WO2011083683A1 - 合成非晶質シリカ粉末 - Google Patents

合成非晶質シリカ粉末 Download PDF

Info

Publication number
WO2011083683A1
WO2011083683A1 PCT/JP2010/072958 JP2010072958W WO2011083683A1 WO 2011083683 A1 WO2011083683 A1 WO 2011083683A1 JP 2010072958 W JP2010072958 W JP 2010072958W WO 2011083683 A1 WO2011083683 A1 WO 2011083683A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
silica powder
synthetic amorphous
amorphous silica
silica
Prior art date
Application number
PCT/JP2010/072958
Other languages
English (en)
French (fr)
Inventor
植田 稔晃
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2011548950A priority Critical patent/JP5648640B2/ja
Priority to US13/520,813 priority patent/US20120288716A1/en
Priority to KR1020127014168A priority patent/KR20120120150A/ko
Priority to EP10842196.7A priority patent/EP2522627A4/en
Priority to CN201080059143.XA priority patent/CN102666384B/zh
Publication of WO2011083683A1 publication Critical patent/WO2011083683A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/155Preparation of hydroorganogels or organogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres

Definitions

  • the present invention relates to a high-purity synthetic amorphous silica powder suitable as a raw material for producing synthetic silica glass products such as piping and crucibles used under high temperature and reduced pressure environments in the semiconductor industry and the like.
  • crucibles and jigs used for manufacturing single crystals for semiconductors have been manufactured using quartz powder obtained by pulverizing and refining natural quartz and silica sand as raw materials.
  • natural quartz and silica sand contain various metal impurities, and even if the above purification treatment is performed, the metal impurities cannot be completely removed, so that the purity is not satisfactory.
  • semiconductors are highly integrated, quality requirements for single crystals as materials have increased, and high-purity products are required for crucibles and jigs used in the production of single crystals. Therefore, synthetic silica glass products using high-purity synthetic amorphous silica powder as a raw material instead of natural quartz or silica sand have attracted attention.
  • high-purity silicon tetrachloride is hydrolyzed with water, and the resulting silica gel is dried, sized and fired to obtain a synthetic amorphous silica powder.
  • a method is disclosed (for example, refer to Patent Document 1). Also disclosed is a method for obtaining a synthetic amorphous silica powder by hydrolyzing an alkoxysilane such as a silicate ester in the presence of an acid and an alkali to form a gel, and drying, pulverizing and firing the resulting gel.
  • the synthetic amorphous silica powder produced by the methods described in the above Patent Documents 1 to 3 has a higher purity than natural quartz and silica sand, and is used to synthesize crucibles and jigs produced from these raw materials. Impurity contamination from silica glass products can be reduced and performance can be improved.
  • Japanese Patent Publication No. 4-75848 (Claim 1) Japanese Patent Laid-Open No. 62-176929 (claim 1) JP-A-3-275527 (page 2, lower left column, line 7 to page 3, upper left column, line 6)
  • the synthetic silica glass product produced using the synthetic amorphous silica powder produced by the methods described in the above Patent Documents 1 to 3 is used in an environment where the synthetic silica glass product is used at high temperature and reduced pressure. In this case, bubbles were generated or expanded, and the performance of the synthetic silica glass product was greatly reduced.
  • a crucible for pulling up a silicon single crystal is used in a high temperature and reduced pressure environment at around 1500 ° C. and around 7000 Pa, and the drastic reduction in the performance of the crucible due to the generation or expansion of the above-mentioned bubbles results in a single crystal to be pulled up. It has become a problem that affects the quality of.
  • the synthetic amorphous silica powder obtained by hydrolysis of silicon tetrachloride is subjected to heat treatment, By reducing the concentration of hydroxyl and chlorine, respectively, and by subjecting the synthetic amorphous silica powder obtained by the sol-gel method of alkoxysilane to heat treatment, the concentration of hydroxyl and carbon in the synthetic amorphous silica powder is reduced respectively.
  • the object of the present invention is to overcome the above-mentioned conventional problems and to provide a synthetic amorphous material suitable for a raw material for a synthetic silica glass product with less generation or expansion of bubbles even when used under a high temperature and reduced pressure environment. It is to provide a porous silica powder.
  • the first aspect of the present invention after being subjected to spheroidizing treatment to a silica powder, a synthetic amorphous silica powder obtained by firing without washing, the BET specific surface area average particle diameter D 50
  • the value divided by the calculated theoretical specific surface area is 1.93 or less, the true density is 2.10 g / cm 3 or more, the intra-particle space ratio is 0.05 or less, the circularity is 0.50 or more, and the spheroidization ratio is 0.8. It is 20 or more, and the silica fine powder has adhered to the surface.
  • the synthetic amorphous silica powder according to the first aspect of the present invention is a synthetic amorphous silica powder obtained by subjecting the silica powder to spheroidizing treatment and firing without washing, and having a BET specific surface area. Divided by the theoretical specific surface area calculated from the average particle diameter D 50 is 1.93 or less, the true density is 2.10 g / cm 3 or more, the intra-particle space ratio is 0.05 or less, and the circularity is 0.50 or more. And the spheroidization rate is 0.20 or more, and the silica fine powder adheres to the surface.
  • the synthetic amorphous silica powder of the present invention can be obtained by subjecting the silica powder to spheroidization and firing without washing.
  • the value obtained by dividing the BET specific surface area by the theoretical specific surface area calculated from the average particle diameter D 50 is 1.93 or less, the true density is 2.10 g / cm 3 or more, the intra-particle space ratio is 0.05 or less, the circularity Is 0.50 or more and the spheroidization ratio is 0.20 or more, and silica fine powder is adhered to the surface.
  • the main cause of the generation or expansion of bubbles in a synthetic silica glass product such as a silicon single crystal pulling crucible at high temperature and under reduced pressure is considered to be the gas adsorbed on the surface of the raw material powder used in the production of the product. That is, when the synthetic silica glass product is manufactured, the gas component adsorbed on the surface of the raw material powder is released during melting, which is one step. And this gas component remains in a synthetic silica glass product, and this causes a bubble generation or expansion.
  • the silica powder used as the raw material for the synthetic silica glass product usually undergoes a pulverization step, it contains a large number of irregularly shaped (pulverized powder shape) particles as shown in FIG. Therefore, it is considered that the specific surface area increases and the inevitable gas adsorption amount increases.
  • synthetic amorphous silica powder of the present invention by performing the spheroidizing treatment to the powder, the value obtained by dividing the theoretical specific surface area, as calculated BET specific surface area average particle diameter D 50 is obtained by the above-mentioned range .
  • the BET specific surface area is a value measured by the BET three-point method.
  • the theoretical specific surface area of the particle is calculated from the following equation (1) when it is assumed that the particle is a true sphere and the surface is smooth.
  • D represents the particle diameter
  • represents the true density.
  • Theoretical specific surface area 6 / (D ⁇ ⁇ ) (1)
  • the theoretical specific surface area of the powder is a value calculated from the theoretical true density assuming that D is the average particle diameter D 50 of powder and ⁇ is the true density of 2.20 g / cm 3 in the above formula (1). It is. That is, the theoretical specific surface area of the powder is calculated from the following equation (2).
  • Theoretical specific surface area of the powder 2.73 / D 50 (2)
  • the specific surface area increases and the inevitable gas adsorption amount increases.
  • the above value is preferably 1.70 or less, and particularly preferably in the range of 1.00 to 1.50.
  • the circularity of the synthetic amorphous silica powder is 0.50 or more.
  • the circularity means that the closer to 1.00, the closer the powder particle is to a true sphere, and it is calculated by the following equation (3).
  • Circularity 4 ⁇ S / L 2 (3)
  • S represents the area of the photographed particle projection
  • L represents the perimeter of the particle projection.
  • the circularity of the powder is an average value of 200 powder particles calculated from the above formula (3).
  • the circularity of the powder is preferably in the range of 0.80 to 1.00.
  • the spheroidization rate of the synthetic amorphous silica powder is 0.20 or more.
  • the spheroidization rate of the powder indicates the ratio of particles having a circularity of 0.60 to 1.00 in a predetermined amount of powder.
  • the spheroidization rate of the powder is preferably in the range of 0.80 to 1.00.
  • the true density is at 2.10 g / cm 3 or more, and preferably 2.15 ⁇ 2.20g / cm 3.
  • the true density is an average value obtained by measuring the true density three times in accordance with the measurement method (d) true specific gravity measurement of JIS R7212 carbon block.
  • grain space ratio is 0.05 or less, and 0.01 or less is preferable.
  • the intra-particle space ratio is a measurement of the cross-sectional area of a particle when the cross-section of the 50 powder particles is observed with an SEM (scanning electron microscope), and the area of the space if there is a space in the particle. This is the average value of the values calculated from the equation (4).
  • the average particle diameter D 50 of the synthetic amorphous silica powder is preferably in the range of 50 to 1000 ⁇ m. If it is less than the lower limit, the space between the powder particles is small, and it is difficult for the gas present in this space to escape, so small bubbles tend to remain, whereas if the upper limit is exceeded, the space between the powder particles is too large, This is because large bubbles are likely to remain.
  • the average particle diameter D 50 is particularly preferably in the range of 80 to 600 ⁇ m.
  • the average particle diameter D 50 is obtained by measuring the median of the particle distribution (diameter) measured by a laser diffraction / scattering particle distribution measuring apparatus (model name: HORIBA LA-950) three times. Mean value.
  • the bulk density of the synthetic amorphous silica powder is preferably 1.00 g / cm 3 or more. If it is less than the lower limit, the space between the powder particles is too large and large bubbles are likely to remain. On the other hand, if the upper limit is exceeded, the space between the powder particles is small, so that the gas present in this space is difficult to escape. This is because small bubbles are likely to remain.
  • the bulk density is particularly preferably in the range of 1.20 to 1.40 g / cm 3 .
  • the crystalline silica powder has a broad diffraction peak and no crystalline silica powder is observed when measured by a powder X-ray diffraction method using CuK ⁇ rays.
  • Amorphous and crystalline silica have different behaviors in melting, and the melting of crystalline silica tends to start later. For this reason, if a synthetic silica glass product or the like is manufactured using a synthetic amorphous silica powder in which amorphous and crystalline silica are mixed, bubbles are likely to remain in the synthetic silica glass product. It is.
  • the impurity concentration of the synthetic amorphous silica powder is 1A group excluding hydrogen atoms, 2A-8 group, 1B-3B group, 4B excluding carbon and silicon.
  • the concentration of group 5B, group 6B excluding oxygen, and group 7B excluding chlorine is preferably less than 1 ppm.
  • the impurity concentration is particularly preferably less than 0.05 ppm.
  • the hydroxyl group which can become a gas component is 50 ppm or less, the chlorine concentration is 2 ppm or less, and the carbon concentration is 10 ppm or less.
  • the synthetic amorphous silica powder of the present invention can be obtained by performing spheroidizing treatment and firing without washing. For this reason, as shown in FIG. 1, although the silica fine powder adheres to the surface of the powder particles, the above-mentioned characteristics are exhibited by the spheroidization treatment, so that the inevitable gas adsorption amount is reduced.
  • This fine silica powder has an average particle diameter D 50 of 0.001 to 0.1 ⁇ m.
  • the method for producing a synthetic amorphous silica powder of the present invention is obtained by subjecting a silica powder as a raw material to a spheroidizing treatment and baking. Each step will be described in detail below.
  • the silica powder used as the raw material for the synthetic amorphous silica powder of the present invention is obtained, for example, by the following method.
  • a first method first, ultrapure water in an amount corresponding to 45 to 80 mol is prepared with respect to 1 mol of silicon tetrachloride.
  • the prepared ultrapure water is put into a container, and hydrolyzed by adding silicon tetrachloride while stirring at a temperature of 20 to 45 ° C. in an atmosphere of nitrogen, argon or the like. After the addition of silicon tetrachloride, stirring is continued for 0.5 to 6 hours to produce a siliceous gel. At this time, the stirring speed is preferably in the range of 100 to 300 rpm.
  • the siliceous gel is transferred to a drying container and placed in a drier. While flowing nitrogen, argon or the like at a flow rate of preferably 1 to 20 L / min, the temperature is set to 200 ° C. to 300 ° C. Dry for 12 to 48 hours to obtain a dry powder.
  • the dry powder is taken out from the dryer and pulverized using a pulverizer such as a roll crusher. In the case of using a roll crusher, the roll gap is appropriately adjusted to 0.2 to 2.0 mm and a roll rotation speed of 3 to 200 rpm. Finally, the pulverized dry powder is classified using a vibration sieve or the like to obtain silica powder having an average particle diameter D 50 of preferably 70 to 1300 ⁇ m.
  • 0.5 to 3 mol of ultrapure water and 0.5 to 3 mol of ethanol are prepared with respect to 1 mol of tetramethoxysilane as an organic silicon compound.
  • the prepared ultrapure water and ethanol are put in a container, and tetramethoxysilane is added and hydrolyzed in an atmosphere of nitrogen, argon or the like while maintaining the temperature at 60 ° C. and stirring.
  • tetramethoxysilane After stirring for 5 to 120 minutes after adding tetramethoxysilane, 1 to 50 mol of ultrapure water is further added to 1 mol of tetramethoxysilane, and stirring is continued for 1 to 12 hours.
  • the stirring speed is preferably in the range of 100 to 300 rpm.
  • the siliceous gel is transferred to a drying container and placed in a drier. While flowing nitrogen, argon or the like at a flow rate of preferably 1 to 20 L / min, the temperature is set to 200 ° C. to 300 ° C. Dry for 6 to 48 hours to obtain a dry powder.
  • the dry powder is taken out from the dryer and pulverized using a pulverizer such as a roll crusher. In the case of using a roll crusher, the roll gap is appropriately adjusted to 0.2 to 2.0 mm and a roll rotation speed of 3 to 200 rpm.
  • the pulverized dry powder is classified using a vibration sieve or the like to obtain silica powder having an average particle diameter D 50 of preferably 70 to 1300 ⁇ m.
  • ultrapure water of 9.5 to 20 .mu.m per 1 mol of fumed silica having an average particle diameter D 50 of 0.007 to 0.030 ⁇ m and a specific surface area of 50 to 380 m 2 / g. Prepare 0 mol.
  • the prepared ultrapure water is put in a container, and fumed silica is added while stirring at a temperature of 20 to 45 ° C. in an atmosphere of nitrogen, argon or the like. After the fumed silica is added, stirring is continued for 0.5 to 6 hours to form a siliceous gel. At this time, the stirring speed is preferably in the range of 10 to 50 rpm.
  • the siliceous gel is transferred to a drying container and placed in a drier. While flowing nitrogen, argon or the like at a flow rate of preferably 1 to 20 L / min, the temperature is set to 200 ° C. to 300 ° C. Dry for 6 to 48 hours to obtain a dry powder.
  • the dry powder is taken out from the dryer and pulverized using a pulverizer such as a roll crusher. In the case of using a roll crusher, the roll gap is appropriately adjusted to 0.2 to 2.0 mm and a roll rotation speed of 3 to 200 rpm. Finally, the pulverized dry powder is classified using a vibration sieve or the like to obtain silica powder having an average particle diameter D 50 of preferably 70 to 1300 ⁇ m.
  • the powder shape after solidification is spheroidized by utilizing the surface tension of the melt particles by heating to 2000 ° C. or higher and melting.
  • Any method can be used, and examples thereof include a thermal plasma method, a flame method, and a melt drop method.
  • a spheroidizing method using thermal plasma will be described.
  • an apparatus shown in FIG. 3 can be used.
  • the apparatus 30 includes a plasma torch 31 that generates plasma, a chamber 32 that is a reaction cylinder provided below the plasma torch 31, and a collection unit that collects the processed powder provided below the chamber 32. 33.
  • the plasma torch 31 has a quartz tube 34 sealed at the top communicating with the chamber 32 and a high-frequency induction coil 36 around which the quartz tube 34 is wound.
  • a raw material supply pipe 37 is provided through the quartz tube 34 and a gas introduction pipe 38 is connected thereto.
  • a gas exhaust port 39 is provided on the side of the chamber 32.
  • the high-frequency induction coil 36 when the high-frequency induction coil 36 is energized, plasma 40 is generated, and a gas such as argon or oxygen is supplied from the gas introduction tube 38 to the quartz tube 34.
  • the raw material powder is supplied into the plasma 40 through the raw material supply pipe 37. Further, the gas in the chamber 32 is exhausted from a gas exhaust port 39 provided on the side of the chamber 32.
  • argon as a working gas is introduced from the gas introduction pipe 38 of the apparatus 30 at a flow rate of 15 to 60 L / min, and a high frequency with a frequency of 3 to 5 MHz and an output of 30 to 120 kW is applied to the plasma torch 31 to generate plasma.
  • oxygen is gradually introduced at a flow rate of 20 to 120 L / min to generate an argon-oxygen plasma.
  • the silica powder obtained by the above first to third methods is charged into the argon-oxygen plasma from the raw material supply pipe 37 at a supply rate of 1.5 to 20 kg / hr to melt the silica powder.
  • the spherical particles of silica powder 41 can be obtained by dropping the melted particles and collecting the dropped particles by the recovery unit 33.
  • the spheroidized silica powder is fired without washing.
  • the spheroidized silica powder is put into a firing container, and the firing container is put into an electric furnace capable of controlling the atmosphere, that is, a firing furnace.
  • the firing conditions are preferably 12 to 48 hours at 1100 ° C. to 1500 ° C. with oxygen, dry air, etc. flowing at a flow rate of 1 to 20 L / min.
  • This synthetic amorphous silica powder of the present invention is obtained.
  • This synthetic amorphous silica powder has a small amount of inevitable gas adsorption and can be suitably used as a raw material for synthetic silica glass products.
  • Example 1 First, an amount of ultrapure water corresponding to 55.6 mol was prepared with respect to 1 mol of silicon tetrachloride. This ultrapure water was put in a container, and hydrolyzed by adding silicon tetrachloride while stirring at a temperature of 25 ° C. in a nitrogen atmosphere. After the addition of silicon tetrachloride, stirring was continued for 3 hours to produce a siliceous gel. At this time, the stirring speed was 150 rpm. Next, the siliceous gel was transferred to a drying container, put into a dryer, and dried at a temperature of 250 ° C. for 18 hours while flowing nitrogen at a flow rate of 15 L / min into the dryer to obtain a dry powder. .
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.2 mm, and the roll rotation speed was adjusted to 50 rpm.
  • the pulverized dry powder was classified using a vibration sieve having an opening of 75 ⁇ m and an opening of 125 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 112 ⁇ m.
  • the silica powder obtained above was spheroidized under the conditions shown in Table 1 below. Specifically, first, argon as a working gas was introduced from the gas introduction tube 38 of the apparatus 30, and a high frequency was applied to the plasma torch 31 to generate plasma. After the plasma was stabilized, oxygen was gradually introduced to generate an argon-oxygen plasma. The obtained silica powder is introduced into the argon-oxygen plasma from the raw material supply pipe 37, the silica powder is melted, the melted particles are dropped, and the dropped particles are recovered by the recovery unit 33. Thereby, the spheroidized silica powder 41 was obtained.
  • the powder is put into a firing container without washing, and this firing container is put into a firing furnace, and nitrogen is flowed into the firing furnace at a flow rate of 10 L / min for 48 hours at a temperature of 1250 ° C.
  • nitrogen is flowed into the firing furnace at a flow rate of 10 L / min for 48 hours at a temperature of 1250 ° C.
  • Example 2 First, 1 mol of ultrapure water and 1 mol of ethanol were prepared with respect to 1 mol of tetramethoxysilane. The prepared ultrapure water and ethanol were put in a container, and tetramethoxysilane was added and hydrolyzed while stirring at a temperature of 60 ° C. in a nitrogen atmosphere. After stirring for 60 minutes after the addition of tetramethoxysilane, 25 mol of ultrapure water was further added to 1 mol of tetramethoxylane, and stirring was continued for 6 hours to produce a siliceous gel. At this time, the stirring speed was 100 rpm.
  • the siliceous gel was transferred to a drying container, put into a dryer, and dried at a temperature of 200 ° C. for 24 hours while flowing nitrogen at a flow rate of 20 L / min into the dryer to obtain a dry powder. .
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.2 mm, and the roll rotation speed was adjusted to 55 rpm.
  • the pulverized dry powder was classified using a vibrating sieve having an opening of 100 ⁇ m and an opening of 150 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 120 ⁇ m.
  • the silica powder obtained above was spheroidized under the conditions shown in Table 1 below. Specifically, first, argon as a working gas was introduced from the gas introduction tube 38 of the apparatus 30, and a high frequency was applied to the plasma torch 31 to generate plasma. After the plasma was stabilized, oxygen was gradually introduced to generate an argon-oxygen plasma. The obtained silica powder is introduced into the argon-oxygen plasma from the raw material supply pipe 37, the silica powder is melted, the melted particles are dropped, and the dropped particles are recovered by the recovery unit 33. Thereby, the spheroidized silica powder 41 was obtained.
  • the powder is put into a firing container without washing, and this firing container is put into a firing furnace, and oxygen is allowed to flow into the firing furnace at a flow rate of 15 L / min for 24 hours at a temperature of 1300 ° C.
  • oxygen is allowed to flow into the firing furnace at a flow rate of 15 L / min for 24 hours at a temperature of 1300 ° C.
  • Example 3 13 mol of ultrapure water was prepared for 1 mol of fumed silica having an average particle diameter D 50 of 0.020 ⁇ m and a specific surface area of 90 m 2 / g.
  • the prepared ultrapure water was put in a container, and fumed silica was added while stirring at a temperature of 25 ° C. in a nitrogen atmosphere. After the fumed silica was added, stirring was continued for 3 hours to produce a siliceous gel. At this time, the stirring speed was 30 rpm. Next, the siliceous gel was transferred to a drying container, put in a dryer, and dried at a temperature of 300 ° C.
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.5 mm, and the roll rotation speed was adjusted to 30 rpm.
  • the pulverized dry powder was classified using a vibrating sieve having an opening of 375 ⁇ m and an opening of 450 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 417 ⁇ m.
  • the silica powder obtained above was spheroidized under the conditions shown in Table 1 below. Specifically, first, argon as a working gas was introduced from the gas introduction tube 38 of the apparatus 30, and a high frequency was applied to the plasma torch 31 to generate plasma. After the plasma was stabilized, oxygen was gradually introduced to generate an argon-oxygen plasma. The obtained silica powder is introduced into the argon-oxygen plasma from the raw material supply pipe 37, the silica powder is melted, the melted particles are dropped, and the dropped particles are recovered by the recovery unit 33. Thereby, the spheroidized silica powder 41 was obtained.
  • the powder is put into a firing container without washing, and this firing container is put into a firing furnace, and oxygen is allowed to flow into the firing furnace at a flow rate of 15 L / min at a temperature of 1200 ° C. for 48 hours.
  • oxygen is allowed to flow into the firing furnace at a flow rate of 15 L / min at a temperature of 1200 ° C. for 48 hours.
  • Example 4 Similar to Example 1 except that silica powder having an average particle size D 50 of 907 ⁇ m was obtained and spheroidizing treatment was performed on the silica powder under the conditions shown in Table 1 below, A synthetic amorphous silica powder to which the powder adhered was obtained.
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.2 mm, and the roll rotation speed was adjusted to 50 rpm.
  • the pulverized dry powder was classified using a vibration sieve having an opening of 75 ⁇ m and an opening of 125 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 112 ⁇ m.
  • the silica powder obtained above was spheroidized under the conditions shown in Table 1 below. Specifically, first, argon as a working gas was introduced from the gas introduction tube 38 of the apparatus 30, and a high frequency was applied to the plasma torch 31 to generate plasma. After the plasma was stabilized, oxygen was gradually introduced to generate an argon-oxygen plasma. The obtained silica powder is introduced into the argon-oxygen plasma from the raw material supply pipe 37, the silica powder is melted, the melted particles are dropped, and the dropped particles are recovered by the recovery unit 33. Thereby, the spheroidized silica powder 41 was obtained.
  • the powder and ultrapure water were put in a cleaning container and ultrasonic cleaning was performed. After ultrasonic cleaning, the mixture was filtered with a filter having an opening of 75 ⁇ m. This operation was repeated until there was no fine powder adhering to the surface of the silica powder particles.
  • the washed powder is put into a drying container, this drying container is put into a dryer, and nitrogen is flowed into the dryer at a flow rate of 10 L / min, and kept at a temperature of 200 ° C. for 48 hours, A synthetic amorphous silica powder having no fine silica powder adhered to the surface was obtained.
  • the siliceous gel was transferred to a drying container, put into a dryer, and dried at a temperature of 200 ° C. for 24 hours while flowing nitrogen at a flow rate of 20 L / min into the dryer to obtain a dry powder. .
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.2 mm, and the roll rotation speed was adjusted to 55 rpm.
  • the pulverized dry powder was classified using a vibrating sieve having an opening of 100 ⁇ m and an opening of 150 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 120 ⁇ m.
  • the silica powder obtained above was spheroidized under the conditions shown in Table 1 below. Specifically, first, argon as a working gas was introduced from the gas introduction tube 38 of the apparatus 30, and a high frequency was applied to the plasma torch 31 to generate plasma. After the plasma was stabilized, oxygen was gradually introduced to generate an argon-oxygen plasma. The obtained silica powder is introduced into the argon-oxygen plasma from the raw material supply pipe 37, the silica powder is melted, the melted particles are dropped, and the dropped particles are recovered by the recovery unit 33. Thereby, the spheroidized silica powder 41 was obtained.
  • the powder and ultrapure water were put in a cleaning container and ultrasonic cleaning was performed. After ultrasonic cleaning, the mixture was filtered with a filter having an opening of 100 ⁇ m. This operation was repeated until there was no fine powder adhering to the surface of the silica powder particles.
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.5 mm, and the roll rotation speed was adjusted to 30 rpm.
  • the pulverized dry powder was classified using a vibrating sieve having an opening of 375 ⁇ m and an opening of 450 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 417 ⁇ m.
  • the silica powder obtained above was spheroidized under the conditions shown in Table 1 below. Specifically, first, argon as a working gas was introduced from the gas introduction tube 38 of the apparatus 30, and a high frequency was applied to the plasma torch 31 to generate plasma. After the plasma was stabilized, oxygen was gradually introduced to generate an argon-oxygen plasma. The obtained silica powder is introduced into the argon-oxygen plasma from the raw material supply pipe 37, the silica powder is melted, the melted particles are dropped, and the dropped particles are recovered by the recovery unit 33. Thereby, the spheroidized silica powder 41 was obtained.
  • the powder and ultrapure water were put in a cleaning container and ultrasonic cleaning was performed. After ultrasonic cleaning, the mixture was filtered with a filter having an opening of 375 ⁇ m. This operation was repeated until there was no fine powder adhering to the surface of the silica powder particles.
  • the powder after washing is put into a drying container, and this drying container is put into a dryer, and kept at a temperature of 200 ° C. for 36 hours while flowing nitrogen at a flow rate of 20 L / min.
  • a synthetic amorphous silica powder having no fine silica powder adhered to the surface was obtained.
  • Comparative Example 5 A synthetic amorphous material was obtained in the same manner as in Comparative Example 1 except that a silica powder having an average particle diameter D 50 of 907 ⁇ m was obtained and that this silica powder was subjected to spheroidizing treatment under the conditions shown in Table 1 below. Silica powder was obtained.
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.2 mm and the roll rotation speed to 50 rpm.
  • the pulverized dry powder was classified using a vibrating sieve having an opening of 50 ⁇ m and an opening of 150 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 100 ⁇ m.
  • the pulverized powder is put into a firing container, this firing container is put into a firing furnace, and kept at a temperature of 1200 ° C. for 48 hours while flowing nitrogen at a flow rate of 10 L / min in the firing furnace.
  • a synthetic amorphous silica powder was obtained.
  • the silica powder not subjected to the spheroidizing treatment was used as Comparative Example 6.
  • the siliceous gel was transferred to a drying container, put into a dryer, and dried at a temperature of 200 ° C. for 24 hours while flowing nitrogen at a flow rate of 20 L / min into the dryer to obtain a dry powder. .
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.6 mm and the roll rotation speed was adjusted to 100 rpm.
  • the pulverized dry powder was classified using a vibrating sieve having an opening of 550 ⁇ m and an opening of 650 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 590 ⁇ m.
  • the pulverized powder is put into a firing container, this firing container is put into a firing furnace, and kept at a temperature of 1200 ° C. for 48 hours while flowing argon at a flow rate of 10 L / min.
  • a synthetic amorphous silica powder was obtained.
  • the silica powder not subjected to the spheroidizing treatment was used as Comparative Example 7.
  • the dried powder was taken out from the dryer and pulverized using a roll crusher. At this time, the roll gap was adjusted to 0.9 mm, and the roll rotation speed was adjusted to 150 rpm.
  • the pulverized dry powder was classified using a vibration sieve having an opening of 850 ⁇ m and an opening of 950 ⁇ m to obtain a silica powder having an average particle diameter D 50 of 895 ⁇ m.
  • the pulverized powder is put into a firing container, this firing container is put into a firing furnace, and kept at a temperature of 1200 ° C. for 48 hours while flowing argon at a flow rate of 10 L / min.
  • a synthetic amorphous silica powder was obtained.
  • the silica powder not subjected to the spheroidizing treatment was used as Comparative Example 8.
  • Average particle diameter D 50 The median value of particle distribution (diameter) measured by a laser diffraction / scattering particle distribution measuring apparatus (model name: HORIBA LA-950) was measured three times, and this average value was calculated.
  • BET specific surface area Measured by the BET three-point method using a measuring device (QUANTACHROME AUTOSORB-1 MP).
  • the slope A was obtained from the nitrogen adsorption amount with respect to three relative pressure points, and the specific surface area value was obtained from the BET equation.
  • the nitrogen adsorption amount was measured under conditions of 150 ° C. and 60 minutes.
  • Theoretical specific surface area 6 / (D ⁇ ⁇ ) (1)
  • Theoretical specific surface area of the powder 2.73 / D 50 (2)
  • Soot particle space ratio The obtained powder is embedded in a resin and polished to give a powder cross section. The powder cross section was observed by SEM (scanning electron microscope). For the 50 powder particles, the cross-sectional area and the area of the space, if any, were measured and calculated from the following equation (4).
  • Intraparticle space ratio total area in the particle / total area of the particle break (4) (6) Spheroidization rate and circularity: Measurement was performed twice with a particle size / shape distribution measuring instrument (Seishin Corporation PITA-1) shown in FIG. 4, and the average value was calculated. Specifically, first, the powder was dispersed in a liquid, and the liquid was allowed to flow into the planar extension flow cell 51. 200 powder particles 52 moving into the plane extension flow cell 51 were recorded as an image by the objective lens 53, and the circularity was calculated from this recorded image and the following equation (3). In equation (3), S represents the area of the photographed recorded image in the particle projection diagram, and L represents the perimeter of the particle projection diagram. The average value of the 200 particles calculated in this way was defined as the circularity of the powder.
  • Circularity 4 ⁇ S / L 2 (3)
  • the spheroidization rate is the ratio of powder particles classified into a circularity range of 0.60 to 1.00 contained in 200 powder particles.
  • the block material was cut into a 20 mm ⁇ 20 mm square cross section at a height of 20 mm, polished, and the number of bubbles observed in a region of 2 mm depth and 2 mm width was evaluated from the surface of the block material.
  • C Iron, tungsten, and tin were added to the powder as auxiliary combustors, and analysis was performed by an induction furnace combustion-infrared absorption method (model name: HORIBA EMIA-920V) in an oxygen atmosphere.
  • the powders of Examples 1 to 4 cause generation or expansion of bubbles in the synthetic silica glass product at high temperature and reduced pressure as compared with the powders of Comparative Examples 1 to 8. It turns out that the hydroxyl group and carbon concentration which can become a component are low.
  • the synthetic amorphous silica powder of the present invention is used as a raw material for producing synthetic silica glass products such as crucibles and jigs used for producing single crystals for semiconductor applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 本発明の合成非晶質シリカ粉末は、シリカ粉末に球状化処理を施した後、洗浄せずに焼成して得られた合成非晶質シリカ粉末であって、BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.93以下、真密度が2.10g/cm3以上、粒子内空間率が0.05以下であり、円形度が0.50以上及び球状化率が0.20以上であり、表面にシリカ微粉末が付着していることを特徴とする。この合成非晶質シリカ粉末は、表面に吸着するガス成分、粉末内部のガス成分が少ないため、この粉末を用いて製造された合成シリカガラス製品では、高温及び減圧の環境下での使用においても、気泡の発生又は膨張が大幅に低減される。

Description

合成非晶質シリカ粉末
 本発明は、半導体産業等において高温及び減圧の環境下で使用される配管やルツボ等の合成シリカガラス製品を製造する原料として好適な高純度の合成非晶質シリカ粉末に関する。
 従来、半導体用途の単結晶製造に用いるルツボや治具類は、天然石英やケイ砂を粉砕し、精製することにより得られた石英粉を原料として製造されていた。しかし、天然石英やケイ砂は種々の金属不純物を含んでおり、上記精製処理を行っても金属不純物を完全には取除くことができないため、純度において十分に満足できるものではなかった。また、半導体の高集積化が進むに従って、材料となる単結晶に対する品質要求が高まり、その単結晶の製造に使用されるルツボや治具類も高純度品が要望されるようになった。そのため、天然石英やケイ砂の代わりに、高純度の合成非晶質シリカ粉末を原料とした合成シリカガラス製品が注目されている。
 この高純度の合成非晶質シリカ粉末を製造する方法としては、高純度の四塩化珪素を水で加水分解させ、生成したシリカゲルを乾燥、整粒、焼成して合成非晶質シリカ粉末を得る方法が開示されている(例えば、特許文献1参照。)。また、珪酸エステル等のアルコキシシランを酸とアルカリの存在下で加水分解してゲル化させ、得られたゲルを乾燥、粉砕後、焼成することにより合成非晶質シリカ粉末を得る方法が開示されている(例えば、特許文献2,3参照。)。上記特許文献1~3に記載された方法で製造した合成非晶質シリカ粉末は、天然石英やケイ砂に比べて高純度であり、これらを原料として製造されたルツボや治具類等の合成シリカガラス製品からの不純物混入低減や高性能化が可能となった。
特公平4-75848号公報(特許請求の範囲第1項) 特開昭62-176929号公報(特許請求の範囲第1項) 特開平3-275527号公報(第2頁左下欄第7行~第3頁左上欄第6行)
 しかしながら、上記特許文献1~3に記載された方法で製造した合成非晶質シリカ粉末を原料として製造された合成シリカガラス製品は、合成シリカガラス製品の使用される環境が高温及び減圧の環境下である場合、気泡が発生又は膨張し、その合成シリカガラス製品の性能を大幅に低減させるという欠点を有していた。
 例えば、シリコン単結晶引上げ用ルツボは、1500℃付近及び7000Pa付近の高温及び減圧の環境下で使用されており、前述の気泡の発生又は膨張によるルツボの大幅な性能の低減が、引上げる単結晶の品質を左右する問題となっていた。
 このような上記高温及び減圧の環境下での使用において生じる問題に対しては、四塩化珪素の加水分解によって得られる合成非晶質シリカ粉末に熱処理を施して、合成非晶質シリカ粉末中の水酸基と塩素の濃度をそれぞれ減少させることにより、またアルコキシシランのゾルゲル法によって得られる合成非晶質シリカ粉末に熱処理を施して、合成非晶質シリカ粉末中の水酸基と炭素の濃度をそれぞれ減少させることにより、合成非晶質シリカ粉末中のガス成分になり得る不純物濃度の低減を行う対応が考えられる。
 しかし、上記対応でも、高温及び減圧の環境下で使用される合成シリカガラス製品の気泡の発生又は膨張を十分に抑制することができていない。
 本発明の目的は、このような上記従来の課題を克服し、高温及び減圧の環境下での使用においても、気泡の発生又は膨張が少ない合成シリカガラス製品のための原料に適する、合成非晶質シリカ粉末を提供することにある。
 本発明の第1の観点は、シリカ粉末に球状化処理を施した後、洗浄せずに焼成して得られた合成非晶質シリカ粉末であって、BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.93以下、真密度が2.10g/cm3以上、粒子内空間率が0.05以下、円形度が0.50以上及び球状化率が0.20以上であり、表面にシリカ微粉末が付着していることを特徴とする。
 本発明の第1の観点の合成非晶質シリカ粉末は、シリカ粉末に球状化処理を施した後、洗浄せずに焼成して得られた合成非晶質シリカ粉末であって、BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.93以下、真密度が2.10g/cm3以上、粒子内空間率が0.05以下、円形度が0.50以上及び球状化率が0.20以上であり、表面にシリカ微粉末が付着している。このため、この合成非晶質シリカ粉末を用いて合成シリカガラス製品を製造すれば、原料粉末の表面に吸着するガス成分が少なくなり、また粉末の内部のガス成分が少なくなるため、気泡の発生又は膨張を低減することができる。
本発明の合成非晶質シリカ粉末の代表的な粉末粒子を示す写真図である。 本発明の合成非晶質シリカ粉末の製造工程を示すプロセスフロー図である。 熱プラズマによる球状化装置の概略断面図である。 粒度・形状分布測定器の概略図である。 球状化処理を施していない代表的なシリカ粉末粒子を示す写真図である。
 次に本発明を実施するための形態を図面に基づいて説明する。
 本発明の合成非晶質シリカ粉末は、シリカ粉末に球状化処理を施した後、洗浄せずに焼成することによって得られる。そして、BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.93以下、真密度が2.10g/cm3以上、粒子内空間率が0.05以下、円形度が0.50以上及び球状化率が0.20以上であり、表面にシリカ微粉末が付着していることを特徴とする。
 高温及び減圧下においてシリコン単結晶引上げ用ルツボ等の合成シリカガラス製品に気泡が発生又は膨張する主な原因としては、製品の製造に用いた原料粉末の表面に吸着しているガスが考えられる。即ち、合成シリカガラス製品を製造するに際し、その一工程である溶融の際に、原料粉末の表面に吸着していたガス成分が離脱する。そして、このガス成分が合成シリカガラス製品中に残留し、これが気泡の発生又は膨張の原因となる。
 合成シリカガラス製品の原料となるシリカ粉末は、通常、粉砕工程を経るため、図5に示すように不定形(粉砕粉形状)の粒子を多く含む。そのため、比表面積が大きくなり、不可避のガス吸着量が大きくなると考えられる。
 そこで、本発明の合成非晶質シリカ粉末は、粉末に球状化処理を施すことにより、BET比表面積を平均粒径D50から算出した理論比表面積で割った値を上記範囲としたものである。BET比表面積とは、BET3点法により測定した値をいう。また、粒子の理論比表面積は、粒子が真球体であり、表面が平滑であると仮定した場合、次の式(1)から算出される。なお、式(1)中、Dは粒子の直径、ρは真密度を示す。
          理論比表面積=6/(D×ρ)    (1)
 本明細書中、粉末の理論比表面積とは、上記式(1)において、Dを粉末の平均粒径D50、ρを真密度2.20g/cm3と仮定した理論真密度から算出した値である。即ち、粉末の理論比表面積は、次の式(2)から算出される。
       粉末の理論比表面積=2.73/D50    (2)
 BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.93を越えると、比表面積が大きくなり、不可避のガス吸着量が大きくなる。このうち、上記値は、1.70以下が好ましく、1.00~1.50の範囲が特に好ましい。
 また、合成非晶質シリカ粉末の円形度は0.50以上である。円形度は、1.00に近づく程、粉末粒子が真球に近くなることを意味し、次の式(3)によって算出される。
         円形度=4πS/L2         (3)
式(3)中、Sは撮影した粒子投影図の面積、Lは粒子投影図の周囲長を表す。本明細書中、粉末の円形度とは、上記式(3)から算出された粉末粒子200個の平均値である。粉末の円形度が0.50未満では、気泡の発生又は膨張の低減効果が小さい。このうち、粉末の円形度は、0.80~1.00の範囲が好ましい。また、合成非晶質シリカ粉末の球状化率は0.20以上である。粉末の球状化率とは、所定量の粉末中に円形度が0.60~1.00である粒子が含まれる割合を示す。球状化率が0.20未満では、気泡の発生又は膨張の低減効果が小さい。このうち、粉末の球状化率は、0.80~1.00の範囲であることが好ましい。
 また、合成非晶質シリカ粉末の1個の粒子について着目すると、粒子内に空孔や閉塞したクラック等の内部空間が存在しないことが好ましい。即ち、合成非晶質シリカ粉末の内部に、空間が存在すると、合成シリカガラス製品中の気泡の発生又は膨張の原因となるからである。このため、真密度は2.10g/cm3以上であり、2.15~2.20g/cm3であることが好ましい。真密度とはJIS R7212 カーボンブロックの測定方法(d)真比重測定に準じて、真密度測定を3回行い、この平均値をいう。また、粒子内空間率は0.05以下であり、0.01以下が好ましい。粒子内空間率とは、50個の粉末粒子について、断面をSEM(走査型電子顕微鏡)により観察した際の粒子の断面積と、粒子内に空間があればその空間の面積を測定し、次の式(4)から算出した値の平均値である。
      粒子内空間率=粒子内空間総面積/粒子断総面積  (4)
 また、合成非晶質シリカ粉末の平均粒径D50は、50~1000μmの範囲内であることが好ましい。下限値未満では、粉末粒子間の空間が小さく、この空間に存在している気体が抜けにくいため、小さな気泡が残りやすく、一方、上限値を越えると、粉末粒子間の空間が大きすぎて、大きな気泡が残りやすいためである。このうち、平均粒径D50は、80~600μmの範囲内であることが特に好ましい。なお、本明細書中、平均粒径D50とは、レーザー回折散乱式粒子分布測定装置(型式名:HORIBA LA-950)によって測定した粒子分布(直径)の中央値を3回測定し、この平均値をいう。合成非晶質シリカ粉末のかさ密度は、1.00g/cm3以上であることが好ましい。下限値未満では、粉末粒子間の空間が大きすぎて、大きな気泡が残りやすく、一方、上限値を越えると、粉末粒子間の空間が小さいために、この空間に存在している気体が抜けにくく、小さな気泡が残りやすいからである。このうち、かさ密度は、1.20~1.40g/cm3範囲内であることが特に好ましい。
 粉末の溶融性を均一にさせるために、CuKα線を用いて粉末X線回折法で測定した場合に回折ピークがブロードな、結晶質シリカ粉末が認められない粉末であることが好ましい。非晶質と結晶質のシリカでは、溶融における挙動が異なっており、結晶質のシリカの溶融が遅れて始まる傾向にある。このため、非晶質と結晶質のシリカが混在している合成非晶質シリカ粉末を使用して、合成シリカガラス製品等の製造を行うと、合成シリカガラス製品中に、気泡が残りやすいためである。
 合成シリカガラス製品の不純物混入の低減や高性能化のため、合成非晶質シリカ粉末の不純物濃度は、水素原子を除く1A族、2A~8族、1B~3B族、炭素及び珪素を除く4B族、5B族、酸素を除く6B族、塩素を除く7B族の濃度が1ppm未満であることが好ましい。このうち、これらの不純物濃度は0.05ppm未満であることが特に好ましい。また、高温及び減圧下における合成シリカガラス製品中の気泡の発生又は膨張を抑制するため、ガス成分となり得る水酸基が50ppm以下、塩素濃度が2ppm以下、炭素濃度が10ppm以下であることが好ましい。
 本発明の合成非晶質シリカ粉末は、球状化処理を施した後、洗浄せずに焼成することにより得られる。このため、図1に示すように、粉末粒子の表面にシリカ微粉末が付着するものであるが、球状化処理により上記特性を示すため、不可避のガス吸着量が低減される。このシリカ微粉末は平均粒径D50が0.001~0.1μmである。
 続いて、本発明の合成非晶質シリカ粉末の製造方法について説明する。本発明の合成非晶質シリカ粉末の製造方法は、図2に示すように、原料となるシリカ粉末に、球状化処理を施し、焼成することによって得られる。各工程について、以下、詳細に説明する。
 本発明の合成非晶質シリカ粉末の原料となるシリカ粉末は、例えば、次のような方法によって得られる。第1の方法としては、先ず四塩化珪素1molに対して、45~80molに相当する量の超純水を準備する。準備した超純水を容器内に入れ、窒素、アルゴン等の雰囲気にて、温度を20~45℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させる。四塩化珪素を添加してから0.5~6時間攪拌を継続し、シリカ質のゲルを生成させる。このとき、攪拌速度は100~300rpmの範囲にするのが好ましい。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に好ましくは1~20L/minの流量で窒素、アルゴン等を流しながら、200℃~300℃の温度で12~48時間乾燥させて乾燥粉を得る。次に、この乾燥粉を乾燥機から取り出し、ロールクラッシャー等の粉砕機を用いて、粉砕する。ロールクラッシャーを用いる場合は、ロール隙間0.2~2.0mm、ロール回転数3~200rpmに適宜調整して行う。最後に、粉砕した乾燥粉を振動フルイ等を用いて分級することにより、平均粒径D50が好ましくは70~1300μmのシリカ粉末が得られる。
 第2の方法としては、有機系シリコン化合物としてテトラメトキシシラン1molに対して、超純水0.5~3mol、エタノール0.5~3molを準備する。準備した超純水、エタノールを容器内に入れ、窒素、アルゴン等の雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させる。テトラメトキシシランを添加してから5~120分間、撹拌した後、テトラメトキシラン1molに対して1~50molの超純水を更に添加し、1~12時間攪拌を継続し、シリカ質のゲルを生成させる。このとき、攪拌速度は100~300rpmの範囲にするのが好ましい。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に好ましくは1~20L/minの流量で窒素、アルゴン等を流しながら、200℃~300℃の温度で6~48時間乾燥させて乾燥粉を得る。次に、この乾燥粉を乾燥機から取り出し、ロールクラッシャー等の粉砕機を用いて、粉砕する。ロールクラッシャーを用いる場合は、ロール隙間0.2~2.0mm、ロール回転数3~200rpmに適宜調整して行う。最後に、粉砕した乾燥粉を振動フルイ等を用いて分級することにより、平均粒径D50が好ましくは70~1300μmのシリカ粉末が得られる。
 第3の方法としては、先ず、平均粒径D50が0.007~0.030μm、比表面積が50~380m2/gのヒュームドシリカ1molに対して、超純水9.5~20.0molを準備する。準備した超純水を容器内に入れ、窒素、アルゴン等の雰囲気にて、温度を20~45℃に保持して攪拌しながら、ヒュームドシリカを添加する。ヒュームドシリカを添加してから0.5~6時間攪拌を継続し、シリカ質のゲルを生成させる。このとき、攪拌速度は10~50rpmの範囲にするのが好ましい。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に好ましくは1~20L/minの流量で窒素、アルゴン等を流しながら、200℃~300℃の温度で6~48時間乾燥させて乾燥粉を得る。次に、この乾燥粉を乾燥機から取り出し、ロールクラッシャー等の粉砕機を用いて、粉砕する。ロールクラッシャーを用いる場合は、ロール隙間0.2~2.0mm、ロール回転数3~200rpmに適宜調整して行う。最後に、粉砕した乾燥粉を振動フルイ等を用いて分級することにより、平均粒径D50が好ましくは70~1300μmのシリカ粉末が得られる。
 上記第1~第3の方法によって得られたシリカ粉末を球状化する方法としては、2000℃以上に加熱し溶融させ、融体粒子の表面張力を利用して、凝固後の粉末形状を球状化できる方法であればよく、熱プラズマ、火炎法又は溶融落下法等が挙げられる。ここでは、熱プラズマによる球状化処理方法について説明する。熱プラズマによる球状化処理では、例えば、図3に示す装置を用いることができる。この装置30は、プラズマを発生させるプラズマトーチ31と、このプラズマトーチ31の下部に設けられた反応筒であるチャンバ32と、このチャンバ32の下部に設けられた処理後の粉末を回収する回収部33とを備える。プラズマトーチ31は、チャンバ32に連通する頂部が封止された石英管34と、この石英管34を巻回する高周波誘導コイル36を有する。石英管34の上部には原料供給管37が貫通して設けられ、かつガス導入管38が接続される。チャンバ32の側方にはガス排気口39が設けられる。プラズマトーチ31では、高周波誘導コイル36に通電するとプラズマ40を発生し、ガズ導入管38から石英管34にアルゴン、酸素等のガスが供給される。原料粉末は原料供給管37を介してプラズマ40中に供給される。また、チャンバ32内のガスは、チャンバ32側方に設けられたガス排気口39から排気される。先ず、装置30のガス導入管38から作動ガスのアルゴンを、15~60L/minの流量で導入して、周波数3~5MHz、出力30~120kWの高周波をプラズマトーチ31に印加させ、プラズマを発生させる。プラズマが安定した後に、酸素を20~120L/minの流量で徐々に導入して、アルゴン-酸素プラズマを発生させる。次に上記の第1~第3の方法で得られたシリカ粉末を、原料供給管37から供給速度1.5~20kg/hrで、アルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得ることができる。
 球状化処理後のシリカ粉末は、洗浄せずに焼成を行う。先ず球状化処理後のシリカ粉末を、焼成用容器に入れて、この焼成用容器を雰囲気の制御が可能な電気炉、即ち焼成炉に投入する。焼成条件は、酸素、乾燥空気等を1~20L/minの流量で流しながら、1100℃~1500℃で12~48時間とするのが好ましい。
 以上の工程により、本発明の合成非晶質シリカ粉末が得られる。この合成非晶質シリカ粉末は、不可避のガス吸着量が少なく、合成シリカガラス製品の原料として好適に用いることができる。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例1>
 先ず、四塩化珪素1molに対して、55.6molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから3時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は150rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、250℃の温度で18時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き125μmの振動フルイを用いて分級し、平均粒径D50が112μmのシリカ粉末を得た。
 続いて、図3に示す装置30を用い、次の表1に示す条件にて、上記得られたシリカ粉末に球状化処理を施した。具体的には、先ず、装置30のガス導入管38から作動ガスのアルゴンを導入して、高周波をプラズマトーチ31に印加させ、プラズマを発生させた。プラズマが安定した後に、酸素を徐々に導入して、アルゴン-酸素プラズマを発生させた。上記得られたシリカ粉末を、原料供給管37からアルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得た。
 球状化処理後、粉末を洗浄せずに焼成用容器に入れ、この焼成用容器を焼成炉に投入し、焼成炉内に窒素を10L/minの流量で流しながら、1250℃の温度で48時間保持することにより、表面にシリカ微粉末が付着した合成非晶質シリカ粉末を得た。
 <実施例2>
 先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を55rpmに調整して行った。粉砕した乾燥粉を目開き100μm及び目開き150μmの振動フルイを用いて分級し、平均粒径D50が120μmのシリカ粉末を得た。
 続いて、図3に示す装置30を用い、次の表1に示す条件にて、上記得られたシリカ粉末に球状化処理を施した。具体的には、先ず、装置30のガス導入管38から作動ガスのアルゴンを導入して、高周波をプラズマトーチ31に印加させ、プラズマを発生させた。プラズマが安定した後に、酸素を徐々に導入して、アルゴン-酸素プラズマを発生させた。上記得られたシリカ粉末を、原料供給管37からアルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得た。
 球状化処理後、粉末を洗浄せずに焼成用容器に入れ、この焼成用容器を焼成炉に投入し、焼成炉内に酸素を15L/minの流量で流しながら、1300℃の温度で24時間保持することにより、表面にシリカ微粉末が付着した合成非晶質シリカ粉末を得た。
 <実施例3>
 先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水13molを準備した。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから3時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.5mm、ロール回転数を30rpmに調整して行った。粉砕した乾燥粉を目開き375μm及び目開き450μmの振動フルイを用いて分級し、平均粒径D50が417μmのシリカ粉末を得た。
 続いて、図3に示す装置30を用い、次の表1に示す条件にて、上記得られたシリカ粉末に球状化処理を施した。具体的には、先ず、装置30のガス導入管38から作動ガスのアルゴンを導入して、高周波をプラズマトーチ31に印加させ、プラズマを発生させた。プラズマが安定した後に、酸素を徐々に導入して、アルゴン-酸素プラズマを発生させた。上記得られたシリカ粉末を、原料供給管37からアルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得た。
 球状化処理後、粉末を洗浄せずに焼成用容器に入れ、この焼成用容器を焼成炉に投入し、焼成炉内に酸素を15L/minの流量で流しながら、1200℃の温度で48時間保持することにより、表面にシリカ微粉末が付着した合成非晶質シリカ粉末を得た。
 <実施例4>
 平均粒径D50が907μmのシリカ粉末を得たこと、及びこのシリカ粉末に、次の表1に示す条件で球状化処理を行ったこと以外は、実施例1と同様に、表面にシリカ微粉末が付着した合成非晶質シリカ粉末を得た。
 <比較例1>
 先ず、四塩化珪素1molに対して、55.6molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから3時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は150rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、250℃の温度で18時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き125μmの振動フルイを用いて分級し、平均粒径D50が112μmのシリカ粉末を得た。
 続いて、図3に示す装置30を用い、次の表1に示す条件にて、上記得られたシリカ粉末に球状化処理を施した。具体的には、先ず、装置30のガス導入管38から作動ガスのアルゴンを導入して、高周波をプラズマトーチ31に印加させ、プラズマを発生させた。プラズマが安定した後に、酸素を徐々に導入して、アルゴン-酸素プラズマを発生させた。上記得られたシリカ粉末を、原料供給管37からアルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得た。
 球状化処理後、洗浄容器に上記粉末と超純水を入れて、超音波洗浄を行った。超音波洗浄を行った後、目開き75μmのフィルターでろ過した。シリカ粉末の粒子表面に付着する微粉末がなくなるまで、この操作を繰り返し行った。
 最後に、洗浄した粉末を乾燥用容器に入れ、この乾燥用容器を乾燥機に投入し、乾燥機内に窒素を10L/minの流量で流しながら、200℃の温度で48時間保持することにより、表面にシリカ微粉末が付着していない合成非晶質シリカ粉末を得た。
 <比較例2>
 先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を55rpmに調整して行った。粉砕した乾燥粉を目開き100μm及び目開き150μmの振動フルイを用いて分級し、平均粒径D50が120μmのシリカ粉末を得た。
 続いて、図3に示す装置30を用い、次の表1に示す条件にて、上記得られたシリカ粉末に球状化処理を施した。具体的には、先ず、装置30のガス導入管38から作動ガスのアルゴンを導入して、高周波をプラズマトーチ31に印加させ、プラズマを発生させた。プラズマが安定した後に、酸素を徐々に導入して、アルゴン-酸素プラズマを発生させた。上記得られたシリカ粉末を、原料供給管37からアルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得た。
 球状化処理後、洗浄容器に上記粉末と超純水を入れて、超音波洗浄を行った。超音波洗浄を行った後、目開き100μmのフィルターでろ過した。シリカ粉末の粒子表面に付着する微粉末がなくなるまで、この操作を繰り返し行った。
 最後に、洗浄後の粉末を乾燥用容器に入れ、この乾燥用容器を乾燥機に投入し、乾燥機内にアルゴンを10L/minの流量で流しながら、300℃の温度で12時間保持することにより、表面にシリカ微粉末が付着していない合成非晶質シリカ粉末を得た。
 <比較例3>
 先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水13molを準備した。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから3時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.5mm、ロール回転数を30rpmに調整して行った。粉砕した乾燥粉を目開き375μm及び目開き450μmの振動フルイを用いて分級し、平均粒径D50が417μmのシリカ粉末を得た。
 続いて、図3に示す装置30を用い、次の表1に示す条件にて、上記得られたシリカ粉末に球状化処理を施した。具体的には、先ず、装置30のガス導入管38から作動ガスのアルゴンを導入して、高周波をプラズマトーチ31に印加させ、プラズマを発生させた。プラズマが安定した後に、酸素を徐々に導入して、アルゴン-酸素プラズマを発生させた。上記得られたシリカ粉末を、原料供給管37からアルゴン-酸素プラズマ中に投入して、シリカ粉末を溶融させ、融体となった粒子を落下させて、落下した粒子を回収部33で回収することにより、球状化されたシリカ粉末41を得た。
 球状化処理後、洗浄容器に上記粉末と超純水を入れて、超音波洗浄を行った。超音波洗浄を行った後、目開き375μmのフィルターでろ過した。シリカ粉末の粒子表面に付着する微粉末がなくなるまで、この操作を繰り返し行った。
 最後に、洗浄後の粉末を乾燥用容器に入れ、この乾燥用容器を乾燥機に投入し、乾燥機内に窒素を20L/minの流量で流しながら、200℃の温度で36時間保持することにより、表面にシリカ微粉末が付着していない合成非晶質シリカ粉末を得た。
 <比較例4>
 次の表1に示す条件で球状化処理を施したこと以外は、比較例3と同様に、合成非晶質シリカ粉末を得た。
 <比較例5>
 平均粒径D50が907μmのシリカ粉末を得たこと、及びこのシリカ粉末に、次の表1に示す条件で球状化処理を施したこと以外は、比較例1と同様に、合成非晶質シリカ粉末を得た。
 <比較例6>
 先ず、四塩化珪素1molに対して、55.6molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから3時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は150rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、250℃の温度で18時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数50rpmに調整して行った。粉砕した乾燥粉を目開き50μm及び目開き150μmの振動フルイを用いて分級し、平均粒径D50が100μmのシリカ粉末を得た。
 最後に、粉砕した粉末を焼成用容器に入れ、この焼成用容器を焼成炉に投入し、焼成炉内に窒素を10L/minの流量で流しながら、1200℃の温度で48時間保持することにより、合成非晶質シリカ粉末を得た。この球状化処理を施さないシリカ粉末を比較例6とした。
 <比較例7>
 先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.6mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き550μm及び目開き650μmの振動フルイを用いて分級し、平均粒径D50が590μmのシリカ粉末を得た。
 最後に、粉砕した粉末を焼成用容器に入れ、この焼成用容器を焼成炉に投入し、焼成炉内にアルゴンを10L/minの流量で流しながら、1200℃の温度で48時間保持することにより、合成非晶質シリカ粉末を得た。この球状化処理を施さないシリカ粉末を比較例7とした。
 <比較例8>
 先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水13molを準備した。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから3時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.9mm、ロール回転数を150rpmに調整して行った。粉砕した乾燥粉を目開き850μm及び目開き950μmの振動フルイを用いて分級し、平均粒径D50が895μmのシリカ粉末を得た。
 最後に、粉砕した粉末を焼成用容器に入れ、この焼成用容器を焼成炉に投入し、焼成炉内にアルゴンを10L/minの流量で流しながら、1200℃の温度で48時間保持することにより、合成非晶質シリカ粉末を得た。この球状化処理を施さないシリカ粉末を比較例8とした。

Figure JPOXMLDOC01-appb-T000001
 実施例1~4及び比較例1~8で得られた粉末について、次に述べる方法により、平均粒径D50、BET比表面積、理論比表面積、BET比表面積/理論比表面積、真密度、粒子内空間率及び球状化率を測定した。これらの結果を次の表2に示す。
 (1) 平均粒径D50:レーザー回折散乱式粒子分布測定装置(型式名:HORIBA LA-950)によって測定した粒子分布(直径)の中央値を3回測定し、この平均値を算出した。
 (2) BET比表面積:測定装置(QUANTACHROME AUTOSORB-1 MP)を用いたBET3点法により測定した。BET3点法は、相対圧力3点に対する窒素吸着量から傾きAを求め、BET式から比表面積値を求めた。窒素吸着量の測定は、150℃、60分の条件下で行った。
 (3) 理論比表面積:次の式(1)において、Dを粉末の平均粒径D50、ρを真密度2.2g/cm3と仮定し、次の式(2)から算出した。
          理論比表面積=6/(D×ρ)     (1)
       粉末の理論比表面積=2.73/D50     (2)
 (3) BET比表面積/理論比表面積:上記測定した比表面積及び理論比表面積から算出した。
 (4) 真密度:JIS R7212 カーボンブロックの測定方法(d)真比重測定に準じて、真密度測定を3回行い、この平均値を算出した。
 (5) 粒子内空間率:得られた粉末を樹脂に埋め込みを行い、それを研磨して粉末断面を出す。粉末断面をSEM(走査型電子顕微鏡)により観察した。50個の粉末粒子について断面積と、粒子内に空間があればその空間の面積を測定し、次の式(4)から算出した。
     粒子内空間率=粒子内空間総面積/粒子断総面積  (4)
 (6) 球状化率及び円形度:図4に示す粒度・形状分布測定器(株式会社セイシン企業 PITA-1)にて2回測定し、この平均値を算出した。具体的には、先ず、粉末を液体に分散させて、この液体を平面伸張流動セル51へ流した。平面伸張流動セル51内に移動する粉末粒子52の200個を、対物レンズ53にて画像として記録し、この記録画像及び次の式(3)から円形度を算出した。式(3)中、Sは撮影した記録画像の粒子投影図における面積、Lは粒子投影図の周囲長を表す。このようにして算出された粒子200個の平均値を粉末の円形度とした。
         円形度=4πS/L2          (3)
 球状化率は、粉末粒子200個中に含まれる、円形度が0.60~1.00の範囲に分類された粉末粒子の割合である。
 <比較試験及び評価1>
 実施例1~4及び比較例1~8で得られた粉末を用いて、縦20mm×横20mm×高さ40mmの直方体のブロック材をそれぞれ製造し、ブロック材に発生した気泡の個数を評価した。この結果を次の表2に示す。具体的には、カーボンルツボに、粉末を入れ、これを2.0×104Pa真空雰囲気下でカーボンヒータにて2200℃に加熱し、48時間保持することによりブロック材を製造した。このブロック材を、5.0×102Pa真空雰囲気下で1600℃の温度で48時間の熱処理を行った。熱処理後、ブロック材の高さ20mmの位置で20mm×20mm角の断面に切り出し、研磨を行い、ブロック材の表面から、深さ2mm、幅2mm領域で観察された気泡の個数を評価した。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から明らかなように、実施例1~4の粉末を用いて製造したブロックは、球状化処理を施さない従来の粉末を用いて製造した比較例6~8と比較すると、発生した気泡の数が大幅に低減されていることが判る。また、実施例1~4と比較例1~5を比較すると、いずれも球状化処理を施しているにもかかわらず、実施例1~4では、比較例1~5に比べ、発生した気泡の数が大幅に低減されていることが判る。
 <比較試験及び評価2>
 実施例1~4及び比較例1~8で得られた粉末の不純物濃度を以下の(1)~(5)の方法により分析又は測定した。その結果を次の表3に示す。
 (1) Na,K,Ca,Fe,Al,P:粉末をフッ化水素酸及び硫酸で加熱分解し、加熱凝縮後に希硝酸を用いて定容液体を作製した。この定容液体について、高周波誘導結合プラズマ質量分析計(型式名:エスアイアイ・ナノテクノロジー SPQ9000)により分析を行った。
 (2) B:粉末をフッ化水素酸で加熱分解し、加熱凝縮後に超純水を用いて定容液体を作製した。この定容液体について、高周波誘導結合プラズマ質量分析計(型式名:エスアイアイ・ナノテクノロジー SPQ9000)により分析を行った。
 (3) C:粉末に助燃剤として鉄、タングステン、すずを添加し、酸素雰囲気にて高周波炉燃焼-赤外線吸収法(型式名:HORIBA EMIA-920V)にて分析を行った。
 (4) Cl:粉末に超純水を混合し、超音波下にてClを浸出させる。遠心分離機により合成非晶質シリカ粉末と浸出液を分離して、浸出液をイオンクロマトグラフィー(型式名:ダイオネクス DX-500)により分析を行った。
 (5) OH:フーリエ変換型赤外線分光分析計(型式名:サーモフィッシャー Nicolet 4700FT-IR)により、3660cm-1付近のピーク高さにより測定した。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例1~4の粉末は、比較例1~8の粉末と比較して、高温及び減圧下における合成シリカガラス製品中の気泡の発生又は膨張の原因となるガス成分となり得る水酸基及び炭素濃度が、低いことが判る。
 本発明の合成非晶質シリカ粉末は、半導体用途の単結晶製造に用いるルツボや治具類等の合成シリカガラス製品を製造する原料として使用される。

Claims (1)

  1.  シリカ粉末に球状化処理を施した後、洗浄せずに焼成して得られた合成非晶質シリカ粉末であって、
     BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.93以下、真密度が2.10g/cm3以上、粒子内空間率が0.05以下、円形度が0.50以上及び球状化率が0.20以上であり、表面にシリカ微粉末が付着していることを特徴とする合成非晶質シリカ粉末。
PCT/JP2010/072958 2010-01-07 2010-12-21 合成非晶質シリカ粉末 WO2011083683A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011548950A JP5648640B2 (ja) 2010-01-07 2010-12-21 合成非晶質シリカ粉末
US13/520,813 US20120288716A1 (en) 2010-01-07 2010-12-21 Synthetic amorphous silica powder
KR1020127014168A KR20120120150A (ko) 2010-01-07 2010-12-21 합성 비정질 실리카 분말
EP10842196.7A EP2522627A4 (en) 2010-01-07 2010-12-21 SYNTHETIC AMORPHOUS SILICA POWDER
CN201080059143.XA CN102666384B (zh) 2010-01-07 2010-12-21 合成非晶态二氧化硅粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010001802 2010-01-07
JP2010-001802 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083683A1 true WO2011083683A1 (ja) 2011-07-14

Family

ID=44305420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072958 WO2011083683A1 (ja) 2010-01-07 2010-12-21 合成非晶質シリカ粉末

Country Status (7)

Country Link
US (1) US20120288716A1 (ja)
EP (1) EP2522627A4 (ja)
JP (1) JP5648640B2 (ja)
KR (1) KR20120120150A (ja)
CN (1) CN102666384B (ja)
TW (1) TW201132590A (ja)
WO (1) WO2011083683A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024839A (ko) * 2013-07-16 2015-03-09 카츠요시 콘도 유기계 폐기물 유래의 구상 실리카 입자 및 그 제조 방법
JP2022523589A (ja) * 2019-03-12 2022-04-25 浙江三時紀新材科技有限公司 球状のシリカ粉末フィラーの製造方法ならびにこれによって得られた球状のシリカ粉末フィラーおよびその応用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690066A4 (en) * 2011-03-23 2014-08-20 Mitsubishi Materials Corp SYNTHETIC AMORPHIC SILICONE POWDER AND MANUFACTURING METHOD THEREFOR
DE102011078720A1 (de) * 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete Kernpartikel enthaltend Metalle, Metalloxide, Metall- oder Halbmetallnitride
DE102011078722A1 (de) * 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete anorganische Partikel
US20190152827A1 (en) * 2015-12-18 2019-05-23 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide powder
TWI794150B (zh) 2015-12-18 2023-03-01 德商何瑞斯廓格拉斯公司 自二氧化矽顆粒製備石英玻璃體
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
JP6881776B2 (ja) 2015-12-18 2021-06-02 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー 不透明石英ガラス体の調製
WO2017103123A2 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Herstellung von quarzglaskörpern mit taupunktkontrolle im schmelzofen
KR20180095619A (ko) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 실리카 유리 제조 동안 규소 함량의 증가
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
WO2017103115A2 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Herstellung eines quarzglaskörpers in einem schmelztiegel aus refraktärmetall
CN107285626A (zh) * 2017-07-25 2017-10-24 合肥利裕泰玻璃制品有限公司 一种高强度玻璃材料及其制备方法
KR102146794B1 (ko) * 2018-12-11 2020-08-24 이규식 바이오 세라믹 및 그 제조방법
CN111943214B (zh) * 2020-08-18 2022-08-30 苏州英纳特纳米科技有限公司 非晶态纳米球形二氧化硅的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162593A (ja) * 2003-12-04 2005-06-23 Kiyoaki Shiraishi 加熱処理する事によって「角(かど)」無くしたシリカ
JP2008297183A (ja) * 2007-06-02 2008-12-11 Jgc Catalysts & Chemicals Ltd 多孔質酸化物粒子およびその製造方法
JP2009114010A (ja) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd 球状シリカ粒子およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3525495C1 (de) * 1985-07-17 1987-01-02 Heraeus Schott Quarzschmelze Verfahren zur Herstellung von Gegenstaenden aus synthetischem Siliziumdioxid
JP3350139B2 (ja) * 1993-03-31 2002-11-25 三菱レイヨン株式会社 球状シリカ粒子の製造方法
EP1167309B1 (en) * 2000-06-28 2006-10-18 Japan Super Quartz Corporation Synthetic quartz powder, its production process, and synthetic quartz crucible
JP3685251B2 (ja) * 2000-08-31 2005-08-17 信越化学工業株式会社 球状シリカ粉末の製造方法
TWI293946B (ja) * 2000-09-27 2008-03-01 Mitsubishi Rayon Co
JP4117641B2 (ja) * 2001-11-26 2008-07-16 ジャパンスーパークォーツ株式会社 合成石英粉の処理方法およびその石英ガラス製品
US7452518B2 (en) * 2004-12-28 2008-11-18 Momentive Performance Materials Inc. Process for treating synthetic silica powder and synthetic silica powder treated thereof
JP5351513B2 (ja) * 2006-03-17 2013-11-27 電気化学工業株式会社 シリカ粉末及びその用途
WO2007129330A1 (en) * 2006-05-05 2007-11-15 Blaa Lonid Hf. Pharmaceutical and cosmetic use of silica
JP5410095B2 (ja) * 2006-12-22 2014-02-05 電気化学工業株式会社 非晶質シリカ質粉末、その製造方法及び半導体封止材
JP2009215088A (ja) * 2008-03-07 2009-09-24 Nihon Yamamura Glass Co Ltd 球状シリカガラス微粒子及びその製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162593A (ja) * 2003-12-04 2005-06-23 Kiyoaki Shiraishi 加熱処理する事によって「角(かど)」無くしたシリカ
JP2008297183A (ja) * 2007-06-02 2008-12-11 Jgc Catalysts & Chemicals Ltd 多孔質酸化物粒子およびその製造方法
JP2009114010A (ja) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd 球状シリカ粒子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2522627A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024839A (ko) * 2013-07-16 2015-03-09 카츠요시 콘도 유기계 폐기물 유래의 구상 실리카 입자 및 그 제조 방법
KR101588548B1 (ko) * 2013-07-16 2016-01-25 카츠요시 콘도 유기계 폐기물 유래의 구상 실리카 입자 및 그 제조 방법
JP2022523589A (ja) * 2019-03-12 2022-04-25 浙江三時紀新材科技有限公司 球状のシリカ粉末フィラーの製造方法ならびにこれによって得られた球状のシリカ粉末フィラーおよびその応用
JP7456642B2 (ja) 2019-03-12 2024-03-27 浙江三時紀新材科技有限公司 球状のシリカ粉末フィラーの製造方法ならびにこれによって得られた球状のシリカ粉末フィラーおよびその応用

Also Published As

Publication number Publication date
KR20120120150A (ko) 2012-11-01
US20120288716A1 (en) 2012-11-15
JP5648640B2 (ja) 2015-01-07
TW201132590A (en) 2011-10-01
CN102666384B (zh) 2015-12-09
EP2522627A1 (en) 2012-11-14
EP2522627A4 (en) 2014-03-26
JPWO2011083683A1 (ja) 2013-05-13
CN102666384A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5648640B2 (ja) 合成非晶質シリカ粉末
JP5637149B2 (ja) 合成非晶質シリカ粉末及びその製造方法
JP5825145B2 (ja) 合成非晶質シリカ粉末及びその製造方法
JP5724881B2 (ja) 合成非晶質シリカ粉末及びその製造方法
JP5686099B2 (ja) 合成非晶質シリカ粉末及びその製造方法
JP5962219B2 (ja) 合成非晶質シリカ粉末及びその製造方法
JP5817620B2 (ja) 合成非晶質シリカ粉末の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059143.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011548950

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127014168

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010842196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010842196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13520813

Country of ref document: US

Ref document number: 5989/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE