
本発明により、非晶質からなるバルク金属ガラスの共通の特性である高強度で低弾性率であり、かつ高弾性限ひずみをねじに実現することにより、ゆるみ難い締結ねじを提供する。また、室温、および室温より高いがガラス転移温度以下の比較的低い温度で転造加工することにより、安定した品質と生産性を有し、また、ねじの表面付近の延性を改善してねじのねじ溝付近に生じる応力集中を緩和し、内部はバルク金属ガラス本来の強度を保つことにより、締結ねじの強度、じん性(脆くない性質)および信頼性を向上させる製造工程、および金属ガラス締結ねじを合わせて提供することを目的とする。 
以下に、発明の効果に対する内容の詳細を説明する。 
バルク金属ガラスは、通常の金属には見られない、高強度でありながら低弾性率で高弾性限ひずみを有するという特性をもつので、これを締結ねじに適用した場合、被締結材のひずみによる軸力変化を小さく抑えることができる。例えば、外力や振動により被締結材が圧縮変形しても、軸力の低下は小さくおさえられ、高弾性率のスチールねじに比較して、軸力の安定したゆるみ難いねじが実現できる。 
軽量の金属材料は、一般に降伏点が低く、弾性率も小さい。これを従来の弾性率の高いスチールねじで締結すると、座面において被締結材側に変形(陥没)が生じてゆるみの原因となる。被締結材と同等もしくは低い弾性率のバルク金属ガラスを選定し、本発明により作られる金属ガラス締結ねじを用いれば、ねじ側の座面が被締結材と同様に変形するので、座面での接触面積が大きくなり、面圧が低下して陥没が抑制されるとともに、摩擦力も増加してゆるみ難い締結が可能となる。 
一方、同じ軽量材料でもセラミックスは、圧縮強度が高く、弾性率も高い。これを金属ガラス締結ねじで締結する場合は、高強度である特徴をもちいて強く締め付けることにより、金属ガラス締結ねじ自身が変形して座面およびねじの噛み合わせ部の接触面積が増大して、摩擦力が大きくなるので、ゆるみ難い締結が実現する。 
バルク金属ガラスを、ガラス転移温度以下で転造加工を行うことにより、表面付近に塑性ひずみが導入され、ねじ山・ねじ溝に、すべり帯が蓄積して、その部分の延性が向上する。こうして転造加工にて創製された延性が、締結時に生じるねじの軸力(引張り力)によるねじ溝の底の領域での応力集中を緩和する。 
このように、ねじの表面に延性を付与し、内部にバルク金属ガラス本来の高強度を持たせることにより、形状に起因する表面からのき裂発生による脆性的な破断を抑え、また、強度のばらつきを低減して、バランスのよい高強度で、信頼性の高いねじが実現する。 
転造加工は、塑性加工の一般的な特徴である材料ロスを低減を実現し、鋳造加工にて導入されるミクロ欠陥を機械的に押しつぶすこと(鍛圧効果)により、表面付近の欠陥の一部を消滅させて、信頼性の高いねじを作ることを可能にする。 
バルク金属ガラスには、一般的な機械特性以外にも、耐食性、また生体適合性(人体に取り込まれても、人体が拒否反応を示さない)をもつ成分の組み合わせが存在するので、こうした環境に成分をあわせることにより、幅広い応用分野でゆるみ難い締結を実現することができる。 
ここで適用されるねじは、ねじの頭部を有する通常の締結ねじだけでなく、ねじ部に軸力を与えることにより使用される一般的なねじにも適用される。
転造前の中間加工品の成形 転造加工 ねじ断面の応力分布 ねじ山の断面 ねじ断面図 ねじ外観 X線回折試験結果 転造加工中のねじ山 ねじ断面の相当ひずみ分布 ビッカース圧子による圧痕試験 ねじの引張り破断強度試験 荷重-伸び線図 ねじの引張り破断強度の比較
本発明の実施形態を、図1~図5に基づいて本ねじの製造方法について説明し、図6~図13にて、その試験結果を示す。 
素材となるバルク金属ガラスは、共通する性質として、高強度で、低弾性率、かつ高弾性限ひずみを有するというゆるみ難い締結ねじに有利な特長を有するとともに、それを構成する合金成分により物理的、また化学的な性質が変化するので、被締結材、締結条件、および環境に適合したバルク金属ガラスの合金成分(主成分となる金属をそのバルク金属ガラスの基と呼ぶ)を選択して金属ガラス締結ねじを作ることができる。 
降伏点が低く、弾性率の低い被締結材、例えば、アルミニウム合金やマグネシウム合金のような部材を締結する場合は、被締結材の永久ひずみ(陥没)によるゆるみを防止するために、弾性率が同等もしくは低いMg基,Pt基,Ti基,Zr基等のバルク金属ガラスを当該締結ねじの素材に選定する。これにより、ねじ側の変形を大きくして、座面での接触面積を増大させ、面圧を低下させて陥没を防ぐと共に、摩擦力を高めてゆるみ難くする。また、セラミックスのような弾性率が高く、圧縮強度の高い被締結材には、高強度で弾性率が比較的低いバルク金属ガラスを用いることにより、締め付け力を大きくして、座面およびねじの噛み合い部の接触面積を増大させて摩擦力を大きくすることにより、ゆるみ難くすることができる。 
ゆるみ難さとともに耐食性が要求される部位の締結には、Ni-Cr基等の耐食性の高いバルク金属ガラスを適用する。 
生体内で使用する場合は、Ti基、Pd基、Zr-Pd基等を適用することにより、アレルギーや、生体内での拒否反応の少ない生物学的な適合性を有したゆるみ難い締結ねじを実現することができる。 
図1に、バルク金属ガラスをねじに転造する前の中間加工品に成形する方法を示す。バルク金属ガラスは、成分元素を融点以上にアーク溶解等で加熱溶解した後、円柱状に鋳込むことができる。円柱状に鋳込まれた図1(a)のバルク金属ガラス丸棒1を、図1(a)の削り出しによるねじの中間形状品2のように切削加工で成形することにより、転造加工前の中間加工品を作ることができる。ただし、バルク金属ガラスは切削加工が容易でないこと、切削によるロスが発生すること、また、六角穴付ねじのように頭部に穴加工が必要な場合は、その加工が困難であることなどを考慮して、図1(b)の鋳造用素材3のように所望するねじに相当する体積に小切りにした後、無酸化雰囲気中で再溶解し、ねじ頭部41とねじ軸部42をもつ鋳型に鋳込んで、図1(b)の鋳造によるねじの中間形状品4のような転造加工前の中間加工品を成形する方が好ましい。 
図2は、転造加工の仕組みを示す。図2(a)は、ねじ山及びねじ溝の形状をもつ2つの金型(転造ダイス移動側P1および転造ダイス固定側P2)の間に、鋳造によるねじの中間形状品4を挿入して、ねじ軸部42を転がしながら圧下する転造加工である。図2(b)は、鋳造により、ねじの中間形状品4から、転造加工初期5、転造加工中期6のように徐々に金型形状がねじに転写されることにより、転造加工を完了したねじ7が成形する転造加工である。 
転造加工が、バルク金属ガラスにおいて、そのガラス転移温度以下で可能となる理由を以下に説明する。まず、ここで使われる用語について説明する。平均応力は、ある点において、互いに直交する面に生じる垂直応力の平均値であり、その点が圧縮状態(負の値をとる)にあるか、引張り状態(正の値をとる)にあるかを示すもので、平均垂直応力とも言う。相当応力は、面に平行な方向に生じるせん断応力に関係した値で、一般に一様でない多軸の応力の状態を、わかりやすくするために、単純な丸棒の引張りを行った場合(単軸引張りあるいは一軸引張りという)の応力に相当させる。一方、相当ひずみは、一般の一様でないひずみの状態を、単軸引張りのひずみに相当させたものである。また、引張り破断強度とは、引張り破断荷重を、断面積で割って、単位面積当たりの値に換算したもので、応力と同じ単位をもつ。 
室温において、バルク金属ガラスは、単軸引張り試験にてほとんど延性を示さないので、ガラス転移温度以下でバルク金属ガラスを成形するためには、金型から力を受けて変形を生じる領域の平均応力が負(すなわち圧縮状態を示す)の状態で行われることが必要である。なぜならば、圧縮の状態であれば、破壊の原因となるき裂の進展が抑えられるからである。また、単軸引張りにおいても、破断する直前までは、破壊せずに変形することから、単軸引張りにおける破断直前の平均応力、すなわち引張り破断強度の3分の1(これは単軸引張りにて、破断する直前の最大引張り荷重の状態における平均応力を示す。単軸引張りでは、引張り軸と垂直な2方向の応力が0なので、引張り軸方向の応力の3分の1が平均応力となる。)までを含めることができる。よって、ガラス転移温度以下でバルク金属ガラスを成形するためには、平均応力が負の範囲を含め、該バルク金属ガラスの引張り破断強度の3分1以下であることが必要である。 
バルク金属ガラスにおいて、転造加工のように、大きな塑性ひずみと、塑性ひずみが表面近くに集中してひずみ勾配が大きくなる加工において、前出の必要条件が、十分に有効であるかはこれまで明らかにされていなかったが、有限要素法による応力解析と加工実験を繰り返した結果、三角ねじを基本とする金属ガラス締結ねじにおいて、その有効性が明らかになった。 
図3に、有限要素法解析により計算された転造加工中に生じるねじ断面の応力分布を示す。その内容について、転造加工を示す図2とともに説明する。転造加工は、図2(a),(b)に示されるように、ねじ山及びねじ溝に相当する形状をもつ転造ダイス移動側P1および転造ダイス固定側P2の2つのダイスの間を、ねじ軸部42を押し付けながら転がすことにより、金型形状がこれに転写されて、ねじ山およびねじ溝が成形される方法である。このプロセスを応力解析するにあたり、バルク金属ガラスの特性を鑑み、加工硬化をしない剛完全塑性体モデル(塑性変形を開始する相当応力が一定値をとると仮定したモデル)を採用し、ここではZr基金属ガラスの実験値である1800MPaを塑性変形を開始する相当応力とし、一定値とした。数値解析の一つである有限要素法により解析すると、転造加工を示す図2(b)の転造加工中期6に代表される転造加工途中において、ねじの内部に塑性ひずみを生じる領域を示す相当応力分布は、転造加工中のねじの相当応力分布を示す図3(a)のようになる。これにより塑性変形領域は、同図の輪郭線Fで示される相当応力が1800MPa(MPaは応力の単位)以上の斜線で示される領域8の中にあり、ねじ山及びねじ溝の付近にあることがわかる。一方、ねじ断面の平均応力分布を示す図3(b)に同じ加工時点の平均応力分布を示すが、平均応力が0MPaの輪郭線Q1よりねじ山及びねじ溝側(図中右側)の大部分は、平均応力が負となり、圧縮応力下にあり、塑性変形領域の境界を示す相当応力が1800MPaの輪郭線Q2もこの中に含まれることがわかる。図3(b)の中で、この加工時点において、金型に接していないねじ山先端付近に、わずかに平均応力が0MPaを越えて正になる部分が存在するが、バルク金属ガラスの引張り破断強度(1800MPa)の3分の1である600MPa以下であることがわかる。こうして、理論的に、転造加工がクラックの進展による破壊を抑制する効果があることが示された。 
上記の理論的な内容は、複数の実験により正当性が確認された。また、ガラス転移温度以下において成形が可能となったのは、転造加工が典型的な逐次加工、すなわち、円筒形状のバルク金属ガラスに対し、5回程度、押し込みながら転がし、押し込み量を逐次に増やしながら繰り返し加え
て、金型のねじ溝を転写して完成させる加工方法であるため、転造加工が進行する毎に塑性ひずみが導入されてすべり帯が蓄積して、バルク金属ガラスの延性が改善され、変形能力が向上したことも、その要因の一つと考えられる。 
ねじのねじ山部およびねじ溝部は、転造加工中に金型を通して力を受けるが、そのねじの形状により、転造加工中に、被加工物であるバルク金属ガラス内に生じる応力の状態、すなわち加工中の平均応力が、負(圧縮)になるか正(引張り)になるかが決まる。 
図4に示されるねじ山の断面において、通常、締結に使われる図4(a)の3角ねじのねじ山9においては、転造加工の開始から完了までのすべての時点で、塑性変形領域が、すべて圧縮応力あるいは引張り破断強度の3分の1以下にあることが、前出の有限要素法解析により明らかになった。こうして、メートルねじおよびユニファイねじなどに代表される三角ねじの金属ガラス締結ねじが、理論的に転造加工が可能であることが示され、また、実験により確認された。   
これに対し、図4(b)に示される角ねじ、および図4(c)に示される台形ねじにおいては、塑性変形領域となる角ねじのねじ山10,台形ねじのねじ山11の周辺に引張り破断強度の3分の1を越える高い引張り応力が生じるため、ガラス転移温度以下では、クラックを生じることなく安定した正常な加工をすることは一般に困難であることを実験と有限要素法解析により確認した。ただし、相当応力が塑性変形を開始する値を越える領域(前出の例において、相当応力が1800MPa以上の領域9に該当)において、平均応力が圧縮、あるいは引張り破断強度の3分の1以下となるように形状を修正すれば、正常な加工を行うことは可能となる。 
ねじ山の断面を示す図4(a)における、三角ねじのねじ山角度Q3は、40度以下では軸力の保持が十分に行えず、また、70度を越えるとねじの噛み合わせの部分の摩擦力が低下してゆるみやすくなる。よって、締結ねじとしての機能を最大限に発揮するためには、ねじ山の角度は40~70度の範囲にあることが必要である。また、これらのねじ山角度をもつねじは、転造加工中において、塑性ひずみが生じて塑性変形する領域の平均応力が圧縮あるいは引張り破断強度の3分の1以下の引張り応力であることが、それぞれ有限要素法解析と実験により示されるので、ガラス転移温度以下でバルク金属ガラスを転造加工することができる。 
続いて、上記のようにガラス転移温度以下で、転造加工により製作された金属ガラス締結ねじの機械特性について説明する。 
ねじは、ねじ溝を有するので、締結されて引張り力(軸力)がねじに作用したとき、このねじ溝の付近で、溝形状に起因する高い応力が発生する(ねじ溝がV形をしており、切り欠き形状に近似しているために生じる)。中でも、ナット座面に近いねじ側の第一ねじの溝の底付近が最も高くなる。ここは、ナットとのはめあい部であるので、ねじ全体の引張りだけでなく、ねじ山の曲げ作用による引張りが重畳されるためである(例えば、山本晃ら:日本規格協会,ねじ締付機構設計のポイント、P190など)。よって、延性の乏しい脆性材料のねじでは、ナット座面に近いねじ側の第一ねじの溝の底付近から破断してしまうため、信頼性の高い締結が実現できなかった。 
図5は、転造加工により作られたねじ断面図を示す。図5(a)では、転造加工により塑性ひずみが導入された領域、すなわちバルク金属ガラス特有のすべり帯を含む領域12が斜線により示される。締結されて引張り力(軸力)がねじに作用したとき、高い引張り応力が発生するねじ溝の底部(底の周辺領域)もこのすべり帯を含む領域12に含まれる。 
このねじ溝の底部における延性の効果について、理論的な観点から説明する。 
破壊力学によると、引張り荷重がかかったとき、それと垂直方向に進むき裂の先端部では、非常に高い引張り応力が発生する。この先端領域に延性があると、そこが引張り塑性変形することにより引張り応力が緩和される。ねじのように、切り欠き形状に類似したねじ溝があると、ねじの断面を示す図5の引張り方向R1に、軸力による引張り荷重がかかったとき、ここがき裂発生の先端部の役割をはたして高い引張り応力が発生する。このねじ溝の底の領域に延性があると、図5(a)のM部を拡大した図5(b)の引張り塑性変形領域13において、引張り塑性変形することにより、引張り応力が緩和される。図5を用いて、この引張り塑性変形領域13の大きさを求める計算方法を以下に示す。図5(b)のねじ溝部の拡大図より、引張り塑性変形領域13のねじ溝底から深さ(距離)を、図5(b)のようにrとすると、破壊力学によれば、弾性限まで引張り荷重がかかったときのrは、臨界応力拡大係数Kc(後述)と、弾性限応力(弾性限の引張り荷重を有効断面積で割った値)σl、および円周率πをもちいて、  
Figure JPOXMLDOC01-appb-M000001
  とほぼ見積もることができる。尚、このKcは、き裂が発生する部分の形状と、弾性限応力σlにより以下のように求めることができる。すなわち、ねじの溝部をき裂とみなして、等間隔に円環き裂を有する無限の丸棒と仮定すると、臨界応力拡大係数Kcは、図5(b)のねじ外径Dを用いて、式(2)のようになる。(参考文献として、宇佐美:機械設計,51巻,15号(2007年)および、西谷ら:日本機械学会論文集(A編),50巻453号(1984年))尚、論文の中の係数に安全を見て、0.30とするという考え方もあるが、ここでは、標準値である0.26を(2)式の係数にもちいている。  
Figure JPOXMLDOC01-appb-M000002
  ここで、式(2)を式(1)に代入するとr=0.022×D         ・・・(3)となる。このねじ溝の引張り塑性変形領域13の深さrの位置が、転造加工により塑性ひずみが導入されすべり帯が蓄積している領域に含まれ、延性が向上していることが必要となる。すなわち、転造加工により塑性ひずみが導入された領域の深さをdとするとき、dがrより大きい必要がある。すなわち、d>r                 ・・・(4)すなわち、式(3)と式(4)より、d>0.022×D           ・・・(5)でなければならない。安定した効果を得るためには、ばらつき等を考慮して、転造加工により塑性ひずみが導入されてすべり帯を含む領域12の深さdは、この最低値の1.5倍以上であることが望ましい。 
転造前の形状を、鋳造あるいは切削により、ねじのねじ山およびねじ溝の一部を成形して、これを中間形状とし、その後、転造加工を行ってねじに仕上げた場合は、転造加工により塑性ひずみが導入される領域の大きさが不十分となり、前記式(4)の条件を満足しない場合がある。このときは、転造を行っても、応力集中の緩和の効果が十分に得られない。 
ガラス転移温度以下において転造加工を行うことにより、塑性ひずみが生じない内部に、鋳造のままのバルク金属ガラスによる高強度を持たせ、表面付近には、転造加工により、図5のすべり帯をふくむ領域12のように、塑性ひずみが導入されてすべり帯を集積させることにより延性を向上させる。このような従来のねじにない新しい組織設計により、ねじの溝形状に起因する応力集中を緩和して、き裂を進展しにくくして、転造加工を行わない金属ガラス締結ねじに比べて、ねじの破断強度を向上して、また、強度を安定化することができる。 
ガラス転移温度は、バルク金属ガラスの種類により異なるが、通常300℃以上である。本発明による温度範囲はガラス転移温度以下としているが、生産性を考慮して、厳しい熱管理や特殊な潤滑剤および酸化防止のための装置が不要となる200℃以下の温度で行うことが好ましい。 
加工速度は、表面における金型との間の焼き付きや、昇温によるバルク金属ガラスの結晶化を避けることを考慮して設定する。例えば、ガラス転移温度以下であっても、加工速度が速すぎると加工される部分が断熱状態となって昇温し、その部分が結晶化して脆くなる恐れがあるので、ひずみ速度を100s-1以下に抑えることが好ましい。 
転造加工された金属ガラス締結ねじは、X線回折法(XRD)により転造されたねじ山及びねじ溝の微視的構造を解析することで、非晶質の割合を求めることができる。脆化の原因となる数100ミクロンを越えるようなマクロな偏析や結晶化粒子の存在は、有害であり不可とするが、それ以下の微細粒子あるいはナノ粒子といわれる結晶粒子については、有害でなければこれを含めることができる。金属ガラスが締結ねじとして機能するためには、転造加工されたねじ軸部71の50%以上が非晶質であることが好ましい。尚、ねじ頭部41については、軸力にほとんど関与しないので、これ以下であってもよい。
以下に、本発明の実施例を示す。 
製作する締結ねじは、山の角度が60度のJISに規定されるサイズがM3の六角穴付ボルト(キャップスクリュー)とし、ねじの首下長さを8mmの全ねじ(軸部全体にねじ山とねじ溝をもつねじ)をもちいた。 
バルク金属ガラスとしては、高強度で、高ガラス形成能を有し、衝撃値が高いZr基のバルク金属ガラスZr55Al10Cu30Ni5(数字は、成分の比率を表す)を使用した。このバルク金属ガラスのガラス転移温度は410℃である。 
強度を考えるとFe基およびそれに次ぐNi基がのぞましいが、Fe基は脆さがあり、また、Ni基は臨界直径(鋳込んだときに、バルク金属ガラスが非晶質となる最大直径)が小さく結晶化しやすいので好ましくない。これに対しZr基はガラス形成能が高く、また、引張り破断強度も1800MPaとねじにとっては十分に高い強度であり、さらに弾性率が90GPa(90000MPa)、降伏ひずみ2.0%と弾性範囲が大きいので、軽金属のような低弾性率材をはじめ、セラミックスのような高弾性率材まで、幅広い材料を被締結材に用いて、ゆるみ難い締結を実現することができる。 
図1のように、素材を鋳造法にて、φ5.25、長さ200mmのバルク金属ガラスの丸棒1を作製した後、目的とする上記ねじと同等の体積になるように切り出し、鋳造用素材3を作った。 
上記鋳造用素材3を、真空引き後にアルゴンガスで置換した雰囲気中で、高周波誘導加熱により920℃に昇温して再溶解し、ねじ頭部41およびねじ軸部42を形成するための型に流し込んで、鋳造によるねじの中間形状品4を製作した。金型には、該バルク金属ガラスが非晶質を形成するための最低の冷却速度である臨界冷却速度を考慮して、適当な熱伝導率と金型寿命を有するスチールを選定した。 
サイズがM3の鋳造によるねじの中間形状品4をもちいて、ねじ山の角度を60度とした転造ダイス移動側P1と転造ダイス固定側P2を用いて、室温(約20℃)と温間(180℃)の2条件で、図2に示す転造加工を行い、ねじ山及びねじ溝の成形を行った。 
図6は、室温にて転造加工を完了したねじ7の外観の走査型電子顕微鏡像である。図6(a)は全体像で,図6(b)は、ねじ部の拡大像である。これにより、転造加工で成形されたねじ山14が、正常に成形されていることが確認された。また、
転造加工を完了したねじ7は、各部の寸法測定によりすべて規格内にあることを確認した。 
図7にCr-Kα線をもちいたX線回折試験(XRD)の結果を示す。縦軸はX線の強度を示し、横軸は入射角を示しており、ねじ山部と、ねじ頭部の2つ部分の試験結果を、それぞれA、Bとして示している。これにより、転造加工で成形されたねじ山部のAは、回折強度に結晶の存在を示す明瞭なピークが無いことにより非晶質となっていることが確認された。また、ねじ頭部のBには結晶のピークがいくつか見られ、一部結晶化していることがわかる。 
図8は、転造加工中のねじ山を示す。これより、2つのねじ山が形成されつつある部分に、筋状にすべり帯15が見られる。これらのすべり帯が、転造加工が進行すると共に、ねじ山およびねじ溝の付近に蓄積されて、この部分の延性が向上する。 
図9は、ねじ断面の相当ひずみ分布を示している。これをもちいて、図5に示される転造加工により塑性ひずみが導入されてすべり帯を含む領域12の深さdを理論的に求めることができる。(図3において、相当応力が1800MPaの輪郭線Q2により求めることもできるが、ここではよりわかり易くするために、相当ひずみ分布を使用する) すなわち、図9中の輪郭線Bよりねじの表面側の領域は、相当ひずみが0.24以上であり、対象となるバルク金属ガラスの弾性限ひずみ0.02を越えているので、塑性ひずみが導入された領域であることがわかる。輪郭線Bは、ねじ溝からの深さ約0.3mmであるので、少なくとも塑性ひずみが導入されてすべり帯を含む領域12の深さdは0.3mmより深い位置となり、0.3mmより大きい値をとることがわかる。次に、図5に示される引張り荷重が、破断荷重付近まで引張り方向Rにかかったときに、ねじ溝に生じる引張り塑性変形部13の深さrは、対象となるM3ねじの外径Dが3mmなので、式(3)より、r=0.022×3mm=0.066mmとなる。これにより、dはrの4倍以上となり、式(4)のd>r、すなわち、式(5)d>0.022Dの関係が成り立つので、引張り荷重がかかったときに生じる引張り塑性変形部13は、転造により導入された延性を与えるすべり帯を含む領域12に含まれ、ねじ溝の底部に生じる引張り応力を緩和することができる。 
図10は、ねじ断面のビッカース硬さ試験の結果を示す。縦軸は100gの荷重によるビッカース硬さを示し、横軸は、ねじの縦断面において、ねじ溝の底からねじ軸の中心に向かう深さを示す。測定は0.05mm間隔で行われ、図10のような折れ線グラフを作図した。図10より、溝底からの深さが0.36mmから表面に向かってで硬さが低くなることから、これをもって転造加工で導入された塑性ひずみによるすべり帯を含む領域12の深さdと考えることができる。この値は、上記の有限要素法による相当ひずみの解析結果とほぼ同等であり、この結果からも、d>0.022Dの関係が成り立つことがわかる。 
図11は、バルク金属ガラスをもちいて転造加工を完了したねじ7と、鋳造によるねじの中間形状4を、切削加工することによりねじ山とねじ溝を成形したサイズが同じM3の切削金属ガラス締結ねじについて、ねじの引張り破断強度の試験を行った結果である。ねじの引張り破断強度は、引張りにおける最大破断荷重をねじの有効断面積((ねじのピッチ径+ねじ溝径)/2の径で描かれる円の面積)で除した値で示される。室温で転造加工された冷間転造加工品、および温間(180℃)で転造加工された温間転造加工品のいずれの引張り破断強度も、切削加工により成形された切削金属ガラス締結ねじのそれよりも大きい。また、ねじの伸び(引張り破断するまでのねじの首下からナット座面までの長さの変化量)は、切削金属ガラス締結ねじの平均のびを1.0とした場合の、それぞれの倍率で示される。冷間転造加工および温間転造加工の金属ガラス締結ねじは、切削金属ガラス締結ねじの1.7~1.8倍の伸びを示す。 
図12は、室温で転造された金属ガラス締結ねじと、切削による金属ガラス締結ねじの引張り試験における荷重-変位線図を示す。横軸をねじの伸びを表す引張り方向の変位とし、縦軸をそのときの荷重として、ねじが破断するまでそれぞれのねじを引っ張ったときの関係を示している。これにより、破線で示される切削金属ガラス締結ねじは、転造による図5のすべり帯を含む領域12を持たないので、延性を示すことなく、直線の途中で突然破断している。これに対し、転造による金属ガラス締結ねじは、変位の増加にともない途中で直線性からわずかに外れ、上に凸の非線形の曲線を呈している。これは、ねじ溝の底部で、図5(b)の引張り塑性変形部13にて、引張り塑性伸びが生じたためであり、ねじとしての延性が現れたことを示している。 
また、図12より、破断荷重が、転造よる金属ガラス締結ねじの方が切削金属ガラス締結ねじよりも大きくなっている。これは、転造よる金属ガラス締結ねじは、ねじ溝における応力集中が緩和するので、切削ねじのように直線の途中、すなわち弾性領域の途中で脆性材料のように突然破断することがない。ねじの内部に、鋳造のままのバルク金属ガラスの強度を維持し、ねじ山およびねじ溝の付近に、転造加工により塑性ひずみが導入されてすべり帯を含む領域12配置して、この部分に延性を付与することにより、これらがバランスよくはたらき、破断強度が向上している。 
図13は、JISのM3ねじにおいて、他のねじとのねじの引張り破断強度の比較を示したものである。比較材として、SUSXM7(オーステナイト系ステンレスねじ)、ハイテン(機械締結用の高抗張力ボルト)およびベータチタン(高強度のベータチタンねじ)の引張り破断強度をもちいている。本発明による転造による温間(180℃)、および室温で転造加工によりつくられた転造による金属ガラス締結ねじは、サンプル2ヶをもちいて示されているが、いずれも比較のねじの中で最高強度のハイテンねじより、1.3倍程度強度が高い。今回のサイズがM3の金属ガラス締結ねじは計算上、ハイテンでは、ほぼ一つ上のねじサイズであるM4に相当するねじの引張り破断荷重を有している。 
製作された10ヶの金属ガラス締結ねじにて、ねじの引張り破断強度のばらつきの度合いを測定したところ、切削金属ガラス締結ねじは、平均引張り破断強度の約15%の範囲で引張り破断強度がばらついているのに対し、転造による金属ガラス締結ねじは、それが3%の範囲と小さかった。これは、転造によりつくられた金属ガラス締結ねじでは、ねじ溝部の延性が向上し、応力集中が緩和されて、破断荷重が安定したことを示している。 
このように、ガラス転移温度以下で転造加工により成形された金属ガラス締結ねじは、ねじの引張り破断強度が、他の高強度ねじに比べて大きな値を有し、また、バルク金属ガラスの有する大きな弾性限ひずみという特性を有するので、軸力が安定し、また被締結体との接触面積が増大して摩擦力が増加することにより、ねじ自身にゆるみ難い特性をもち、さらに、ねじの表面の延性が向上することにより、ねじ溝の応力集中が緩和され、安定した強度を維持できるので、信頼性の高い締結ねじが提供される。
CO2ガスの排出量の削減および省エネに有効な軽量部材において、ゆるみ難い金属ガラス締結ねじを実現し、幅広く産業界に貢献する。 
高速化が進む加工機や水周り及び腐食環境においては、セラミックスが部材として使用されるが、この部材に対してもゆるみ難い金属ガラス締結ねじを実現して、広く産業界に貢献する。 
医療関係においても、生体適合性を有するバルク金属ガラス(Ti基、Pd基,Zr-Pd基など)を選定し、また、締結対象となる骨などと弾性率が近似するバルク金属ガラスを選定することにより、ゆるみにくい生体用の金属ガラス締結ねじの提供が可能となる。
1 バルク金属ガラス丸棒 2 削り出しによるねじ中間形状品3 鋳造用素材4 鋳造によるねじの中間形状品41 ねじ頭部42 ねじ軸部5 転造加工初期6 転造加工中期7 転造加工を完了したねじ71 転造加工されたねじの軸部8 相当応力が1800MPa以上の領域9 三角ねじのねじ山10 角ねじのねじ山11 台形ねじのねじ山12 すべり帯を含む領域13 引張り塑性変形領域14 転造加工で成形されたねじ山15 すべり帯P1 転造ダイス移動側P2 転造ダイス固定側Q1 平均応力が0MPaの輪郭線Q2 相当応力が1800MPaの輪郭線Q3 ねじ山角度R1 引張り方向                  

Claims (6)

  1. ねじのねじ山及びねじ溝の加工において、非晶質からなるバルク金属ガラスを、被加工材であるバルク金属ガラスのガラス転移温度以下で、転造加工により成形することを特徴とする金属ガラス締結ねじ。
  2. 転造加工により塑性ひずみが導入される領域のねじ溝の底からの深さをdとし、 ねじ外径をDとしたとき、d>0.022×Dの関係にあることを特徴とする請求項1に記載の金属ガラス締結ねじ。
  3. ねじ山角が40~70度の範囲にある三角ねじであることを特徴とする請求項1または請求項2に記載の金属ガラス締結ねじ。
  4. 前記バルク金属ガラスは、Ti基,Pd基、又はZr基のうち少なくとも一つを含むことにより、生体用に使用されることを特徴とする請求項1に記載の金属ガラス締結ねじ。
  5. 前記バルク金属ガラスは、降伏点が低く、弾性率の低い被締結材を締結する場合は、締結時に、被締結材の永久ひずみ(陥没)によるゆるみを防止するために、被締結材と同等もしくは低い弾性率を有するMg基、Pt基、Ti基,Zr基の何れかを含むことを特徴とする請求項1又は請求項4に記載の金属ガラス締結ねじ。
  6. 前記バルク金属ガラスの塑性変形を生じる領域の平均応力が圧縮応力であるか、又は前記バルク金属ガラスの引張り破断強度の3分の1以下の引張り応力で、転造加工により成形される請求項1、請求項4、又は請求項5の何れかに記載の金属ガラス締結ねじの製造方法。               
PCT/JP2010/060540 2010-01-22 2010-06-22 金属ガラス締結ねじ WO2011089742A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10843906.8A EP2527059B1 (en) 2010-01-22 2010-06-22 Metallic glass fastening screw and its method of manufacturing
KR1020127018104A KR101718179B1 (ko) 2010-01-22 2010-06-22 금속유리 체결 나사
US13/574,498 US9095890B2 (en) 2010-01-22 2010-06-22 Metallic glass fastening screw
CN201080062161.3A CN102844130B (zh) 2010-01-22 2010-06-22 金属玻璃紧固螺丝及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010011544 2010-01-22
JP2010-011544 2010-01-22
JP2010065872A JP4783934B2 (ja) 2009-06-10 2010-03-23 金属ガラス締結ねじ
JP2010-065872 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011089742A1 true WO2011089742A1 (ja) 2011-07-28

Family

ID=44306561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060540 WO2011089742A1 (ja) 2010-01-22 2010-06-22 金属ガラス締結ねじ

Country Status (6)

Country Link
US (1) US9095890B2 (ja)
EP (1) EP2527059B1 (ja)
JP (1) JP4783934B2 (ja)
KR (1) KR101718179B1 (ja)
CN (1) CN102844130B (ja)
WO (1) WO2011089742A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334769B2 (ja) * 2009-09-10 2013-11-06 独立行政法人物質・材料研究機構 高強度ボルト
CN104641010B (zh) * 2012-03-23 2018-05-22 苹果公司 给料或组成部分的无定形合金辊轧成形
CN104320989B (zh) * 2012-03-23 2017-06-06 科卢斯博知识产权有限公司 块体无定形合金紧固件
KR102264766B1 (ko) 2013-03-21 2021-06-14 일리노이즈 툴 워크스 인코포레이티드 왕복 다이를 갖는 롤 형성 기계와, 원통형 블랭크 상에 패턴을 형성하는 방법
GB2518849A (en) * 2013-10-01 2015-04-08 Nobel Biocare Services Ag Dental Kit-of-parts and Method of assembling the same
US11317955B2 (en) 2014-08-27 2022-05-03 University of Pittsburgh—of the Commonwealth System of Higher Education Magnesium enhanced/induced bone formation
CN107530238B (zh) * 2015-04-29 2021-05-04 高露洁-棕榄公司 口腔护理组合物
US9839955B2 (en) 2015-05-15 2017-12-12 Northrop Grumman Systems Corporation Amorphous metal permanent fastener utilizing a thermoplastically swaged retainer
MX366957B (es) 2015-11-13 2019-07-29 Procter & Gamble Composiciones dentífricas con estabilidad mejorada del fluoruro.
WO2017079956A1 (en) 2015-11-13 2017-05-18 The Procter & Gamble Company Dentifrice compositions with dual fluoride source with improved fluoride uptake
WO2017079957A1 (en) 2015-11-13 2017-05-18 The Procter & Gamble Company Dentifrice compositions with improved fluoride uptake
CN105344897B (zh) * 2015-11-27 2016-08-24 宁波敏达机电有限公司 螺旋柱面螺栓及其加工牙板
CN105598652B (zh) * 2016-03-18 2018-01-19 中国科学院力学研究所 一种使韧性金属玻璃产生宏观拉伸塑性的方法
CN106111857A (zh) * 2016-06-24 2016-11-16 天津众信机械制造有限公司 一种螺丝成型模具
WO2018118138A1 (en) * 2016-12-21 2018-06-28 Colgate-Palmolive Company Oral care compositions
US20210325026A1 (en) * 2018-12-18 2021-10-21 Signify Holding B.V. A lighting device
TWI686260B (zh) * 2019-03-27 2020-03-01 益展工業股份有限公司 鎖合件製程方法
KR102201980B1 (ko) * 2020-01-22 2021-01-11 이윤배 다단접지구조를 갖는 접지장치용 볼트, 볼트를 제조하는 방법 및 그 볼트 제조 방법에 사용되는 금형
CN112719166A (zh) * 2020-12-03 2021-04-30 黄逸良 一种钢棒自动上纹设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173558A (ja) 2003-11-21 2005-06-30 Seiko Epson Corp 円周面の加工方法、現像ローラ及び感光ドラムの製造方法並びに現像ローラ及び感光ドラム
JP2005201789A (ja) 2004-01-16 2005-07-28 Seiko Epson Corp 部材の成形方法および時計外装部品並びに装飾品
JP2006002238A (ja) * 2004-06-21 2006-01-05 Ykk Corp ロール金型及びその製造方法
JP2007131952A (ja) 2004-03-25 2007-05-31 Akihisa Inoue 金属ガラス積層体
JP2008126313A (ja) 2006-11-21 2008-06-05 Honda Seiki Kk 急冷凝固用遠心鋳造機の回転鋳型
JP2008200734A (ja) 2007-02-22 2008-09-04 Seiko Instruments Inc スリーブ製造方法、動圧軸受装置及びスリーブ製造装置
JP2008238214A (ja) 2007-03-27 2008-10-09 Bmg:Kk 金属ガラスの成形方法および金属ガラスの成形装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9014817D0 (en) * 1990-07-04 1990-08-22 Mehdian Seyed M H Improvements in or relating to apparatus for use in the treatment of spinal disorders
US6007692A (en) * 1993-04-05 1999-12-28 Xerox Corporation Electroforming mandrels with contoured surfaces
US5368659A (en) * 1993-04-07 1994-11-29 California Institute Of Technology Method of forming berryllium bearing metallic glass
US5288344A (en) * 1993-04-07 1994-02-22 California Institute Of Technology Berylllium bearing amorphous metallic alloys formed by low cooling rates
AUPM644394A0 (en) * 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
US5482580A (en) * 1994-06-13 1996-01-09 Amorphous Alloys Corp. Joining of metals using a bulk amorphous intermediate layer
US5618359A (en) * 1995-02-08 1997-04-08 California Institute Of Technology Metallic glass alloys of Zr, Ti, Cu and Ni
US5711363A (en) * 1996-02-16 1998-01-27 Amorphous Technologies International Die casting of bulk-solidifying amorphous alloys
US5735975A (en) * 1996-02-21 1998-04-07 California Institute Of Technology Quinary metallic glass alloys
CN1196042C (zh) * 1997-08-28 2005-04-06 精工爱普生株式会社 精密仪器的驱动用发条,钟表,驱动机构
US6325868B1 (en) * 2000-04-19 2001-12-04 Yonsei University Nickel-based amorphous alloy compositions
DE10038016A1 (de) * 2000-08-04 2002-02-14 Wuerth Adolf Gmbh & Co Kg Dübel für Leichtbaustoffe
US20020162605A1 (en) * 2001-03-05 2002-11-07 Horton Joseph A. Bulk metallic glass medical instruments, implants, and methods of using same
JP3750991B2 (ja) * 2001-03-13 2006-03-01 株式会社青山製作所 高強度ボルトを用いた部材の締結方法
US6562156B2 (en) * 2001-08-02 2003-05-13 Ut-Battelle, Llc Economic manufacturing of bulk metallic glass compositions by microalloying
DE60230769D1 (de) * 2001-08-02 2009-02-26 Liquidmetal Technologies Inc Verbinden von amorphen metallen mit anderen metallen mit einer mechanischen gussverbindung
JP3912103B2 (ja) * 2001-12-19 2007-05-09 日本精工株式会社 転造ボールねじ及びボールねじ溝の転造加工方法
CN2540241Y (zh) * 2002-04-22 2003-03-19 江荫琪 钢筋端头螺纹滚丝机
DE10228505A1 (de) * 2002-06-20 2004-01-08 Swg Schraubenwerk Gaisbach Gmbh Holzbauschraube und Verfahren zu ihrer Herstellung
JP3790499B2 (ja) * 2002-06-25 2006-06-28 独立行政法人科学技術振興機構 バルク金属ガラスからなる弾性材料
CN2576376Y (zh) * 2002-10-08 2003-10-01 邢台市邢工建筑机械有限公司 滚丝机
USRE45414E1 (en) * 2003-04-14 2015-03-17 Crucible Intellectual Property, Llc Continuous casting of bulk solidifying amorphous alloys
USRE47529E1 (en) * 2003-10-01 2019-07-23 Apple Inc. Fe-base in-situ composite alloys comprising amorphous phase
US20070264100A1 (en) * 2004-11-19 2007-11-15 Nagoya Industrial Science Research Institute Multi-Pitch Screw and Method and Apparatus for manufacturing Multi-Pitch Screw
US8480864B2 (en) * 2005-11-14 2013-07-09 Joseph C. Farmer Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings
CN101618578B (zh) * 2006-04-20 2012-07-25 住友重机械工业株式会社 树脂成形装置
KR100748831B1 (ko) * 2006-11-15 2007-08-13 한화테크엠주식회사 대향형 툴포스트를 가지는 자동선반
US8024980B2 (en) * 2008-01-24 2011-09-27 Microstrain, Inc. Independently calibrated wireless structural load sensor
US7883307B2 (en) * 2009-02-27 2011-02-08 Illinois Tool Works Inc. Self-drilling fastener
GB201019021D0 (en) * 2010-11-11 2010-12-22 Henrob Ltd A rivet
US8961091B2 (en) * 2012-06-18 2015-02-24 Apple Inc. Fastener made of bulk amorphous alloy
US9103009B2 (en) * 2012-07-04 2015-08-11 Apple Inc. Method of using core shell pre-alloy structure to make alloys in a controlled manner
US8696283B1 (en) * 2012-09-25 2014-04-15 Callaway Golf Company Weight screw

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173558A (ja) 2003-11-21 2005-06-30 Seiko Epson Corp 円周面の加工方法、現像ローラ及び感光ドラムの製造方法並びに現像ローラ及び感光ドラム
JP2005201789A (ja) 2004-01-16 2005-07-28 Seiko Epson Corp 部材の成形方法および時計外装部品並びに装飾品
JP2007131952A (ja) 2004-03-25 2007-05-31 Akihisa Inoue 金属ガラス積層体
JP2006002238A (ja) * 2004-06-21 2006-01-05 Ykk Corp ロール金型及びその製造方法
JP2008126313A (ja) 2006-11-21 2008-06-05 Honda Seiki Kk 急冷凝固用遠心鋳造機の回転鋳型
JP2008200734A (ja) 2007-02-22 2008-09-04 Seiko Instruments Inc スリーブ製造方法、動圧軸受装置及びスリーブ製造装置
JP2008238214A (ja) 2007-03-27 2008-10-09 Bmg:Kk 金属ガラスの成形方法および金属ガラスの成形装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NISHITANI ET AL., TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 50, no. 453, 1984
See also references of EP2527059A4
USAMI, KIKAI SEKKEI, vol. 51, no. 15, 2007
YAMAMOTO, AKIRA ET AL.: "Neji Shimetsuke Kikou Sekkei No Pointo", JAPANESE STANDARDS ASSOCIATION, pages: 190

Also Published As

Publication number Publication date
US20130022427A1 (en) 2013-01-24
CN102844130B (zh) 2015-04-01
JP4783934B2 (ja) 2011-09-28
KR20120130085A (ko) 2012-11-28
EP2527059A1 (en) 2012-11-28
EP2527059B1 (en) 2020-12-09
JP2011169458A (ja) 2011-09-01
EP2527059A4 (en) 2017-07-26
US9095890B2 (en) 2015-08-04
CN102844130A (zh) 2012-12-26
KR101718179B1 (ko) 2017-03-20

Similar Documents

Publication Publication Date Title
JP4783934B2 (ja) 金属ガラス締結ねじ
Zhang et al. Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy
EP2436792B1 (en) Linear object, bolt, nut and washer each comprising magnesium alloy
CN100382939C (zh) 锐边切割工具
TWI444484B (zh) 鋼,製造鋼坯料的方法及製造鋼的組分的方法
WO2012049990A1 (ja) マグネシウム合金の線状体及びボルト、ナット並びにワッシャー
KR20130099226A (ko) 피로 강도가 우수한 내마모성 티탄 합금 부재
JP5441028B2 (ja) 回転ツール
Hofmann et al. New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility
Paramsothy et al. Adding carbon nanotubes and integrating with AA5052 aluminium alloy core to simultaneously enhance stiffness, strength and failure strain of AZ31 magnesium alloy
Wang et al. Deformation behaviors of a tungsten-wire/bulk metallic glass matrix composite in a wide strain rate range
JP5522854B2 (ja) 冷間工具鋼およびその製造方法
JP5444938B2 (ja) 金型用鋼
CN108884517B (zh) 钛合金、时钟外装部件用材料的制造方法
JP2010222632A (ja) 高強度Fe−Ni−Co−Ti系合金およびその製造方法
Zhang et al. Contribution of twins to the strengthening of commercial purity titanium after equal-channel angular pressing
TWI337645B (ja)
Huijie et al. Study of diffusion bonding of fine grain TC21 titanium alloy
Bardet Processing of titanium-based composite materials with nanosized TiC and TiB reinforcements using different powder metallurgy processes: hydrogenation/dehydrogenation sintering, and severe plastic deformation (Equal Channel Angular Pressing: ECAP)
JP2006144063A (ja) チタン合金製エンジンバルブの製造方法
JP2004009135A (ja) 締結部品の製造方法及び締結部品
KR101376506B1 (ko) 연성 수지상이 포함된 Zr계 비정질 기지 복합재료
Sweet Improving the mechanical and physical properties of an aluminum powder metallurgy metal matrix composite via hot upset forging
WO2018021465A1 (ja) ダイカスト用プランジャーチップ及びダイカストショットスリーブ
JPWO2006057430A1 (ja) 高強度成形品の製造方法及びそれにより得られる高強度成形品及び高強度小ねじ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062161.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127018104

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010843906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13574498

Country of ref document: US