WO2011089643A1 - エレベータの救出運転装置 - Google Patents

エレベータの救出運転装置 Download PDF

Info

Publication number
WO2011089643A1
WO2011089643A1 PCT/JP2010/000314 JP2010000314W WO2011089643A1 WO 2011089643 A1 WO2011089643 A1 WO 2011089643A1 JP 2010000314 W JP2010000314 W JP 2010000314W WO 2011089643 A1 WO2011089643 A1 WO 2011089643A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
excitation
motor
switch
power supply
Prior art date
Application number
PCT/JP2010/000314
Other languages
English (en)
French (fr)
Inventor
安江正徳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080062008.0A priority Critical patent/CN102714483B/zh
Priority to KR1020127016639A priority patent/KR101356863B1/ko
Priority to JP2011550712A priority patent/JP5549682B2/ja
Priority to PCT/JP2010/000314 priority patent/WO2011089643A1/ja
Priority to EP10843809.4A priority patent/EP2528226B1/en
Publication of WO2011089643A1 publication Critical patent/WO2011089643A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/027Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions to permit passengers to leave an elevator car in case of failure, e.g. moving the car to a reference floor or unlocking the door
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical

Definitions

  • the present invention relates to an elevator rescue operation apparatus.
  • a rescue operation apparatus using a dynamic brake As a conventional elevator rescue operation apparatus, a rescue operation apparatus using a dynamic brake is known as shown in Patent Document 1 below.
  • This rescue operation device detects an input current of a synchronous motor using a permanent magnet as a field, and converts the detected current into a component having the same phase as the magnetic flux of the permanent magnet and a component orthogonal to the component having the same phase.
  • a power supply abnormality detection means for detecting a power supply abnormality
  • a rescue floor detection means for detecting a rescue floor of a car stopped due to a power supply abnormality
  • a power supply abnormality detection means Short circuit means to short-circuit the input terminal of the synchronous motor when a power supply abnormality is detected, and the input terminal of the synchronous motor is short-circuited by the short-circuit means, and when the start command is issued, the brake of the hoisting machine is released.
  • Brake control means for running the car, for arriving at the rescue floor, and for operating the brake by the output of the rescue floor detection means.
  • the brake control means short-circuits the input terminal of the synchronous motor by the short-circuit means, and when the start command is detected, the hoisting machine The brake is released and the car runs, and when it arrives at the rescue floor, the brake is operated by the rescue floor detection means.
  • the input of the synchronous motor can be short-circuited by the contactor to release the electromagnetic brake, and the passenger can be rescued by running the elevator to the rescue floor at low speed.
  • Patent Document 2 a method has been proposed in which a rescue operation can be performed even when the car and the weight are balanced.
  • An emergency operation device that moves a car by rotating a synchronous motor for elevator operation in an emergency state such as a power failure, and supplies a DC power source and a DC voltage from the DC power source to an actuator that releases windings and brakes of the synchronous motor.
  • the rotary switch has a number of contacts equal to 6 or a multiple of 6 and the operating interval of the contacts of the rotary switch is the total rotation angle, ie an angle of 360 ° is 6 or 6 Is an angle divided by a multiple of.
  • the DC voltage of the DC power supply is sequentially supplied to the respective windings.
  • the rotor of the electric motor is rotated little by little in accordance with the excitation by a rotary switch. As a result, it takes time to drive the electric motor, and excitation is performed in substantially the same phase as the magnetic pole position of the electric motor. Accordingly, a problem has been found that a large amount of reactive current that does not become torque flows from the storage battery to the motor, and the storage battery is consumed quickly.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an elevator rescue operation apparatus that can move a car even if the car and the weight are balanced with a simple configuration.
  • an elevator rescue operation apparatus that uses a permanent magnet synchronous motor for a hoisting machine, and in an elevator rescue operation that releases a brake and moves a car. And a brake switch for connecting / releasing the DC power supply to the brake coil, and connecting the DC power supply to the three-phase winding of the motor to generate a torque by causing a current to flow through the motor.
  • An excitation means, and a rescue switch for connecting / opening the excitation means to / from the DC power supply, wherein the excitation means is connected to one pole of the DC power supply in one phase of the three-phase winding.
  • the rescue operation device when the car and the weight are in a balanced state and the car does not move even when the brake is released by the brake switch, when the excitation means is connected to the DC power source by the rescue switch, the excitation means One pole of the DC power supply is connected to one phase of the windings, and the other polarity of the DC power supply is connected to the other two phases of the three-phase windings of the motor.
  • a short-time current is passed through the electric motor for a short time to generate torque, and the car is moved upward or downward.
  • the second excitation pattern generates a command for advancing the phase formed by the three-phase winding of the motor by 90 degrees in electrical direction in the direction in which the car is desired to move.
  • an elevator rescue operation device comprising: a rectifying means for causing a current from the motor to flow to the DC power source via a rescue switch when the voltage generated from each winding of the motor exceeds the voltage of the DC power source. It is preferable to provide. As a result, when the rotational speed of the motor increases and the voltage generated by the motor exceeds the voltage of the DC power supply, a braking current flows to the motor via the rectifying means. Therefore, since the speed of the car can be suppressed by suppressing the rotation speed of the electric motor, safety during rescue is improved.
  • the rescue switch is opened to disconnect the DC power supply from the excitation means, and the terminal of the motor is short-circuited via the rectification means.
  • a rescue switch is open
  • the exciting means in the rescue operation apparatus for an elevator generates a command to advance the phase formed by the three-phase winding of the electric motor by 120 degrees in electrical direction in the direction in which the car is desired to move. It is preferable to provide an excitation pattern. As a result, when the rotor of the electric motor is slightly rotated, for example, about 30 degrees in electrical angle, excitation can be performed so that the torque of the electric motor becomes maximum, so that the car can be driven more efficiently.
  • the rescue operation apparatus of the elevator which can move a car can be obtained with simple structure, even if the car and the weight are balanced.
  • FIG. 1 is an overall view of an elevator rescue operation apparatus according to an embodiment of the present invention. It is a figure which shows the polarity (a) of the voltage applied to the three-phase winding of the electric motor shown in FIG. 1, and the excitation phase (b) of an electric motor winding. It is a figure which shows the operation
  • FIG. 1 is an overall view of an elevator rescue operation apparatus according to an embodiment of the present invention
  • FIG. 2 shows the polarity (a) of voltage applied to a three-phase winding of an electric motor and the excitation phase (b) of the winding.
  • an elevator has a three-phase AC power source 3 connected to a permanent magnet synchronous motor 11 via a main switch 5, an inverter 7, and a power switch 9, and is fixedly coupled to a rotating shaft of the three-phase motor 11.
  • a sheave 13, a brake 24 that releases and restrains the sheave 13, a car 17 that is fixed to one end of the rope 15 that is hung on the sheave 13, and a weight 19 that is fixed to the other end of the rope 15 have. Then, the sheave 13 is released from the storage battery 20 having one pole (anode) and the other pole (cathode) via the brake switch 22 to release / restrain the brake 24 by turning on / off the current of the brake coil 24L. Liberated / restrained.
  • the rescue operation apparatus includes a rescue switch 32 that connects / releases the storage battery 20 to / from the electric motor 11, a diode unit 34 as a rectifier provided between each winding of the electric motor 11 and the storage battery 20, and a three-phase winding of the electric motor 11.
  • An excitation circuit 50 is provided as excitation means for generating torque by connecting a storage battery 20 as a direct current power source to flow current.
  • the diode unit 34 is a diode module containing six elements for full-wave rectification, and has inputs for the U phase, V phase, and W phase, and outputs for the cathode side and the anode side.
  • the diode part 34 has a cathode side connected to the c terminal of the rescue switch 32, and an anode side connected to the a terminal of the rescue switch 32, the cathode of the storage battery 20, and the W-phase input of the diode part 34.
  • the diode D6 does not substantially function. Therefore, the diode unit 34 may be composed of five independent diodes.
  • the excitation circuit 50 includes an excitation switch group 52.
  • the excitation switch group 52 includes a first excitation switch 52a and a second excitation switch 52b that operates in conjunction with the first excitation switch 52a. Yes.
  • the a terminal is connected to the cathode side of the diode section 34, the b terminal of the second excitation switch 52b, and the c terminal of the rescue switch 32, the b terminal is open, and the c terminal Are connected to the U-phase b terminal of the power switch 9 and the U-phase input of the diode section 34.
  • the second excitation switch 52b has a terminal connected to the W-phase input of the diode section 34, the cathode of the storage battery 20, the anode side of the diode section 34, and the a terminal of the rescue switch 32, and the b terminal connected to the first terminal. 1 is connected to the a terminal of the excitation switch 52 a, and the c terminal is connected to the V-phase input of the diode unit 32 and the b terminal of the power switch 9.
  • the excitation phase at which the S pole is excited is represented by an electrical angle.
  • an excitation pattern “1” as a first excitation pattern in which an anode is applied to the U phase and a cathode is applied to the V phase and W phase of the electric motor 11 by the excitation switch group 52 is a phase that matches the U phase (this is expressed as 0 degree). ) Is excited.
  • an excitation pattern “0” as an off pattern is a state in which no voltage is applied to the motor 11 in which the two-phase or three-phase of the motor 11 is opened.
  • the off pattern the U phase and the V phase are opened, and no voltage is applied to the electric motor 11.
  • the diode unit 34 switches the circuit by the excitation switch group 52 in a state where the rescue switch 32 is turned on to the b side and is connected to each U, V, W terminal of the electric motor 11 via the storage battery 20,
  • a surge voltage is generated by the energy stored in the winding impedance of the electric motor 11
  • a circulating current is passed through the storage battery 20 to clamp and suppress the surge voltage, and a voltage obtained by rectifying the generated voltage of the electric motor 11 is stored in the storage battery. If it becomes higher than the voltage of 20, the electric current will be sent toward the storage battery 20, and rotation of the electric motor 11 will be suppressed.
  • the diode part 34 is formed so as to short-circuit each U, V, W terminal of the electric motor 11 by turning on the rescue switch 32 to the a side.
  • the power switch 9 is turned on to the a side, the excitation circuit 50 is disconnected from the electric motor 11, electric power is supplied to the electric motor 11 through the inverter 7, the electric motor 11 is operated, and the car 17 is moved.
  • an excitation pattern “4” is formed to excite the S pole of the rotor to a phase with an electrical angle of 90 degrees (“4” in FIG. 3).
  • the electric motor 11 since the torque becomes the largest when the magnetic pole phase of the rotor and the magnetic pole phase of the stator are 90 degrees, the rotor is rotated by being drawn by this large torque.
  • the motor 11 generates torque in the direction opposite to the rotation from the point where the magnetic pole of the rotor exceeds the electrical angle of 90 degrees, and decelerates the rotation.
  • an excitation pattern “0” is generated in which no torque is generated from the motor 11, and the motor 11 continues to rotate by inertia (“0” in FIG. 3). ])
  • the car 17 moves. As described above, if the car 17 can be moved either upward or downward from the balanced state by the initial pulse torque from the electric motor 11, the difference in the rope mass between the car 17 side and the weight 19 side will increase. Therefore, once the car 17 starts moving, it becomes easier to move gradually.
  • the excitation switch group 52 is first tilted to the b side so that the excitation pattern “4” is obtained, and then the excitation switch group 52 is tilted to the a side.
  • the motor 11 can be rotated in the direction opposite to the above by shifting to “1” and subsequently to the excitation pattern “0”.
  • the motor 11 When the permanent magnet type synchronous motor 11 rotates, the motor 11 acts as a generator and excites a voltage at the terminal.
  • the rotation speed In the excitation pattern “0”, since the terminal of the electric motor 11 is clamped by the diode unit 34, the rotation speed is increased to generate a generated voltage, and the value obtained by rectifying the voltage by the diode unit 34 is the direct current of the storage battery 20.
  • the voltage value is exceeded, the generated current flows from the electric motor 11 toward the storage battery 20. Therefore, rotation of the electric motor 11 is suppressed.
  • the rescue switch 32 is turned on to the a side, so that the winding of the electric motor 11 can be short-circuited to rapidly decelerate.
  • the elevator rescue apparatus uses the permanent magnet synchronous motor 11 for the hoisting machine, and also releases one of the poles and the other pole in the rescue operation of the elevator that releases the brake 24 and moves the car.
  • a brake switch 22 for connecting / releasing the storage battery 20 to / from the brake coil 24L, and an excitation circuit 50 for connecting the storage battery 20 to the three-phase winding of the electric motor 11 and generating torque by passing current.
  • a rescue switch 32 for connecting / opening the excitation circuit 50 to / from the storage battery 20, and the excitation circuit 50 is connected to one pole (anode) of the storage battery 20 in one phase of the three-phase windings.
  • the first excitation pattern for connecting the other pole (cathode) of the storage battery 20 to the other two phases, and the three-phase of the motor 11 in the direction in which the car 17 is to be moved A second excitation pattern that generates a command to advance 90 degrees phase formed by the line in terms of electrical angle, in which the two-phase windings of the motor 11 and a clear pattern to separate from the battery 20.
  • the rescue device for an elevator current is passed from the storage battery 20 to the brake coil 24 ⁇ / b> L by the brake switch 22, the rescue switch 32 is connected to the storage battery 20, and the excitation circuit 50 uses the electric power of the storage battery 20 to the electric motor 11. While one pole (anode) of the storage battery 20 is connected, the other pole (cathode) of the storage battery 20 is connected to the other two phases of the three-phase windings, and a current is passed through the motor 11 to generate torque. Is generated. Thereby, the car 17 is moved little by little in the intended direction.
  • Excitation can be performed so that the torque of the electric motor 11 is maximized, and the car 17 can be driven efficiently. Furthermore, since the two-phase winding is disconnected from the DC power source by the off pattern, the car can be moved to, for example, the nearest floor and the passengers in the car can be rescued while preventing reverse rotation torque from being generated from the electric motor.
  • the current from the electric motor 11 is stored in the storage battery 11. It is preferable to include a diode portion 34 that flows in the flow.
  • a braking current flows to the electric motor 11 via the diode unit 34. Therefore, since the rotational speed of the electric motor 11 can be suppressed and the increase in the speed of the car 17 can be suppressed, the safety during rescue is improved.
  • the rescue switch 32 It is preferable to open the rescue switch 32 to disconnect the storage battery 20 from the excitation circuit 50 and to short-circuit the terminal of the electric motor 11 via the diode unit 34 as in the elevator rescue apparatus of the above embodiment. Thereby, the rescue switch 32 is opened and the terminal of the electric motor 11 is short-circuited through the diode part 32. Accordingly, the car 11 can be rapidly decelerated by decelerating the electric motor 11 rapidly.
  • This rescue device can also be used for rescue operation when the car 17 and the weight 19 are in an unbalanced state.
  • FIG. 4 is an overall view of an elevator rescue operation apparatus according to another embodiment of the present invention.
  • FIG. 5 is a voltage polarity (a) applied to the three-phase winding of the motor shown in FIG. It is a figure which shows an excitation phase (b).
  • the elevator rescue operation apparatus includes a second excitation switch group 150 instead of the first excitation switch group 52 shown in FIG. Excitation switch 152 and a fourth excitation switch 154 that operates independently of the third excitation switch 152.
  • the third excitation switch 152 has an a terminal connected to the b terminal of the fourth excitation switch 154, a b terminal connected to the c terminal of the rescue switch 32 and the cathode of the diode section 32, and the c terminal connected to the diode section 34. Connected to the V-phase input.
  • the fourth excitation switch 154 has an a terminal connected to the c terminal of the rescue switch 32, the cathode of the diode section 34, and the b terminal of the third excitation switch 152, and the b terminal of the third excitation switch 152.
  • the a terminal, the anode of the diode section 34, and the W-phase input of the diode section 34 are connected, and the c terminal is connected to the U-phase input of the diode section 34.
  • the b terminal of the fourth excitation switch 154 is connected to the cathode of the storage battery 20.
  • the U-phase terminal of the electric motor 11 is also switched to the cathode of the storage battery 20, and the third excitation switch 152 and the fourth excitation switch 154 can operate independently, so that the excitation is performed as shown in FIG. All patterns “0” to “5” can be handled.
  • the operation of the rescue operation of the elevator configured as described above will be described with reference to FIGS. 4 to 6.
  • the brake switch 22 is turned on and the rescue switch 32 and the power switch 9 are turned on to the b side
  • the third and fourth excitation switches 152 and 154 are turned to the a side, as in the first embodiment.
  • the anode of the storage battery 20 is connected to the U phase of the winding of the motor 11 and the cathode is connected to the V phase and the W phase, resulting in a circuit corresponding to the excitation pattern “1”. Excited.
  • the N pole of the rotor of the electric motor 11 is attracted to the S pole on the U-phase side (“1” in FIG. 6).
  • the V-phase input of the motor 11 is connected to the anode of the storage battery 20 and the motor 11
  • the W-phase input is connected to the cathode of the storage battery 20 and becomes a circuit corresponding to the excitation pattern “4”.
  • the electric motor 11 excites the S pole in a phase with an electrical angle of 90 degrees (“4” in FIG. 6).
  • the torque becomes the largest, so the rotor starts to be drawn by this large torque.
  • the fourth excitation switch 154 When the fourth excitation switch 154 is turned on to the b side, the U-phase input of the electric motor 11 is connected to the cathode of the storage battery 20, and the excitation pattern becomes “5”, and the magnetic pole of the stator of the electric motor 11 is 120 in electrical angle. It becomes a phase of degrees ("5" in FIG. 6). If the rotor of the electric motor 11 is about 30 degrees in electrical angle, the rotor magnetic pole and the stator magnetic pole have a 90-degree relationship, and torque is effectively applied to accelerate the rotor. . Thereafter, when the third and fourth excitation switches 152 and 154 are returned to the neutral (open) state, the excitation pattern becomes “0” (“0” in FIG. 6), and the car 17 continues to rotate due to inertia. .
  • the third excitation switch 152 and the fourth excitation switch 154 are set so as to shift from the excitation pattern “5” to “2”, “1”, “0”. Switch.
  • the W phase of the electric motor 11 is fixed to the negative pole. However, it goes without saying that the same effect can be obtained by replacing the other phase with another phase.
  • the excitation circuit 150 in the elevator rescue apparatus of the above embodiment includes a third excitation pattern in which the phase formed by the three-phase windings of the electric motor 11 is advanced by 120 degrees in electrical angle in the direction in which the car 17 is desired to move. Is preferred. As a result, when the rotor of the electric motor 11 is slightly rotated, for example, about an electrical angle of about 30 degrees, further excitation can be performed so that the torque of the electric motor 11 is maximized, so that the car 17 can be driven more efficiently. .
  • the present invention can be applied to an elevator rescue operation apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

ブレーキコイル24Lに直流電源20を接続・開放するブレーキ用スイッチ22と、電動機11の三相巻線に直流電源20を接続して電動機11に電流を流すことによりトルクを発生させる励磁回路50と、励磁回路50を直流電源20に接続・開放する救出スイッチ32と、を備え、励磁回路50は、三相巻線のうち、一相に直流電源20の一方の極が接続されると共に、三相巻線のうち、他の二相に対して直流電源20の他方の極を接続する第1の励磁パターンと、かご17を移動したい方向に電動機11の三相巻線で形成される位相を電気角で90度進める第2の励磁パターンと、二相の巻線を直流電源20から切り離すオフパターンと、を備えたものである。

Description

エレベータの救出運転装置
本発明は、エレベータの救出運転装置に関するものである。
従来のエレベータの救出運転装置は、下記特許文献1に示すように、ダイナミックブレーキを用いた救出運転装置が知られている。
この救出運転装置は、界磁に永久磁石を用いた同期電動機の入力電流を検出し、この検出した電流を永久磁石の磁束と同位相の成分と同位相の成分に直交する成分とに変換して制御するインバータで駆動されるエレベータの制御装置において、電源の異常を検出する電源異常検出手段と、電源の異常により停止したかごの救出階を検出する救出階検出手段と、電源異常検出手段により電源の異常が検出されたときに同期電動機の入力端子を短絡する短絡手段と、短絡手段により同期電動機の入力端子が短絡され、起動指令が出されたときに巻上機のブレーキを解放してかごを走行させ、かごが救出階に到着し、救出階検出手段の出力によりブレーキを動作させるブレーキ制御手段と、を備えている。
上記救出運転装置によれば、電源異常検出手段により電源の異常が検出されたとき、ブレーキ制御手段は短絡手段により同期電動機の入力端子を短絡し、起動指令が検出されたときに巻上機のブレーキを解放してかごを走行し、救出階に到着したときに救出階検出手段によりブレーキを動作する。電源の異常時には接触器により同期電動機の入力を短絡し電磁ブレーキを解放して低速でエレベータを救出階まで走行させ乗客を救出することができる。
しかしながら、かごとおもりがバランスしている場合には、ブレーキを解放してもかごが自走しない。このため、かごと錘との質量差を生じさせるために、作業者がかごに工具箱などの重量物を乗せたり、ガバナロープに錘を取付けたりなどして、かごを上昇又は下降させていた。
これに対して、下記特許文献2に示すように、かごと錘がバランスしている状態でも、救出作業が可能となる方法が提案されている。
停電などの緊急状態にエレベータ運転用の同期モータを回転してかごを動かす緊急操作装置であって、直流電源と、直流電圧を該直流電源から同期モータの巻線及びブレーキを解放するアクチュエータへ供給するロータリースイッチとを含む装置において、ロータリースイッチは、6又は6の倍数に等しい数の接点を有し、該ロータリースイッチの接点の作動間隔は、全回転角、すなわち 360°の角度を6又は6の倍数で分割した角度である。これによって、直流電源の直流電圧は順次、それぞれの巻線へ供給される。
特開平9-9699号公報 特許第2990058号
しかしながら、上記エレベータの救出運転装置では、ロータリースイッチで、電動機の回転子を励磁に合わせて少しずつ回転させるようにしている。これにより、電動機を駆動させるため時間がかかると共に、電動機の磁極位置とほぼ同位相に励磁することになる。したがって、トルクにならない多大な無効電流が蓄電池から電動機に流れ、蓄電池の消耗が早いといった課題を見出した。
本発明は、上記のような課題を解決するためになされたもので、簡易な構成により、かごと錘とがバランスしていても、かごを移動できるエレベータの救出運転装置を提供することを目的とする。
第1の発明に係るエレベータの救出運転装置は、巻上機に永久磁石同期型の電動機を用いると共に、ブレーキを解放してかごを移動させるエレベータの救出運転において、一方の極と他方の極とを有する直流電源と、前記ブレーキのコイルに前記直流電源を接続・開放するブレーキ用スイッチと、前記電動機の三相巻線に前記直流電源を接続して電動機に電流を流すことによりトルクを発生させる励磁手段と、前記励磁手段を前記直流電源に接続・開放する救出スイッチと、を備え、前記励磁手段は、前記三相巻線のうち、一相に前記直流電源の一方の極が接続されると共に、前記三相巻線のうち、他の二相に対して前記直流電源の他方の極を接続する第1の励磁パターンと、前記かごを移動したい方向に前記電動機の前記三相巻線で形成される位相を電気角で90度進める指令を発生する第2の励磁パターンと、前記二相の巻線を前記直流電源から切り離すオフパターンと、を備えるものである。
救出運転装置によれば、かごとおもりがバランス状態で、ブレーキ用スイッチによりブレーキを解放してもかごが移動しない場合、救出スイッチにより励磁手段を直流電源に接続すると、励磁手段は、電動機の相巻線のうち、一相に直流電源の一方の極が接続されると共に、電動機の三相巻線のうち、他の二相に対して直流電源の他の極性を接続する。これにより、電動機にパルス的に短時間電流を流してトルクを発生し、かごを上方向または下方向に移動する。そして、第2の励磁パターンはかごを移動したい方向に電動機の三相巻線で形成される位相を電気角で90度進める指令を発生する。これにより、電動機の回転子の初期位置にかかわらず、電動機のトルクが最大となるように励磁でき、効率的にかごを駆動できる。さらに、オフパターンに基づいて二相の巻線を直流電源から切り離すので、電動機から逆回転のトルクの発生を防止しつつ、かごを例えば最寄り階に移動して、かご内の乗客を救出できる。
第2の発明に係るエレベータの救出運転装置は、電動機の各巻線から発生した電圧が直流電源の電圧を越えた際に、救出スイッチを介して電動機からの電流を前記直流電源に流す整流手段を、備えることが好ましい。
これにより、電動機の回転速度が高くなり電動機の発生電圧が直流電源の電圧を越えると、整流手段を介して電動機に制動電流が流れる。したがって、電動機の回転速度を抑制してかごの増速を抑制できるので、救出の際における安全性が向上する。
第3の発明に係るエレベータの救出運転装置は、救出スイッチを開放して前記励磁手段から前記直流電源を切り離すと共に、前記電動機の端子を、前記整流手段を介して短絡する、ことが好ましい。
これにより、救出スイッチを開放して整流手段を介して電動機の端子が短絡される。したがって、電動機を急速に減速してかごを急速に減速できる。
第4の発明に係るエレベータの救出運転装置における励磁手段は、かごを移動したい方向に前記電動機の前記三相巻線で形成される位相を電気角で120度を進める指令を発生する第3の励磁パターンを、備えることが好ましい。
これにより、電動機の回転子が若干、例えば電気角30度程度回転したところで、更に電動機のトルクが最大となるような励磁ができるので、更に効率的なかごの駆動が可能となる。
本発明によれば、簡易な構成により、かごと錘とがバランスしていても、かごを移動できるエレベータの救出運転装置を得ることができる。
本発明の一実施の形態を示すエレベータの救出運転装置の全体図である。 図1に示す電動機の三相巻線に印加する電圧の極性(a)、電動機巻線の励磁位相(b)を示す図である。 図2(a)に示す電動機の三相巻線に順に電圧を印加した際の電動機の動作を示す図である。 本発明の他の実施の形態を示すエレベータの救出運転装置の全体図である。 図4に示す電動機の三相巻線に印加する電圧の極性(a)、電動機巻線の励磁位相(b)を示す図である。 図4(a)に示す電動機の三相巻線に順に電圧を印加した際の電動機の動作を示す図である。
9 電源スイッチ、11 電動機、17 かご、20 蓄電池、22 ブレーキ用スイッチ、24 ブレーキ、32 救出スイッチ、34 ダイオード部、50,150 励磁回路。
実施の形態1.
本発明の一実施の形態を図1及び図2によって説明する。図1は本発明の一実施の形態を示すエレベータの救出運転装置の全体図、図2は、電動機の三相巻線に印加する電圧の極性(a)、巻線の励磁位相(b)を示す図である。
図1において、エレベータは、三相交流電源3をメインスイッチ5、インバータ7、電源スイッチ9を介して永久磁石同期型の電動機11に接続されており、三相の電動機11の回転軸に連結固定された綱車13、綱車13を解放・拘束するブレーキ24を備え、綱車13に掛けられたロープ15の一端に固定されたかご17と、ロープ15の他端に固定された錘19とを有している。
そして、一方の極(陽極)、他方の極(陰極)を有する蓄電池20からブレーキスイッチ22を介してブレーキコイル24Lの電流をオン・オフしてブレーキ24を解放・拘束することにより綱車13を解放・拘束している。
救出運転装置は、電動機11に蓄電池20を接続・開放する救出スイッチ32と、電動機11の各巻線と蓄電池20の間に設けられた整流手段としてのダイオード部34と、電動機11の三相巻線に直流電源としての蓄電池20を接続して電流を流すことでトルクを発生させる励磁手段として励磁回路50と、を備えている。
ダイオード部34は、全波整流用の6素子入りのダイオードモジュールで、U相、V相、W相のそれぞれの入力と、カソード側、アノード側のそれぞれの出力とを有すると共に、電源スイッチ9をb端子に投入することによりU相入力,V相入力,W相入力のそれぞれに電動機11のU相端子,V相端子,W相端子がそれぞれ接続するよう形成されている。
さらに、ダイオード部34はカソード側が救出スイッチ32のc端子に接続され、アノード側が救出スイッチ32のa端子と、蓄電池20の陰極と、ダイオード部34のW相入力とに接続されている。
なお、ダイオードD6は、実質機能していない。したがって、ダイオード部34は、独立した5つのダイオードで構成しても良い。
励磁回路50は励磁スイッチ群52を有しており、励磁スイッチ群52は、第1の励磁スイッチ52aと、第1の励磁スイッチ52aに連動して動作する第2の励磁スイッチ52bとから成っている。
第1の励磁スイッチ52aは、a端子がダイオード部34のカソード側と、第2の励磁スイッチ52bのb端子と、救出スイッチ32のc端子に接続され、b端子が開放されており、c端子が電源スイッチ9のU相のb端子と、ダイオード部34のU相入力とに接続されている。
第2の励磁スイッチ52bは、a端子がダイオード部34のW相の入力と、蓄電池20の陰極と、ダイオード部34のアノード側と、救出スイッチ32のa端子とに接続され、b端子が第1の励磁スイッチ52aのa端子に接続されており、c端子がダイオード部32のV相の入力と、電源スイッチ9のb端子とに接続されている。
図2(a)及び(b)において、励磁回路50にて電動機11の巻線U,V,Wに供給される直流電圧の極性と、それによって電動機11の巻線に励磁される励磁パターンとを示し、S極が励起される励磁位相を電気角で表している。例えば、励磁スイッチ群52により電動機11のU相に陽極、V相及びW相に陰極を印加した第1の励磁パターンとしての励磁パターン「1」は、U相に合致した位相(これを0度とする)にS極が励起される。また、電動機11のU相が開放、V相が陽極、W相が陰極に印加した第2の励磁パターンとしての励磁パターン「4」は、U相から電気角90度の位相にS極が励起される。
さらに、電動機11の二相又は三相が開放される電動機11に電圧が印加されていない状態をオフパターンとしての励磁パターン「0」としている。例えばオフパターンはU相とV相が開放され、電動機11に電圧が印加されていない状態としている。
ダイオード部34は、救出スイッチ32をb側に投入して蓄電池20を介して電動機11の各U,V,W端子と接続している状態において、励磁スイッチ群52により回路を切り換えた際に、電動機11の巻線インピーダンスに蓄えられたエネルギーによってサージ電圧が発生すると、蓄電池20を介して循環電流を流して、サージ電圧をクランプして抑制すると共に、電動機11の発電電圧を整流した電圧が蓄電池20の電圧よりも高くなると、蓄電池20に向かって電流を流して電動機11の回転を抑制している。
さらに、ダイオード部34は、救出スイッチ32をa側に投入して電動機11の各U,V,W端子を短絡するように形成されている。
次に、上記のように構成されたエレベータの救出運転装置の動作を図1から図3を参照して説明する。
<通常運転時>
電源スイッチ9をa側に投入し、励磁回路50を電動機11から切り離し、インバータ7を介して電動機11に電力を供給して電動機11を運転してかご17を移動する。
<救出運転でかごと錘とがアンバランス状態>
故障や停電などでかご17が非常停止になっている状態で、救出運転をする際には、電源スイッチ9をb側に投入して励磁回路50と電動機11とを接続する。救出スイッチ32をa側に投入して、励磁スイッチ群52を中立(開放)にして電動機11の巻線がダイオード34を介して短絡される。
その後、ブレーキスイッチ22が閉成すると、蓄電池20からブレーキコイル24Lに電源を供給し、ブレーキ24を解放して、かご17とおもり19との質量差によりかご17を移動する。この際、電動機11の巻線が短絡されているため、急にかご17が増速することが抑えられるので、安全に乗客を救出できる。
<救出運転でかごと錘とがバランス状態>
ブレーキスイッチ22をオンにして、ブレーキ24を解放しても、かご17が移動しない。このとき、電源スイッチ9をb側に投入した状態において、励磁スイッチ群52をa側に投入し、電動機11の巻線のU相に蓄電池20の陽極、V相とW相に陰極が接続され、図2に示すように、第1の励磁パターン「1」となり、電動機11の回転子のS極をU相側の電気角0度の位相に励起する。すると、電動機11における回転子のN極がU相側の回転子のS極に引き寄せられる(図3「1」)。
次に、励磁スイッチ群52をb側に投入すると、電動機11のV相端子に蓄電池20の陽極に接続すると共に、電動機11のW相端子に蓄電池20の陰極を接続して図2(a)に示すように、励磁パターン「4」を形成して、電気角90度の位相に回転子のS極を励起する(図3「4」)。電動機11は、回転子の磁極と固定子の磁極位相が90度の関係になるときに、トルクが最も大きくなるので、この大きなトルクに引かれて回転子が回転する。
ここで、励磁スイッチ群52をb側に投入したままにすると、電動機11は回転子の磁極が電気角90度を超えたところから回転と逆向きのトルクが発生して回転を減速する。これをさけるために僅かに回ったところで励磁スイッチ群52を中立(開放)状態にすると電動機11からトルクが発生しない励磁パターン「0」の状態となり電動機11が惰性で回転し続け(図3「0」)、かご17が移動する。
上記のように、電動機11からの初めのパルス的トルクによってバランス状態から上方向か下方向のどちらかにかご17を移動できれば、ロープ質量のかご17側とおもり19側の差が大きくなっていくので、一旦かご17が動き出すと徐々に動きやすくなる。
一方、かご17を反対方向に移動したい場合には、初めに励磁パターン「4」になるように、励磁スイッチ群52をb側に倒し、その後、励磁スイッチ群52をa側に倒して励磁パターン「1」に、続いて励磁パターン「0」に移行することにより上記とは逆方向に電動機11を回転できる。
また、永久磁石型の同期電動機11が回転すると、電動機11は発電機としてはたらき、端子に電圧を励起する。励磁パターン「0」においては、電動機11の端子がダイオード部34でクランプされているので、回転速度が上昇して発電電圧が発生し、該電圧をダイオード部34で整流した値が蓄電池20の直流電圧値を超過すると、電動機11から蓄電池20に向かって発電電流が流れ込む。したがって、電動機11の回転が抑制される。さらに、電動機11の回転速度が上昇した場合などは、救出スイッチ32をa側に投入することで、電動機11の巻線を短絡して急に減速できる。
上記実施の形態のエレベータの救出装置は、巻上機に永久磁石同期型の電動機11を用いると共に、ブレーキ24を解放してかごを移動させるエレベータの救出運転において、一方の極と他方の極とを有する蓄電池20と、ブレーキコイル24Lに蓄電池20を接続・開放するブレーキ用スイッチ22と、電動機11の三相巻線に蓄電池20を接続すると共に、電流を流すことによりトルクを発生させる励磁回路50と、励磁回路50を蓄電池20に接続・開放する救出スイッチ32と、を備え、励磁回路50は、三相巻線のうち、一相に蓄電池20の一方の極(陽極)が接続されると共に、三相巻線のうち、他の二相に対して蓄電池20の他方の極(陰極)を接続する第1の励磁パターンと、かご17を移動したい方向に電動機11の三相巻線で形成される位相を電気角で90度進める指令を発生する第2の励磁パターンと、電動機11の二相の巻線を蓄電池20から切り離すオフパターンと、を備えるものである。
エレベータの救出装置によれば、ブレーキ用スイッチ22により蓄電池20からブレーキコイル24Lに電流を流し、救出スイッチ32を蓄電池20に接続して、励磁回路50は、蓄電池20の電力を使って電動機11に蓄電池20の一方の極(陽極)が接続されると共に、三相巻線のうち、他の二相に対して蓄電池20の他方の極(陰極)を接続して電動機11に電流を流してトルクを発生する。これにより、意図した方向に少しずつかご17を移動する。かご17を移動したい方向に電動機11の三相巻線で形成される位相を電気角で90度進める指令を発生する第2の励磁パターンに基づいて電動機11の回転子の初期位置にかかわらず、電動機11のトルクが最大となるように励磁でき、効率的にかご17を駆動することができる。さらに、オフパターンにより二相の巻線を直流電源から切り離すので、電動機から逆回転のトルクの発生を防止しつつ、かごを例えば最寄り階に移動して、かご内の乗客を救出できる。
上記実施の形態のエレベータの救出装置のように、救出スイッチ32を介して電動機11の三相の各巻線から発生した電圧が蓄電池20の電圧を越えた際に、電動機11からの電流を蓄電池11に流すダイオード部34を備えることが好ましい。
これにより、電動機11の回転速度が高くなり電動機11の発生電圧が蓄電池20の電圧を越えると、ダイオード部34を介して電動機11に制動電流が流れる。したがって、電動機11の回転速度を抑制してかご17の増速を抑制できるので、救出の際における安全性が向上する。
上記実施の形態のエレベータの救出装置のように、救出スイッチ32を開放して励磁回路50から蓄電池20を切り離すと共に、電動機11の端子を、ダイオード部34を介して短絡する、ことが好ましい。これにより、救出スイッチ32を開放してダイオード部32を介して電動機11の端子が短絡される。したがって、電動機11を急速に減速してかご17を急速に減速できる。
なお、この救出装置は、かご17と錘19とがアンバランス状態の時の救出運転にも利用できる。
実施の形態2.
本発明の他の実施の形態を図4及び図5によって説明する。図4は、本発明の他の実施の形態を示すエレベータの救出運転装置の全体図、図5は図4に示す電動機の三相巻線に印加する電圧の極性(a)、電動機巻線の励磁位相(b)を示す図である。図4中、図1と同一符号は同一部分を示し説明を省略する。
図4において、エレベータの救出運転装置は、図1に示す第1の励磁スイッチ群52の代わりに、第2の励磁スイッチ群150を有しており、第2の励磁スイッチ群150は、第3の励磁スイッチ152と、第3の励磁スイッチ152と独立して動作する第4の励磁スイッチ154とを有している。
第3の励磁スイッチ152は、a端子が第4の励磁スイッチ154のb端子に接続され、b端子が救出スイッチ32のc端子と、ダイオード部32のカソードに接続され、c端子がダイオード部34のV相入力に接続されている。
第4の励磁スイッチ154は、a端子が救出スイッチ32のc端子と、ダイオード部34のカソードと、第3の励磁スイッチ152のb端子とに接続され、b端子が第3の励磁スイッチ152のa端子と、ダイオード部34のアノードと、ダイオード部34のW相入力とに接続され、c端子がダイオード部34のU相入力に接続されている。
エレベータの救出運転装置は、第4の励磁スイッチ154のb端子が蓄電池20の陰極に接続されている。これにより、電動機11のU相端子が蓄電池20の陰極にも切換えられると共に、第3の励磁スイッチ152と、第4の励磁スイッチ154とが独立して動作できるため、図5に示すように励磁パターン「0」から「5」の全てに対応できる。
上記のように構成されたエレベータの救出運転装置を図4から図6を参照して、かごと錘とがバランス状態における救出運転の動作を説明する。
ブレーキスィツチ22をオンにして、救出スイッチ32及び電源スイッチ9をb側に投入した状態において、第3及び第4の励磁スイッチ152,154をa側に投入すると、上記実施の形態1と同様に、電動機11の巻線のU相に蓄電池20の陽極、V相とW相に陰極が接続され、励磁パターン「1」に相当する回路となり、U相側の電気角0度の位相にS極を励起する。すると、電動機11の回転子のN極がU相側のS極に引き寄せられる(図6「1」)。
暫くして第3の励磁スイッチ152をb側に投入して、第4の励磁スイッチ154を中立(開放)にすると、電動機11のV相入力が蓄電池20の陽極に接続すると共に、電動機11のW相入力が蓄電池20の陰極に接続し、励磁パターン「4」に相当する回路となる。これにより、電動機11が電気角90度の位相にS極を励起する(図6「4」)。電動機11は、回転子の磁極と固定子の磁極が90度の関係になるときに、トルクが最も大きくなるので、この大きなトルクに引かれて回転子が回り出す。
その後、第4の励磁スイッチ154をb側に投入すると、電動機11のU相入力が蓄電池20の陰極に接続し、励磁パターン「5」の状態となり電動機11の固定子の磁極が電気角で120度の位相となる(図6「5」)。ちょうど、電動機11の回転子が電気角で30度くらいまで来たころであれば、回転子の磁極と固定子の磁極が90度の関係となり、有効にトルクが加えられて回転子が加速する。その後、第3及び第4の励磁スイッチ152,154を中立(開放)状態に戻すと、励磁パターン「0」の状態となり(図6「0」)、惰性で回転し続けてかご17が移動する。
なお、反対方向にかごを移動させる場合には、励磁パターン「5」から「2」、「1」、「0」と移行するように、第3の励磁スイッチ152,第4の励磁スイッチ154を切り換えればよい。
また、上記実施形態1,2では、電動機11のW相を-極に固定して説明をしたが、他の相に入れ替えても同様な効果があることは言うまでもない。
上記実施形態のエレベータの救出装置における励磁回路150は、かご17を移動したい方向に電動機11の三相巻線で形成される位相を電気角で120度を進める第3の励磁パターンを、備えることが好ましい。これにより、電動機11の回転子が若干、例えば電気角30度程度回転したところで、さらに、電動機11のトルクが最大となるような励磁ができるので、より効率的なかご17の駆動が可能となる。
 本発明は、エレベータの救出運転装置に適用できる。

Claims (4)

  1. 巻上機に永久磁石同期型の電動機を用いると共に、ブレーキを解放してかごを移動させるエレベータの救出運転において、
    一方の極と他方の極とを有する直流電源と、
    前記ブレーキのコイルに前記直流電源を接続・開放するブレーキ用スイッチと、
    前記電動機の三相巻線に前記直流電源を接続して電動機に電流を流すことによりトルクを発生させる励磁手段と、
    前記励磁手段を前記直流電源に接続・開放する救出スイッチと、を備え、
    前記励磁手段は、前記三相巻線のうち、一相に前記直流電源の一方の極が接続されると共に、前記三相巻線のうち、他の二相に対して前記直流電源の他方の極を接続する第1の励磁パターンと、前記かごを移動したい方向に前記電動機の前記三相巻線で形成される位相を電気角で90度進める指令となる第2の励磁パターンと、前記二相の巻線を前記直流電源から切り離すオフパターンと、
    を備えたことを特徴とするエレベータの救出運転装置。
  2. 前記三相の各巻線から発生した電圧が前記直流電源の電圧を越えた際に、前記救出スイッチを介して前記電動機からの電流を前記直流電源に流す整流手段を、
    備えたことを特徴とする請求項1に記載のエレベータの救出運転装置。
  3. 前記救出スイッチを開放して前記励磁手段から前記直流電源を切り離すと共に、前記電動機の端子を、前記整流手段を介して短絡する、
    ことを特徴とする請求項1又は2に記載のエレベータの救出運転装置。
  4. 前記励磁手段は、前記かごを移動したい方向に前記電動機の前記三相巻線で形成される位相を電気角で120度を進める指令を発生する第3の励磁パターンを、
    備えたことを特徴とする請求項1又は2に記載のエレベータの救出運転装置。
PCT/JP2010/000314 2010-01-21 2010-01-21 エレベータの救出運転装置 WO2011089643A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080062008.0A CN102714483B (zh) 2010-01-21 2010-01-21 电梯的救援运转装置
KR1020127016639A KR101356863B1 (ko) 2010-01-21 2010-01-21 엘리베이터의 구출 운전 장치
JP2011550712A JP5549682B2 (ja) 2010-01-21 2010-01-21 エレベータの救出運転装置
PCT/JP2010/000314 WO2011089643A1 (ja) 2010-01-21 2010-01-21 エレベータの救出運転装置
EP10843809.4A EP2528226B1 (en) 2010-01-21 2010-01-21 Rescue operation device of elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000314 WO2011089643A1 (ja) 2010-01-21 2010-01-21 エレベータの救出運転装置

Publications (1)

Publication Number Publication Date
WO2011089643A1 true WO2011089643A1 (ja) 2011-07-28

Family

ID=44306467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000314 WO2011089643A1 (ja) 2010-01-21 2010-01-21 エレベータの救出運転装置

Country Status (5)

Country Link
EP (1) EP2528226B1 (ja)
JP (1) JP5549682B2 (ja)
KR (1) KR101356863B1 (ja)
CN (1) CN102714483B (ja)
WO (1) WO2011089643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196449A (zh) * 2022-07-25 2022-10-18 苏州安驰控制系统有限公司 电梯驱动装置以及电梯系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2714717T3 (es) * 2012-08-22 2019-05-29 Otis Elevator Co Sistema de ascensor que utiliza frenado dinámico
CN107848734B (zh) 2015-08-07 2021-06-22 奥的斯电梯公司 操作包括永磁体(pm)同步电机驱动系统的电梯系统的救援控制和方法
KR102612854B1 (ko) 2015-08-07 2023-12-13 오티스 엘리베이터 컴파니 영구 자석(pm) 동기 모터 드라이브 시스템을 포함하는 엘리베이터 시스템
EP3190076B1 (en) * 2016-01-07 2019-06-12 Kone Corporation Motion feedback in an elevator
CN108463422B (zh) * 2016-02-15 2020-01-24 株式会社日立制作所 电梯及其控制装置
CN106966248B (zh) * 2017-04-25 2022-09-02 快意电梯股份有限公司 轿厢意外移动保护装置和方法
CN109474216A (zh) * 2017-09-08 2019-03-15 核工业西南物理研究院 脉冲发电机组电气制动电源
JP6835256B2 (ja) * 2017-12-08 2021-02-24 三菱電機株式会社 エレベータの制御装置
DK3569540T3 (da) * 2018-05-14 2022-04-04 Kone Corp Arrangement og fremgangsmåde til dynamisk bremsning af en permanentmagnetmotor samt elevator med anvendelse deraf

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS467719Y1 (ja) * 1969-12-12 1971-03-18
JPH099699A (ja) 1995-06-22 1997-01-10 Mitsubishi Electric Corp エレベータの制御装置
JP2990058B2 (ja) 1995-03-24 1999-12-13 コネ コーポレイション エレベータ運転用同期モータの緊急操作装置
JP2006197750A (ja) * 2005-01-14 2006-07-27 Mitsubishi Electric Engineering Co Ltd モータ駆動制御装置
JP2009143711A (ja) * 2007-12-17 2009-07-02 Mitsubishi Electric Corp エレベータ蓄電制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907853A1 (de) * 1989-03-10 1990-09-13 Man Ghh Krantechnik Antriebsanordnung, insbesondere fuer ein hubwerk
ATE220258T1 (de) * 1998-09-02 2002-07-15 Wittenstein Motion Contr Gmbh Notbetriebseinrichtung für eine vorrichtung mit einem elektromotor
JP5420140B2 (ja) * 2006-02-27 2014-02-19 東芝エレベータ株式会社 エレベータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS467719Y1 (ja) * 1969-12-12 1971-03-18
JP2990058B2 (ja) 1995-03-24 1999-12-13 コネ コーポレイション エレベータ運転用同期モータの緊急操作装置
JPH099699A (ja) 1995-06-22 1997-01-10 Mitsubishi Electric Corp エレベータの制御装置
JP2006197750A (ja) * 2005-01-14 2006-07-27 Mitsubishi Electric Engineering Co Ltd モータ駆動制御装置
JP2009143711A (ja) * 2007-12-17 2009-07-02 Mitsubishi Electric Corp エレベータ蓄電制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196449A (zh) * 2022-07-25 2022-10-18 苏州安驰控制系统有限公司 电梯驱动装置以及电梯系统

Also Published As

Publication number Publication date
KR101356863B1 (ko) 2014-01-28
CN102714483A (zh) 2012-10-03
EP2528226A1 (en) 2012-11-28
JPWO2011089643A1 (ja) 2013-05-20
CN102714483B (zh) 2014-12-24
EP2528226B1 (en) 2020-08-12
KR20120086742A (ko) 2012-08-03
JP5549682B2 (ja) 2014-07-16
EP2528226A4 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP5549682B2 (ja) エレベータの救出運転装置
JP4986541B2 (ja) エレベータ制御装置
JP5420140B2 (ja) エレベータ制御装置
JP5800843B2 (ja) モータの制動方法および装置
CN102457224B (zh) 用于包括直流/交流转换器的电力转换系统的控制设备
EP1520829A1 (en) Controller of elevator
EP2833543B1 (en) Alternating-current electric system and control method thereof
WO2005068244A1 (ja) シリーズハイブリッド電気自動車
JPH099699A (ja) エレベータの制御装置
JP4607215B2 (ja) エレベータの制御装置
JP2014155393A (ja) 交流電機システム及びその制御方法
JP4391613B2 (ja) 巻上機制御装置
JP2006089225A (ja) エレベータ装置
AU2016307422B2 (en) Elevator system including a permanent magnet (PM) synchronous motor drive system
JP2001354366A (ja) エレベータの制御装置
JP6296310B2 (ja) 交流電機システム及びその制御方法
JP4549777B2 (ja) モータ制御装置
JP2001253650A (ja) エレベータの制御装置
JP2003333898A (ja) 同期電動機および誘導電動機の制御装置
CN113979260A (zh) 一种电梯超速保护方法、装置、设备及存储介质
JP2006176319A (ja) エレベータの制御装置
JP2004159423A (ja) 電動機の制御装置
JPH0151435B2 (ja)
JPS6061477A (ja) 交流エレベ−タの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062008.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550712

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010843809

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127016639

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE