WO2011086855A1 - 光学ガラス、プリフォーム、及び光学素子 - Google Patents

光学ガラス、プリフォーム、及び光学素子 Download PDF

Info

Publication number
WO2011086855A1
WO2011086855A1 PCT/JP2010/073750 JP2010073750W WO2011086855A1 WO 2011086855 A1 WO2011086855 A1 WO 2011086855A1 JP 2010073750 W JP2010073750 W JP 2010073750W WO 2011086855 A1 WO2011086855 A1 WO 2011086855A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
mass
optical
less
Prior art date
Application number
PCT/JP2010/073750
Other languages
English (en)
French (fr)
Inventor
敦 永岡
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010005332A external-priority patent/JP5829379B2/ja
Priority claimed from JP2010005324A external-priority patent/JP2011144063A/ja
Priority claimed from JP2010005328A external-priority patent/JP5680307B2/ja
Priority claimed from JP2010005331A external-priority patent/JP2011144065A/ja
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN201080061490.6A priority Critical patent/CN102712523B/zh
Priority to KR1020127018197A priority patent/KR20120125466A/ko
Publication of WO2011086855A1 publication Critical patent/WO2011086855A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, a preform, and an optical element.
  • Optical systems such as digital cameras and video cameras, although large and small, contain blurs called aberrations. This aberration is classified into monochromatic aberration and chromatic aberration. In particular, chromatic aberration is strongly dependent on the material characteristics of the lens used in the optical system.
  • chromatic aberration is corrected by combining a low dispersion convex lens and a high dispersion concave lens.
  • the combination of these lenses can only correct the aberration in the red region and the green region, and the aberration in the blue region remains.
  • This blue region aberration that cannot be removed is called a secondary spectrum.
  • the partial dispersion ratio ( ⁇ g, F) is used as an index of the optical characteristics to be noticed in the optical design.
  • optical glasses having a specific partial dispersion ratio have a remarkable effect on correction of aberrations, and therefore various glasses have been developed in order to expand the degree of freedom in optical design.
  • chromatic aberration can be corrected in a wide wavelength range from ultraviolet to infrared.
  • the partial dispersion ratio ( ⁇ g, F) is expressed by the following equation (1).
  • ⁇ g, F (n g ⁇ n F ) / (n F ⁇ n C ) (1)
  • optical glass has an approximately linear relationship between a partial dispersion ratio ( ⁇ g, F) representing partial dispersion in a short wavelength region and an Abbe number ( ⁇ d ).
  • the straight line representing this relationship plots the partial dispersion ratio and Abbe number of NSL7 and PBM2 on the Cartesian coordinates employing the partial dispersion ratio ( ⁇ g, F) on the vertical axis and the Abbe number ( ⁇ d ) on the horizontal axis. It is represented by a straight line connecting two points, and this straight line is called a normal line (see FIG. 1).
  • Normal glass which is the standard for normal lines, differs depending on the optical glass manufacturer, but each company defines it with almost the same slope and intercept.
  • NSL7 and PBM2 are optical glasses manufactured by OHARA, Inc., and the Abbe number ( ⁇ d ) of PBM2 is 36.3, the partial dispersion ratio ( ⁇ g, F) is 0.5828, and the Abbe number ( ⁇ d ) of NSL7. 60.5, and the partial dispersion ratio ( ⁇ g, F) is 0.5436.) From this normal line, how far the plot of the partial dispersion ratio and Abbe number of the optical glass is in the vertical axis direction. It is an indicator of anomalous dispersion of optical glass.
  • Patent Documents 1 to 5 disclose optical glasses in which the partial dispersion ratio ( ⁇ g, F) has a unique value.
  • Patent Documents 1-3 A glass SiO 2 -B 2 O 3 -ZrO 2 -Nb 2 O 5 system and the SiO 2 -ZrO 2 -Nb 2 O 5 -Ta 2 O 5 system
  • An optical glass having an Abbe number ( ⁇ d ) in the range of 28 to 55 and a partial dispersion ratio ( ⁇ g, F) in the range of 0.54 to 0.59 is disclosed.
  • Patent Documents 4 and 5 describe SiO 2 —B 2 O 3 —TiO 2 —Al 2 O 3 and Bi 2 O 3 —B 2 O 3 based glasses having an Abbe number ( ⁇ d ) of 32.
  • An optical glass having a partial dispersion ratio ( ⁇ g, F) in the range of 0.55 to 0.59 is disclosed.
  • the partial dispersion ratios of the glasses disclosed in Patent Documents 1 to 5 remain as low as 0.59 or less. Therefore, in order to correct the chromatic aberration of the lens with higher accuracy, it is necessary to have a high partial dispersion ratio ( ⁇ g, F), but the value is insufficient to correct the chromatic aberration with high accuracy. there were.
  • a glass having a high partial dispersion ratio has a lower transparency to visible light as the Abbe number ( ⁇ d ) is lower (the value of ⁇ 70 is larger), so it is colored yellow or orange, It is not suitable for applications that transmit light in the visible region.
  • the glasses disclosed in Patent Documents 1 to 5 are all glasses having a high Abbe number ( ⁇ d ).
  • the glasses disclosed in Patent Documents 1 to 5 often have a small difference ⁇ T between the glass transition point (Tg) and the crystallization start temperature (Tx), and the thermal stability of these glasses is low. there were. Therefore, when a preform material is produced from this glass and an optical element is produced by heat-softening and molding the preform material, the produced optical element is devitrified due to crystallization of the heat-softened glass. The optical characteristics of the element were affected.
  • the present invention has been made in view of the above problems, and an object thereof is to correct the chromatic aberration of a lens with higher accuracy while the Abbe number ( ⁇ d ) is within a desired range. It is to obtain an optical glass, a preform and an optical element using the optical glass.
  • the present invention provides an optical glass having a Abbe number ( ⁇ d ) within a desired range and capable of correcting chromatic aberration of a lens with higher accuracy, and having less coloring, a preform and an optical glass using the optical glass Another object is to obtain an element.
  • the present invention also provides an optical glass having high thermal stability while having an Abbe number ( ⁇ d ) within a desired range and capable of correcting chromatic aberration of a lens with higher accuracy. Another object is to obtain a preform and an optical element.
  • the present inventors have conducted intensive test studies. As a result, the P 2 O 5 component, the Nb 2 O 5 component and other components are used in combination, and the P 2 O 5 component and the Nb 2 O are used together. It was found that by setting the content of the five components within a predetermined range, the dispersion of the glass is within a desired range, and the partial dispersion ratio ( ⁇ g, F) of the glass is increased, and the present invention has been completed. It was.
  • the inventors use a P 2 O 5 component, a Nb 2 O 5 component, and an alkali metal component in combination, and the contents of the P 2 O 5 component, the Nb 2 O 5 component, and the alkali metal component are within a predetermined range. It has also been found that the dispersion of the glass falls within a desired range, the partial dispersion ratio ( ⁇ g, F) of the glass is increased, and the transparency of the glass in the visible region is increased.
  • the present inventors have used the P 2 O 5 component and the Nb 2 O 5 component in combination, and the Nb 2 O 5 component and the TiO 2 component are contained within a predetermined range, thereby dispersing the glass. It has also been found that it is within the desired range, the partial dispersion ratio ( ⁇ g, F) of the glass is increased, and the transparency of the glass in the visible range is increased.
  • the present inventors use a P 2 O 5 component and a Nb 2 O 5 component in combination, and make the content of the P 2 O 5 component and the Nb 2 O 5 component within a predetermined range, thereby dispersing the glass. Is found that the partial dispersion ratio ( ⁇ g, F) of the glass is increased and the difference ⁇ T between the glass transition point (Tg) and the crystallization start temperature (Tx) is increased. It was.
  • the present invention provides the following.
  • the entire mass of the glass in terms of oxide composition the content of TiO 2 component in terms of mass% is less than 30.0% (3), wherein the optical glass.
  • any description of the optical glass of the content of WO 3 component to the glass the total weight of the oxide basis the composition is not more than 30.0% (1) to (6).
  • the mass ratio (SiO 2 + B 2 O 3 ) / (P 2 O 5 + SiO 2 + B 2 O 3 ) in the oxide equivalent composition is less than 0.200, according to any one of (1) to (12) Optical glass.
  • the mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, La, Gd and Yb) with respect to the total glass mass of the oxide equivalent composition is 15.0% or less
  • the optical glass according to (14) is 15.0% or less.
  • the mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, La, Gd and Yb) with respect to the total glass mass of the oxide equivalent composition is 0.1% or more
  • the mass sum of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba and Zn) with respect to the total glass mass of the oxide equivalent composition is 30.0% or less.
  • the mass sum of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba and Zn) with respect to the total glass mass of the oxide equivalent composition is 15.0% or less
  • the mass sum of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K and Cs) with respect to the total glass mass of the oxide equivalent composition is 30.0% or less.
  • the oxide equivalent composition contains more than 0% of an Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K and Cs) (20) or (21 ) Optical glass as described.
  • the mass sum of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K and Cs) with respect to the total glass mass of the oxide equivalent composition is 0.1% or more and 30 Optical glass in any one of (20) to (22) which is 0.0% or less.
  • the mass sum of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K and Cs) with respect to the total glass mass of the oxide equivalent composition is more than 1.0%.
  • the mass sum of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K and Cs) with respect to the total glass mass of the oxide equivalent composition is more than 7.0%
  • the P 2 O 5 component, the Nb 2 O 5 component and other components are used in combination, and the content of the P 2 O 5 component and the Nb 2 O 5 component is set within a predetermined range. While the number ( ⁇ d ) is within the desired range, the chromatic aberration of the lens can be corrected with higher accuracy, and the glass has a high resistance to devitrification when formed from a molten state.
  • An optical glass having a wide transmission wavelength range, a preform and an optical element using the optical glass can be obtained.
  • a combination of P 2 O 5 component, Nb 2 O 5 component and the alkali metal component, P 2 O 5 component, within the content of a predetermined Nb 2 O 5 component and the alkali metal component can be corrected with higher accuracy while the Abbe number ( ⁇ d ) is within the desired range, and the devitrification resistance when the glass is formed from the molten state.
  • a high optical glass having a wide transmission wavelength range in the visible range and little coloring, and a preform and an optical element using the optical glass can be obtained.
  • the Abbe number ( ⁇ ) can be obtained by setting the contents of the Nb 2 O 5 component and the TiO 2 component within a predetermined range while using the P 2 O 5 component and the Nb 2 O 5 component together.
  • d ) can correct the chromatic aberration of the lens with higher accuracy while being in a desired range, and has high resistance to devitrification when glass is formed from a molten state, and a transmission wavelength range in the visible range.
  • optical glass having a wide color and little coloration, a preform and an optical element using the same can be obtained.
  • the Abbe number While ⁇ d
  • the chromatic aberration of the lens can be corrected with higher accuracy, and it has high thermal stability, and has a wide transmission wavelength range in the visible range, and coloring is possible. Less optical glass, preforms and optical elements using the same can be obtained.
  • the optical glass of the present invention contains less than 75.0% of the Nb 2 O 5 component and less than 40.0% of the P 2 O 5 component in mass% with respect to the total glass mass of the oxide equivalent composition, It has a partial dispersion ratio ( ⁇ g, F) of 0.62 or more and 0.69 or less, and an Abbe number ( ⁇ d ) of 15 or more and 27 or less.
  • ⁇ g, F partial dispersion ratio
  • ⁇ d Abbe number
  • the optical glass of the present invention the entire mass of the glass in terms of oxide composition, less than 75.0% of Nb 2 O 5 component in mass%, less than 40.0% of P 2 O 5 component, and, Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K and Cs), and a partial dispersion ratio [ ⁇ g, F] of 0.62 or more and 0.69 or less is included. And having an Abbe number ( ⁇ d ) of 15 or more and 27 or less.
  • the P 2 O 5 component, the Nb 2 O 5 component, and the Rn 2 O component in combination, and setting the contents of the P 2 O 5 component, the Nb 2 O 5 component, and the Rn 2 O component within a predetermined range, glass is obtained.
  • the partial dispersion ratio [ ⁇ g, F] of the glass is increased, and the transparency of the glass with respect to light having a wavelength in the visible range is increased. Therefore, it is possible to obtain an optical glass with less coloring that can correct the chromatic aberration of the lens with higher accuracy while the Abbe number ( ⁇ d ) is in the range of 15 to 27.
  • the optical glass of the present invention contains less than 75.0% of Nb 2 O 5 component and less than 40.0% of P 2 O 5 component in mass% with respect to the total glass mass of the oxide equivalent composition.
  • the content of the TiO 2 component is 30.0% or less, has a partial dispersion ratio [ ⁇ g, F] of 0.62 to 0.69, and has an Abbe number ( ⁇ d of 15 to 27 ). ) May be included.
  • the P 2 O 5 component and the Nb 2 O 5 component in combination the Nb 2 O 5 component and the TiO 2 component are contained in a predetermined range, whereby the dispersion of the glass is within a desired range.
  • the partial dispersion ratio [ ⁇ g, F] is increased, a decrease in the transparency of the glass with respect to light having a wavelength in the visible range due to the TiO 2 component can be suppressed. Therefore, it is possible to obtain an optical glass with less coloring that can correct the chromatic aberration of the lens with higher accuracy while the Abbe number ( ⁇ d ) is in the range of 15 to 27.
  • the optical glass of the present invention contains less than 75.0% of Nb 2 O 5 component and less than 40.0% of P 2 O 5 component in mass% with respect to the total glass mass of the oxide equivalent composition. And having a partial dispersion ratio [ ⁇ g, F] of 0.62 or more and 0.69 or less, an Abbe number ( ⁇ d ) of 15 or more and 27 or less, a glass transition point (Tg) and a crystallization start temperature ( The difference ⁇ T with respect to Tx) may be 90 ° C. or more.
  • the dispersion of the glass becomes within a desired range,
  • the partial dispersion ratio [ ⁇ g, F] of the glass is increased, and the difference ⁇ T between the glass transition point (Tg) and the crystallization start temperature (Tx) is increased. Therefore, it is possible to obtain an optical glass that can correct the chromatic aberration of the lens with higher accuracy and has high thermal stability while the Abbe number ( ⁇ d ) is in the range of 15 to 27. .
  • each component constituting the optical glass of the present invention The composition range of each component constituting the optical glass of the present invention is described below. In this specification, unless there is particular notice, content of each component shall be displayed by the mass% with respect to the glass total mass of an oxide conversion composition.
  • the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. It is the composition which described each component contained in glass by making the total mass of the said production
  • Nb 2 O 5 component is a component for increasing the refractive index and dispersion of the glass.
  • the refractive index and dispersion of the glass while increasing the partial dispersion ratio ( ⁇ g, F) of the glass and enhancing the transparency of the glass in the visible wavelength range. Can be increased.
  • the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide-converted composition is preferably 0.1%, more preferably 1.0%, still more preferably 10.0%, and most preferably 25.0. % Is the lower limit, preferably less than 75.0%, more preferably 70.0%, and most preferably 65.0%.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • the P 2 O 5 component is a glass forming component and is a component that lowers the melting temperature of glass.
  • the devitrification resistance of the glass can be enhanced while enhancing the transparency of the glass in the visible wavelength range.
  • the content of the P 2 O 5 component less than 40.0%, it is possible to make it difficult to lower the partial dispersion ratio ( ⁇ g, F) of the glass. Therefore, the content of the P 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 5.0%, still more preferably 10.0%, and even more preferably 17.0.
  • the P 2 O 5 component can be contained in the glass using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like as a raw material.
  • TiO 2 component is a component that raises the refractive index and dispersion of the glass, an optional component of the optical glass of the present invention.
  • the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 40.0%, more preferably 35.0%, and most preferably 30.0%.
  • the content of the TiO 2 component with respect to the total glass mass of the oxide-converted composition is preferable in that the transparency to light with a wavelength in the visible range of the glass is particularly enhanced while a particularly high refractive index and dispersion are obtained. Is 25.0%, more preferably 22.0%, and most preferably 20.0%.
  • the devitrification resistance of the glass can be improved by setting the content of the TiO 2 component to 30.0% or less. Therefore, the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition in this case is preferably 30.0%, more preferably 25.0%, and most preferably 20.0%.
  • the content of the TiO 2 component with respect to the total glass mass of the oxide-converted composition is particularly high in terms of the transparency to light having a wavelength in the visible region of the glass while being particularly easy to obtain a high refractive index and dispersion.
  • the upper limit is preferably 15.0%, more preferably 12.0%, and most preferably 10.0%.
  • the optical glass of the present invention may not contain TiO 2 component, by containing a TiO 2 component of 0.1% or more, it is possible to increase the partial dispersion ratio of glass ([theta] g, F) and more . Therefore, in this case, the content of the TiO 2 component with respect to the total amount of the glass having the oxide conversion composition is preferably 0.1%, more preferably 2.0%, and most preferably 5.5%.
  • the TiO 2 component can be contained in the glass using, for example, TiO 2 as a raw material.
  • the WO 3 component is a component that increases the partial dispersion ratio ( ⁇ g, F) of the glass and increases the refractive index and dispersion of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the WO 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, more preferably 13.0%, more preferably 12.0%, More preferably, the upper limit is 10.0%, most preferably 7.0%, and most preferably 5.0%.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the mass sum of the contents of the Nb 2 O 5 component, the TiO 2 component, and the WO 3 component is preferably 40.0% or more.
  • the partial dispersion ratio ( ⁇ g, F) can be further increased, and an optical glass having a desired partial dispersion ratio ( ⁇ g, F) can be easily obtained.
  • the devitrification resistance of glass can be improved by making this mass sum into 64.0% or less. Therefore, this mass sum (Nb 2 O 5 + TiO 2 + Bi 2 O 3 ) is preferably 40.0%, more preferably 45.0%, most preferably 50.0%, and preferably 64.0%. %, More preferably 63.5%, and most preferably 63.0%.
  • the SiO 2 component is a component that widens the transmission wavelength range of the glass in the visible range, promotes stable glass formation and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of SiO 2 component 10.0% or less, it is possible to make it difficult to lower the partial dispersion ratio ( ⁇ g, F) and refractive index of the glass and to increase the glass transition point (Tg). Can be suppressed.
  • the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • SiO 2 component may be contained in the glass by using as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 or the like.
  • the B 2 O 3 component is a component that promotes stable glass formation and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the B 2 O 3 component 10.0% or less, it is possible to make it difficult to lower the partial dispersion ratio ( ⁇ g, F) and the refractive index of the glass, and the glass transition point (Tg). Can be suppressed. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material.
  • the mass sum of the contents of the P 2 O 5 component, the SiO 2 component, and the B 2 O 3 component is preferably 35.0% or less.
  • the mass sum is preferably 35.0% or less.
  • this mass sum (P 2 O 5 + SiO 2 + B 2 O 3 ) is preferably 35.0%, more preferably 32.0%, still more preferably 30.0%, still more preferably 29.0%,
  • the upper limit is more preferably 27.0%, and most preferably 26.3%.
  • the lower limit of the mass sum is not particularly limited, but is preferably 0.1%, more preferably 5.0%, and still more preferably from the viewpoint of promoting stable glass formation and increasing the devitrification resistance of the glass.
  • the lower limit is 10.0%, most preferably 15.0%.
  • the ratio of the mass sum (SiO 2 + B 2 O 3 ) to the mass sum (P 2 O 5 + SiO 2 + B 2 O 3 ) is preferably less than 0.200.
  • the ratio of the SiO 2 component and B 2 O 3 component is a component for increasing the glass transition point (Tg) among glass-forming components is reduced, the glass transition point of the glass to be obtained as (Tg) starting crystallization
  • the difference ⁇ T from the temperature (Tx) can be widened, and the thermal stability of the glass can be increased.
  • the mass ratio (SiO 2 + B 2 O 3 ) / (P 2 O 5 + SiO 2 + B 2 O 3 ) in the oxide equivalent composition is preferably less than 0.200, more preferably less than 0.100, and even more preferably It is less than 0.080, most preferably less than 0.060.
  • the Y 2 O 3 component increases the refractive index of the glass, or to enhance the chemical durability of the glass, an optional component of the optical glass of the present invention.
  • the content of the Y 2 O 3 component is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the Y 2 O 3 component can be contained in the glass using, for example, Y 2 O 3 , YF 3 or the like as a raw material.
  • La 2 O 3 component increases the refractive index of the glass, or to enhance the chemical durability of the glass, an optional component of the optical glass of the present invention.
  • the content of the La 2 O 3 component is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the La 2 O 3 component can be contained in the glass using, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like as a raw material.
  • the Gd 2 O 3 component is a component that increases the refractive index of the glass and increases the chemical durability of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Gd 2 O 3 component 10.0% or less, it is possible to make it difficult to lower the dispersion of the glass and to reduce the devitrification resistance of the glass. Therefore, the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the Gd 2 O 3 component can be contained in the glass using, for example, Gd 2 O 3 , GdF 3 or the like as a raw material.
  • Yb 2 O 3 component increases the refractive index of the glass, or to enhance the chemical durability of the glass, an optional component of the optical glass of the present invention.
  • the content of the Yb 2 O 3 component 10.0% or less, it is possible to make it difficult to lower the dispersion of the glass and to reduce the devitrification resistance of the glass.
  • the content of the Yb 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the Yb 2 O 3 component can be contained in the glass using, for example, Yb 2 O 3 as a raw material.
  • the mass sum of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, La, Gd, and Yb) is 15.0% or less. Preferably there is.
  • the mass sum is preferably 15.0%, more preferably 12.0%, and most preferably 10.0%. .
  • Ln 2 O 3 component may or may not contain any, but by containing Ln 2 O 3 component of at least one of 0.1% or more, the partial dispersion ratio of glass ([theta] g, F) and more Can be increased. Therefore, in this case, the mass sum of the content of the RO component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%. To do.
  • the MgO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the MgO component is 25.0% or less, the refractive index and dispersion of the glass can be made difficult to decrease. Therefore, the content of the MgO component with respect to the total glass mass of the oxide conversion composition is preferably 25.0%, more preferably 20.0%, and most preferably 15.0%.
  • the MgO component can be contained in the glass using, for example, MgCO 3 or MgF 2 as a raw material.
  • the CaO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the CaO component is 25.0% or less, the refractive index and dispersion of the glass can be made difficult to decrease. Therefore, the content of the CaO component with respect to the total glass mass of the oxide conversion composition is preferably 25.0%, more preferably 20.0%, and most preferably 15.0%.
  • the CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
  • the SrO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the SrO component 25.0% or less, it is possible to make it difficult to lower the refractive index and dispersion of the glass while making it difficult to lower the partial dispersion ratio ( ⁇ g, F). Therefore, the content of the SrO component with respect to the total glass mass of the oxide conversion composition is preferably 25.0%, more preferably 20.0%, and most preferably 15.0%.
  • the SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • the BaO component is a component that increases the refractive index and dispersion of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the BaO component is preferably 25.0%, more preferably 20.0%, and most preferably 15.0%.
  • the BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
  • the ZnO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the ZnO component is preferably 25.0%, more preferably 20.0%, and most preferably 15.0%.
  • the ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the mass sum of the content of the RO component (wherein Rn is one or more selected from the group consisting of Mg, Ca, Sr, Ba, Zn) is 30.0% or less. Is preferred. By setting the mass sum to 30.0% or less, the partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) are less likely to decrease. Therefore, the desired partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) can be easily obtained. Therefore, the mass sum of the RO component content is preferably 30.0%, more preferably 20.0%, even more preferably 15.0%, still more preferably 10.0%, and most preferably 8%. Less than 0%.
  • the mass sum of the RO component content with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.2%, and still more preferably 0.5%.
  • the mass sum of the RO component content with respect to the total glass mass of the oxide conversion composition is: More preferably, the lower limit is 1.0%, and most preferably more than 2.0%.
  • the Li 2 O component is a component that lowers the glass transition point (Tg), increases the devitrification resistance of the glass, and increases the transparency of the glass with respect to light in the visible wavelength range, and is an optional component in the optical glass of the present invention. It is. In particular, by making the content of the Li 2 O component 10.0% or less, it is difficult to lower the partial dispersion ratio ( ⁇ g, F), and the devitrification resistance of the glass due to excessive inclusion of the Li 2 O component. Can be suppressed. Therefore, the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
  • the Na 2 O component is a component that lowers the glass transition point (Tg), increases the devitrification resistance of the glass, and increases the transparency of the glass with respect to light in the visible wavelength range, and is an optional component in the optical glass of the present invention. It is. In particular, by making the content of the Na 2 O component 20.0% or less, it is difficult to lower the partial dispersion ratio ( ⁇ g, F), and the glass is devitrification resistant due to the excessive content of the Na 2 O component. Can be suppressed. Therefore, the content of the Na 2 O component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 17.0%, and most preferably 15.0%.
  • the Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
  • the K 2 O component is a component that lowers the glass transition point (Tg), increases the devitrification resistance of the glass, and increases the transparency of the glass with respect to light having a wavelength in the visible range, and is an optional component in the optical glass of the present invention. It is. In particular, by setting the content of the K 2 O component to 20.0% or less, it is difficult to lower the partial dispersion ratio ( ⁇ g, F), and the glass is devitrification resistant due to the excessive content of the K 2 O component. Can be suppressed. Therefore, the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 17.0%, and most preferably 15.0%.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the Cs 2 O component is a component that lowers the glass transition point (Tg), increases the devitrification resistance of the glass, and increases the transparency of the glass with respect to light having a wavelength in the visible range, and is an optional component in the optical glass of the present invention. It is. In particular, by making the content of the Cs 2 O component 10.0% or less, it is difficult to lower the partial dispersion ratio ( ⁇ g, F), and the devitrification resistance of the glass due to the excessive content of the Cs 2 O component. Can be suppressed. Accordingly, the content of the Cs 2 O component with respect to the total glass mass of the oxide-converted composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%. Cs 2 O component may be contained in the glass by using as the starting material for example Cs 2 CO 3, CsNO 3, and the like.
  • the mass sum of the contents of the Rn 2 O component (wherein R is one or more selected from the group consisting of Li, Na, K, and Cs) is 30.0% or less. It is preferable. By setting the mass sum to 30.0% or less, the partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) are less likely to decrease. Therefore, the desired partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) can be easily obtained. Therefore, the mass sum of the contents of the Rn 2 O component in the oxide equivalent composition is preferably 30.0%, more preferably 25.0%, and most preferably 20.0%.
  • the optical glass of the present invention may not contain Rn 2 O component, but by containing at least one of Rn 2 O components than 0.1%, while lowering the glass transition point (Tg), It is possible to increase the transparency of the glass with respect to light having a wavelength in the visible range and to improve the devitrification resistance of the glass. Therefore, the mass sum of the content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.2%, and still more preferably 0.5%.
  • the mass sum of the content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%. More preferably, the lower limit is 5.0%, and most preferably more than 7.0%.
  • the mass sum of the content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably more than 1.0%, more preferably 3.
  • the lower limit is 0%, more preferably 5.0%, and most preferably more than 7.0%.
  • the Bi 2 O 3 component is a component that increases the partial dispersion ratio ( ⁇ g, F) of the glass, increases the refractive index of the glass, and decreases the glass transition point (Tg), and is an optional component in the optical glass of the present invention. is there.
  • the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, still more preferably 11.5%, and even more preferably 10.0. % Is the upper limit, more preferably less than 10.0%, and most preferably 9.0%.
  • the Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
  • TeO 2 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention.
  • the content of the TeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 12.0%, and most preferably less than 10.0%.
  • the TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
  • the Al 2 O 3 component is a component that increases the chemical durability of the glass and increases the viscosity of the molten glass, and is an optional component in the optical glass of the present invention.
  • the upper limit of the content of the Al 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • the ZrO 2 component is a component that widens the transmission wavelength range of the glass in the visible range and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the ZrO 2 component 15.0% or less, it is possible to make it difficult to lower the refractive index of the glass. Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 12.0%, and most preferably 10.0%.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • Ta 2 O 5 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention.
  • the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 5.0%.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the CeO 2 component is a component that adjusts the optical constant of the glass and promotes defoaming of the glass, and is an optional component in the optical glass of the present invention.
  • the CeO 2 component content with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the CeO 2 component is not substantially contained in terms of coloring of the glass.
  • the CeO 2 component can be contained in the glass using, for example, CeO 2 as a raw material.
  • the material cost of glass can be reduced by setting the content of the GeO 2 component to 15.0% or less. Therefore, the content of the GeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 12.0%, and most preferably 10.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • the Sb 2 O 3 component is a component that increases the transmittance of the glass with respect to visible light having a short wavelength and has a defoaming effect when the glass is melted, and is an optional component in the optical glass of the present invention. .
  • the content of the Sb 2 O 3 component is preferably 1.0%, more preferably 0.5%, still more preferably 0.3%, and even more preferably Less than 0.1%.
  • the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably less than 0.1%, more preferably. Is 0.098%, and most preferably 0.096%.
  • the glass can be defoamed and a desired optical glass can be obtained, but by making the content of the Sb 2 O 3 component 0.010% or more, The defoaming effect can be achieved regardless of the production method. Therefore, the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 0.010%, more preferably 0.020%, and most preferably 0.025%.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like as a raw material.
  • the glass has a partial dispersion ratio ( ⁇ g, F) increased by making the content of the Sb 2 O 3 component within a predetermined range while containing the Rn 2 O component, Rn Since the transmittance of glass with respect to short-wavelength visible light is enhanced by the 2 O component and a predetermined amount of Sb 2 O 3 component, the visible region is small in color while having a desired high partial dispersion ratio ( ⁇ g, F).
  • ⁇ g, F partial dispersion ratio
  • the components for clarifying and defoaming the glass are not limited to the above Sb 2 O 3 component and CeO 2 component, and well-known fining agents, defoaming agents or combinations thereof in the field of glass production are used. be able to.
  • the F component is a component that has the effect of increasing the meltability of the glass and the effect of increasing the Abbe number, and is an optional component in the optical glass of the present invention.
  • the F of the fluoride substituted with one or two or more of the above-mentioned metal elements the total amount of 5.0% by mass is included as an upper limit, thereby obtaining a desired optical constant.
  • the number can be easily realized, the internal quality of the glass can be improved, and the devitrification inside the glass when heated and softened can be reduced. Therefore, the content of the F component with respect to the total glass mass of the oxide conversion composition is preferably 5.0%, more preferably 4.5%, and most preferably 4.0%.
  • the F component is introduced into the glass when the raw material form is introduced as a fluoride.
  • the notation “the total amount as F of fluoride substituted for one or more of one or more oxides of each metal element” representing the content of the F component means the present invention. Assuming that all oxides, composite salts, metal fluorides, etc. used as raw materials for glass components of the glass are decomposed and transformed into oxides upon melting, F actually contained in the total mass of the product oxide The mass of an atom is expressed as a mass percentage.
  • optical glass of the present invention can be added to the optical glass of the present invention as necessary within a range not impairing the properties of the glass of the present invention.
  • each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, except Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
  • the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking special environmental measures.
  • the glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention.
  • the composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
  • P 2 O 5 component 0.1-30.0% and Nb 2 O 5 component 0.1-45.0% And TiO 2 component 0 to 60.0% and / or WO 3 component 0 to 15.0% and / or SiO 2 component 0 to 25.0% and / or B 2 O 3 component 0 to 25.0% and / or Or Y 2 O 3 component 0 to 7.0% and / or La 2 O 3 component 0 to 7.0% and / or Gd 2 O 3 component 0 to 7.0% and / or Yb 2 O 3 component 0 to 7.0% and / or MgO component 0-60.0% and / or CaO component 0-50.0% and / or SrO component 0-40.0% and / or BaO component 0-25.0% and / or Or ZnO component 0-40.0% and / or Li 2 O component 0-40.0% and / or Na 2 O component 0-45.0% and / or K 2 O component 0-30.0% and / or Cs 2 O component from 0 to
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is poured into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted, and then a platinum crucible, a platinum alloy Put in a crucible or iridium crucible and melt in the temperature range of 1100-1350 ° C for 3-4 hours, stir to homogenize, blow off bubbles, etc. Is removed, cast into a mold and slowly cooled.
  • the optical glass of the present invention needs to have a desired dispersion (Abbe number).
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 15, more preferably 16, most preferably 17, the lower limit, preferably 27, more preferably 25, and most preferably 23. .
  • the freedom degree of an optical design when the optical glass of this invention is used for an optical element can be expanded significantly.
  • the optical glass of the present invention has a high partial dispersion ratio ( ⁇ g, F). More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably 0.62, more preferably 0.625, and most preferably 0.63. As a result, an optical glass having a large abnormal partial dispersion ( ⁇ g, F) can be obtained, so that a remarkable effect can be obtained in correcting chromatic aberration of the optical element, and the degree of freedom in optical design can be expanded.
  • the upper limit of the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is not particularly limited, but is generally about 0.69 or less, more specifically 0.68 or less, and more specifically 0.67 or less. There are often.
  • the optical glass of the present invention has a desired partial dispersion ratio ( ⁇ g, F) in the relational expression with the Abbe number ( ⁇ d ), and can correct the chromatic aberration of the lens with higher accuracy. More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) ⁇ with respect to the Abbe number ( ⁇ d ). The relationship of ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7507) is satisfied. As a result, an optical glass having a desired anomalous dispersion can be obtained, so that the chromatic aberration of the lens in the optical apparatus can be corrected with high accuracy.
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass is preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207), more preferably (Abbe number ( ⁇ d )). ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7227), and most preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7247).
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass is preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7507), more preferably (Abbe number ( ⁇ d )).
  • ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7487) and most preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7467).
  • the optical glass of the present invention has high thermal stability.
  • the difference ⁇ T between the glass transition point (Tg) and the crystallization start temperature (Tx) is preferably 90 ° C., more preferably 95 ° C., and most preferably 100 ° C.
  • ⁇ T of the optical glass of the present invention is not particularly limited, and the upper limit is appropriately set according to the technical level.
  • ⁇ T of the glass obtained by the present invention is generally 300 ° C. or lower, specifically 250 ° C. or lower, more specifically 200 ° C. or lower in many cases.
  • the optical glass of this invention has little coloring.
  • the wavelength ( ⁇ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is 500 nm or less, more preferably 480 nm or less, and most preferably. Is 450 nm or less.
  • the wavelength ( ⁇ 5 ) exhibiting a spectral transmittance of 5% is 450 nm or less, more preferably 420 nm or less, and most preferably 400 nm or less.
  • this optical glass can be preferably used as a material for an optical element such as a lens.
  • the optical glass of the present invention preferably has a glass transition point (Tg) of 750 ° C. or lower.
  • Tg glass transition point
  • the upper limit of the glass transition point (Tg) of the optical glass of the present invention is preferably 750 ° C., more preferably 740 ° C., and most preferably 730 ° C.
  • the minimum of the glass transition point (Tg) of the optical glass of this invention is not specifically limited, The upper limit is set suitably according to a technical level.
  • the glass transition point (Tg) of the glass obtained by the present invention is generally 100 ° C. or higher, specifically 150 ° C. or higher, and more specifically 200 ° C. or higher in many cases.
  • the optical glass of the present invention preferably has a desired refractive index. More specifically, the refractive index (n d ) of the optical glass of the present invention is preferably 1.75, more preferably 1.77, and most preferably 1.80. As a result, the degree of freedom in optical design is widened, and a large amount of light refraction can be obtained even if the device is made thinner.
  • the upper limit of the refractive index (n d ) of the optical glass of the present invention is not particularly limited, but is generally 2.20 or less, more specifically 2.15 or less, and more specifically 2.10 or less. There are many.
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to produce optical elements such as lenses, prisms, mirrors and the like from the optical glass of the present invention using means such as precision press molding. As a result, when used in optical devices that transmit visible light to optical elements such as cameras and projectors, the optical system in these optical devices can be miniaturized while realizing high-definition and high-precision imaging characteristics. Can be planned. In addition, since the chromatic aberration is reduced by the optical element using the optical glass, correction with an optical element having a different partial dispersion ratio ( ⁇ g, F) is not required when used in an optical device such as a camera or a projector. High-definition and high-precision imaging characteristics can be realized.
  • ⁇ g, F partial dispersion ratio
  • a strip material (plate-like hot-formed product) formed from the optical glass or a polishing process formed by press-molding the strip material is used.
  • the preform may be manufactured by cold working such as grinding and polishing, and molten glass is dropped from the outlet of an outflow pipe of platinum or the like for precision press molding such as spherical
  • a preform may be produced and precision press molding may be performed on the precision press molding preform.
  • devitrification due to reheating when the strip material is press-molded is reduced, so the preform for polishing is cold worked.
  • an optical element suitable for an application that transmits visible light can be obtained.
  • a preform for precision press molding from the optical glass of the present invention, devitrification due to reheating when this preform is precision press molded is reduced, so it is suitable for applications that transmit visible light.
  • An optical element can be obtained.
  • FIG. 2 shows the relationship between the Abbe number ( ⁇ d ) and the partial dispersion ratio ( ⁇ g, F) in the glasses of the examples (No. 1 to No. 36).
  • the following examples are merely for illustrative purposes, and are not limited to these examples.
  • optical glass of Examples (No. 1 to No. 36) of the present invention and the glass of Comparative Example (No. A) are all oxides, hydroxides, carbonates corresponding to the raw materials of the respective components, Select high-purity raw materials used in ordinary optical glass such as nitrates, fluorides, hydroxides, metaphosphate compounds, etc., and weigh them so that the composition ratios of the respective examples shown in Tables 1 to 8 are obtained.
  • ⁇ T of the optical glass of the examples (No. 1 to No. 36) and the glass of the comparative example (No. A) was measured using a differential heat measuring apparatus (STA 409 CD manufactured by Netchgeletebau). It calculated
  • the transmittances of the optical glasses of Examples (No. 1 to No. 36) and the glasses of Comparative Examples (No. A) were measured according to Japan Optical Glass Industry Association Standard JOGIS02.
  • the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
  • a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and ⁇ 70 (wavelength at 70% transmittance) and ⁇ 5 (transmittance). Wavelength at 5%).
  • all of the optical glasses according to the examples of the present invention have an Abbe number ( ⁇ d ) of 15 or more, more specifically 18 or more, and this Abbe number ( ⁇ d ) was 27 or less, more specifically 23 or less, and was within the desired range.
  • the optical glass of the example of the present invention has a partial dispersion ratio ( ⁇ g, F) of 0.62 or more, more specifically 0.63 or more, and this partial dispersion ratio ( ⁇ g, F). Was 0.69 or less, more specifically 0.66 or less, and was within a desired range.
  • the partial dispersion ratio ( ⁇ g, F) is not less than ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) in relation to the Abbe number ( ⁇ d ). More specifically, ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.725) or more, and this partial dispersion ratio ( ⁇ g, F) is all ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d). +0.7507), more specifically, ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.735) or less, which was within the desired range.
  • the optical glasses of the examples of the present invention all have a difference ⁇ T between the glass transition point (Tg) and the crystallization start temperature (Tx) of 90 ° C. or more, more specifically 100 ° C. or more, and are thermally stable. It became clear that the nature was high.
  • ⁇ 70 (wavelength at 70% transmittance) was 500 nm or less, more specifically, 440 nm or less.
  • the optical glasses except Examples (No. 1 and No. 3) of the present invention all have ⁇ 70 of 435 nm or less, and it has been clarified that coloring is less.
  • optical glasses of the examples of the present invention all had a glass transition point (Tg) of 750 ° C. or lower, more specifically 725 ° C. or lower.
  • the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.75 or more, more specifically 1.81 or more, and this refractive index (n d ) is 2.20 or less. More specifically, it was 1.95 or less.
  • the optical glass of the example of the present invention has high thermal stability, little coloring, and small chromatic aberration, while the Abbe number ( ⁇ d ) is within a desired range. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

 アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することのできる光学ガラス、これを用いたプリフォーム及び光学素子を提供する。 光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、及び、P成分を40.0%未満含有し、0.62以上0.69以下の部分分散比(θg,F)を有し、15以上27以下のアッベ数(ν)を有する。プリフォーム及び光学素子は、この光学ガラスからなる。

Description

光学ガラス、プリフォーム、及び光学素子
 本発明は、光学ガラス、プリフォーム及び光学素子に関する。
 デジタルカメラやビデオカメラ等の光学系は、その大小はあるものの、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類され、特に色収差は光学系に使用されるレンズの材料特性に強く依存している。
 一般に色収差は、低分散の凸レンズと高分散の凹レンズとを組み合わせて補正される。しかし、これらのレンズの組み合わせでは赤色領域と緑色領域の収差の補正しかできず、青色領域の収差が残る。この除去しきれない青色領域の収差を二次スペクトルと呼ぶ。二次スペクトルを補正するには、青色領域のg線(435.835nm)の動向を加味した光学設計を行う必要がある。このとき、光学設計で着目される光学特性の指標として、部分分散比(θg,F)が用いられている。特に、特異な部分分散比(θg,F)を有する光学ガラスは、収差の補正に顕著な効果を奏するため、光学設計の自由度を広げるべく、種々のガラスが開発されている。これらの異常分散ガラスからなるレンズを他のレンズと組み合わせて用いた場合、紫外から赤外への幅広い波長範囲において色収差を補正することが可能となる。
 部分分散比(θg,F)は、下式(1)により示される。
θg,F=(n-n)/(n-n)・・・・・・(1)
 一般に光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θg,F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表され、この直線はノーマルラインと呼ばれている(図1参照)。ノーマルラインの基準となるノーマルガラスは、光学ガラスメーカー毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している。(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3,部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。)そして、このノーマルラインから、光学ガラスの部分分散比及びアッベ数のプロットが縦軸方向にどれだけ離れているかが、光学ガラスの異常分散性の指標とされている。
 異常分散ガラスは、種々の文献において開示されている。例えば、特許文献1~5には部分分散比(θg,F)が特異な値を有する光学ガラスが開示されている。具体的には、特許文献1~3にはSiO-B-ZrO-Nb系やSiO-ZrO-Nb-Ta系のガラスであって、アッベ数(ν)が28~55の範囲内にあり、部分分散比(θg,F)が0.54~0.59の範囲にある光学ガラスが開示されている。また、特許文献4,5にはSiO-B-TiO-Al系やBi-B系のガラスであって、アッベ数(ν)が32~55の範囲内にあり、部分分散比(θg,F)が0.55~0.59の範囲にある光学ガラスが開示されている。
特開平10―130033号公報 特開平10―265238号公報 国際公開第01/072650号パンフレット 特開2003-313047号公報 特開平09-020530号公報
 しかしながら、特許文献1~5に開示されたガラスの部分分散比は、0.59以下の低い値にとどまっている。そのため、レンズの色収差をより高精度に補正するためには、高い部分分散比(θg,F)を有する必要があるにもかかわらず、その値は色収差を高精度に補正するには不十分であった。
 また、高い部分分散比(θg,F)を有するガラスは、アッベ数(ν)が低いほど可視光に対する透明性が低く(λ70の値が大きく)なるため、黄色や橙色に着色し、可視領域の光を透過させる用途には適さない。この点、特許文献1~5に開示されたガラスは、いずれもアッベ数(ν)の高いガラスである。
 また、特許文献1~5に開示されたガラスでは、ガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが小さいものが多く、これらのガラスの熱的安定性は低いものであった。そのため、このガラスからプリフォーム材を作製し、プリフォーム材を加熱軟化及び成型して光学素子を作製しようとすると、加熱軟化したガラスの結晶化によって、作製した光学素子が失透したり、光学素子の光学特性に影響が及んだりしていた。
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することのできる光学ガラス、これを用いたプリフォーム及び光学素子を得ることにある。
 また、本発明は、アッベ数(ν)が所望の範囲内にあり、レンズの色収差をより高精度に補正することができながらも、着色の少ない光学ガラス、これを用いたプリフォーム及び光学素子を得ることをも目的とする。
 また、本発明は、アッベ数(ν)が所望の範囲内にあり、レンズの色収差をより高精度に補正することができながらも、高い熱的安定性を有する光学ガラスと、これを用いたプリフォーム及び光学素子を得ることをも目的とする。
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、P成分、Nb成分及び他の成分を併用し、P成分及びNb成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比(θg,F)が高められることを見出し、本発明を完成するに至った。
 また、本発明者らは、P成分、Nb成分及びアルカリ金属成分を併用し、P成分、Nb成分及びアルカリ金属成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比(θg,F)が高められ、且つ可視域におけるガラスの透明性が高められることをも見出した。
 また、本発明者らは、P成分及びNb成分を併用しつつ、Nb成分及びTiO成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比(θg,F)が高められ、且つ可視域におけるガラスの透明性が高められることをも見出した。
 また、本発明者らは、P成分及びNb成分を併用し、P成分及びNb成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内にありながらも、ガラスの部分分散比(θg,F)が高められ、且つガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが大きくなることをも見出した。
 具体的には、本発明は以下のようなものを提供する。
 (1) 酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、及び、P成分を40.0%未満含有し、0.62以上0.69以下の部分分散比(θg,F)を有し、15以上27以下のアッベ数(ν)を有する光学ガラス。
 (2) 酸化物換算組成のガラス全質量に対するP成分の含有量が17.0%以上である(1)記載の光学ガラス。
 (3) 酸化物換算組成のガラス全質量に対するTiO成分の含有量が40.0%以下である(1)又は(2)記載の光学ガラス。
 (4) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が30.0%以下である(3)記載の光学ガラス。
 (5) 酸化物換算組成のガラス全質量に対するTiO成分の含有量が12.0%以下である(3)又は(4)記載の光学ガラス。
 (6) 酸化物換算組成のガラス全質量に対するTiO成分の含有量が0.1%以上である(3)から(5)のいずれか記載の光学ガラス。
 (7) 酸化物換算組成のガラス全質量に対するWO成分の含有量が30.0%以下である(1)から(6)のいずれか記載の光学ガラス。
 (8) 酸化物換算組成のガラス全質量に対するWO成分の含有量が13.0%以下である(7)記載の光学ガラス。
 (9) 酸化物換算組成のガラス全質量に対するWO成分の含有量が10.0%以下である(7)又は(8)記載の光学ガラス。
 (10) 酸化物換算組成のガラス全質量に対する質量和(Nb+TiO+WO)が40.0%以上64.0%以下である(1)から(9)のいずれか記載の光学ガラス。
 (11) 酸化物換算組成のガラス全質量に対して、質量%で
SiO成分 0~10.0%及び/又は
成分 0~10.0%
である(1)から(10)のいずれか記載の光学ガラス。
 (12) 酸化物換算組成のガラス全質量に対する質量和(P+SiO+B)が35.0%以下である(1)から(11)のいずれか記載の光学ガラス。
 (13) 酸化物換算組成における質量比(SiO+B)/(P+SiO+B)が0.200未満である(1)から(12)のいずれか記載の光学ガラス。
 (14) 酸化物換算組成のガラス全質量に対して、質量%で
成分 0~10.0%及び/又は
La成分 0~10.0%及び/又は
Gd成分 0~10.0%及び/又は
Yb成分 0~10.0%
である(1)から(13)のいずれか記載の光学ガラス。
 (15) 酸化物換算組成のガラス全質量に対するLn成分(式中、LnはY、La、Gd及びYbからなる群より選択される1種以上)の質量和が15.0%以下である(14)記載の光学ガラス。
 (16) 酸化物換算組成のガラス全質量に対するLn成分(式中、LnはY、La、Gd及びYbからなる群より選択される1種以上)の質量和が0.1%以上15.0%以下である(14)又は(15)記載の光学ガラス。
 (17) 酸化物換算組成のガラス全質量に対して、質量%で
MgO成分 0~25.0%及び/又は
CaO成分 0~25.0%及び/又は
SrO成分 0~25.0%及び/又は
BaO成分 0~25.0%及び/又は
ZnO成分 0~25.0%
である(1)から(16)のいずれか記載の光学ガラス。
 (18) 酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Ba及びZnからなる群より選択される1種以上)の質量和が30.0%以下である(17)記載の光学ガラス。
 (19) 酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Ba及びZnからなる群より選択される1種以上)の質量和が15.0%以下である(17)又は(18)記載の光学ガラス。
 (20) 酸化物換算組成のガラス全質量に対して、質量%で
LiO成分 0~10.0%及び/又は
NaO成分 0~20.0%及び/又は
O成分 0~20.0%及び/又は
CsO成分 0~10.0%
である(1)から(19)のいずれか記載の光学ガラス。
 (21) 酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)の質量和が30.0%以下である(20)記載の光学ガラス。
 (22) 酸化物換算組成において、RnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)を0%より多く含有する(20)又は(21)記載の光学ガラス。
 (23) 酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)の質量和が0.1%以上30.0%以下である(20)から(22)のいずれか記載の光学ガラス。
 (24) 酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)の質量和が1.0%より多い(20)から(23)のいずれか記載の光学ガラス。
 (25) 酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)の質量和が7.0%より多い(20)から(24)のいずれか記載の光学ガラス。
 (26) 酸化物換算組成のガラス全質量に対して、質量%で
Bi成分 0~20.0%及び/又は
TeO成分 0~15.0%
である(1)から(25)のいずれか記載の光学ガラス。
 (27) 酸化物換算組成のガラス全質量に対して、質量%で
Al成分 0~10.0%及び/又は
ZrO成分 0~15.0%及び/又は
Ta成分 0~15.0%及び/又は
CeO成分 0~10.0%
である(1)から(26)のいずれか記載の光学ガラス。
 (28) 酸化物換算組成のガラス全質量に対するGeO成分の含有量が15.0%以下である(1)から(27)のいずれか記載の光学ガラス。
 (29) 酸化物換算組成のガラス全質量に対するSb成分の含有量が1.0%以下である(1)から(28)のいずれか記載の光学ガラス。
 (30) 酸化物換算組成のガラス全質量に対するSb成分の含有量が0.1%未満である(29)記載の光学ガラス。
 (31) ガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが90℃以上である(30)記載の光学ガラス。
 (32) 部分分散比(θg,F)がアッベ数(ν)との間で(-4.21×10-3×ν+0.7207)≦(θg,F)≦(-4.21×10-3×ν+0.7507)の関係を満たす(1)から(31)のいずれか記載の光学ガラス。
 (33) 分光透過率が70%を示す波長(λ70)が500nm以下である(1)から(32)のいずれか記載の光学ガラス。
 (34) (1)から(33)のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。
 (35) (34)記載のプリフォームを研磨してなる光学素子。
 (36) (34)記載のプリフォームを精密プレス成形してなる光学素子。
 本発明によれば、P成分、Nb成分及び他の成分を併用し、P成分及びNb成分の含有量を所定の範囲内にすることによって、アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することができ、且つ、溶融状態からガラスを形成したときの耐失透性が高く、可視域での透過波長範囲が広い光学ガラス、これを用いたプリフォーム及び光学素子を得ることができる。
 また、本発明によれば、P成分、Nb成分及びアルカリ金属成分を併用し、P成分、Nb成分及びアルカリ金属成分の含有量を所定の範囲内にすることによって、アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することができ、且つ、溶融状態からガラスを形成したときの耐失透性が高く、可視域での透過波長範囲が広く着色が少ない光学ガラス、これを用いたプリフォーム及び光学素子を得ることができる。
 また、本発明によれば、P成分及びNb成分を併用しつつ、Nb成分及びTiO成分の含有量を所定の範囲内にすることによって、アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することができ、且つ、溶融状態からガラスを形成したときの耐失透性が高く、可視域での透過波長範囲が広く着色が少ない光学ガラス、これを用いたプリフォーム及び光学素子を得ることができる。
 また、本発明によれば、P成分及びNb成分を併用し、P成分及びNb成分の含有量を所定の範囲内にすることによって、アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することができ、且つ、高い熱的安定性を有し、且つ、可視域での透過波長範囲が広く着色が少ない光学ガラス、これを用いたプリフォーム及び光学素子を得ることができる。
縦軸が部分分散比(θg,F)であり、横軸がアッベ数(νd)である直交座標におけるノーマルラインを示す図である。 本願の実施例のガラスについての部分分散比(θg,F)とアッベ数(ν)の関係を示す図である。
 本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、及び、P成分を40.0%未満含有し、0.62以上0.69以下の部分分散比(θg,F)を有し、15以上27以下のアッベ数(ν)を有する。P成分、Nb成分及び他の成分を併用し、P成分及びNb成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比[θg,F]が高められる。このため、アッベ数(ν)が15以上27以下の範囲内にありながら、レンズの色収差をより高精度に補正することができる光学ガラスを得ることができる。
 また、本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、P成分を40.0%未満、及び、RnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)を含有し、0.62以上0.69以下の部分分散比[θg,F]を有し、15以上27以下のアッベ数(ν)を有するものであってもよい。P成分、Nb成分及びRnO成分を併用し、P成分、Nb成分及びRnO成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比[θg,F]が高められ、可視域の波長の光に対するガラスの透明性が高められる。このため、アッベ数(ν)が15以上27以下の範囲内にありながら、レンズの色収差をより高精度に補正することができる、着色の少ない光学ガラスを得ることができる。
 また、本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、及び、P成分を40.0%未満含有し、及び、TiO成分の含有量が30.0%以下であり、0.62以上0.69以下の部分分散比[θg,F]を有し、15以上27以下のアッベ数(ν)を有するものであってもよい。P成分及びNb成分を併用しつつ、Nb成分及びTiO成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比[θg,F]が高められながらも、TiO成分による可視域の波長の光に対するガラスの透明性の低下が抑えられる。このため、アッベ数(ν)が15以上27以下の範囲内にありながら、レンズの色収差をより高精度に補正することができる、着色の少ない光学ガラスを得ることができる。
 また、本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、及び、P成分を40.0%未満含有し、0.62以上0.69以下の部分分散比[θg,F]を有し、15以上27以下のアッベ数(ν)を有し、ガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが90℃以上であるものであってもよい。P成分及びNb成分を併用し、P成分及びNb成分の含有量を所定の範囲内にすることによって、ガラスの分散が所望の範囲内になり、ガラスの部分分散比[θg,F]が高められ、且つガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが大きくなる。このため、アッベ数(ν)が15以上27以下の範囲内にありながら、レンズの色収差をより高精度に補正することができる、且つ高い熱的安定性を有する光学ガラスを得ることができる。
 以下、本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は特に断りがない場合は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
 Nb成分は、ガラスの屈折率及び分散を高める成分である。特に、Nb成分の必須成分として含有することで、ガラスの部分分散比(θg,F)を高め、ガラスの可視域の波長の光に対する透明性を高めつつ、ガラスの屈折率及び分散を高めることができる。また、Nb成分の含有量を75.0%未満にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは0.1%、より好ましくは1.0%、さらに好ましくは10.0%、最も好ましくは25.0%を下限とし、好ましくは75.0%未満とし、より好ましくは70.0%、最も好ましくは65.0%を上限とする。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。
 P成分は、ガラス形成成分であり、ガラスの溶解温度を下げる成分である。特に、P成分を必須成分として含有することで、ガラスの可視域の波長の光に対する透明性を高めつつ、ガラスの耐失透性を高めることができる。一方、P成分の含有量を40.0%未満にすることで、ガラスの部分分散比(θg,F)を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するP成分の含有量は、好ましくは0.1%、より好ましくは5.0%、さらに好ましくは10.0%、さらに好ましくは17.0%、最も好ましくは15.0%を下限とし、好ましくは40.0%未満とし、より好ましくは35.0%、最も好ましくは33.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いてガラス内に含有できる。
 TiO成分は、ガラスの屈折率及び分散を高める成分であり、本発明の光学ガラス中の任意成分である。TiO成分の含有量を40.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは40.0%、より好ましくは35.0%、最も好ましくは30.0%を上限とする。ここで、特に高い屈折率及び分散が得られつつ、ガラスの可視域の波長の光に対する透明性が特に高められる点では、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは25.0%、より好ましくは22.0%、最も好ましくは20.0%を上限とする。
 特に、ガラスの可視域の波長の光に対する透明性が高いガラスを得る場合、TiO成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、この場合の酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは30.0%、より好ましくは25.0%、最も好ましくは20.0%を上限とする。ここで、特に高い屈折率及び分散を得易くなりつつ、ガラスの可視域の波長の光に対する透明性が特に高められる点では、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは15.0%、より好ましくは12.0%、最も好ましくは10.0%を上限とする。
 なお、本発明の光学ガラスはTiO成分を含有しなくてもよいが、TiO成分を0.1%以上含有することで、ガラスの部分分散比(θg,F)をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するTiO成分の含有量は、好ましくは0.1%、より好ましくは2.0%、最も好ましくは5.5%を下限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有できる。
 WO成分は、ガラスの部分分散比(θg,F)を高め、ガラスの屈折率及び分散を高める成分であり、本発明の光学ガラス中の任意成分である。特に、WO成分の含有量を30.0%以下にすることで、ガラスの再加熱時における失透を低減しつつ、可視域の波長の光に対する透明性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、より好ましくは13.0%、より好ましくは12.0%、さらに好ましくは10.0%、最も好ましくは7.0%、最も好ましくは5.0%を上限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有できる。
 本発明の光学ガラスでは、Nb成分、TiO成分、及びWO成分の含有量の質量和が40.0%以上であることが好ましい。この質量和を40.0%以上にすることで、部分分散比(θg,F)をより一層高め、所望の部分分散比(θg,F)を有する光学ガラスを得易くすることができる。一方で、この質量和を64.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、この質量和(Nb+TiO+Bi)は、好ましくは40.0%、より好ましくは45.0%、最も好ましくは50.0%を下限とし、好ましくは64.0%、より好ましくは63.5%、最も好ましくは63.0%を上限とする。
 SiO成分は、可視域におけるガラスの透過波長範囲を広げ、安定なガラス形成を促してガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、SiО成分の含有量を10.0%以下にすることで、ガラスの部分分散比(θg,F)や屈折率を低下し難くすることができ、且つガラス転移点(Tg)の上昇を抑えることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有することができる。
 B成分は、安定なガラス形成を促してガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、B成分の含有量を10.0%以下にすることで、ガラスの部分分散比(θg,F)や屈折率を低下し難くすることができ、且つガラス転移点(Tg)の上昇を抑えることができる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、P成分、SiO成分、及びB成分の含有量の質量和が35.0%以下であることが好ましい。この質量和を35.0%以下にすることで、部分分散比(θg,F)や分散が低下し難くなるため、所望の部分分散比(θg,F)及びアッベ数(νd)を有する光学ガラスを得易くすることができる。従って、この質量和(P+SiO+B)は、好ましくは35.0%、より好ましくは32.0%、さらに好ましくは30.0%、さらに好ましくは29.0%、さらに好ましくは27.0%、最も好ましくは26.3%を上限とする。一方で、この質量和の下限は特に限定されないが、安定なガラス形成を促してガラスの耐失透性を高める観点から、好ましくは0.1%、より好ましくは5.0%、さらに好ましくは10.0%、最も好ましくは15.0%を下限とする。
 本発明の光学ガラスでは、質量和(P+SiO+B)に対する質量和(SiO+B)の割合は、0.200未満であることが好ましい。これにより、ガラス形成成分の中でもガラス転移点(Tg)を高める成分であるSiO成分及びB成分の割合が低減されるため、得られるガラスのガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTを広げることができ、ガラスの熱的安定性を高めることができる。従って、酸化物換算組成における質量比(SiO+B)/(P+SiO+B)は、好ましくは0.200未満、より好ましくは0.100未満、さらに好ましくは0.080未満、最も好ましくは0.060未満とする。
 Y成分は、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Y成分の含有量を10.0%以下にすることで、ガラスの分散を低下し難くし、ガラスの耐失透性を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するY成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。Y成分は、原料として例えばY、YF等を用いてガラス内に含有することができる。
 La成分は、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、La成分の含有量を10.0%以下にすることで、ガラスの分散を低下し難くし、ガラスの耐失透性を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いてガラス内に含有することができる。
 Gd成分は、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Gd成分の含有量を10.0%以下にすることで、ガラスの分散を低下し難くし、ガラスの耐失透性を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。Gd成分は、原料として例えばGd、GdF等を用いてガラス内に含有することができる。
 Yb成分は、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Yb成分の含有量を10.0%以下にすることで、ガラスの分散を低下し難くし、ガラスの耐失透性を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するYb成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。Yb成分は、原料として例えばYb等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、Ln成分(式中、LnはY、La、Gd、Ybからなる群より選択される1種以上)の含有量の質量和が、15.0%以下であることが好ましい。この質量和を15.0%以下にすることで、Ln成分によるアッベ数の上昇が抑えられるため、所望の高分散を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するLn成分の含有量の質量和は、好ましくは15.0%、より好ましくは12.0%、最も好ましくは10.0%を上限とする。なお、Ln成分はいずれも含有しなくてもよいが、Ln成分の少なくともいずれかを0.1%以上含有することで、ガラスの部分分散比(θg,F)をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するRO成分の含有量の質量和は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。
 ここで特に、Ln成分及びWO成分を含有しつつ、(P+SiO+B)の質量和を低減することにより、Ln成分及びWO成分によって部分分散比(θg,F)が高められつつ、(P+SiO+B)の含有量を低減することで部分分散比(θg,F)の低下が抑えられるため、所望の高い部分分散比(θg,F)を有する光学ガラスを得ることができる。
 MgO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分の含有量を25.0%以下にすることで、ガラスの屈折率及び分散を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するMgO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。MgO成分は、原料として例えばMgCO、MgF等を用いてガラス内に含有することができる。
 CaO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、CaO成分の含有量を25.0%以下にすることで、ガラスの屈折率及び分散を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するCaO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラス内に含有することができる。
 SrO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、SrO成分の含有量を25.0%以下にすることで、部分分散比(θg,F)を低下し難くしつつ、ガラスの屈折率及び分散を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSrO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラス内に含有することができる。
 BaO成分は、ガラスの屈折率及び分散を高める成分であり、本発明の光学ガラス中の任意成分である。特に、BaO成分の含有量を25.0%以下にすることで、ガラスの比重を大きくし、部分分散比(θg,F)を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するBaO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。BaO成分は、原料として例えばBaCO、Ba(NO等を用いてガラス内に含有することができる。
 ZnO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、ZnO成分の含有量を25.0%以下にすることで、部分分散比(θg,F)を低下し難くし、ガラスの屈折率及び分散を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、RO成分(式中、RnはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)の含有量の質量和が30.0%以下であることが好ましい。この質量和を30.0%以下にすることで、部分分散比(θg,F)やアッベ数(ν)が低下し難くなるため、所望の部分分散比(θg,F)及びアッベ数(ν)を得易くすることができる。従って、RO成分の含有量の質量和は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%を上限とし、最も好ましくは8.0%未満とする。なお、RO成分を含有しなくてもよいが、RO成分を含有することで、ガラスの耐失透性を高め、短波長の可視光に対するガラスの透過率をより高め、ガラス転移点(Tg)を低くすることができる。従って、酸化物換算組成のガラス全質量に対するRO成分の含有量の質量和は、好ましくは0.1%、より好ましくは0.2%、さらに好ましくは0.5%を下限とする。特に、ガラス転移点(Tg)をより低くして結晶化開始温度(Tx)との差ΔTをより大きくできる観点では、酸化物換算組成のガラス全質量に対するRO成分の含有量の質量和は、より好ましくは1.0%を下限とし、最も好ましくは2.0%より多くする。
 LiO成分は、ガラス転移点(Tg)を下げ、ガラスの耐失透性を高め、可視域の波長の光に対するガラスの透明性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、LiO成分の含有量を10.0%以下にすることで、部分分散比(θg,F)を低下し難くしつつ、LiO成分の過剰な含有によるガラスの耐失透性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラス内に含有することができる。
 NaO成分は、ガラス転移点(Tg)を下げ、ガラスの耐失透性を高め、可視域の波長の光に対するガラスの透明性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、NaO成分の含有量を20.0%以下にすることで、部分分散比(θg,F)を低下し難くしつつ、NaO成分の過剰な含有によるガラスの耐失透性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含有量は、好ましくは20.0%、より好ましくは17.0%、最も好ましくは15.0%を上限とする。NaO成分は、原料として例えばNaCO、NaNO、NaF、NaSiF等を用いてガラス内に含有することができる。
 KO成分は、ガラス転移点(Tg)を下げ、ガラスの耐失透性を高め、可視域の波長の光に対するガラスの透明性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、KO成分の含有量を20.0%以下にすることで、部分分散比(θg,F)を低下し難くしつつ、KO成分の過剰な含有によるガラスの耐失透性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するKO成分の含有量は、好ましくは20.0%、より好ましくは17.0%、最も好ましくは15.0%を上限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラス内に含有することができる。
 CsO成分は、ガラス転移点(Tg)を下げ、ガラスの耐失透性を高め、可視域の波長の光に対するガラスの透明性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、CsO成分の含有量を10.0%以下にすることで、部分分散比(θg,F)を低下し難くしつつ、CsO成分の過剰な含有によるガラスの耐失透性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するCsO成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。CsO成分は、原料として例えばCsCO、CsNO等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、RnO成分(式中、RはLi、Na、K、Csからなる群より選択される1種以上)の含有量の質量和が、30.0%以下であることが好ましい。この質量和を30.0%以下にすることで、部分分散比(θg,F)やアッベ数(ν)が低下し難くなるため、所望の部分分散比(θg,F)及びアッベ数(ν)を得易くすることができる。従って、酸化物換算組成における、RnO成分の含有量の質量和は、好ましくは30.0%、より好ましくは25.0%、最も好ましくは20.0%を上限とする。なお、本発明の光学ガラスはRnO成分を含有しなくてもよいが、RnO成分の少なくともいずれかを0.1%以上含有することで、ガラス転移点(Tg)を下げつつ、ガラスの可視域の波長の光に対する透明性を高め、且つガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の含有量の質量和は、好ましくは0.1%、より好ましくは0.2%、さらに好ましくは0.5%を下限とする。
 ここで、ガラスの可視域の波長の光に対する透明性をより一層高められる観点では、酸化物換算組成のガラス全質量に対するRnO成分の含有量の質量和は、好ましくは1.0%、さらに好ましくは5.0%を下限とし、最も好ましくは7.0%より多く含有する。
 また、RnO成分の少なくともいずれかを1.0%より多く含有することで、ガラスの可視光に対する透明性や耐失透性を高められるばかりでなく、ガラスのガラス転移点(Tg)が低くなりつつ、ガラスの結晶化開始温度(Tx)が高められるため、これらの差ΔTを高めることでガラスの熱的安定性を高めることができる。従って、特にガラスの熱的安定性を高められる観点では、酸化物換算組成のガラス全質量に対するRnO成分の含有量の質量和は、好ましくは1.0%より多く、より好ましくは3.0%、さらに好ましくは5.0%を下限とし、最も好ましくは7.0%より多く含有する。
 Bi成分は、ガラスの部分分散比(θg,F)を高め、ガラスの屈折率を高め、且つガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有量を20.0%以下にすることで、ガラスの耐失透性を高めるとともに、ガラスの可視域での透過波長範囲を広げることができる。従って、酸化物換算組成のガラス全質量に対するBi成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは11.5%、さらに好ましくは10.0%を上限とし、よりさらに好ましくは10.0%未満とし、最も好ましくは9.0%を上限とする。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。
 TeO成分は、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、TeO成分の含有量を15.0%以下にすることで、ガラスの可視域での透過波長範囲を広げ、ガラス融液の清澄を促すことができる。従って、酸化物換算組成のガラス全質量に対するTeO成分の含有量は、好ましくは15.0%、より好ましくは12.0%を上限とし、最も好ましくは10.0%未満とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。
 Al成分は、ガラスの化学的耐久性を高め、溶融ガラスの粘度を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Al成分の含有量を10.0%以下にすることで、ガラスの溶融性を高めつつ、ガラスの失透傾向を弱めることができる。従って、酸化物換算組成のガラス全質量に対するAl成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラス内に含有することができる。
 ZrO成分は、可視域におけるガラスの透過波長範囲を広げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、ZrO成分の含有量を15.0%以下にすることで、ガラスの屈折率を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは15.0%、より好ましくは12.0%、最も好ましくは10.0%を上限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有することができる。
 Ta成分は、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有量を15.0%以下にすることで、ガラスの失透傾向を弱めることができる。従って、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。
 CeO成分は、ガラスの光学定数を調整し、ガラスの脱泡を促進する成分であり、本発明の光学ガラス中の任意成分である。特に、CeO成分の含有量を10.0%以下にすることで、ガラスのソラリゼーションを低下させることができる。従って、酸化物換算組成のガラス全質量に対するCeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。但し、CeO成分を含有すると可視域の特定の波長に吸収が生じ易くなるため、ガラスの着色の面では、CeO成分を実質的に含まないことが好ましい。CeO成分は、原料として例えばCeO等を用いてガラス内に含有することができる。
 GeO成分は、ガラスの耐失透性を高めつつ、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、GeO成分の含有量を15.0%以下にすることで、ガラスの材料コストを低減することができる。従って、酸化物換算組成のガラス全質量に対するGeO成分の含有量は、好ましくは15.0%、より好ましくは12.0%、最も好ましくは10.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。
 Sb成分は、短波長の可視光に対するガラスの透過率を高める成分であるとともに、ガラスを溶融する際に脱泡効果を有する成分であり、本発明の光学ガラス中の任意成分である。特に、Sb成分の含有量を1.0%以下にすることで、ガラス溶融時における過度の発泡を生じ難くすることができ、Sb成分が溶解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは1.0%、より好ましくは0.5%、さらに好ましくは0.3%を上限とし、さらに好ましくは0.1%未満とする。ここで、特に可視域の波長の光に対する透明性の高いガラスを得る場合、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは0.1%未満とし、より好ましくは0.098%、最も好ましくは0.096%を上限とする。なお、Sbは含有しなくともガラスを脱泡させることができ、所望の光学ガラスを得ることができるが、Sb成分の含有量を0.010%以上にすることで、製法によらずとも脱泡効果を奏することができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは0.010%、より好ましくは0.020%、最も好ましくは0.025%を下限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。
 ここで特に、RnO成分を含有しつつ、Sb成分の含有量を所定の範囲内にすることにより、部分分散比(θg,F)が高められたガラスであっても、RnO成分及び所定量のSb成分によって短波長の可視光に対するガラスの透過率が高められるため、所望の高い部分分散比(θg,F)を有しながらも、着色が少なく可視領域の光を透過させる用途に好適に用いられる光学ガラスを得ることができる。
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分やCeO成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
 F成分は、ガラスの溶融性を高める効果とアッベ数を大きくする効果がある成分であり、本発明の光学ガラス中の任意成分である。特に、上述した各金属元素の一種又は二種以上の酸化物の一部又は全部と置換した弗化物のFとして、合計量で5.0質量%を上限として含有することにより、所望の光学恒数を実現し易くし、ガラスの内部品質を高め、加熱軟化したときのガラス内部の失透を低減することができる。従って、酸化物換算組成のガラス全質量に対するF成分の含有量は、好ましくは5.0%、より好ましくは4.5%、最も好ましくは4.0%を上限とする。F成分は上述した各種酸化物の導入において、原料形態を弗化物にて導入した際に、ガラス中に導入される。
 なお、本明細書において、F成分の含有量を表す表記「各金属元素の一種又は二種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量に対する実際に含有されるF原子の質量を質量百分率で表したものである。
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
 本発明の光学ガラスには、他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加できる。
 また、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
 さらに、PbO等の鉛化合物、及び、Th、Cd、Tl、Os、Be、Seの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄できる。
 本発明のガラス組成物は、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 0.1~30.0%及び
Nb成分 0.1~45.0%、
並びに
TiO成分 0~60.0%及び/又は
WO成分 0~15.0%及び/又は
SiO成分 0~25.0%及び/又は
成分 0~25.0%及び/又は
成分 0~7.0%及び/又は
La成分 0~7.0%及び/又は
Gd成分 0~7.0%及び/又は
Yb成分 0~7.0%及び/又は
MgO成分 0~60.0%及び/又は
CaO成分 0~50.0%及び/又は
SrO成分 0~40.0%及び/又は
BaO成分 0~25.0%及び/又は
ZnO成分 0~40.0%及び/又は
LiO成分 0~40.0%及び/又は
NaO成分 0~45.0%及び/又は
O成分 0~30.0%及び/又は
CsO成分 0~12.0%及び/又は
Bi成分 0~7.0%及び/又は
TeO成分 0~15.0%及び/又は
Al成分 0~15.0%及び/又は
ZrO成分 0~17.0%及び/又は
Ta成分 0~5.0%及び/又は
GeO成分 0~20.0%及び/又は
Sb成分 0~0.5%
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗溶融した後、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1100~1350℃の温度範囲で3~4時間溶融し、攪拌均質化して泡切れ等を行った後、1200℃以下の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより作製される。
[物性]
 本発明の光学ガラスは、所望の分散(アッベ数)を有する必要がある。特に、本発明の光学ガラスのアッベ数(ν)は、好ましくは15、より好ましくは16、最も好ましくは17を下限とし、好ましくは27、より好ましくは25、最も好ましくは23を上限とする。これにより、本発明の光学ガラスを光学素子に用いたときの光学設計の自由度を大幅に広げることができる。
 また、本発明の光学ガラスは、高い部分分散比(θg,F)を有する。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは0.62、より好ましくは0.625、最も好ましくは0.63を下限とする。これにより、大きな異常部分分散(Δθg,F)を有する光学ガラスが得られるため、光学素子の色収差の補正に顕著な効果を奏することができ、光学設計の自由度を広げることができる。なお、本発明の光学ガラスの部分分散比(θg,F)の上限は特に限定されないが、概ね0.69以下、より具体的には0.68以下、さらに具体的には0.67以下であることが多い。
 また、本発明の光学ガラスは、アッベ数(ν)との関係式において所望の部分分散比(θg,F)を有し、レンズの色収差をより高精度に補正できる。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、(-4.21×10-3×ν+0.7207)≦(θg,F)≦(-4.21×10-3×ν+0.7507)の関係を満たす。これにより、所望の異常分散を有する光学ガラスが得られるため、光学機器におけるレンズの色収差を、高精度に補正することができる。ここで、光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、好ましくは(-4.21×10-3×ν+0.7207)、より好ましくは(-4.21×10-3×ν+0.7227)、最も好ましくは(-4.21×10-3×ν+0.7247)を下限とする。一方で、光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、好ましくは(-4.21×10-3×ν+0.7507)、より好ましくは(-4.21×10-3×ν+0.7487)、最も好ましくは(-4.21×10-3×ν+0.7467)を上限とする。
 また、本発明の光学ガラスは、高い熱的安定性を有する。特に、ガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTは、好ましくは90℃、より好ましくは95℃、最も好ましくは100℃を下限とする。これにより、本発明の光学ガラスを精密プレス成形用プリフォーム等のプリフォーム材を作製し、これを加熱軟化して光学素子を作製しても、ガラス内部における結晶核の生成及び結晶の成長が抑制されるため、ガラスの結晶化による失透をはじめとした、光学素子の光学特性への影響を低減することができる。なお、本発明の光学ガラスのΔTの上限は特に限定されず、その上限は技術水準に応じて適宜設定される。ここで、本発明によって得られるガラスのΔTは、概ね300℃以下、具体的には250℃以下、さらに具体的には200℃以下であることが多い。
 また、本発明の光学ガラスは、着色が少ないことが好ましい。特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)が500nm以下であり、より好ましくは480nm以下であり、最も好ましくは450nm以下である。また、分光透過率5%を示す波長(λ)が450nm以下であり、より好ましくは420nm以下であり、最も好ましくは400nm以下である。これにより、ガラスの吸収端が紫外領域又はその近傍に位置するようになり、可視域におけるガラスの透明性が高められるため、この光学ガラスをレンズ等の光学素子の材料として好ましく用いることができる。
 また、本発明の光学ガラスは、750℃以下のガラス転移点(Tg)を有することが好ましい。これにより、ガラスを成形する際に、ガラスがより低い温度で軟化するため、より低い温度でガラスを成形できる。また、特にガラスを精密プレス成形する際に、金型の酸化を低減して金型の長寿命化を図ることもできる。従って、本発明の光学ガラスのガラス転移点(Tg)は、好ましくは750℃、より好ましくは740℃、最も好ましくは730℃を上限とする。なお、本発明の光学ガラスのガラス転移点(Tg)の下限は特に限定されず、その上限は技術水準に応じて適宜設定される。ここで、本発明によって得られるガラスのガラス転移点(Tg)は、概ね100℃以上、具体的には150℃以上、さらに具体的には200℃以上であることが多い。
 また、本発明の光学ガラスは、所望の屈折率を有することが好ましい。より具体的には、本発明の光学ガラスの屈折率(n)は、好ましくは1.75、より好ましくは1.77、最も好ましくは1.80を下限とする。これにより、光学設計の自由度が広がり、更に素子の薄型化を図っても大きな光の屈折量を得ることができる。なお、本発明の光学ガラスの屈折率(n)の上限は特に限定されないが、概ね2.20以下、より具体的には2.15以下、さらに具体的には2.10以下であることが多い。
[プリフォーム及び光学素子]
 本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスから精密プレス成形等の手段を用いて、レンズやプリズム、ミラー等の光学素子を作製することが好ましい。これにより、カメラやプロジェクタ等のような光学素子に可視光を透過させる光学機器に用いたときに、高精細で高精度な結像特性を実現しつつ、これら光学機器における光学系の小型化を図ることができる。また、この光学ガラスを用いた光学素子によって色収差が低減されるため、カメラやプロジェクタ等の光学機器に用いたときに、異なる部分分散比(θg,F)を有する光学素子による補正を行わなくとも、高精細で高精度な結像特性を実現できる。
 ここで、本発明の光学ガラスからなる光学素子を作製するには、光学ガラスから形成したストリップ材(板状の熱間成形品)や、ストリップ材をプレス成形することで形成される研磨加工用のプリフォームに対して、研削研磨等の冷間加工を行って製造する方法を用いてもよく、溶融状態のガラスを白金等の流出パイプの流出口から滴下して球状等の精密プレス成形用プリフォームを作製し、この精密プレス成形用プリフォームに対して精密プレス成形を行ってもよい。特に、本発明の光学ガラスから研磨加工用のプリフォームを形成することにより、ストリップ材をプレス成形する際の再加熱による失透が低減されるため、研磨加工用のプリフォームを冷間加工することで、可視光を透過させる用途に好適な光学素子を得ることができる。また、本発明の光学ガラスから精密プレス成形用のプリフォームを形成することにより、このプリフォームを精密プレス成形する際の再加熱による失透が低減されるため、可視光を透過させる用途に好適な光学素子を得ることができる。
 本発明の実施例(No.1~No.36)及び比較例(No.A)のガラスの組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、ガラス転移点(Tg)、結晶化開始温度(Tx)、ガラス転移点及び結晶化開始温度の差(ΔT)、並びに分光透過率が70%及び5%を示す波長(λ70、λ)の結果を表1~表8に示す。また、実施例(No.1~No.36)のガラスにおける、アッベ数(ν)及び部分分散比(θg,F)の関係を図2に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
 本発明の実施例(No.1~No.36)の光学ガラス、及び比較例(No.A)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表1~表8に示した各実施例の組成の割合になるように秤量して均一に混合した後、石英坩堝又は白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1350℃の温度範囲で3~4時間溶融し、攪拌均質化して泡切れ等を行った後、1200℃以下の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込み徐冷してガラスを作製した。
 ここで、実施例(No.1~No.36)の光学ガラス、及び比較例(No.A)のガラスの屈折率(n)、アッベ数(ν)、及び部分分散比(θg,F)は、徐冷降温速度を-25℃/hにして得られたガラスについて、日本光学硝子工業会規格JOGIS01―2003に基づいて測定を行うことで求めた。そして、求められたアッベ数(ν)及び部分分散比(θg,F)の値について、関係式(θg,F)=-a×ν+bにおける、傾きaが0.00421のときの切片bを求めた。
 また、実施例(No.1~No.36)の光学ガラス、及び比較例(No.A)のガラスのΔTは、示差熱測定装置(ネッチゲレテバウ社製 STA 409 CD)を用いて測定したガラス転移点(Tg)と、結晶化開始温度(Tx)の差より求めた。このときのサンプル粒度は425~600μmとし、昇温速度は10℃/minとした。
 また、実施例(No.1~No.36)の光学ガラス、及び比較例(No.A)のガラスの透過率については、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ70(透過率70%時の波長)とλ(透過率5%時の波長)を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1~表8に表されるように、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が15以上、より詳細には18以上であるとともに、このアッベ数(ν)は27以下、より詳細には23以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、部分分散比(θg,F)がいずれも0.62以上、より具体的には0.63以上であるとともに、この部分分散比(θg,F)は0.69以下、より具体的には0.66以下であり、所望の範囲内であった。この部分分散比(θg,F)の値は、図2に示すように、アッベ数(ν)との関係において、いずれも(-4.21×10-3×ν+0.7207)以上、より詳細には(-4.21×10-3×ν+0.725)以上であるとともに、この部分分散比(θg,F)はいずれも(-4.21×10-3×ν+0.7507)、より詳細には(-4.21×10-3×ν+0.735)以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれもガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが90℃以上、より詳細には100℃以上であり、熱的安定性が高いことが明らかになった。
 また、本発明の実施例の光学ガラスは、いずれもλ70(透過率70%時の波長)が500nm以下、より詳細には440nm以下であった。特に、本発明の実施例(No.1,No.3)を除く光学ガラスは、いずれもλ70が435nm以下であり、着色がより少ないことが明らかになった。
 また、本発明の実施例の光学ガラスは、いずれもガラス転移点(Tg)が750℃以下、より詳細には725℃以下であった。
 また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.75以上、より詳細には1.81以上であるとともに、この屈折率(n)は2.20以下、より詳細には1.95以下であった。
 従って、本発明の実施例の光学ガラスは、アッベ数(ν)が所望の範囲内にありながら、高い熱的安定性を有し、着色が少なく、且つ色収差が小さいことが明らかになった。
 さらに、本発明の実施例の光学ガラスを用いて精密プレス成形用プリフォームを形成し、精密プレス成形用プリフォームを精密プレス成形加工したところ、安定に様々なレンズ形状に加工することができた。
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (27)

  1.  酸化物換算組成のガラス全質量に対して、質量%でNb成分を75.0%未満、及び、P成分を40.0%未満含有し、0.62以上0.69以下の部分分散比(θg,F)を有し、15以上27以下のアッベ数(ν)を有する光学ガラス。
  2.  酸化物換算組成のガラス全質量に対するP成分の含有量が17.0%以上である請求項1記載の光学ガラス。
  3.  酸化物換算組成のガラス全質量に対するTiO成分の含有量が40.0%以下である請求項1又は2記載の光学ガラス。
  4.  酸化物換算組成のガラス全質量に対するTiO成分の含有量が0.1%以上である請求項3記載の光学ガラス。
  5.  酸化物換算組成のガラス全質量に対するWO成分の含有量が30.0%以下である請求項1から4のいずれか記載の光学ガラス。
  6.  酸化物換算組成のガラス全質量に対する質量和(Nb+TiO+WO)が40.0%以上64.0%以下である請求項1から5のいずれか記載の光学ガラス。
  7.  酸化物換算組成のガラス全質量に対して、質量%で
    SiO成分 0~10.0%及び/又は
    成分 0~10.0%
    である請求項1から6のいずれか記載の光学ガラス。
  8.  酸化物換算組成のガラス全質量に対する質量和(P+SiO+B)が35.0%以下である請求項1から7のいずれか記載の光学ガラス。
  9.  酸化物換算組成における質量比(SiO+B)/(P+SiO+B)が0.200未満である請求項1から8のいずれか記載の光学ガラス。
  10.  酸化物換算組成のガラス全質量に対して、質量%で
    成分 0~10.0%及び/又は
    La成分 0~10.0%及び/又は
    Gd成分 0~10.0%及び/又は
    Yb成分 0~10.0%
    である請求項1から9のいずれか記載の光学ガラス。
  11.  酸化物換算組成のガラス全質量に対するLn成分(式中、LnはY、La、Gd及びYbからなる群より選択される1種以上)の質量和が15.0%以下である請求項10記載の光学ガラス。
  12.  酸化物換算組成のガラス全質量に対するLn成分(式中、LnはY、La、Gd及びYbからなる群より選択される1種以上)の質量和が0.1%以上15.0%以下である請求項10又は11記載の光学ガラス。
  13.  酸化物換算組成のガラス全質量に対して、質量%で
    MgO成分 0~25.0%及び/又は
    CaO成分 0~25.0%及び/又は
    SrO成分 0~25.0%及び/又は
    BaO成分 0~25.0%及び/又は
    ZnO成分 0~25.0%
    である請求項1から12のいずれか記載の光学ガラス。
  14.  酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Ba及びZnからなる群より選択される1種以上)の質量和が30.0%以下である請求項13記載の光学ガラス。
  15.  酸化物換算組成のガラス全質量に対して、質量%で
    LiO成分 0~10.0%及び/又は
    NaO成分 0~20.0%及び/又は
    O成分 0~20.0%及び/又は
    CsO成分 0~10.0%
    である請求項1から14のいずれか記載の光学ガラス。
  16.  酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)の質量和が30.0%以下である請求項15記載の光学ガラス。
  17.  酸化物換算組成において、RnO成分(式中、RnはLi、Na、K及びCsからなる群より選択される1種以上)を0%より多く含有する請求項15又は16記載の光学ガラス。
  18.  酸化物換算組成のガラス全質量に対して、質量%で
    Bi成分 0~20.0%及び/又は
    TeO成分 0~15.0%
    である請求項1から17のいずれか記載の光学ガラス。
  19.  酸化物換算組成のガラス全質量に対して、質量%で
    Al成分 0~10.0%及び/又は
    ZrO成分 0~15.0%及び/又は
    Ta成分 0~15.0%及び/又は
    CeO成分 0~10.0%
    である請求項1から18のいずれか記載の光学ガラス。
  20.  酸化物換算組成のガラス全質量に対するGeO成分の含有量が15.0%以下である請求項1から19のいずれか記載の光学ガラス。
  21.  酸化物換算組成のガラス全質量に対するSb成分の含有量が1.0%以下である請求項1から20のいずれか記載の光学ガラス。
  22.  ガラス転移点(Tg)と結晶化開始温度(Tx)との差ΔTが90℃以上である請求項21記載の光学ガラス。
  23.  部分分散比(θg,F)がアッベ数(ν)との間で(-4.21×10-3×ν+0.7207)≦(θg,F)≦(-4.21×10-3×ν+0.7507)の関係を満たす請求項1から22のいずれか記載の光学ガラス。
  24.  分光透過率が70%を示す波長(λ70)が500nm以下である請求項1から23のいずれか記載の光学ガラス。
  25.  請求項1から24のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。
  26.  請求項25記載のプリフォームを研磨してなる光学素子。
  27.  請求項25記載のプリフォームを精密プレス成形してなる光学素子。
PCT/JP2010/073750 2010-01-13 2010-12-28 光学ガラス、プリフォーム、及び光学素子 WO2011086855A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080061490.6A CN102712523B (zh) 2010-01-13 2010-12-28 光学玻璃、预成型坯和光学元件
KR1020127018197A KR20120125466A (ko) 2010-01-13 2010-12-28 광학유리, 프리폼 및 광학소자

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010005332A JP5829379B2 (ja) 2010-01-13 2010-01-13 光学ガラス、プリフォーム、及び光学素子
JP2010005324A JP2011144063A (ja) 2010-01-13 2010-01-13 光学ガラス、プリフォーム、及び光学素子
JP2010005328A JP5680307B2 (ja) 2010-01-13 2010-01-13 光学ガラス、プリフォーム、及び光学素子
JP2010-005332 2010-01-13
JP2010005331A JP2011144065A (ja) 2010-01-13 2010-01-13 光学ガラス、プリフォーム、及び光学素子
JP2010-005324 2010-01-13
JP2010-005331 2010-01-13
JP2010-005328 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011086855A1 true WO2011086855A1 (ja) 2011-07-21

Family

ID=44304137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073750 WO2011086855A1 (ja) 2010-01-13 2010-12-28 光学ガラス、プリフォーム、及び光学素子

Country Status (4)

Country Link
KR (1) KR20120125466A (ja)
CN (1) CN102712523B (ja)
TW (1) TWI529151B (ja)
WO (1) WO2011086855A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022159280A1 (en) 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and low density
WO2022159277A1 (en) 2021-01-22 2022-07-28 Corning Incorporated Calcium-containing high-index phosphate glasses
CN114853334A (zh) * 2018-12-03 2022-08-05 成都光明光电股份有限公司 光学玻璃、光学预制件、光学元件和光学仪器
US11472731B2 (en) 2021-01-22 2022-10-18 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150120346A (ko) * 2013-02-19 2015-10-27 호야 가부시키가이샤 광학 유리, 광학 유리 블랭크, 프레스 성형용 유리 소재, 광학 소자, 및 그들의 제조 방법
JP6927758B2 (ja) * 2017-06-14 2021-09-01 光ガラス株式会社 光学ガラス、これを用いた光学素子、光学系、レンズ鏡筒、対物レンズ及び光学装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345481A (ja) * 1993-06-07 1994-12-20 Ohara Inc 光学ガラスの製造方法
JPH09188540A (ja) * 1995-12-29 1997-07-22 Ohara Inc ソーラリゼーションのない光学ガラス
JP2005075665A (ja) * 2003-08-29 2005-03-24 Hoya Corp 光学ガラス、プレス成形用被成形ガラス体、光学素子およびその製造方法
JP2005206433A (ja) * 2004-01-23 2005-08-04 Hoya Corp 光学ガラス、プレス成形用被成形ガラス体、光学素子およびその製造方法
JP2007249112A (ja) * 2006-03-20 2007-09-27 Hoya Corp 非球面レンズとその製造方法
JP2010006675A (ja) * 2008-06-30 2010-01-14 Ohara Inc 光学ガラス、プリフォーム、及び光学素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260046B2 (ja) * 1994-09-30 2002-02-25 ホーヤ株式会社 光学ガラス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345481A (ja) * 1993-06-07 1994-12-20 Ohara Inc 光学ガラスの製造方法
JPH09188540A (ja) * 1995-12-29 1997-07-22 Ohara Inc ソーラリゼーションのない光学ガラス
JP2005075665A (ja) * 2003-08-29 2005-03-24 Hoya Corp 光学ガラス、プレス成形用被成形ガラス体、光学素子およびその製造方法
JP2005206433A (ja) * 2004-01-23 2005-08-04 Hoya Corp 光学ガラス、プレス成形用被成形ガラス体、光学素子およびその製造方法
JP2007249112A (ja) * 2006-03-20 2007-09-27 Hoya Corp 非球面レンズとその製造方法
JP2010006675A (ja) * 2008-06-30 2010-01-14 Ohara Inc 光学ガラス、プリフォーム、及び光学素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853334A (zh) * 2018-12-03 2022-08-05 成都光明光电股份有限公司 光学玻璃、光学预制件、光学元件和光学仪器
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
WO2022159280A1 (en) 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and low density
WO2022159277A1 (en) 2021-01-22 2022-07-28 Corning Incorporated Calcium-containing high-index phosphate glasses
US11472731B2 (en) 2021-01-22 2022-10-18 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
US11479499B2 (en) 2021-01-22 2022-10-25 Corning Incorporated Calcium-containing high-index phosphate glasses
US11485676B2 (en) 2021-01-22 2022-11-01 Corning Incorporated Phosphate glasses with high refractive index and low density

Also Published As

Publication number Publication date
KR20120125466A (ko) 2012-11-15
CN102712523B (zh) 2015-07-15
TWI529151B (zh) 2016-04-11
CN102712523A (zh) 2012-10-03
TW201139319A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5767179B2 (ja) 光学ガラス、プリフォーム及び光学素子
WO2012099168A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP5680307B2 (ja) 光学ガラス、プリフォーム、及び光学素子
WO2011086855A1 (ja) 光学ガラス、プリフォーム、及び光学素子
WO2012046833A1 (ja) 光学ガラス、プリフォーム材及び光学素子
JP7195040B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2011144063A (ja) 光学ガラス、プリフォーム、及び光学素子
JP6076594B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5705175B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP6611299B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2013063888A (ja) 光学ガラス、プリフォーム及び光学素子
WO2013084706A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP2011230991A (ja) 光学ガラス、プリフォーム、及び光学素子
JP2012206893A (ja) 光学ガラス、プリフォーム及び光学素子
WO2010126097A1 (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP5829379B2 (ja) 光学ガラス、プリフォーム、及び光学素子
JP5800766B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5706231B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2015193515A (ja) 光学ガラス、プリフォーム及び光学素子
JP2012206891A (ja) 光学ガラス、プリフォーム及び光学素子
JP5748613B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2010195674A (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2017088485A (ja) 光学ガラス、プリフォーム及び光学素子
JP2017088486A (ja) 光学ガラス、プリフォーム及び光学素子
JP2017088484A (ja) 光学ガラス、プリフォーム及び光学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061490.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127018197

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843207

Country of ref document: EP

Kind code of ref document: A1