WO2011086849A1 - 映像投影装置および映像投影方法 - Google Patents

映像投影装置および映像投影方法 Download PDF

Info

Publication number
WO2011086849A1
WO2011086849A1 PCT/JP2010/073678 JP2010073678W WO2011086849A1 WO 2011086849 A1 WO2011086849 A1 WO 2011086849A1 JP 2010073678 W JP2010073678 W JP 2010073678W WO 2011086849 A1 WO2011086849 A1 WO 2011086849A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
scanning
emission
unit
image
Prior art date
Application number
PCT/JP2010/073678
Other languages
English (en)
French (fr)
Inventor
想 西村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011549908A priority Critical patent/JP5704074B2/ja
Priority to US13/521,649 priority patent/US9069171B2/en
Priority to CN2010800611931A priority patent/CN102713723A/zh
Publication of WO2011086849A1 publication Critical patent/WO2011086849A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source

Definitions

  • the present invention relates to a video projection apparatus and a video projection method.
  • the present invention relates to an image projection apparatus and an image projection method for projecting an image by scanning a laser light source.
  • lasers In order to ensure the safety of lasers, it is decided to classify lasers according to standards such as IEC60825 and JIS6802 and to follow the usage method according to the class. Lasers are classified into seven stages of classes 1, 1M, 2, 2M, 3R, 3B, and 4, and the usage and environment of use are limited depending on each class. Here, the seven classes are described in IEC 60825-1 issued in 2007. In the following explanation, explanation will be made in accordance with the IEC.
  • IEC 60825-1 uses a pulse time width as a time for a laser to pass through a 7 mm diameter opening imitating a human eye placed at a certain distance from a scanning unit, and the number of times the laser passes through this opening. It is stipulated that safety is evaluated using a repetitive pulse train with the number of pulses. In addition, IEC 60825-1 defines that safety is evaluated under the strictest condition among the following three conditions regarding a repetitive pulse train. Here, as an example, the calculation is shown according to the definition of class 2. Here, C 6 is the correction factor which depends on the size of the light source defined by the standard, t is the pulse time width, N is the number of pulses, is ⁇ is the circular constant.
  • the first condition is that the exposure from any single pulse in the pulse train must not exceed the AEL (Accessible Emission Limit) for a single pulse.
  • the second condition is that the average power of the pulse train within the emission duration should not exceed the AEL of a single pulse of emission duration.
  • the first condition is always looser than the third condition, so there is no need to consider the first condition.
  • the end portion is the position where the exposure dose is maximized. There are two reasons for this. The first reason is that when the laser is turned back, the laser is irradiated continuously for a time twice as long as one-way scanning. The second reason is that, particularly when the scanning element is a device using resonance, the scanning speed of the laser is remarkably reduced at the end.
  • the upper limit of the laser output is determined at the end with the largest exposure amount, and the end determines the brightness of the entire screen. At the end, the number of pulses is halved and the passing time is doubled.
  • the upper limit of the laser output was determined at the end with the largest exposure amount, and the end determined the brightness of the entire screen.
  • the upper limit of the laser output is determined according to safety standards. For this reason, there has been a problem that ensuring safety and increasing screen brightness cannot be achieved at the same time.
  • An object of the present invention is to provide a video projection apparatus and a video projection method that solve the above-described problems.
  • the present invention provides a laser light source unit that emits a laser and one or more scanning directions, and performs a reciprocating scanning of the laser in a scanning direction having the highest scanning frequency to display an image.
  • the scanning angle when the laser emission is stopped in the forward path is different from the scanning angle when the laser emission is started in the backward path.
  • the image projection apparatus includes a control unit that controls operations of the laser light source unit and the laser scanning unit according to a signal.
  • the present invention is also directed to the scanning direction in which a laser is emitted, the laser is reciprocated with respect to a scanning direction having the highest scanning frequency among one or more scanning directions, an image is projected, and the reciprocating scanning is performed.
  • the scanning angle when stopping the laser emission in the forward path and the scanning angle when starting the laser emission in the backward path are different. This is a video projection method for controlling scanning.
  • the present invention relates to a laser light source unit that emits a laser, and a laser scanning unit that has one or more scanning directions and projects the image by reciprocating the laser at a predetermined scanning period with respect to the scanning direction having the highest scanning frequency.
  • the time difference between the laser emission stop time in the forward path and the laser emission start time in the return path is determined as a single pulse between adjacent pulses of the laser.
  • a control unit that controls the operation of the laser light source unit and the laser scanning unit in accordance with the video signal so that the interval is longer than half of the interval, and the predetermined scanning cycle is the time difference ⁇ 2 ⁇
  • An image projection apparatus that is longer than the rate R) of lowering the laser output upper limit when the adjacent pulses of the laser are regarded as a single pulse at the reciprocation position of the reciprocating scanning; It is. Further, the present invention emits a laser, reciprocates the laser at a predetermined scanning period in a scanning direction having the highest scanning frequency among one or more scanning directions, projects an image, and performs reciprocating scanning.
  • the time difference between the laser emission stop time in the forward path and the laser emission start time in the backward path is greater than half of the interval between the pulses that consider adjacent pulses of the laser as a single pulse.
  • the laser emission and the laser scanning are controlled in accordance with the video signal so as to be long, and the predetermined scanning period is set to the time difference ⁇ 2 ⁇ (1 ⁇ the adjacent pulse of the laser at the turn-back position of the reciprocating scanning. Is set so as to be longer than the rate R) of lowering the upper limit of the output of the laser when it is regarded as a single pulse.
  • the present invention relates to a laser light source unit that emits a laser, a laser scanning unit that has one or more scanning directions and reciprocally scans the laser in a scanning direction with the highest scanning frequency, and projects an image.
  • the period for emitting and the period for stopping the emission of the laser are repeated, and the period for stopping the emission of the laser corresponds to the size of the eye at a position away from the focus of the eye.
  • the laser light source unit and the laser scanning unit according to the video signal so that the range becomes longer than the time corresponding to the angle required for the laser scanning unit to scan along the scanning direction with the highest scanning frequency. It is a video projection apparatus provided with the control part which controls operation
  • a laser is emitted, the laser is reciprocally scanned in a scanning direction having the highest scanning frequency among one or more scanning directions, an image is projected, and the laser is emitted.
  • a period in which the emission of the laser beam is alternately repeated, and a period in which the laser beam emission is continuously stopped has a range corresponding to the size of the eye at a position separated by a distance where the eye is focused.
  • the present invention includes a laser light source unit that emits a laser, a laser scanning unit that has one or more scanning directions and reciprocally scans the laser in a scanning direction with the highest scanning frequency, and projects an image, and the laser light source.
  • a video projection device comprising a unit.
  • a laser is emitted, the laser is reciprocally scanned in a scanning direction having the highest scanning frequency among one or more scanning directions, an image is projected, and the output of the laser is
  • the image projection method controls emission of the laser and scanning of the laser in accordance with an image signal so as to be proportional to the scanning angular velocity or the scanning velocity of the laser on the projection surface.
  • the laser beam emission time is controlled in accordance with the scanning of the laser, and the exposure dose of the laser at the end, which is the portion with the largest exposure dose in the related technology. Can be reduced. Thereby, it is possible to provide means for simultaneously achieving safety and improving screen brightness, and a video projection apparatus and video projection method having the control means.
  • FIG. 7 is a block diagram showing an example of the configuration of a video projector according to the basic form of the present invention and the first to fifth embodiments. It is a figure which shows the time displacement of the scanning angle and laser output in a basic form. It is a figure which shows the time displacement of the scanning angle and laser output in a basic form. It is a figure which shows the time displacement of the scanning angle and laser output in a basic form and 1st Embodiment. It is a figure which shows the time displacement of the scanning angle and laser output in a basic form and 1st Embodiment. It is a figure which shows the relationship between the laser emission time in a basic form, and an output ratio.
  • FIG. 1 shows a configuration example of a video projection apparatus according to the basic form of the present invention.
  • the image projection apparatus 100 includes a laser light source unit 110 that emits a laser, a laser scanning unit 120, and a control unit 130.
  • the angle (direction) of the laser emitted from the laser light source unit 110 is changed by the laser scanning unit 120 and scanned on the projection surface 200.
  • the control unit 130 projects the image corresponding to the video signal onto the projection surface 200 by controlling the light source output and output time of the laser light source unit 110 and the scanning element of the laser scanning unit 120 according to the video signal.
  • the laser light source unit 110 emits one or more beams having one optical axis.
  • the laser light source unit 110 has one or more laser light sources inside. When a plurality of laser light sources are provided, the laser light source unit 110 has a structure for combining beams from these laser light sources into one beam.
  • the laser light source unit 110 may include one laser light source, and the laser light source unit 110 may have a structure that does not have a multiplexing unit.
  • red wavelength: 640 nm
  • green wavelength: 530 nm
  • blue wavelength: 450 nm
  • a structure that combines the three wavelengths of the representative example) is conceivable.
  • other wavelengths such as yellow (580 nm).
  • Combiners that are means for synthesizing lasers include a combiner that uses a wavelength-selective mirror, a combiner that uses a semi-transmissive mirror, a combiner that uses a polarization-selective mirror, a fiber type combiner, and a waveguide type combiner.
  • the laser light source included in the laser light source unit 110 is controlled in emission time and output according to the video signal and the laser scanning unit 120.
  • the laser scanning unit 120 includes one or more scanning elements, and scans the laser in one or more directions to change the traveling direction of the laser light incident on the laser scanning unit 120 from the laser light source unit 110.
  • the laser scanning unit 120 may have a structure in which a single scanning element realizes scanning in a plurality of directions, or may have a structure in which a plurality of scanning elements independently realize scanning in each scanning direction.
  • the laser scanning unit 120 is controlled by the control unit 130.
  • resonant vibration mirror For the scanning element, resonant vibration mirror, galvano scanner, GLV (Grating Light Valve), polygon scanner, AOM (Acoustic Optic Modulator) crystal, KTP (KTiOPO4) crystal, liquid crystal, and other vibrations manufactured using MEMS technology
  • optical elements such as lenses and mirrors.
  • the image projection apparatus 100 may have a function of monitoring the states of the laser light source unit 110 and the laser scanning unit 120 and sending the results to the control unit 130.
  • a method of monitoring these states from laser light there is a method of using a light receiving element such as PD (Photo Diode).
  • the control unit 130 has a function of controlling the laser light source unit 110 and the laser scanning unit 120 in accordance with the video signal.
  • the control unit 130 may have a function of receiving a signal from the laser light source unit 110 and the laser scanning unit 120 and changing a control method and a control parameter.
  • the control unit 130 controls the laser light source unit 110 so that the laser is emitted in both the forward path and the backward path in the scanning direction in which the laser scanning unit 120 has the highest scanning frequency.
  • the control unit 130 controls the emission stop time and the emission start time at the time of drawing in the forward path and the return path in the scanning direction having the highest scanning frequency among the scanning directions of the laser scanning unit 120.
  • IEC60825 stipulates that pulses are regarded as identical (considered as a single pulse) when the interval between adjacent pulses in a repetitive pulse train is 18 ⁇ s or less. This definition is made because when a new laser is irradiated within a short time, the influence of the previously incident laser cannot be alleviated.
  • the pulses are regarded as the same. Assuming that the pulses are the same at the ends, the laser output upper limit is 2 ⁇ 3/4 ⁇ 0.6 times as described above.
  • a control method for avoiding this can be realized by providing a non-light-emission time longer than 18 ⁇ s at the end turning point as shown in FIG. By providing the non-emission time, it is possible to increase the output of the laser beam.
  • the above control method is used when the required non-light emission time ratio is less than 40% with respect to 1 ⁇ 2 of the scanning period. Is valid.
  • the screen brightness is calculated by the following formula.
  • the output can be increased using the above control method. ⁇ Time for the laser to pass through the aperture at the end ⁇ / ⁇ Time for the laser to pass through the aperture at a position where the exposure dose becomes maximum after control ⁇ ⁇ ⁇ Laser irradiation time after control ⁇ ⁇ ⁇ Laser before control Irradiation time ⁇
  • the luminance can be improved using the above control method when the scanning cycle T satisfies the condition of the expression (1).
  • a change in speed of a resonant device is generally characterized by a decrease in the speed of the edge. When the speed decreases, this corresponds to an increase in the time for passing through the opening, resulting in a decrease in the output limit. Therefore, by providing the non-light emission time as described above, it is possible to avoid light emission at the end portion where the speed is the slowest and increase the laser output.
  • FIG. 1 A specific example is shown in FIG.
  • the scanning element performs a resonance operation and the luminance is calculated at a scanning period of 50 ⁇ s and a scanning angle of 30 deg (degrees)
  • the display period when the display period is set to 80%, it is 1. Four times the brightness. Further, when the display period is set to 70%, the luminance is 1.5 times that when the display period is set to 100%. Furthermore, this effect is maximized when the display period is set to 60%, and the luminance is 1.6 times that when the display period is set to 100%.
  • the time from when the laser passes through the opening at the end until the laser re-enters the opening is longer than 18 ⁇ s. It is possible to achieve 1.7 times the luminance as compared to when the display period is set.
  • the brightness can be improved by using the above control when the scanning cycle T is as follows.
  • the laser may not be emitted to the turning point, and the emission may be stopped at a smaller scanning angle. However, laser output should not be continued continuously beyond the end before turning back.
  • no light emission time is provided on the forward path, and no light emission time is provided on the return path. However, no light emission time may be provided on the forward path and no light emission time may be provided on the return path.
  • a specific example is shown as reciprocating single irradiation in FIG.
  • the scanning element performs a resonance operation, and the output is calculated at a scanning period of 50 ⁇ s and a scanning angle of 30 deg, when the display period is set to 80%, it is 1.6 times that when the display period is set to 100%. Output. Further, when the display period is set to 60%, the output is 2.1 times that when the display period is set to 100%. Further, this effect is maximized when the display time is set to 35%, and the output is 2.4 times that when the display time is set to 100%.
  • the time from when the laser passes through the opening at the end until the laser re-enters the opening is longer than 18 ⁇ s. It is possible to achieve a luminance of 3.9 times that when the display period is set.
  • FIG. 1 is a block diagram showing the configuration of the video projector according to the first embodiment, and the configuration is as described above.
  • the control method of the first embodiment is shown in FIG. 4, FIG. 5, and FIG.
  • the control unit 130 electrically controls the output of the laser light source unit 110 so that the emission stop position in the forward path and the scan stop position in the return path are different with respect to the scanning direction of the reciprocating drawing of the laser scanning unit 120.
  • the laser output becomes larger when the same safety is used as a standard.
  • An increase in brightness can be achieved when the increase in laser output is greater than the decrease in irradiation time due to stopping laser emission.
  • the scanning angular velocity decreases as the scanning angle increases, even if the time from the return position to the start of laser output is not longer than 9 ⁇ s, at the end As a result of stopping the laser emission, it is possible to reduce the exposure amount at the portion where the scanning speed becomes slow, and to improve the safety (FIGS. 5 and 7).
  • the output period of the forward path may be long and the output period of the return path may be short (FIGS. 4 and 5), or the output period of the forward path is short and the output period of the return path is long. (FIG. 7). That is, as indicated by the reference symbol N4 in FIG. 4 and the reference symbol N5 in FIG. 5, the emission stop position may be in front of the folded portion. Further, as indicated by reference numeral N7 in FIG. 7, the emission start position may be later than the turn-up portion.
  • the laser may not be emitted to the turning point, and the emission may be stopped before that.
  • laser output should not be continued continuously beyond the end before turning back. This is because the end portion has the largest exposure dose.
  • FIG. 8 shows a control method according to the second embodiment.
  • the laser emission is stopped and started alternately in both the forward path and the return path.
  • laser emission is stopped in at least one of the forward path and the return path.
  • the period in which the laser output is stopped is a period in which the image signal is originally output, and in the case of a raster scan type video projection apparatus, the number of resolution pixels is reduced.
  • the laser emission is not completely eliminated, and it is possible to suppress a decrease in resolution. It is.
  • an angle larger than 4 deg is scanned after the laser output is stopped until the laser output is started again (one section).
  • This angle is an angle necessary for the laser to pass through the opening when a 7 mm opening imitating the eye is arranged at a position separated by 100 mm where the human eye is focused.
  • this angle is used when the laser scanning unit 120 scans a range corresponding to the size of the eye along the scanning direction of the reciprocating drawing at a position away from the laser scanning unit 120 by a distance where the eye is focused. It is a necessary angle.
  • one section is 4 deg or less, two or more pulses enter the opening. Further, it is more desirable from the viewpoint of safety that the outgoing position on the forward path and the outgoing position on the return path do not overlap.
  • the video projection apparatus has the same configuration as the video projection apparatuses according to the first and second embodiments.
  • the control method of the third embodiment is shown in FIG.
  • the control unit 130 controls the laser light source unit 110 so that the laser output becomes smaller (that is, the laser output becomes smaller in proportion to the scanning angular velocity) as the scanning angular velocity becomes slower (as the scanning angular velocity becomes smaller). Since the laser output is small at the end where the speed is low, safety can be ensured.
  • the illuminance at a certain position is calculated from the integration of the output and time of the laser irradiated to that position.
  • the laser irradiation time is inversely proportional to the scanning speed on the projection surface 200.
  • the laser output in order to make the illuminance constant on the screen, it is desirable to control the laser output so as to be proportional to the speed on the projection surface 200. Further, there may be a time for stopping the emission of the laser at the turning position.
  • FIG. 1 A fourth embodiment of the present invention will be described.
  • the video projection device according to the present embodiment has the same configuration as the video projection device according to the first to third embodiments.
  • the control method of the fourth embodiment is shown in FIG.
  • the control of the method described in the basic mode and the first to third embodiments is switched in accordance with the scanning cycle in the scanning direction other than the scanning direction with the highest speed (the highest scanning frequency).
  • the frame rate of video corresponds to the above cycle.
  • FIG. 11 shows a method of switching the control of the emission stop position in the forward path and the backward path in the first embodiment for each frame.
  • the scanning angle for stopping emission and the scanning angle for starting emission are switched between the odd-numbered frame and the even-numbered frame.
  • the video projection device according to the present embodiment has the same configuration as the video projection device according to the first to fourth embodiments.
  • the conceptual diagram and control method of the fifth embodiment are shown in FIGS.
  • the scanning angle in the high-speed scanning direction may change or the scanning angle in the high-speed scanning direction may be changed according to the scanning angle in the low-speed scanning direction and the scanning cycle. .
  • the first scanning direction is the x direction and the second scanning direction is y.
  • the direction Assume that reciprocating drawing is performed at high speed along the first scanning direction.
  • a projection view in this case is shown in FIG.
  • the range of the scan angle in the x direction differs depending on the scan angle in the y direction.
  • the emission stop time and the emission start time along the second scanning direction as shown in FIG. That is, as indicated by reference numeral N13a in FIG. 13, control is performed so that the range of the scanning angle differs for each line. Accordingly, the emission stop position and the emission start position are controlled for each line as indicated by reference numeral N13b in FIG. Further, by controlling the emission stop time and controlling the emission stop position in the x direction on the screen, it is possible to project a video of a desired shape and provide a high quality video.
  • the shape is arbitrary and is not limited to a square.
  • FIG. 14 is a block diagram showing a configuration of a video projection apparatus 300 according to the sixth embodiment.
  • partial transmission mirrors 340a and 340b that change a part of the optical path of the laser are arranged in the scanning range scanned by the laser scanning unit 320, and the part of the laser whose optical path is changed is received by the light receiving element 350a.
  • 350b A signal indicating the detection result of the light receiving elements 350a and 350b is transmitted to the control unit 330 and used for the control.
  • Other configurations for example, the laser light source unit 310 and the projection surface 400 are the same as those of the video projector described in the first to fifth embodiments.
  • the light receiving elements 350a and 350b are arranged at locations corresponding to the laser emission stop position and the emission start position. Then, if one light receiving element senses light in the forward path, the control described in the second embodiment is started from that timing, and if the other light receiving element senses light in the return path, from that timing Control is performed so that laser emission is continuously performed again. As a result, the second embodiment can be easily implemented.
  • the partial transmission mirrors 340a and 340b have high transmittance so as not to reduce the luminance.
  • Examples include glass. PD or the like can be used as the light receiving elements 350a and 350b.
  • the standard will be revised in the future and the standard for classification will be revised.
  • the safety standard is created in consideration of the tolerance of human eyes, and the significance of the present invention does not change.
  • the present invention can be used, for example, in an image projection apparatus that projects an image by scanning a laser light source.
  • ensuring safety and improving screen brightness can be achieved simultaneously.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 安全性の確保と画面輝度の増加を両立できる映像投影装置および映像投影方法を提供する。映像投影装置は、レーザを射出するレーザ光源部と、1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して、レーザの往復走査を行って、映像を投影するレーザ走査部と、往復走査を行う走査方向に関して、往路においてレーザの出射を停止する時の走査角度と、復路においてレーザの出射を開始する時の走査角度が異なるように、映像信号に応じてレーザ光源部及びレーザ走査部の動作を制御する制御部と備える。

Description

映像投影装置および映像投影方法
 本発明は、映像投影装置および映像投影方法に関する。特に本発明は、レーザ光源を走査して映像を投影する映像投影装置および映像投影方法に関する。
 近年、小型で安価なレーザ光源が製造されている。また、MEMS(Micro-Electro-Mechanical Systems)技術の発展に伴って、小型で高速に振動する走査素子が開発されている。このような背景の下に、レーザ光の角度をMEMSミラー等で変化させ、被投射面(被投影面)上で走査することで映像を描画する走査型レーザプロジェクタの開発がされている(例えば特許文献1参照)。
 一方、レーザを使用した製品には安全性の確保が求められ、IEC(International Electrotechnical Commission)60825、JIS(Japan Industrial Standard)6802などの規格において定められた安全基準の遵守が要求される。
 レーザの安全確保のために、IEC60825、JIS6802などの規格に準拠してレーザのクラスわけをおこない、クラスに応じた使用方法に従うことが決められている。レーザは、クラス1、1M、2、2M、3R、3B、4の7段階に分けられ、それぞれのクラスに応じて使用用途および使用環境が限定される。ここで、7段階のクラスわけは2007年発行のIEC60825-1に記載されている。以下の説明においては当IECに則り説明を行う。
 IEC60825-1は、走査型レーザに関して、走査部からある距離に置かれたヒトの眼に模した直径7mmの開口をレーザが通過する時間をパルス時間幅とし、この開口をレーザが通過する回数をパルス数とした繰り返しパルス列を用いて、安全性を評価することを定めている。また、IEC60825-1は、繰り返しパルス列に関する以下の3つの条件の中で、最も厳しい条件において、安全性を評価することを定めている。ここでは例としてクラス2の規定に則り計算を示す。ここで、Cは規格で定められた光源の大きさに依存した補正係数、tはパルス時間幅、Nはパルス数、πは円周率である。
 第1の条件は、パルス列内のいずれの単一パルスからの露光も、単一パルスに対するAEL(Accessible Emission Limit:被ばく放出限界)を超えてはならないということである。
Figure JPOXMLDOC01-appb-M000001
 第2の条件は、放出持続時間内のパルス列の平均パワーが、放出時間幅の単一パルスのAELを超えてはならないということである。
Figure JPOXMLDOC01-appb-M000002
 第3の条件は、パルス列内のパルスの平均露光は、補正係数C=N-1/4を乗じた単一パルスに対するAELを超えてはならないということである。
Figure JPOXMLDOC01-appb-M000003
 第1の条件は、第3の条件との比較から明らかなように、常に第3の条件に比べて緩いため、第1の条件について考慮の必要はない。
 ところで、安全性の考慮は、IEC60825-1に規定されているように、想定される最も大きな被ばくを受ける状況下で行わなければならない。レーザを往復走査する場合、端部が最も被ばく量の大きくなる位置である。その理由は2つある。1つ目の理由は、レーザを折り返すと、1方向走査の2倍の時間だけ連続でレーザが照射されるためである。2つ目の理由は、特に走査素子が共振を利用したデバイスである場合、端部においてレーザの走査速度が著しく低下するためである。
 レーザの出力上限は、最も被ばく量の大きい端部で決まり、端部が画面全体の明るさを決定する。端部ではパルス数が1/2になり、通過時間が倍になる。これを上記第2の条件及び第3の条件に当てはめると、例えば第3の条件の場合、P(c)の値は上述した式に従って得られる値の2-3/4(=(1/2)-1/4×(1/2))≒0.6倍になる。
日本特開平03-065916号公報
 上記のように、レーザの出力上限は最も被ばく量の大きい端部で決まり、端部が画面全体の明るさを決定していた。そして、レーザの出力上限は安全基準に従って決定される。このため、安全性の確保と画面輝度の増加は両立できない問題があった。
 本発明は、上記課題を解決する映像投影装置および映像投影方法を提供することを目的としている。
 上記課題を解決するために、本発明は、レーザを射出するレーザ光源部と、1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して、前記レーザの往復走査を行って、映像を投影するレーザ走査部と、往復走査を行う前記走査方向に関して、往路において前記レーザの出射を停止する時の走査角度と、復路において前記レーザの出射を開始する時の走査角度が異なるように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部とを備える映像投影装置である。
 また、本発明は、レーザを射出し、1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して、前記レーザの往復走査を行って、映像を投影し、往復走査を行う前記走査方向に関して、前記往路において前記レーザの出射を停止する時の走査角度と、前記復路において前記レーザの出射を開始する時の走査角度が異なるように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御する映像投影方法である。
 本発明は、レーザを射出するレーザ光源部と、1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して所定の走査周期で前記レーザを往復走査して、映像を投影するレーザ走査部と、往復走査を行う前記走査方向に関して、往路における前記レーザの出射停止時間と、復路における前記レーザの出射開始時間との時間差が、前記レーザの隣接するパルスを単一のパルスとみなす前記パルス間の間隔の半分よりも長くなるように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部とを備え、前記所定の走査周期は、前記時間差×2÷(1-前記往復走査の折返し位置で前記レーザの隣接するパルスを単一のパルスとみなしたときに前記レーザの出力上限を低下させる割合R)よりも長い映像投影装置である。
 また、本発明は、レーザを射出し、1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して所定の走査周期で前記レーザを往復走査して、映像を投影し、往復走査を行う前記走査方向に関して、往路における前記レーザの出射停止時間と、復路における前記レーザの出射開始時間との時間差が、前記レーザの隣接するパルスを単一のパルスとみなす前記パルス間の間隔の半分よりも長くなるように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御し、前記所定の走査周期を前記時間差×2÷(1-前記往復走査の折返し位置で前記レーザの隣接するパルスを単一のパルスとみなしたときに前記レーザの出力上限を低下させる割合R)よりも長くなるように設定する映像投影方法である。
 本発明は、レーザを射出するレーザ光源部と、1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影するレーザ走査部と、前記レーザを出射する期間と、前記レーザの出射を停止する期間とが繰り返され、かつ、前記レーザの出射を停止する前記期間が、眼のフォーカスがあう距離だけ離れた位置で前記眼の大きさに相当する範囲を前記レーザ走査部が前記最も走査周波数が高い走査方向に沿って走査するのに必要な角度に対応する時間よりも長くなるように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部とを備える映像投影装置である。
 また、本発明は、レーザを射出し、1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影し、前記レーザを出射する期間と前記レーザの出射を停止する期間とが交互に繰り返され、かつ、前記レーザの出射を連続して停止する期間が、眼のフォーカスがあう距離だけ離れた位置で前記眼の大きさに相当する範囲を前記最も走査周波数が高い走査方向に沿って走査するのに必要な角度に対応する時間よりも長くなるように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御する映像投影方法である。
 本発明は、レーザを射出するレーザ光源部と、1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影するレーザ走査部と、前記レーザ光源部の出力が、前記レーザ走査部の走査角速度、または、被投射面における前記レーザの走査速度に比例するように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部とを備える映像投影装置である。
 また、本発明は、レーザを射出し、1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影し、前記レーザの出力が、前記レーザの走査角速度、または、被投射面における前記レーザの走査速度に比例するように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御する映像投影方法である。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。
 以上の説明から明らかなように、この発明では、レーザ光の出射時間をレーザの走査に応じて制御して、関連する技術において最も被ばく量が大きくなる部分であった端部におけるレーザの被ばく量を低減することができる。これにより、安全確保と画面輝度の向上を同時に達成する手段と、その制御手段を有する映像投影装置および映像投影方法を提供することができる。
本発明の基本形態および第1の実施形態~第5の実施形態に係る映像投影装置の一構成例を示すブロック図である。 基本形態における走査角度及びレーザ出力の時間変位を示す図である。 基本形態における走査角度及びレーザ出力の時間変位を示す図である。 基本形態および第1の実施形態における走査角度及びレーザ出力の時間変位を示す図である。 基本形態および第1の実施形態における走査角度及びレーザ出力の時間変位を示す図である。 基本形態におけるレーザ出射時間と出力比との関係を示す図である。 第1の実施形態における走査角度及びレーザ出力の時間変位を示す図である。 第2の実施形態の制御方法を示す図である。 第3の実施形態の制御方法を示す図である。 走査角度、スクリーンでの速度、及びレーザ出力の時間変位を示す図である。 第4の実施形態の制御方法を示す図である。 第5の実施形態の概念を示す図である。 第5の実施形態の制御方法を示す図である。 第6の実施形態に係る映像投影装置の構成を示す図である。
 以下、発明の実施形態を通じて本発明を説明する。ただし、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また実施形態の中で説明されている特徴の組み合わせの全てが本発明の解決手段として必須であるとは限らない。
[基本形態]
 図1に本発明の基本形態に係る映像投影装置の一構成例を図示する。映像投影装置100は、レーザを射出するレーザ光源部110と、レーザ走査部120と、制御部130とで構成される。
 レーザ光源部110から出射されたレーザの角度(方向)を、レーザ走査部120で変化させ、被投射面200上で走査する。制御部130は、映像信号に応じてレーザ光源部110の光源出力および出力時間と、レーザ走査部120の走査素子を制御することで、映像信号に応じた映像を被投射面200に投影する。
 レーザ光源部110は、1光軸になったビームを1つ以上出射する。レーザ光源部110は、内部に1つ以上のレーザ光源を有する。複数のレーザ光源が設けられている場合、レーザ光源部110は、これらレーザ光源からのビームを1本のビームに合波する構造を有している。レーザ光源部110に含まれるレーザ光源が1つであり、レーザ光源部110が合波手段を有さない構造であっても構わない。
 複数波長が1つの光軸に合波される例としては、フルカラーの映像を投影する目的であれば、赤(波長:640nm)、緑(波長:530nm)、青(波長:450nm)(いずれも波長は代表例)の3波長を合波する構造が考えられる。色度域を広くするために、他の波長、例えば黄色(580nm)などを合波する構造もある。1つの波長のレーザを複数個合成する構造もある。
 レーザを合成する手段であるコンバイナには、波長選択性鏡を使用したコンバイナ、半透過鏡を使用したコンバイナ、偏光選択鏡を使用したコンバイナ、ファイバ型コンバイナ、導波路型コンバイナなどがある。レーザ光源部110に含まれるレーザ光源は、映像信号およびレーザ走査部120に応じて出射時間および出力が制御される。
 レーザ走査部120は、1つ以上の走査素子を含み、1つ以上の方向にレーザを走査し、レーザ光源部110からレーザ走査部120に入射したレーザ光の進行方向を変化させる特徴を有する。レーザ走査部120は、単一の走査素子が複数方向の走査を実現している構造でもよいし、複数の走査素子が各走査方向の走査を独立して実現している構造でもよい。レーザ走査部120は制御部130が制御する。
 走査素子には、MEMS技術を用いて製造される共振振動ミラー、ガルバノスキャナ、GLV(Grating Light Valve)、ポリゴンスキャナ、AOM(Acoustic Optic Modulator)結晶、KTP(KTiOPO4)結晶、液晶、その他の振動するレンズおよびミラーなどの光学素子などがある。
 また、映像投影装置100は、レーザ光源部110およびレーザ走査部120の状態をモニタして、その結果を制御部130に送る機能を有していてもよい。これらの状態をレーザ光からモニタする方法としては、PD(Photo Diode)などの光受光素子を用いる方法がある。
 制御部130は、映像信号に応じて、レーザ光源部110およびレーザ走査部120を制御する機能を有している。制御部130は、レーザ光源部110、及び、レーザ走査部120から信号を受け、制御方法や制御パラメータを変更する機能を有していてもよい。制御部130は、レーザ走査部120の最も走査周波数が高い走査方向に関して、往路および復路ともレーザを出射するようにレーザ光源部110を制御する。また、制御部130は、レーザ走査部120の走査方向のうち最も走査周波数が高い走査方向に関して、往路および復路での描画時に出射停止時間および出射開始時間を制御することを特徴とする。
 次に、往路におけるレーザの出射停止時間と、復路におけるレーザの出射開始時間の制御方法について説明する。IEC60825では、繰り返しパルス列の隣接するパルス同士の間隔が18μs以下のときはパルスを同一とみなす(単一のパルスと見なす)ことが規定されている。短い時間内に新たなレーザが照射された場合、前に入射したレーザの影響が緩和しきれないことから、こうした定義がなされている。端部では、往路においてレーザが開口を通過した後、復路において戻ってきたレーザが開口に入射するまでの間の時間が短い。この時間が18μs以下のときは、パルスを同一とみなすことになる。端部でパルスを同一とみなしたとき、前述のとおり、レーザの出力上限は2-3/4≒0.6倍となる。
 これを回避するための制御方法は、図2に示すように端部の折返し地点において、18μsよりも長い無発光の時間を設けることで実現可能である。無発光時間を設けることで、レーザビームの出力を増加させることが可能である。
 ただし、無発光時間が長くなると、画面全体の輝度は発光していない時間の割合だけ低下する。走査周期が90μsよりも長いときに無発光の時間を18μsよりも長くする場合、必要な無発光時間の割合が、走査周期の1/2に対して40%未満であるときに、上記制御方法は有効である。
 画面の輝度は以下の式で計算される。以下の式の結果が1を超える範囲では、上記制御方法を利用した出力の増加が可能である。
{端部でレーザが開口を通過する時間}÷{制御後において、被ばく量が最大となる位置でレーザが開口を通過する時間}×{制御後のレーザの照射時間}÷{制御前のレーザの照射時間}
 走査角速度が等速であるならば、走査周期Tが式(1)の条件を満たすときに上記制御方法を用いた輝度の向上が望める。
Figure JPOXMLDOC01-appb-M000004
 また、図3のように走査速度が一定ではない場合(例えば、共振を利用したMEMSミラーなど、走査角度が大きくなるほど走査角速度が小さくなる走査素子を用いた場合)には、上記のように18μsよりも長い無発光時間を設けない場合でも、上記制御方法を用いて画面輝度を増加させることが可能となることがある。例えば共振デバイスの速度変化は、一般に端部の速度が低下するという特徴を有する。速度が低下した場合、開口を通過する時間が増加することに相当し、出力限界の低下になる。そこで、上記のように無発光時間を設けることで、最も速度が遅くなる端部での発光を回避し、レーザ出力を増加させることが可能である。
 具体例を図6に往復無照射として示す。走査素子が共振動作をしており、走査周期50μs、走査角度30deg(度)で輝度を計算すると、80%の表示期間に設定したとき、100%の表示期間に設定したときに比べて1.4倍の輝度になる。また、70%の表示期間に設定したとき、100%の表示期間に設定したときに比べて1.5倍の輝度になる。さらに、60%の表示期間に設定したときにこの効果が最大になり、100%の表示期間に設定したときに比べて1.6倍の輝度になる。
 また、27%の表示期間に設定したとき、端部においてレーザが開口を通過してから開口にレーザが再入射するまでの時間が18μsよりも長くなり、同じ安全性を基準にすると、100%の表示期間に設定したときに比べて1.7倍の輝度を達成することが可能である。
 次に、図4に示すように往路においては無発光時間を設けず、復路において無発光時間を設けた場合、上記の場合に比べて無発光時間を半分にできる。このため、無発光時間に起因する輝度減少を抑えることが可能である。
 走査角速度が等速であるならば走査周期Tが以下のときに上記の制御を利用して輝度の向上が望める。
Figure JPOXMLDOC01-appb-M000005
 また、レーザを折返し地点まで出射せず、より小さい走査角度で出射を停止してもよい。ただし、折り返す前から最端部を越えて連続でレーザを出力し続けないようにする。
 なお、図4では、往路においては無発光時間を設けず、復路において無発光時間を設けた。しかし、往路において無発光時間を設け、復路においては無発光時間を設けないようにしてもよい。
 前記同様、図5に示すように走査速度が一定ではない場合は、18μsよりも長い無発光時間を設けない場合でも、上記制御方法を用いて画面輝度を増加させることが可能となることがある。
 具体例を図6に往復単照射として示す。走査素子が共振動作をしており、走査周期50μs、走査角度30degで出力を計算すると、80%の表示期間に設定したとき、100%の表示期間に設定したときに比べて1.6倍の出力になる。また、60%の表示期間に設定したとき、100%の表示期間に設定したときに比べて2.1倍の出力になる。さらに、35%の表示時間に設定したときにこの効果が最大になり、100%の表示期間に設定したときに比べて2.4倍の出力になる。
 また、27%の表示期間に設定したとき、端部においてレーザが開口を通過してから開口にレーザが再入射するまでの時間が18μsよりも長くなり、同じ安全性を基準にすると、100%の表示期間に設定したときに比べて3.9倍の輝度を達成することが可能である。
[第1の実施形態]
 本発明の第1の実施形態について説明する。図1は第1の実施形態に係る映像投影装置の構成を示すブロック図であり、その構成は上述したとおりである。第1の実施形態の制御方法を図4、図5、および図7に示す。レーザ走査部120の往復描画の走査方向に関して、往路における出射停止位置と、復路における走査停止位置が異なるように、制御部130が、レーザ光源部110の出力を電気的に制御する。
 ある地点に置かれた開口には、往復走査の結果、往路における走査および復路における走査の双方においてレーザが入射する。このとき、往路および復路の双方において、出射されたレーザが開口に入射する走査角度の範囲に対応した期間として、レーザが開口を通過してから折返して再び開口に入射するまでの時間を18μsよりも長くする。そうすると、この時間が18μs以下であったときと比較して安全性を向上できる。
 安全性の向上の結果、同じ安全性を基準にすると、レーザ出力が大きくなる。このレーザ出力の増加が、レーザの出射を停止することに起因する照射時間の低下よりも大きいときに輝度の向上が達成できる。
 図4に示すように、走査素子の走査速度が一定であり、走査素子の走査周期が45μsよりも長いときは、レーザの出力が停止される折返し位置からレーザの出力が開始するまでの時間が9μsよりも長くなるようにすることで、上記条件を満たし輝度が増加する。
 共振を利用したMEMSミラーなど、走査角度が大きくなるほど走査角速度が小さくなる走査素子を用いた場合は、折返し位置からレーザの出力が開始するまでの時間が9μsよりも長くなくても、端部でのレーザの出射停止の結果として、走査速度が遅くなる箇所の被ばく量を低減させることができ、安全性を向上できる(図5および図7)。
 レーザの出射停止位置および出射開始位置については、往路の出力期間が長く、復路の出力期間が短くてもよいし(図4および図5)、往路の出力期間が短く、復路の出力期間が長くてもよい(図7)。すなわち、図4中の参照符号N4および図5中の参照符号N5に示すように、出射停止位置が折返し部より手前でもよい。また、図7中の参照符号N7に示すように、出射開始位置が折返し部より遅くともよい。
 また、レーザを折返し地点まで出射せず、それより手前で出射を停止してもよい。ただし、折り返す前から最端部を越えて連続でレーザを出力し続けないようにする。これは、端部が最も被ばく量が大きくなるためである。
[第2の実施形態]
 本発明の第2の実施形態について説明する。本実施形態に係る映像投影装置は、第1の実施形態に係る映像投影装置と同様の構成である。第2の実施形態に係る制御方法を図8に示す。第1の実施形態において、往路または復路でレーザの出射を停止していた範囲(すなわち、端部における18μs以内の範囲)において、往路および復路の双方において、レーザの出射の停止および開始を交互に行う。
 第1の実施形態では、往路または復路の少なくとも一方においてレーザの出射を停止する。ただ、レーザ出力が停止している期間は本来画像信号が出力されている期間であり、ラスタースキャン型の映像投影装置の場合は解像画素数の低下につながる。
 第2の実施形態の制御方法では、レーザが出射される時間とレーザの出射が停止される時間を交互に繰り返すことで、レーザの出射が完全になくならず、解像度の低下を抑えることが可能である。
 図8において参照符号N8として示すように、レーザの出力が停止してから、再びレーザの出力を開始するまで(1区間)に4degよりも大きな角度を走査していることが望ましい。これは、ヒトの眼のフォーカスがあう100mmだけ離れた位置に、眼に模した7mmの開口を配置したとき、レーザが開口を通過するのに必要な角度である。言い換えれば、この角度は、レーザ走査部120が、眼のフォーカスがあう距離だけレーザ走査部120から離れた位置で眼の大きさに相当する範囲を往復描画の走査方向に沿って走査するのに必要な角度である。1区間が4deg以下の場合は、開口内に2つ以上のパルスが入ることになる。また、往路における出射位置と復路における出射位置が重ならないことが安全性の観点からはより望ましい。
[第3の実施形態]
 本発明の第3の実施形態について説明する。本実施形態に係る映像投影装置は、第1の実施形態および第2の実施形態に係る映像投影装置と同様の構成である。第3の実施形態の制御方法を図9に示す。走査角速度が遅くなるほど(走査角速度が小さくなるほど)レーザ出力を小さくするように(すなわち、走査角速度に比例してレーザ出力が小さくなるように)、制御部130がレーザ光源部110を制御する。速度が遅くなる端部においては、レーザ出力が小さくなるので、安全性を確保することができる。
 また、ある位置での照度は、その位置に照射されたレーザの出力と時間の積分から計算される。走査系の場合、レーザが照射される時間は被投射面200上での走査速度に反比例する。
 図10に示すように画面(スクリーン)上で照度を一定にするために、レーザ出力を被投射面200上での速度に比例するように制御することが望ましい。また、折返し位置においてレーザの出射を停止する時間があってもよい。
[第4の実施形態]
 本発明の第4の実施形態について説明する。本実施形態に係る映像投影装置は、第1の実施形態から第3の実施形態に係る映像投影装置と同様の構成である。第4の実施形態の制御方法を図11に示す。本実施形態では、最も高速な(最も走査周波数が高い)走査方向以外の走査方向の走査周期に合わせて、基本形態および第1の実施形態から第3の実施形態に記載の方法の制御を切換える。なお、例えば、ある走査型映像装置では映像のフレームレートが上記周期に相当する。
 例として図11は、第1の実施形態における往路および復路での出射停止位置の制御をフレームごとに切換える方法を示す。奇数フレームと、偶数フレームとの間で、折返し位置での出射停止の走査角度および出射開始の走査角度を切換える。
 ヒトはある時間内の光を積分して知覚する。このため、例えば映像のフレーム程度の時間(30Hz)で交互に切り替わる部分は、平均した画像として認識される。その結果、解像度の低下を防止することができる。
[第5の実施形態]
 本発明の第5の実施形態について説明する。本実施形態に係る映像投影装置は、第1の実施形態から第4の実施形態に係る映像投影装置と同様の構成である。第5の実施形態の概念図および制御方法を図12および図13に示す。走査素子を複数方向に走査する場合、低速な走査方向の走査角度や走査周期に応じて、高速な走査方向の走査角度が変化することや、高速な走査方向の走査角度を変化させることがある。このような場合などに、1ラインごとに制御方法やパラメータを変化させることで、より高輝度および高画質な映像投射をすることができる。
 例えば、レーザ走査部120の走査方向が2つであり、それぞれの方向の走査が独立した走査素子を用いてなされているとき、第1の走査方向をx方向とし、第2の走査方向をy方向とする。そして、第1の走査方向に沿って高速に往復描画を行っているとする。この場合の投影図を図12に示す。図12から分かるように、y方向の走査角度に応じて、x方向の走査角度の範囲が異なる。
 レーザが開口を通過する時間などは走査角度に依存するため、図13に示すように、第2の走査方向に沿って、出射停止時間および出射開始時間を変更することが望ましい。すなわち、図13で参照符号N13aとして示すように、ラインごとに走査角度の範囲が異なるように制御する。これに伴って、図13で参照符号N13bとして示すように、ラインごとに出射停止位置および出射開始位置を制御する。また、出射停止時間を制御して、スクリーン上のx方向における出射停止位置を制御することで、所望の形状の映像を投影して、高品質な映像を提供できる。形状は任意であり方形に限られない。
[第6の実施形態]
 本発明の第6の実施形態について説明する。図14は第6の実施形態に係る映像投影装置300の構成を示すブロック図である。第6の実施形態では、レーザ走査部320が走査する走査範囲内に、レーザの一部の光路を変化させる部分透過鏡340aおよび340bを配置し、光路が変わった一部のレーザを受光素子350aおよび350bにそれぞれ入射させる。受光素子350aおよび350bの検知結果を示す信号は制御部330に送信され、その制御に利用される。その他の構成(例えば、レーザ光源部310および被投射面400)は、第1の実施形態~第5の実施形態で説明した映像投影装置と同様である。
 本構成を用いると、前記記載の基本形態および各実施形態をより簡便に実施することが可能である。例として、第2の実施形態に対して本構成を適用した場合について説明する。この場合、レーザの出射停止位置および出射開始位置に相当する場所に光受光素子350aおよび350bを配置する。そして、往路において一方の光受光素子が光を感知したならば、そのタイミングから第2実施形態に記載の制御を開始し、復路において他方の光受光素子が光を感知したならば、そのタイミングから再びレーザの出射を連続で行うように制御を行う。その結果、第2の実施形態を簡便に実施可能である。
 部分透過鏡340aおよび340bは輝度を低下させないように透過率の高いものが望ましい。例としては、ガラスなどがある。受光素子350aおよび350bとしてはPDなどを用いることができる。
 なお、今後規格が改正されクラスわけの基準が改正される可能性はある。しかし、安全基準はヒトの眼の耐性を考慮して作製されたものであり、本発明の意義は変わらない。
 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 この出願は、2010年1月13日に出願された日本出願特願2010-004975号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、例えば、レーザ光源を走査して映像を投影する映像投影装置に利用可能である。本発明では、安全確保と画面輝度の向上を同時に達成することができる。
100 映像投影装置
110 レーザ光源部
120 レーザ走査部
130 制御部
200 被投射面
300 映像投影装置
310 レーザ光源部
320 レーザ走査部
330 制御部
340a,340b 部分透過鏡
350a,350b 受光素子
400 被投射面

Claims (16)

  1.  レーザを射出するレーザ光源部と、
     1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して、前記レーザの往復走査を行って、映像を投影するレーザ走査部と、
     往復走査を行う前記走査方向に関して、往路において前記レーザの出射を停止する時の走査角度と、復路において前記レーザの出射を開始する時の走査角度が異なるように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部と
    を備える映像投影装置。
  2.  レーザを射出するレーザ光源部と、
     1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して所定の走査周期で前記レーザを往復走査して、映像を投影するレーザ走査部と、
     往復走査を行う前記走査方向に関して、往路における前記レーザの出射停止時間と、復路における前記レーザの出射開始時間との時間差が、前記レーザの隣接するパルスを単一のパルスとみなす前記パルス間の間隔の半分よりも長くなるように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部と
    を備え、
     前記所定の走査周期は、前記時間差×2÷(1-前記往復走査の折返し位置で前記レーザの隣接するパルスを単一のパルスとみなしたときに前記レーザの出力上限を低下させる割合R)よりも長い映像投影装置。
  3.  前記制御部は、前記時間差が前記間隔よりも長くなり、前記所定の走査周期が、前記間隔よりも長い前記時間差×2÷(1-R)よりも長くなるように、前記レーザ光源部及び前記レーザ走査部の動作を制御する請求項2に記載の映像投影装置。
  4.  前記制御部は、往復走査を行う前記走査方向に関して、前記往路において前記レーザの出射を停止する時の走査角度と、前記復路において前記レーザの出射を開始する時の走査角度が異なるように制御を行う請求項2に記載の映像投影装置。
  5.  前記制御部が、往復走査を行う前記走査方向に関して、前記往路において前記レーザの出射を停止する時の前記走査角度よりも、前記復路において前記レーザの出射を開始する時の前記走査角度が、小さくなるように制御を行う
    請求項4に記載の映像投影装置。
  6.  前記制御部が、往復走査を行う前記走査方向において、前記往路において前記レーザの出射を停止する時の前記走査角度よりも、前記復路において前記レーザの出射を開始する時の前記走査角度が、大きくなるように制御を行う
    請求項4に記載の映像投影装置。
  7.  レーザを射出するレーザ光源部と、
     1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影するレーザ走査部と、
     前記レーザを出射する期間と前記レーザの出射を停止する期間とが交互に繰り返され、かつ、前記レーザの出射を連続して停止する期間が、眼のフォーカスがあう距離だけ離れた位置で前記眼の大きさに相当する範囲を前記レーザ走査部が前記最も走査周波数が高い走査方向に沿って走査するのに必要な角度に対応する時間よりも長くなるように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部と
    を備える映像投影装置。
  8.  前記制御部は、往路において前記レーザが出射される期間と復路において前記レーザが出射される期間が重ならないように制御を行う請求項7に記載の映像投影装置。
  9.  レーザを射出するレーザ光源部と、
     1つ以上の走査方向をもち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影するレーザ走査部と、
     前記レーザ光源部の出力が、前記レーザ走査部の走査角速度、または、被投射面における前記レーザの走査速度に比例するように、映像信号に応じて前記レーザ光源部及び前記レーザ走査部の動作を制御する制御部と
    を備える映像投影装置。
  10.  前記制御部が、前記最も走査周波数が高い走査方向以外の走査方向の走査周期ごとに、時間で制御方法を切り替える
    請求項1乃至9のいずれか1項に記載の映像投影装置。
  11.  前記制御部が、前記レーザの出射開始位置および出射停止位置を制御して、前記最も走査周波数が高い走査方向の走査周期ごとに、前記レーザの走査角度の範囲を変化させる
    請求項1乃至10のいずれか1項に記載の映像投影装置。
  12.  前記レーザ走査部の走査範囲内に配置され、前記レーザの一部の光路を変化させる部分透過鏡と、
     前記光路が変化したレーザを検知して前記制御部に通知する光検出器と
    を更に有し、
     前記制御部は、前記光路が変化したレーザを前記光検出器で検知したタイミングに基づいて、前記レーザの出射の開始および停止を制御する請求項1乃至11のいずれか1項に記載の映像投影装置。
  13.  レーザを射出し、
     1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して、前記レーザの往復走査を行って、映像を投影し、
     往復走査を行う前記走査方向に関して、往路において前記レーザの出射を停止する時の走査角度と、復路において前記レーザの出射を開始する時の走査角度が異なるように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御する映像投影方法。
  14.  レーザを射出し、
     1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して所定の走査周期で前記レーザを往復走査して、映像を投影し、
     往復走査を行う前記走査方向に関して、往路における前記レーザの出射停止時間と、復路における前記レーザの出射開始時間との時間差が、前記レーザの隣接するパルスを単一のパルスとみなす前記パルス間の間隔の半分よりも長くなるように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御し、
     前記所定の走査周期を前記時間差×2÷(1-前記往復走査の折返し位置で前記レーザの隣接するパルスを単一のパルスとみなしたときに前記レーザの出力上限を低下させる割合R)よりも長くなるように設定する映像投影方法。
  15.  レーザを射出し、
     1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影し、
     前記レーザを出射する期間と前記レーザの出射を停止する期間とが交互に繰り返され、かつ、前記レーザの出射を連続して停止する期間が、眼のフォーカスがあう距離だけ離れた位置で前記眼の大きさに相当する範囲を前記最も走査周波数が高い走査方向に沿って走査するのに必要な角度に対応する時間よりも長くなるように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御する映像投影方法。
  16.  レーザを射出し、
     1つ以上の走査方向のうち、最も走査周波数が高い走査方向に関して前記レーザを往復走査して、映像を投影し、
     前記レーザの出力が、前記レーザの走査角速度、または、被投射面における前記レーザの走査速度に比例するように、映像信号に応じて前記レーザの出射および前記レーザの走査を制御する映像投影方法。
PCT/JP2010/073678 2010-01-13 2010-12-28 映像投影装置および映像投影方法 WO2011086849A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011549908A JP5704074B2 (ja) 2010-01-13 2010-12-28 映像投影装置
US13/521,649 US9069171B2 (en) 2010-01-13 2010-12-28 Video projection device and video projection method
CN2010800611931A CN102713723A (zh) 2010-01-13 2010-12-28 影像投影装置以及影像投影方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010004975 2010-01-13
JP2010-004975 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011086849A1 true WO2011086849A1 (ja) 2011-07-21

Family

ID=44304131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073678 WO2011086849A1 (ja) 2010-01-13 2010-12-28 映像投影装置および映像投影方法

Country Status (4)

Country Link
US (1) US9069171B2 (ja)
JP (1) JP5704074B2 (ja)
CN (1) CN102713723A (ja)
WO (1) WO2011086849A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676425A (zh) * 2012-09-04 2014-03-26 建兴电子科技股份有限公司 适用于激光投影装置的安全防护方法
JP2017513038A (ja) * 2014-02-18 2017-05-25 マイクロビジョン,インク. マルチセグメントの輝度補償
JP2017138474A (ja) * 2016-02-03 2017-08-10 富士電機株式会社 ミラーユニット及び光走査装置
WO2019078058A1 (ja) * 2017-10-18 2019-04-25 株式会社日立産機システム 走査型光出力装置及びその制御方法
JP2020522206A (ja) * 2017-06-01 2020-07-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーザ投影ユニットの作動方法および制御ユニット、ならびにレーザ投影ユニット

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169273A1 (en) * 2013-04-12 2014-10-16 The Trustees Of Columbia University In The City Of New York Systems, methods, and media for generating structured light
CN104516105A (zh) * 2013-09-29 2015-04-15 中强光电股份有限公司 激光扫描装置及其校准方法
CN104181766B (zh) * 2014-07-25 2017-09-26 京东方科技集团股份有限公司 一种车载显示装置
DE102016215984A1 (de) * 2016-08-25 2018-03-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Abtasten einer Projektionsfläche mit einem Laserstrahl
DE102017220811A1 (de) * 2017-11-22 2019-05-23 Robert Bosch Gmbh Laserprojektionsvorrichtung
CN108957738B (zh) * 2018-07-04 2021-08-24 歌尔光学科技有限公司 激光投影方法及设备
CN111670384A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 一种光发射方法、装置及扫描系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509522A (ja) * 1997-08-27 2000-07-25 エルディティ ゲーエムベーハー ウント シーオー.レーザー−ディスプレー−テクノロギー カーゲー ビデオ画像の幾何形状画像エラーの補正方法及びその方法を実施するための装置
JP2003131151A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向装置、それを用いた画像形成装置およびその駆動方法
JP2004341211A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp プロジェクタ及びプロジェクタの制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365916A (ja) 1989-08-04 1991-03-20 Mitsubishi Electric Corp 表示装置
US5870219A (en) * 1997-01-20 1999-02-09 Geo. Labs, Inc. Ultra compact scanning system for a wide range of speeds, angles and field depth
EP0884914A1 (en) * 1993-02-03 1998-12-16 Nitor Methods and apparatus for image projection
US6654158B2 (en) * 2001-04-20 2003-11-25 Microvision, Inc. Frequency tunable resonant scanner with auxiliary arms
US6937372B2 (en) 2001-07-11 2005-08-30 Canon Kabushiki Kaisha Light beam deflecting apparatus, image forming apparatus utilizing the same and drive method therefor
JP4407179B2 (ja) * 2003-07-09 2010-02-03 ソニー株式会社 レーザディスプレイ装置
US7583417B2 (en) * 2004-09-22 2009-09-01 Lexmark International, Inc. Bi-directional scanning and imaging with scanning compensation
JP4929738B2 (ja) * 2005-04-18 2012-05-09 セイコーエプソン株式会社 光走査装置、光走査装置の制御方法及び画像表示装置
CN100368864C (zh) 2005-04-18 2008-02-13 精工爱普生株式会社 光扫描装置、其控制方法及图像显示装置
JP4311382B2 (ja) * 2005-07-20 2009-08-12 セイコーエプソン株式会社 プロジェクタ
JP5012463B2 (ja) * 2007-12-03 2012-08-29 セイコーエプソン株式会社 走査型画像表示システム及び走査型画像表示装置
US7972014B2 (en) * 2008-08-05 2011-07-05 Opus Microsystems Corporation Scanning projection apparatus with phase detection and compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509522A (ja) * 1997-08-27 2000-07-25 エルディティ ゲーエムベーハー ウント シーオー.レーザー−ディスプレー−テクノロギー カーゲー ビデオ画像の幾何形状画像エラーの補正方法及びその方法を実施するための装置
JP2003131151A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向装置、それを用いた画像形成装置およびその駆動方法
JP2004341211A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp プロジェクタ及びプロジェクタの制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676425A (zh) * 2012-09-04 2014-03-26 建兴电子科技股份有限公司 适用于激光投影装置的安全防护方法
CN103676425B (zh) * 2012-09-04 2015-10-28 光宝科技股份有限公司 适用于激光投影装置的安全防护方法
JP2017513038A (ja) * 2014-02-18 2017-05-25 マイクロビジョン,インク. マルチセグメントの輝度補償
JP2017138474A (ja) * 2016-02-03 2017-08-10 富士電機株式会社 ミラーユニット及び光走査装置
JP2020522206A (ja) * 2017-06-01 2020-07-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーザ投影ユニットの作動方法および制御ユニット、ならびにレーザ投影ユニット
US11178364B2 (en) 2017-06-01 2021-11-16 Robert Bosch Gmbh Operating method and control unit for a laser projection unit, and laser projection unit
WO2019078058A1 (ja) * 2017-10-18 2019-04-25 株式会社日立産機システム 走査型光出力装置及びその制御方法
JPWO2019078058A1 (ja) * 2017-10-18 2020-11-05 株式会社日立産機システム 走査型光出力装置及びその制御方法
JP7061617B2 (ja) 2017-10-18 2022-04-28 株式会社日立産機システム 走査型光出力装置及びその制御方法

Also Published As

Publication number Publication date
CN102713723A (zh) 2012-10-03
US20120327049A1 (en) 2012-12-27
JPWO2011086849A1 (ja) 2013-05-16
US9069171B2 (en) 2015-06-30
JP5704074B2 (ja) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5704074B2 (ja) 映像投影装置
JP5501187B2 (ja) レーザプロジェクタ
WO2019181519A1 (en) Display device, display system, and mobile object
JP5673544B2 (ja) レーザー投射装置
WO2013140757A1 (ja) 走査ミラーおよび走査型画像表示装置
TWI731081B (zh) 投影系統
JP4840175B2 (ja) 画像表示装置
CN107209396B (zh) 影像显示装置
KR20140009528A (ko) 화상 표시 장치
WO2016135795A1 (ja) 画像描画装置、ヘッドアップディスプレイ及び画像輝度調整方法
JP2011075950A (ja) 網膜走査型画像表示装置
JP2018156062A (ja) 表示装置、物体装置及び表示方法
JP2010237536A (ja) 画像表示装置
WO2011114928A1 (ja) 表示装置およびプロジェクタ機能を有する携帯機器
JP5083452B2 (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
JP2011215398A (ja) 画像表示装置
JP2010139687A (ja) 画像表示装置
JP2021135472A (ja) 表示装置、及び移動体
WO2015194377A1 (ja) 光源駆動装置及び画像表示装置
JP2011070093A (ja) ヘッドマウントディスプレイ
WO2016135796A1 (ja) 画像描画装置、ヘッドアップディスプレイ及び画像輝度調整方法
JP2008216456A (ja) 投射型カラープロジェクタ装置
WO2017068738A1 (ja) 光源駆動装置及び画像表示装置
JP2011069902A (ja) 画像表示装置
JP2017079132A (ja) 光出力制御ユニット、及び光投射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061193.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011549908

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13521649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843201

Country of ref document: EP

Kind code of ref document: A1