WO2011089653A1 - 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。 - Google Patents

液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。 Download PDF

Info

Publication number
WO2011089653A1
WO2011089653A1 PCT/JP2010/000383 JP2010000383W WO2011089653A1 WO 2011089653 A1 WO2011089653 A1 WO 2011089653A1 JP 2010000383 W JP2010000383 W JP 2010000383W WO 2011089653 A1 WO2011089653 A1 WO 2011089653A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
dendrimer
polymer
crystal material
polymerization
Prior art date
Application number
PCT/JP2010/000383
Other languages
English (en)
French (fr)
Inventor
木崎幸男
山口�一
岐津裕子
田中雅男
平尾明子
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to KR1020127014686A priority Critical patent/KR101354800B1/ko
Priority to JP2011550722A priority patent/JP5178922B2/ja
Priority to CN201080055820.0A priority patent/CN102652167B/zh
Priority to PCT/JP2010/000383 priority patent/WO2011089653A1/ja
Publication of WO2011089653A1 publication Critical patent/WO2011089653A1/ja
Priority to US13/557,703 priority patent/US8613985B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0275Blue phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0418Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a dendromer structure; Dendritic liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • the present invention relates to a liquid crystal / polymer composite, a liquid crystal display using the same, and a method for producing a liquid crystal / polymer composite.
  • a display mode such as an IPS (in-plane switching) mode, a VA (vertically aligned) mode, or an OCB (optically compensated bend) mode
  • a high response speed can be achieved.
  • a liquid crystal display device using a liquid crystal layer exhibiting a Kerr effect is known.
  • the Kerr effect is an effect in which the refractive index of a transparent isotropic medium exhibits anisotropy proportional to the square of the external electric field.
  • the liquid crystal layer exhibiting the Kerr effect Since the liquid crystal layer exhibiting the Kerr effect has a short correlation length (the degree of influence of alignment order) of liquid crystal molecules, it exhibits a high-speed electric field response of several milliseconds or less, and a high response speed can be obtained.
  • a cholesteric blue phase also simply called a blue phase
  • a smectic blue phase a pseudo isotropic phase, and the like are known.
  • the temperature range in which the liquid crystal material exhibits a blue phase is 10.9 ° C. (temperature of about 12 ° C. to 23 ° C.), which is more blue than when no dendron is added.
  • a liquid crystal display device having an expanded temperature range exhibiting the above has been disclosed. However, for practical use, a liquid crystal material exhibiting a blue phase in a wider temperature range is required.
  • An object of the present invention is to obtain a liquid crystal / polymer composite exhibiting a blue phase and a wide temperature range, a liquid crystal display using the same, and a method for producing a liquid crystal / polymer composite.
  • the liquid crystal / polymer composite according to the present invention includes a liquid crystal material exhibiting a blue phase, a dendrimer type unit in which two or more atoms having a branched structure are bonded to a central atom, and an order of 2 or more.
  • a chiral agent for controlling the orientation is
  • a liquid crystal display device includes an array substrate, a counter substrate facing the array substrate, A liquid crystal / polymer composite comprising: a liquid crystal material exhibiting a blue phase; a polymer that holds the liquid crystal material; and a chiral agent that exists in a gap between the liquid crystal materials and controls the orientation of the liquid crystal material.
  • It has a dendrimer type structure having a dendrimer type unit having an order of 2 or more and a polymerization unit having a polymerization group and bonded to the terminal of the bond of the dendrimer type unit and bonded to another polymerization group. .
  • the method for producing a liquid crystal / polymer composite according to the present invention includes a liquid crystal material, a dendrimer type unit in which two or more atoms having a branched structure are bonded to a central atom and an order of 2 or more, and the dendrimer having a polymerization group
  • the step of maintaining the dendrimer type monomer and the chiral agent at a temperature at which the liquid crystal material exhibits a blue phase and the step of polymerizing the dendrimer type monomer to form a polymer.
  • the present invention it is possible to obtain a liquid crystal / polymer composite having a wide temperature range in which a blue phase can stably exist, a liquid crystal display using the same, and a method for producing a liquid crystal / polymer composite.
  • FIG. 1 is a diagram schematically showing a liquid crystal display device according to one embodiment of the present invention.
  • 1 is a cross-sectional view of a liquid crystal display device according to one embodiment of the present invention.
  • the schematic diagram which shows the liquid-crystal layer after hardening a polymer
  • the schematic diagram which shows the liquid-crystal layer before hardening a polymer
  • 1 is a diagram showing a liquid crystalline monomer according to one embodiment of the present invention.
  • the liquid crystal material contained in the liquid crystal layer is not particularly limited as long as it exhibits a blue phase.
  • Two or more kinds of liquid crystal materials may be used, and a substance other than the liquid crystal material may be included in the liquid crystal phase.
  • Liquid crystal materials include cholesteric liquid crystal or chiral nematic liquid crystal (hereinafter collectively referred to as cholesteric liquid crystal), a mixture of nematic liquid crystal and cholesteric liquid crystal, a mixture of nematic liquid crystal and optically active substance, etc. Inside it is the blue phase.
  • FIG. 1 is a schematic view of a liquid crystal display device according to an embodiment of the present invention.
  • the liquid crystal display device 1 includes an array substrate 10 in which pixels and wirings (not shown) are formed in an array, a counter substrate 20 facing the array substrate 10 at a predetermined interval and having a counter electrode, and the array substrate 10 and the counter substrate. 20, a liquid crystal layer 30 formed of a liquid crystal material exhibiting a blue phase and a polymer, an electrode 105a provided on the array substrate 10, and an electrode 105b provided on the counter substrate 20 (shown in FIG. 2) And comprising.
  • a plurality of pixels are formed on the array substrate 10, and wiring connects a drive circuit (not shown) for driving the liquid crystal display device to each pixel, and supplies a voltage to each pixel.
  • the temperature range in which the liquid crystal material exhibits a blue phase varies depending on the liquid crystal material.
  • the liquid crystal material exhibiting a blue phase can be confirmed by applying a voltage to the liquid crystal material and the optical retardation being a derivative of birefringence or birefringence being proportional to the square of the applied voltage (Kerr effect).
  • the array substrate 10 and the counter substrate 20 have sufficient strength and insulation, and are transparent, for example, glass. In addition, plastic, ceramic, etc. can be used.
  • FIG. 2A is a cross-sectional view of the liquid crystal display device of FIG. 1 taken along line AA.
  • pixel electrodes 105a On one main surface of the array substrate 10 on the liquid crystal layer 30 side, pixel electrodes 105a arranged corresponding to the pixels are arranged.
  • a counter electrode 105b is disposed as a common electrode on one main surface of the counter substrate 20 on the liquid crystal layer 30 side.
  • An insulating thin film (not shown) is formed on the surface of the pixel electrode 105a.
  • a spacer (not shown) is provided between the array substrate 10 and the counter substrate 20 so that the distance between the array substrate 10 and the counter substrate 20 is more accurately maintained at a predetermined interval.
  • FIG. 2 (b) shows an enlarged perspective view of a part of the liquid crystal layer.
  • the liquid crystal layer 30 includes a liquid crystal material 40a, a polymer 40b, and a chiral agent 40e.
  • a state before the polymer 40b is polymerized is shown in FIG.
  • a precursor 40d and a polymerization initiator 40c are included instead of the polymer 40b.
  • the polymer 40b can be obtained by polymerizing the precursor 40d with the polymerization initiator 40c.
  • Liquid crystal molecules used for the liquid crystal material 40a are arranged in a spiral to form a liquid crystal molecule cylinder 40a.
  • the plurality of liquid crystal molecular cylinders 40a form a lattice 40, and are arranged in a spiral shape when the liquid crystal molecular cylinders 40a are macroscopically observed.
  • the liquid crystal molecules are arranged in a spiral to form the liquid crystal molecule cylinder 40a, and the liquid crystal molecule cylinders 40a are arranged in a spiral shape is a characteristic that the liquid crystal layer exhibits a blue phase.
  • the precursor 40d, the polymerization initiator 40c, and the chiral agent 40e are located in the gaps between the plurality of liquid crystal molecular cylinders 40a.
  • the polymer 40a has a dendrimer structure, an example of which is shown in FIG.
  • This polymer is a polymer 40a obtained by polymerizing the dendrimer structure 501 as a repeating unit.
  • n is an integer representing the number of times the repeating unit is repeated, and is usually about 2 to 20.
  • the dendrimer structure 501 has a skeletal structure having carbon or oxygen as a central atom, the central atom having two or more bonds, and branching radially (dendritic) from the central atom.
  • the order representing the number of bonds from the central atom to the atom at the end of the radial skeleton (radially outermost side) is 2 or more.
  • the dendrimer structure 501 has a spherical shape as a whole, and includes a dendrimer unit 50a and a polymerization unit 50b that covers the dendrimer unit 50a.
  • the polymerization unit polymerizes with the polymerization units of other molecules.
  • the molecular weight of the dendrimer structure 510 is approximately 2000 or more.
  • FIG. 3B shows a modification of the polymer 40a.
  • the polymer is not limited to the one composed only of the dendrimer structure 501 but may include a non-dendrimer structure 601.
  • the non-dendrimer structure 601 is preferably a structure having a mesogenic group in the molecule that interacts with a liquid crystal material even if it does not exhibit liquid crystallinity or liquid crystallinity, and includes, for example, a linear structure.
  • the mesogenic group serves to help liquid crystal molecules exhibit liquid crystallinity.
  • FIG. 3B shows a polymer in which a dendrimer structure 501 and a non-dendrimer structure 601 are polymerized in a one-to-one relationship with a repeating unit.
  • the polymerization unit 50 b of the dendrimer structure 501 is polymerized with the non-dendrimer structure 601.
  • the polymer 40a is obtained by polymerizing the precursor 40d.
  • dendrimer monomer 50 (FIG. 4) is used as a precursor of polymer 40b composed only of dendrimer structure 501.
  • the dendrimer type monomer 50 has a bond of two or more orders with carbon or the like as a central atom, and has a skeletal structure branched radially from the central atom.
  • the dendrimer-type monomer 50 is spherical as a whole, and includes a dendrimer unit 50a and a polymerization unit 50b that covers the dendrimer unit 50a.
  • the polymerization unit polymerizes with the polymerization units of other molecules.
  • the dendrimer type unit 50a preferably has a diameter of about 1 to 10 nm. If the diameter is in this range, it is easy to be mixed with the liquid crystal material because it tends to exist as a liquid.
  • a liquid crystal monomer As a precursor of the polymer 40b composed of the dendrimer structure 501 and the non-dendrimer structure 601 as shown in FIG. 3 (b), in addition to the dendrimer monomer 50, a liquid crystal monomer, a liquid crystal oligomer, Alternatively, it may be used in combination with a monomer having a mesogenic group in the molecule that interacts with a liquid crystal material without exhibiting liquid crystallinity. These used together with the dendrimer type monomer 50 are referred to as non-dendrimer type monomers. As shown in FIG.
  • a dendrimer monomer 50 and a non-dendrimer monomer 50 having a ratio of 1: 1 are used. It is obtained by mixing a dendrimer type monomer and a polymerization initiator 40c.
  • the precursor 40d and the polymerization initiator 40c are polymerized (polymerized, polymerized) to form a chain.
  • the polymer 40b is formed.
  • the three-dimensional structure of the liquid crystal molecular cylinder 40a is maintained by the polymer 40b.
  • the precursor 40d Before the polymerization, the precursor 40d is localized at the defect of the liquid crystal molecular cylinder 40a. However, when the precursors 40d are polymerized, the polymer 40b is formed in the gap between the liquid crystal molecular cylinders 40a. 40b becomes like a mold and maintains the arrangement of the liquid crystal molecular cylinder 40a.
  • the dendrimer type monomer 50 is not particularly limited as long as it is insoluble in the liquid crystal material.
  • the dendrimer unit 50a Since the dendrimer unit 50a has a large number of polymerized groups, the dendrimer unit 50a is easily accessible to other molecules having a polymerized group. In particular, when the degree of branching of the bond of the dendrimer unit 50a is in the range of 2 to 5, the distance between the polymer groups is within 2 angstroms, which is a distance smaller than the van der Waals force acting, and the polymerization is rapidly performed. There is little possibility that the unpolymerized dendrimer type unit 50 will be formed. Accordingly, since the polymer 40b is uniformly formed in the liquid crystal layer 30, the arrangement of the liquid crystal molecule cylinders 40a can be maintained.
  • the viscosity of the liquid crystal layer 30 may increase and the response to the driving voltage may be delayed.
  • the dendrimer type unit having a branch order of 2 to 5 may be used. This can be prevented by using.
  • non-dendrimer-type monomers do not come close to each other because van der Waals forces act, and the distance between the monomers is as wide as 3 to 6 angstroms.
  • the probability of contact with a factor that inhibits polymerization such as oxygen increases. Therefore, the straight-chain monomer is difficult to polymerize and there is a risk of poor polymerization.
  • the dendrimer type monomer 50 is less likely to distort the lattice 40 formed by the liquid crystal molecular cylinder because of its small shrinkage during polymerization.
  • the liquid crystal layer 30 can be stably held in a state of exhibiting a blue phase.
  • the ratio 40b of the polymer contained in the liquid crystal layer 30 is preferably in the range of 5% to 15%.
  • the ratio of the polymer 40b in the liquid crystal layer 30 is less than 5%, the polymer that maintains the structure exhibiting the blue phase may be insufficient and a cholesteric layer may be partially formed.
  • the proportion of the polymer 40b in the liquid crystal layer 30 exceeds 15%, there is a risk of light transmittance during bright display.
  • the movement of the liquid crystal molecules is hindered by the polymer 40b, it may be necessary to increase the drive voltage applied to the liquid crystal.
  • the dendrimer monomer 50 and the non-dendrimer monomer are desirably used at a weight ratio of about 1: 1. If the dendrimer type monomer 50 is too much, it may be difficult to uniformly mix with the liquid crystal.
  • the dendrimer type monomer 50 preferably has a diameter of about 1 to 10 nm. If the diameter is too large, that is, if the molecular weight is too large, the viscosity may increase and it may be difficult to uniformly mix with the liquid crystal. When the molecular weight is small, it is necessary to increase the number of times (n) of polymerizing the dendrimer type monomer 50 in order to obtain a polymer 40b having a length capable of holding the liquid crystal molecular cylinder, and the time required for the polymerization becomes long. There is a fear.
  • ⁇ Polymerization unit> For example, an acrylic group is used as the polymerizable group in the polymerization unit 50b.
  • a vinyl group having an alkyl group in the side chain such as a methacryl group may be used.
  • Examples of the mesogen group that the dendrimer type monomer 50 and the non-dendrimer type monomer have include a phenyl group, a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a biphenylcyclohexyl group, an azobenzene group, an azoxybenzene group, a benzylideneaniline group, a stilbene group, Mention may be made of the tolan group.
  • Non-dendrimer type monomer candidates include 4,4′-bisacryloylbiphenyl, 4-acryloylbiphenyl, 4-acryloyl-4′-cyanobiphenyl, 4-cyclohexylphenyl acrylate, and the like.
  • the mixing ratio between the liquid crystal material and the polymer is determined so that the light use efficiency is as high as possible within the range in which the polymer has a helical structure.
  • the polymerization initiator 40c may be any one that polymerizes the selected precursor 40d.
  • the addition amount of the polymerization initiator is preferably added in a range of 5% by weight or less with respect to the precursor 40d from the viewpoint of maintaining a high liquid crystal retention rate.
  • the precursor 40d or the oligomer may contain a modifying agent such as a crosslinking agent, a surfactant, a polymerization accelerator, a chain transfer agent, and a photosensitizer as necessary.
  • the polymerization of the polymer 40b is desirably performed by light irradiation.
  • the helical interval formed by the plurality of liquid crystal molecular cylinders 40a of the liquid crystal layer 30 varies with temperature.
  • the helical interval (pitch) changes, the wavelength of light reflected by the liquid crystal layer 30 changes. Therefore, when the polymer 40b is polymerized by heating, the wavelength of light reflected by the liquid crystal layer 30 may be difficult to control.
  • a mixture of the liquid crystal material and the polymer is used in an appropriate solvent. It is possible to take a method of evaporating the solvent after being dissolved in the solution.
  • the pixel electrode 105a is assumed to be transparent, and for example, a thin film of ITO (Indium Tin Oxide) is used.
  • the counter electrode 105b does not require transparency, and for example, various electrode materials such as aluminum, nickel, copper, silver, gold, and platinum are used.
  • the pixel electrode 105a is formed on the array substrate 10 by a method such as vapor deposition, sputtering, or photolithography.
  • the material of the insulating thin film formed on the surface of the pixel electrode 105a is not particularly limited as long as it has no reactivity or solubility with respect to the liquid crystal material and is electrically insulative.
  • Organic materials, and inorganic materials such as silicon oxide.
  • Examples of the method for forming the insulating thin film include known methods such as application by spin coating, and a method suitable for each material may be selected.
  • the thickness of the thin film is not particularly limited as long as voltage application to the liquid crystal layer 30 can be sufficiently performed, but it is desirable that the thickness be thin in a range that does not impair the insulation from the viewpoint of low voltage driving.
  • the alignment treatment for the insulating thin film may be appropriately performed by rubbing treatment or the like. In this embodiment mode, an insulating thin film is provided. However, a structure without an insulating thin film is also allowed.
  • the distance between the array substrate 10 and the counter substrate 20 is not particularly limited, but is preferably as small as possible within a range in which the reflectance does not decrease. This is for realizing low voltage driving and faster response.
  • the liquid crystal layer 30 having a wide temperature range in which the liquid crystal material stably exists as a blue phase and few polymerization defects of the polymer 40b is obtained.
  • a liquid crystal display device having the same can be obtained.
  • MoW comb-shaped electrodes having a width of 10 ⁇ m and an interval of 10 ⁇ m were formed on the surface of a glass substrate (thickness 0.7 mm).
  • polyimide A-1051: Nippon Synthetic Rubber Co., Ltd.
  • the counter electrode 105b was provided also on another glass substrate (thickness 0.7 mm), and the counter substrate 20 was obtained by forming an insulating film on the counter electrode 105b.
  • An adhesive was applied to the surface of the insulating film of the counter substrate 20 in a frame shape, and spacers having a diameter of 10 ⁇ m were dispersed on the insulating film of the first substrate. Thereafter, the array substrate 10 and the counter substrate 20 were bonded and sealed so that the insulating films face each other.
  • the material of the liquid crystal layer 30 was adjusted as follows. BL035 (manufactured by Merck) 79.5 wt% as the liquid crystal of nematic phase, ZLI-4572 (manufactured by Merck) 10 wt% as the chiral agent 40e, 50 V # 1000 (manufactured by Osaka Organic Chemical Co., Ltd.) 5 wt% as the dendrimer monomer 50, Liquid crystalline monomer 1,4-di (4- (6- (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene (trade name: RM257, manufactured by Merck & Co., Inc.) 5 wt% is mixed, and polymerization is started. As an agent 40c, Irgacure 651 (manufactured by Ciba Geigy) was added at 0.5 wt% with respect to the dendrimer type monomer 50 and mixed.
  • FIG. 5 shows the molecular structure of the dendrimer unit 50a of the dendrimer type monomer 50 (V # 1000) used in Example 1.
  • the dendrimer type monomer 50 has a spherical structure in which an acrylic group is bonded as a polymerization unit 50b to the outside of a dendrimer unit 50a having a functional group branched with a polyester polyol as a core.
  • N in FIG. 5 is an integer between 1 and 5.
  • the material of the liquid crystal layer 30 thus obtained was injected into the liquid crystal display device 1 described above, and then the liquid crystal display device 1 was placed on a hot plate to control the temperature to develop a blue phase.
  • the temperature range in which the liquid crystal phase exhibited a blue phase was 6 to 7 ° C.
  • the liquid crystal layer 30 was irradiated with ultraviolet light using a high pressure mercury lamp to polymerize the precursor 40d. At this time, the irradiation intensity of light was 100 mW / cm 2 (365 nm), and the irradiation time was 1 minute.
  • a polarizing plate is attached to the outer surfaces of the array substrate 10 and the counter substrate 20 so that the applied electric field direction and the transmission axis form an angle of 45 ° and the transmission axes are orthogonal to each other, and a driving driver (not shown) To complete the liquid crystal display device 1. It was confirmed that the blue phase was stabilized in the temperature range of ⁇ 30 ° C. to 52 ° C.
  • the voltage-transmitted light characteristics of the manufactured liquid crystal display device 1 were evaluated at room temperature of 25 ° C. using 550 nm light. When no voltage was applied, the transmittance was 0.5%, and when the voltage was applied (200 Vp, 60 Hz rectangular wave), the transmittance was 90%, which was the maximum. That is, the half-wave potential was 200V. The response time was less than 1 ms for both the rise time and the fall time between the transmission minimum / maximum. As a result of confirming the temperature dependence of the half-wave potential and the response time, it was almost constant at 10 ° C. to 50 ° C.
  • Table 1 shows the material of the liquid crystal layer 30 in Example 1, the temperature range in which the liquid crystal phase 30 before polymerizing the precursor 40d exhibits a blue phase, and the temperature range in which the blue phase after polymerization stably exists. .
  • Table 1 also shows Example 2 and Comparative Examples 1 and 2 described below. Those contained in the liquid crystal layer 30 before the polymer 40b was cured were marked with ⁇ , and those not contained were marked with x.
  • Example 1 it is possible to obtain a liquid crystal display device having a liquid crystal layer having a wide temperature range that stably exists as a blue phase.
  • the liquid crystal display device of Example 2 has the same configuration as that of Example 1, but the material of the liquid crystal layer 30 is different.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the material of the liquid crystal layer 30 was adjusted as follows. Nematic liquid crystal JC1041XX (manufactured by Chisso) 40 wt% and 5 CB liquid crystal (manufactured by Aldrich) 40 wt%), ZLI-4572 (manufactured by Merck) 10 wt% as chiral agent 40 e, and STAR-501 as dendrimer type monomer 50 (Osaka) (Organic Chemical Co., Ltd.) 4.5 wt%, RM-257 (Merck Co., Ltd.) 5 wt% as a liquid crystalline monomer was mixed, and the polymerization initiator Irgacure 651 (Ciba Geigy Co.) was added to the dendrimer type monomer 50 to 0%. A mixture was prepared by adding 0.5 wt%.
  • STAR-501 has a structure in which an acrylic group is bonded as a polymerization unit 50b to a dendrimer unit 50a having a functional group branched with dipentaerythritol as a core.
  • FIG. 6 shows the structure of dipentaerythritol.
  • the molecular structure of the liquid crystalline monomer RM-257 is shown in FIG. RM-257 is a linear monomer.
  • the temperature range in which the blue phase was maintained was 5-6 ° C.
  • the irradiation intensity of ultraviolet light for polymerizing the precursor 40d was 50 mW / cm 2 (365 nm), and the irradiation time was 5 minutes.
  • the liquid crystal phase 30 was stabilized as a blue phase in a temperature range of ⁇ 30 ° C. to 50 ° C.
  • the voltage-transmitted light characteristics of the manufactured liquid crystal display device were evaluated at room temperature of 25 ° C. using 550 nm light.
  • the transmittance was 0.6% when no voltage was applied, and the transmittance was 91% when the voltage was applied (200 Vp, 60 Hz rectangular wave). That is, the half-wave potential was 200V.
  • the response time was less than 1 ms for both the rise time and the fall time between the transmission minimum / maximum. As a result of confirming the temperature dependence of the half-wave potential and the response time, it was almost constant at 10 ° C. to 45 ° C.
  • Example 2 a liquid crystal display device having a liquid crystal layer having a wide temperature range that stably exists as a blue phase can be obtained.
  • Comparative Example 1 The liquid crystal display device of Comparative Example 1 is the same as that of Example 1 except for the material of the liquid crystal layer 30.
  • the material of the liquid crystal layer 30 in Comparative Example 1 was adjusted as follows. Nematic liquid crystal JC1041XX (manufactured by Chisso) 40 wt%, 5CB liquid crystal (manufactured by Aldrich) 40 wt%, chiral agent 40e as ZLI-4572 (manufactured by Merck) 10 wt%, liquid crystalline monomer RM-257 (manufactured by Merck) 5 wt% 4.5 wt% of 2-ethylhexyl acrylate (manufactured by Aldrich) was mixed, and further, 0.5 wt% of Irgacure 651 (manufactured by Ciba Geigy) was added as a polymerization initiator 50c to the liquid crystalline monomer and mixed.
  • FIG. 8 shows the molecular structure of 2-ethylhexyl acrylate, which is a liquid crystalline monomer.
  • 2-Ethylhexyl acrylate is a linear molecule.
  • the temperature range in which the liquid crystal layer 30 exhibits a blue phase before polymerizing the precursor 40d was 1 to 2 ° C.
  • the irradiation intensity of ultraviolet light for polymerizing the precursor 40d was 50 mW / cm 2 (365 nm), and the irradiation time was 30 minutes. It was confirmed that the liquid crystal layer 30 was stabilized as a blue phase in a temperature range of ⁇ 30 ° C. to 48 ° C. Although it did not occur in Example 1, in Comparative Example 1, it was confirmed that unevenness occurred and a cholesteric phase was partially expressed. Regarding the injection of the liquid crystal mixture, volatilization of 2-ethylhexyl acrylate was observed, which had an effect of compositional deviation. Moreover, the effect of unreacted monomers was recognized in part due to the slow curing rate.
  • Comparative Example 2 The liquid crystal display device of Comparative Example 2 is the same as that of Example 1 except for the material of the liquid crystal layer 30.
  • the liquid crystal layer 30 in Comparative Example 2 was adjusted as follows. Prepared by mixing 40 wt% of nematic liquid crystal JC1041XX (manufactured by Chisso), 40 wt% of 5CB liquid crystal (manufactured by Aldrich), 90 wt% of ZLI-4572 (manufactured by Merck) as a chiral agent 40e, and 110 wt% of liquid crystalline dendrimer G3-6-LC .
  • Fig. 9 shows the structure of G3-6-LC, a liquid crystalline dendrimer.
  • the mixture thus obtained was injected between the array substrate 10 and the counter substrate 20.
  • the polymer polymerization treatment was not performed.
  • SYMBOLS 1 Liquid crystal display device, 10 ... Array substrate, 20 ... Opposite substrate, 30 ... Liquid crystal layer, 105a ... Signal line, 105b ... Electrode, 40 ... Lattice, 40a ... Blue phase, 40b ... High polymer, 40c ... Chiral agent, 40d ... precursor, 50 ... dendrimer, 50a ... dendrimer unit, 50b ... polymerization unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 ブルー相を呈する液晶材料と、中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニット及び、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットを有するデンドリマー型構造を持ち、前記液晶材料を保持する高分子と、前記液晶材料の隙間に存在して前記液晶材料の配向を制御するカイラル剤と、を有することを特徴とする。

Description

液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。
 本発明は、液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法に関する。
 液晶表示装置にIPS(in-plane switching)モード、VA(vertically aligned)モード及びOCB(optically compensated bend)モードなどの表示モードを採用すると、速い応答速度を達成できる。さらに応答速度を早くするために、カー効果を示す液晶層を用いた液晶表示装置が知られている。カー効果とは、透明な等方的媒質の屈折率が外部電場の2乗に比例した異方性を示す効果である。カー効果を示す液晶層は、液晶分子の相関長(配向秩序の影響度)が短いため、数ミリ秒以下の高速な電場応答を示し、速い応答速度が得られる。カー効果を示す液晶相として、コレステリックブルー相(単にブルー相とも呼ばれる)、スメクティックブルー相、擬似等方相などが知られている。
 特許文献1には、液晶材料にデンドロンを添加することにより、液晶材料がブルー相を呈する温度範囲が10.9℃(温度約12℃~23℃)と、デンドロンを添加しない場合よりもブルー相を呈する温度範囲が拡大した液晶表示装置が開示されている。しかしながら、実用化のためには、より広い温度範囲でブルー相を呈する液晶材料が求められている。
特開2008-201682号公報
 本発明は、ブルー相を呈する温度範囲が広い液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法を得ることを目的とする。
 本発明による液晶/高分子複合体は、ブルー相を呈する液晶材料と、中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニット及び、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットを有するデンドリマー型構造を持ち、前記液晶材料を保持する高分子と、前記液晶材料の隙間に存在して前記液晶材料の配向を制御するカイラル剤と、を有することを特徴とする。
 本発明に係る液晶表示装置は、アレイ基板と、前記アレイ基板と対向する対向基板と、
 ブルー相を呈する液晶材料と前記液晶材料を保持する高分子と前記液晶材料の隙間に存在して前記液晶材料の配向を制御するカイラル剤とを有する液晶/高分子複合体を有し、前記アレイ基板と前記対向基板との間に保持される液晶層と、前記液晶層に電圧を印加する電圧印加手段と、を備え、前記高分子は、中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニットと、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットとを有するデンドリマー型構造を持つことを特徴とする。
 本発明に係る液晶/高分子複合体の製造方法は、液晶材料と、中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニット及び、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットを有するデンドリマー型モノマーと、前記液晶材料の配向を制御するカイラル剤と、を混合させる工程と、混合させた前記液晶材料と前記デンドリマー型モノマーと前記カイラル剤とを前記液晶材料がブルー相を呈する温度で保持する工程と前記デンドリマー型モノマーを重合させて高分子を生成する工程と、を有することを特徴とする。
 本発明によると、ブルー相が安定して存在できる温度範囲が広い液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法を得ることができる。
本発明の実施の一態様に係る液晶表示装置を概略的に示す図。 本発明の実施の一態様に係る液晶表示装置の断面図。 高分子を硬化させた後の液晶層を示す模式図。 高分子を硬化させる前の液晶層を示す模式図。 デンドリマー型モノマー使った高分子の単位構造を模式的に表す図。 デンドリマー型モノマーと鎖型モノマーを使った高分子の単位構造を模式的に表す図。 デンドリマー型モノマー構造を概略的に示す図。 本発明の実施の一態様に係るデンドリマー型モノマー構造の一例を示す図。 本発明の実施の一態様に係るデンドリマー型モノマー構造の一例を示す図。 本発明の実施の一態様に係る液晶性モノマー示す図。 比較例に係る液晶性モノマー示す図。 比較例に係るデンドリマー型モノマー示す図。
 以下、本発明の実施の一形態について、図面を参照しながら詳細に説明する。なお、同じ構成には全ての図面を通じて同一の符号を付し、重複する説明は省略する。
 本実施の形態においては、液晶層に含まれる液晶材料は、ブルー相を呈するものであれば特に限定されるものではない。また、2種類以上の液晶材料を用いても良く、液晶相に液晶材料以外の物質を含んでいてもよい。液晶材料は、コレステリック液晶またはカイラルネマチック液晶(以下、コレステリック液晶と総称する)、ネマチック液晶とコレステリック液晶との混合物や、ネマチック液晶と光学活性物質との混合物などを、その液晶材料に特有の温度範囲内にするとブルー相となるものである。
 図1は本発明の実施の一形態である液晶表示装置の概略図である。液晶表示装置1は画素や配線(不図示)がアレイ状に形成されたアレイ基板10と、所定の間隔でアレイ基板10と対向し、対向電極を有する対向基板20と、アレイ基板10と対向基板20の間に保持され、ブルー相を呈する液晶材料と高分子で形成された液晶層30と、アレイ基板10に設けられた電極105a、対向基板20に設けられた電極105b(図2に示す)と、を備える。アレイ基板10には複数の画素が形成されており、配線は、液晶表示装置を駆動するための駆動回路(不図示)と各画素を接続して、電圧を各画素に供給する。
 液晶材料がブルー相を呈する温度範囲は、液晶材料によって異なる。液晶材料がブルー相を呈することは、液晶材料に電圧を印加して、複屈折や複屈折の派生量である光学リタデーションが印加した電圧の2乗に比例すること(カー効果)から確認できる。
 アレイ基板10及び対向基板20としては、十分な強度と絶縁性を有し、透明性を有するものとし、例えばガラスを使用する。この他にプラスチック、セラミックなどを用いることも可能である。
 また、図2(a)は図1の液晶表示装置をAA線で切断した断面図である。アレイ基板10の液晶層30側の一主面には画素に対応して配置された画素電極105aが配置されている。対向基板20の液晶層30側の一主面には対向電極105bが共通電極として配置されている
 画素電極105a表面には、絶縁性薄膜(不図示)が形成されている。アレイ基板10と対向基板20との間の距離が、より正確に所定の間隔に保たれるように、アレイ基板10と対向基板20の間にスペーサー(不図示)が設けられている。
 図2(b)に液晶層の一部を拡大した斜視図を示す。液晶層30は、図示するように、液晶層30は液晶材料40a、高分子40bおよびカイライル剤40eと、を含む。高分子40bが重合する前の様子を図2(c)に示す。重合前においては、高分子40bの代わりに、前駆体40dおよび重合開始剤40cを含んでいる。重合開始剤40cによって前駆体40dを重合させることによって高分子40bを得ることができる。
 <液晶材料>
 液晶材料40aに用いられる液晶分子は、らせん状に配列して液晶分子シリンダ40aを形成している。複数の液晶分子シリンダ40a同士は格子40を形成しており、液晶分子シリンダ40aを巨視的に観察すると、らせん状に配置している。液晶分子がらせん状に並んで液晶分子シリンダ40aを形成し、液晶分子シリンダ40aがらせん状に配置していることは、液晶層がブルー相を呈することを示す特徴である。
 前駆体40dと重合開始剤40cとカイラル剤40eは、複数の液晶分子シリンダ40aの間隙に位置する。
 <高分子>
 高分子40aは、デンドリマー型構造を有し、その一例を図3(a)に示す。この高分子は、デンドリマー型構造501を繰り返し単位として重合した高分子40aである。nは繰り返し単位が繰り返される回数を表す整数であって通常2~20程度のものを用いる。デンドリマー型構造501とは、炭素または酸素などを中心原子とし、中心原子が2以上の結合を有し、中心原子からから放射線状(樹状)に分岐した骨格構造をもつ。また、本実施の形態で使用するデンドリマー型構造501における、中心原子から放射状の骨格の末端(放射状の一番外側)の原子までの結合の数を表す次数は、2以上である。
 デンドリマー型構造501は全体として球状であり、デンドリマーユニット50aと、デンドリマーユニット50aを覆う重合ユニット50bとから構成される。重合ユニットは、他の分子の重合ユニットと重合する。デンドリマー型構造510の分子量は、およそ2000以上である。
 図3(b)に高分子40aの変形例を示す。図示するように、高分子は、デンドリマー型構造501のみから構成されるものに限られず、非デンドリマー型構造601を含んでも良い。非デンドリマー構造601とは、液晶性または液晶性を示さなくとも液晶材料と相互作用するメソゲン基を分子内に有する構造が好ましく、例えば直鎖状の構造が挙げられる。メソゲン基は、液晶分子が液晶性を示すのを助ける働きをする。図3(b)においては、デンドリマー型構造501と非デンドリマー型構造601が1対1で重合したものを繰り返し単位とした高分子を示す。デンドリマー型構造501の重合ユニット50bが非デンドリマー型構造601と重合する。
 <前駆体>
 高分子40aは前駆体40dを重合させることによって得る。図3(a)に示すような、デンドリマー型構造501のみから構成される高分子40bの前駆体としては、デンドリマー型モノマー50(図4)を用いる。デンドリマー型モノマー50は、炭素などを中心原子として2以上の次数の結合を有し、中心原子からから放射線状に分岐した骨格構造をもつ。デンドリマー型モノマー50は全体として球状であり、デンドリマーユニット50aと、デンドリマーユニット50aを覆う重合ユニット50bとから構成される。重合ユニットは、他の分子の重合ユニットと重合する。デンドリマー型ユニット50aは、直径が1~10nm程度であることが好ましい。直径がこの範囲にあると、液体で存在しやすいので液晶材料と混合しやすい。
 図3(b)に示すようなデンドリマー型構造501と非デンドリマー型構造601から構成される高分子40bの前駆体としては、上述のデンドリマー型モノマー50に加えて、液晶性モノマーや液晶性オリゴマー、または液晶性を示さなくとも液晶材料と相互作用するメソゲン基を分子内に有するモノマーと併用してもよい。デンドリマー型モノマー50と共に用いるこれらを非デンドリマー型のモノマーと称する。図3(b)のように、デンドリマー型構造501と非デンドリマー型構造601とが1対1で結合した高分子40bを作成するには、モル数1対1の割合のデンドリマー型モノマー50と非デンドリマー型モノマーと、重合開始剤40cとを混合させて得る。
 このような前駆体40dを含む図2(c)のような液晶層30に光照射、あるいは加熱等すると、前駆体40dと重合開始剤40cが重合(高分子化、ポリマー化)して鎖状の高分子40bが形成される。高分子40bによって、液晶分子シリンダ40aの立体構造が保持される。
 重合する前は、液晶分子シリンダ40aの欠陥に前駆体40dが局在化しているが、前駆体40d同士が重合すると、液晶分子シリンダ40a同士の隙間に高分子40bが形成されるので、高分子40bが鋳型のようになって液晶分子シリンダ40aの配置をそのまま保持する。
 デンドリマー型モノマー50は、液晶材料に不溶であれば特に材料的に限定されるものではない。
 デンドリマーユニット50aは重合基を多数有するので、重合基をもつ他の分子と近づきやすい。特にデンドリマーユニット50aの結合の分岐の次数が2~5の範囲内であると、重合基同士の間隔が、ファンデルワールス力が作用するよりも小さい距離である2オングストローム以内となり、重合が急速に進み未重合のデンドリマー型ユニット50が生じる虞が少ない。従って、高分子40bが液晶層30内に均一に形成されるので、液晶分子シリンダ40aの配置を保持することができる。また、未重合のデンドリマー型モノマー50が液晶層30中にあると、液晶層30の粘度が上昇して駆動電圧に対する応答が遅くなる場合があるが、分岐の次数が2~5のデンドリマー型ユニットを用いればこれを防止することができる。
 一方、非デンドリマー型のモノマー同士は、ファンデルワールス力が作用するためモノマー同士が近づけず、モノマー同士の間隔が3~6オングストロームと広い。また、酸素などの重合を阻害する因子と接触する確率が増加する。従って、直鎖状のモノマーは重合しにくく、重合不良が発生する虞がある。
 また、デンドリマー型モノマー50は、重合する際の収縮が小さいことから、液晶分子シリンダが形成する格子40を歪ませる虞が少ない。
 このように、デンドリマー型構造501を有する高分子40bは、重合不良が生じにくいので、液晶層30を、ブルー相を呈した状態で安定に保持することができる。
 <液晶層中の高分子の割合>
 液晶層30に含まれる高分子の割合40bは5%~15%の範囲内が望ましい。液晶層30中の高分子40bの割合が5%未満の場合、ブルー相を呈する構造を維持する高分子が不足して部分的にコレステリック層が生じる虞がある。また液晶層30中の高分子40bの割合が15%を超えると、明表示の時の光の透過率がる虞がある。また、高分子40bによって液晶分子の動きが妨げられるので、液晶に印加する駆動電圧を高くする必要がある場合がある。
 <デンドリマー型モノマーと非デンドリマー型のモノマーの割合>
 前駆体40dとしてデンドリマー型モノマー50と非デンドリマー型のモノマーを併用する場合の、デンドリマー型モノマー50と非デンドリマー型のモノマーは重量比約1:1で用いることが望ましい。デンドリマー型モノマー50が多すぎると液晶と均一に混合させることが困難になる場合がある。
 <デンドリマー型モノマーの大きさ>
 デンドリマー型モノマー50は、直径が1~10nm程度であることが望ましい。直径が大きすぎると、すなわち分子量が大きすぎると、粘性が増し液晶と均一に混合させるのが困難になる場合がある。分子量が小さいと、液晶分子シリンダを保持することができる長さの高分子40bを得るために、デンドリマー型モノマー50を重合させる回数(n)を多くする必要があり、重合に要する時間が長くなる虞がある。
 <重合ユニット>
 重合ユニット50b内の重合性基としては、例えばアクリル基を用いる。その他にメタクリル基など側鎖にアルキル基を有したビニル基でもよい。
 <メソゲン基の例>
 デンドリマー型モノマー50と非デンドリマー型モノマーが有するメソゲン基としては、例えばフェニル基、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、ビフェニルシクロヘキシル基、アゾベンゼン基、アゾキシベンゼン基、ベンジリデンアニリン基、スチルベン基、トラン基を挙げることができる。
 <非デンドリマー型のモノマーの例>
 非デンドリマー型のモノマーの候補としては、4、4’-ビスアクリロイルビフェニル、4-アクリロイルビフェニル、4-アクリロイル-4’-シアノビフェニル、4-シクロヘキシルフェニルアクリレイトなどを挙げることができる。液晶材料と高分子の混合比については、高分子がらせん構造をとる範囲で、できるだけ光利用効率が高くなるように決定する。
 <重合開始剤の例>
 重合開始剤40cとしては、選択する前駆体40dを重合させるものであればよく、例えば市販され容易に入手できるものとして、ダロキュア1173(Merk社)、イルガキュア651(チバガイギー社)、イルガキュア907(チバガイギー社)などを候補として挙げることができる。重合開始剤の添加量は液晶の保持率を高く維持する観点から、好ましくは前駆体40dに対し5重量%以下の範囲で添加される。また、前駆体40dあるいはオリゴマーは必要に応じて架橋剤、界面活性剤、重合促進剤、連鎖移動剤、光増感剤などの改質剤を含んでもよい。
 <重合の方法>
 高分子40bの重合は光照射により行うことが望ましい。液晶層30の複数の液晶分子シリンダ40aが形成するらせん間隔は温度により変化する。らせん間隔(ピッチ)が変わると、液晶層30で反射する光の波長が変わる。したがって、加熱により高分子40bを重合させた場合には、液晶層30で反射する光の波長が制御しにくくなる虞がある。
 液晶材料と高分子からなる媒質を基板上に形成する方法としては、液晶材料と前駆体40dとの混合物を熱あるいは光により重合させることの他に、液晶材料と高分子の混合物を適当な溶媒に溶解した後に溶媒を蒸発させる方法をとることができる。
 <その他の液晶表示装置の構成>
 画素電極105aとしては、透明性を有しているものとし、例えばITO(インジウム スズ オキサイド)の薄膜を用いる。対向電極105bには、透明性が要求されず、例えば、アルミニウム、ニッケル、銅、銀、金、白金などの各種電極材料を用いる。また、アレイ基板10上への画素電極105aの形成は蒸着、スパッタリング、フォトリソグラフィなどの方法で行う。
 画素電極105aの表面に形成する絶縁性薄膜の材料としては液晶材料に対する反応性や溶解性を持たず、電気的に絶縁性であれば材質的に特に限定されるものではなく、公知としてポリイミドなどの有機物、また、酸化シリコンなどの無機物を挙げることができる。絶縁性薄膜の形成方法としては、スピンコートによる塗布などの公知のものを挙げることができ、各材料に適した方法を選択すればよい。
 薄膜の厚さは、液晶層30への電圧印加を十分行うことができれば特に限定されるものではないが、低電圧駆動の観点から絶縁性を損ねない範囲において薄いことが望ましい。絶縁性薄膜に対する配向処理は、ラビング処理などにより適宜行ってもよい。また、本実施の形態においては絶縁性薄膜を設けることとしたが、絶縁性薄膜を設けない構成とすることも許容する。
 アレイ基板10と対向基板20の距離は、特に限定されるものではないが、反射率が低下しない範囲内でできるだけ小さい方が好ましい。これは、低電圧駆動、およびより高速な応答を実現するためである。
 このようにして、高分子40bで液晶分子シリンダ40a安定化させることができるので、液晶材料がブルー相として安定して存在する温度範囲が広く、また高分子40bの重合不良が少ない液晶層30を有する液晶表示装置を得ることができる。
〔実施例1〕
 以下、本発明の液晶表示装置の一実施例について説明する。
 まず、ガラス基板(厚さ0.7mm)の表面に、幅10μm、間隔10μmのMoW櫛形電極を形成した。次に絶縁膜としてポリイミド(AL-1051:日本合成ゴム(株))を70nmの厚さでスピナーにより電極上にキャストして、アレイ基板10を得た。同様に、他のガラス基板(厚さ0.7mm)にも対向電極105bを設け、対向電極105b上にも絶縁膜を形成して対向基板20を得た。対向基板20の絶縁膜表面に枠状に接着剤を塗布し、第1の基板の絶縁膜上には、直径10μmのスペーサーを散布した。その後、アレイ基板10および対向基板20を互いの絶縁膜が対向するよう貼り合わせ、封着した。
 液晶層30の材料は、以下のように調整した。ネマチック相の液晶としてBL035(Merck社製)79.5wt%と、カイラル剤40eとしてZLI‐4572(Merck社製) 10wt%、デンドリマー型モノマー50として50V#1000(大阪有機化学社製)5wt%、液晶性モノマー1,4-ジ(4-(6-(アクリロイルオキシ)ヘキシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(商品名:RM257 メルク社製)5wt%と、を混合し、さらに、重合開始剤40cとしてイルガキュア651(Ciba Geigy社製)をデンドリマー型モノマー50に対して0.5wt%添加して混合した。
 図5に実施例1で使用するデンドリマー型モノマー50(V#1000)のデンドリマーユニット50aの分子構造を示す。デンドリマー型モノマー50はポリエステルポリオールをコアとして官能基を分岐させたデンドリマーユニット50aとの外側に重合ユニット50bとしてアクリル基が結合した球状の構造である。図5中のnは1~5の間の整数である。
 こうして得られた液晶層30の材料を、前述の液晶表示装置1に注入した後、液晶表示装置1をホットプレートに載せて温度を制御し、ブルー相を発現させた。
 前駆体40dを重合させる前に液晶相がブルー相を呈する温度範囲は6~7℃だった。液晶層30に高圧水銀ランプを用いて紫外光を照射して前駆体40dを重合させた。この際、光の照射強度は100mW/cm2 (365nm)とし、照射時間は1分とした。
 次に、印加電場方向と透過軸が45°の角度をなし、かつ互いの透過軸が直交するように偏光板をアレイ基板10と対向基板20の外面に貼り、駆動用ドライバ(図示せず)を接続して液晶表示装置1を完成させた。ブルー相は‐30℃~52℃の温度範囲で安定化していることを確認した。
 作製した液晶表示装置1の電圧-透過光特性を、550nm光を用いて室温25℃で評価した。電圧の非印加時には、透過率0.5%であり、電圧の印加時(200Vp、60Hz矩形波)には、透過率90%と最大であった。すなわち、半波長電位は200Vであった。また、応答時間は、透過率最小/最大間での立ち上がり時間、立ち下がり時間ともに1ms未満であった。半波長電位および応答時間の温度依存性を確認した結果、10℃~50℃においてほぼ一定であった。
 実施例1における液晶層30の材料と、前駆体40dを重合させる前の液晶相30がブルー相を呈する温度幅と、重合した後のブルー相が安定して存在する温度範囲を表1に示す。以下で説明する実施例2、比較例1、2についても併せて表1に示す。高分子40bを硬化させる前の液晶層30に含まれるものを○、含まれないものを×とした。
Figure JPOXMLDOC01-appb-T000001
 このように、実施例1によれば、ブルー相として安定して存在する温度範囲が広い液晶層を有する液晶表示装置を得ることができる。
〔実施例2〕
 以下、本発明の実施例について説明する。
 実施例2の液晶表示装置は実施例1と同じ構成であるが、液晶層30の材料が異なる。実施例1と同じ部分には同じ符号を付して、その詳細な説明は省略する。
液晶層30の材料は以下のようにして調整した。ネマチック相の液晶JC1041XX(チッソ社製)40wt%と5CB液晶(アルドリッチ社製)40wt%)、カイラル剤 40eとしてZLI‐4572(Merck社製) 10wt%、としてデンドリマー型モノマー50としてSTAR-501(大阪有機化学社製)4.5wt%、液晶性モノマーとしてRM-257(Merck社製)5wt%を混合し、さらに、重合開始剤イルガキュア651(Ciba Geigy社製)をデンドリマー型モノマー50に対して0.5wt%添加して混合物を調製した。
 STAR-501はジペンタエリスリトールをコアとして官能基を分岐させたデンドリマーユニット50aに重合ユニット50bとしてアクリル基が結合した構造である。 図6にジペンタエリスリトールの構造を示す。
 液晶性モノマーRM-257の分子構造を図7に示す。RM-257は直鎖状のモノマーである。
 ブルー相が保持される温度範囲は5~6℃だった。前駆体40dを重合させるための紫外光の照射強度は50mW/cm2 (365nm)とし、照射時間は5分とした。本実施例においては、液晶相30はブルー相として‐30℃~50℃の温度範囲で安定化していることを確認した。作製した液晶表示装置の電圧-透過光特性を、550nm光を用いて室温25℃で評価した。電圧の非印加時には、透過率0.6%であり、電圧の印加時(200Vp、60Hz矩形波)には、透過率91%と最大であった。すなわち、半波長電位は200Vであった。また、応答時間は、透過率最小/最大間での立ち上がり時間、立ち下がり時間ともに1ms未満であった。半波長電位および応答時間の温度依存性を確認した結果、10℃~45℃においてほぼ一定であった。
 このように、実施例2によれば、ブルー相として安定して存在する温度範囲が広い液晶層を有する液晶表示装置を得ることができる。
〔比較例1〕
 比較例1の液晶表示装置は液晶層30の材料以外は実施例1と同じである。
 比較例1における液晶層30の材料は以下のようにして調整した。ネマチック液晶JC1041XX(チッソ社製)40wt%と5CB液晶(アルドリッチ社製)40wt%、カイラル剤 40eとしてZLI‐4572(Merck社製) 10wt%、液晶性モノマーとしてRM-257(Merck社製)5wt%、2-エチルヘキシルアクリレート(アルドリッチ社製)4.5wt%を混合し、さらに、重合開始剤50cとしてイルガキュア651(Ciba Geigy社製)を液晶性モノマーに対して0.5wt%添加して混合した。
図8に液晶性モノマーである2-エチルヘキシルアクリレートの分子構造を示す。2-エチルヘキシルアクリレートは直鎖状の分子である。
 前駆体40dを重合させる前の、液晶層30がブルー相を呈する温度範囲は1~2℃だった。前駆体40dを重合させるための紫外光の照射強度は50mW/cm2 (365nm)とし、照射時間は30分とした。液晶層30はブルー相として‐30℃~48℃の温度範囲で安定化していることを確認した。実施例1では生じなかったが、比較例1においては、ムラが生じ、一部でコレステリック相が発現していることを確認した。液晶混合物の注入に関して2-エチルヘキシルアクリレートの揮発が認められ組成ズレの影響があった。また、硬化速度が遅く一部で未反応モノマーの影響が認められた。
〔比較例2〕
 比較例2の液晶表示装置は、液晶層30の材料以外は実施例1と同じである。
 比較例2における液晶層30は以下のようにして調整した。ネマチック液晶JC1041XX(チッソ社製)40wt%と5CB液晶(アルドリッチ社製)40wt、カイラル剤 40eとしてZLI‐4572(Merck社製) 90wt%、液晶性デンドリマーG3‐6‐LC110wt%を混合して調製した。
 液晶性デンドリマーのG3‐6‐LCの構造を図9に示す。
 こうして得られた混合物を、アレイ基板10と対向基板20の間に注入した。本比較例では高分子重合処理は行わなかった。
 ブルー相は12℃~23℃の温度範囲で安定化していることを確認した。すなわち、比較例2においては液晶層30が高分子を有していないので液晶層30がブルー相として存在しにくいため、ブルー相が安定して存在する温度範囲実施例1に比べて狭くなった。
 1…液晶表示装置、10…アレイ基板、20…対向基板、30…液晶層、 105a…信号線、105b…電極、40…格子、40a…ブルー相、40b…高分子、40c…カイラル剤、40d…前駆体、50…デンドリマー、50a…デンドリマーユニット、50b…重合ユニット

Claims (6)

  1.  ブルー相を呈する液晶材料と、
     中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニット及び、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットを有するデンドリマー型構造を持ち、前記液晶材料を保持する高分子と、
     前記液晶材料の隙間に存在して前記液晶材料の配向を制御するカイラル剤と、
     を有することを特徴とする液晶/高分子複合体。
  2.  前記高分子は、デンドリマー型構造に加えて更に鎖状構造を有することを特徴とする請求項1に記載の液晶/高分子複合体。
  3.  前記重合ユニットが、アクリル基であることを特徴とする請求項1に記載の液晶/高分子複合体。
  4.  前記デンドリマー型構造の次数が、2以上5以下であることを特徴とする請求項1に記載の液晶/高分子複合体。
  5.  アレイ基板と、
     前記アレイ基板と対向する対向基板と、
     ブルー相を呈する液晶材料と前記液晶材料を保持する高分子と前記液晶材料の隙間に存在して前記液晶材料の配向を制御するカイラル剤とを有する液晶/高分子複合体を有し、前記アレイ基板と前記対向基板との間に保持される液晶層と、
     前記液晶層に電圧を印加する電圧印加手段と、
     を備え、
     前記高分子は、中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニットと、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットとを有するデンドリマー型構造を持つことを特徴とする液晶表示装置。
  6.  液晶材料と、中心原子に分岐構造を持つ原子が2以上結合し次数が2以上であるデンドリマー型ユニット及び、重合基を有し前記デンドリマー型ユニットの結合の末端に結合し且つ他の重合基と結合する重合ユニットを有するデンドリマー型モノマーと、前記液晶材料の配向を制御するカイラル剤と、を混合させる工程と、
     混合させた前記液晶材料と前記デンドリマー型モノマーと前記カイラル剤とを前記液晶材料がブルー相を呈する温度で保持する工程と
     前記デンドリマー型モノマーを重合させて高分子を生成する工程と、
     を有することを特徴とする液晶/高分子複合体の製造方法。
PCT/JP2010/000383 2010-01-25 2010-01-25 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。 WO2011089653A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127014686A KR101354800B1 (ko) 2010-01-25 2010-01-25 액정/고분자 복합체, 그것을 사용한 액정 표시 장치, 액정/고분자 복합체의 제조 방법
JP2011550722A JP5178922B2 (ja) 2010-01-25 2010-01-25 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。
CN201080055820.0A CN102652167B (zh) 2010-01-25 2010-01-25 液晶/高分子复合物、使用其的液晶显示装置、液晶/高分子复合物的制造方法
PCT/JP2010/000383 WO2011089653A1 (ja) 2010-01-25 2010-01-25 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。
US13/557,703 US8613985B2 (en) 2010-01-25 2012-07-25 Liquid crystal/polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000383 WO2011089653A1 (ja) 2010-01-25 2010-01-25 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/557,703 Continuation US8613985B2 (en) 2010-01-25 2012-07-25 Liquid crystal/polymer composite

Publications (1)

Publication Number Publication Date
WO2011089653A1 true WO2011089653A1 (ja) 2011-07-28

Family

ID=44306477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000383 WO2011089653A1 (ja) 2010-01-25 2010-01-25 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。

Country Status (5)

Country Link
US (1) US8613985B2 (ja)
JP (1) JP5178922B2 (ja)
KR (1) KR101354800B1 (ja)
CN (1) CN102652167B (ja)
WO (1) WO2011089653A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163678A (zh) * 2011-12-19 2013-06-19 株式会社日本显示器东 液晶显示装置及其制造方法
US20130299740A1 (en) * 2012-04-27 2013-11-14 East China University Of Science And Technology Bistable blue phase liquid crystal
TWI608078B (zh) * 2011-10-31 2017-12-11 半導體能源研究所股份有限公司 液晶組成物、聚合物-液晶複合物、液晶元件及液晶顯示裝置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952551B (zh) * 2012-10-24 2014-10-22 京东方科技集团股份有限公司 聚合物分散蓝相液晶材料及其制备方法、液晶显示装置
US9976081B2 (en) 2013-04-28 2018-05-22 East China University Of Science And Technology Polymer-stabilized dual frequency blue phase liquid crystals
JP6339782B2 (ja) * 2013-09-25 2018-06-06 エルジー ディスプレイ カンパニー リミテッド 液晶水平配向剤、水平配向型液晶組成物、並びに水平配向型液晶表示装置及びその製造方法
CN106699960B (zh) * 2015-11-17 2019-01-08 大连智敏新材料科技有限公司 一种温控调光膜及其分步聚合制备方法
WO2018091940A1 (en) * 2016-11-18 2018-05-24 Nikon Corporation Optical component comprising liquid crystals in a blue phase and process for making such optical component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201682A (ja) * 2007-02-16 2008-09-04 Kyushu Univ デンドロンとメソゲンとを有する化合物、液晶組成物及び光素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768137B2 (ja) * 1992-05-28 1998-06-25 凸版印刷株式会社 光硬化性アクリル系着色組成物
JP3829412B2 (ja) * 1997-05-28 2006-10-04 Jsr株式会社 カラーフィルタ用感放射線性組成物
WO2005052674A1 (ja) * 2003-11-27 2005-06-09 Asahi Glass Company, Limited 光学的等方性を有する液晶を用いた光学素子
WO2005080529A1 (ja) * 2004-02-20 2005-09-01 Asahi Glass Company, Limited 光学素子用液晶材料および光変調素子
US7576829B2 (en) * 2004-03-19 2009-08-18 Japan Science And Technology Agency Liquid crystal display device
JP5055720B2 (ja) * 2005-06-30 2012-10-24 Dic株式会社 高分子分散型液晶表示素子用組成物及び高分子分散型液晶表示素子
JP5333544B2 (ja) 2011-08-08 2013-11-06 株式会社デンソー 液圧式バルブタイミング調整装置
WO2013026691A1 (en) * 2011-08-25 2013-02-28 Rolic Ag Photoreactive compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201682A (ja) * 2007-02-16 2008-09-04 Kyushu Univ デンドロンとメソゲンとを有する化合物、液晶組成物及び光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. MALKOCH ET AL.: "Synthesis and Characterization of 2,2-Bis(Methylol)Propionic Acid Dendrimers with Different Cores and Terminal Groups", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 42, no. 7, 2004, pages 1758 - 1767 *
X. HAO ET AL.: "Dendrimers as Scaffolds for Multifunctional Reversible Addition- Fragmentation Chain Transfer Agents: Syntheses and Polymerization", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 42, no. 23, 2004, pages 5877 - 5890 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608078B (zh) * 2011-10-31 2017-12-11 半導體能源研究所股份有限公司 液晶組成物、聚合物-液晶複合物、液晶元件及液晶顯示裝置
CN103163678A (zh) * 2011-12-19 2013-06-19 株式会社日本显示器东 液晶显示装置及其制造方法
CN103163678B (zh) * 2011-12-19 2015-10-07 株式会社日本显示器 液晶显示装置及其制造方法
US20130299740A1 (en) * 2012-04-27 2013-11-14 East China University Of Science And Technology Bistable blue phase liquid crystal

Also Published As

Publication number Publication date
CN102652167A (zh) 2012-08-29
US20120307184A1 (en) 2012-12-06
KR101354800B1 (ko) 2014-01-22
KR20120091317A (ko) 2012-08-17
CN102652167B (zh) 2014-03-12
JP5178922B2 (ja) 2013-04-10
US8613985B2 (en) 2013-12-24
JPWO2011089653A1 (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5178922B2 (ja) 液晶/高分子複合体、それを用いた液晶表示装置、液晶/高分子複合体の製造方法。
JP2922394B2 (ja) 高分子液晶複合体
JP2005336477A (ja) 高分子とキラリティーを有する液晶材料とからなる複合材料、該複合材料の製造方法、および該複合材料を用いる光素子
KR100348674B1 (ko) 광학이방체필름,이의제조방법및액정표시장치
KR20070021145A (ko) 액정 표시 소자
JP7120013B2 (ja) 液晶デバイス用材料および液晶デバイス
JP3491926B2 (ja) 光変調装置
Kelly Anisotropic networks, elastomers and gels
JP2016004142A (ja) 光学フィルム積層体とその製造方法及び該積層体を含む液晶表示パネル
JP6927876B2 (ja) ポリマー含有散乱型液晶素子の製造方法及びポリマー含有散乱型液晶素子
TWI518420B (zh) 液晶顯示元件的製造方法及液晶顯示元件
JP5367662B2 (ja) 液晶組成物、それを用いた液晶パネル、および液晶シャッターメガネ
WO2018221360A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
JP2008209872A (ja) 垂直配向型液晶表示装置用楕円偏光板およびそれを用いた垂直配向型液晶表示装置
US20120268692A1 (en) Liquid crystal optical device and its production process
JP2009294521A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
JPH1195205A (ja) 光学異方体フィルムとその製造方法及び液晶表示装置
JP3617653B2 (ja) 光学異方性を有する基板の製造方法
JP4280246B2 (ja) 反射型液晶表示装置およびその製造方法
JP6824941B2 (ja) 光学フィルム積層体とその製造方法及び該積層体を含む液晶表示パネル
JPH0953074A (ja) 液晶表示素子及び液晶表示素子の製造方法
JP2017031379A (ja) 液晶組成物および液晶光学素子
JPH0675214A (ja) 偏光板及び液晶表示装置
CN110678807A (zh) 液晶显示装置及液晶显示装置的制造方法
JP2008191524A (ja) 液晶光学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055820.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550722

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127014686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843819

Country of ref document: EP

Kind code of ref document: A1