WO2011080812A1 - 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法 - Google Patents

油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法 Download PDF

Info

Publication number
WO2011080812A1
WO2011080812A1 PCT/JP2009/071739 JP2009071739W WO2011080812A1 WO 2011080812 A1 WO2011080812 A1 WO 2011080812A1 JP 2009071739 W JP2009071739 W JP 2009071739W WO 2011080812 A1 WO2011080812 A1 WO 2011080812A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
oil
amount
copper sulfide
dibenzyl
Prior art date
Application number
PCT/JP2009/071739
Other languages
English (en)
French (fr)
Inventor
悟 外山
康太 水野
純二 谷村
福太郎 加藤
剛 網本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09852790.6A priority Critical patent/EP2521145A4/en
Priority to PCT/JP2009/071739 priority patent/WO2011080812A1/ja
Priority to JP2011547198A priority patent/JP5516601B2/ja
Publication of WO2011080812A1 publication Critical patent/WO2011080812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/23Corrosion protection

Definitions

  • the present invention relates to a method for estimating the amount of copper sulfide produced in an oil-filled electrical device such as a transformer, a method for diagnosing abnormality, a method for estimating the initial concentration of dibenzyl disulfide in insulating oil, and a method for diagnosing the possibility of occurrence of abnormality.
  • an oil-filled electrical device such as a transformer
  • a method for diagnosing abnormality a method for estimating the initial concentration of dibenzyl disulfide in insulating oil
  • a method for diagnosing the possibility of occurrence of abnormality is about.
  • an insulating paper is wound around coil copper that is a current-carrying medium, and a structure in which coil copper is not short-circuited between adjacent turns is generally employed.
  • these coil copper and insulating paper are installed in insulating oil that plays a role of a cooling medium or the like.
  • Non-Patent Document 1 CIGRE TF A2.31, “Copper sulphide in transformer insulation,” ELECTRA, No. 224, pp. 20-23, 2006).
  • Dibenzyl disulfide is known as a causative substance in insulating oil for depositing copper sulfide (for example, Non-Patent Document 2: F. Scatigio, V. Tumiatti, R. Maina, M. Tumiatti M. Pompilli and R Bartnikas, “Corrosive Sulfur in Insulating Oils: Its Detection and Correlated Power Apparatus Failures”, IEEE Trans. Power Del., Vol. 23, pp. 508-509, 2008).
  • Non-patent Document 3 S. Toyama, J. Tanimura, N. Yamada, E). Nagao, T. Amimoto, “Highly Sensitive Detection Method of Dibenzyl Disulfide and Elucidation of Mechanism of Copper Sulfide Generation in Insulating Oil”, IEEE TDEI, Vol 16, No. 2, pp509-515, 2009, page 513).
  • the production of copper sulfide consumes dibenzyl disulfide in the insulating oil and produces benzyl radical and benzylsulfenyl radical.
  • the benzyl radical and benzylsulfenyl radical generate bibenzyl, dibenzyl sulfide, and dibenzyl disulfide as by-products by a reaction that occurs between the same radicals or between two radicals. Therefore, it is thought that the information regarding the production amount of copper sulfide can be obtained by measuring the production amount (concentration) of these by-products.
  • the amount of copper sulfide produced can be estimated with high accuracy by analyzing the components in the insulating oil. It is an object of the present invention to provide a method capable of predicting the possibility of occurrence of abnormality (sulfide corrosion) in equipment with high accuracy.
  • the present inventors have found that under an oxygen-containing atmosphere, the benzyl radical changes to a benzyl peroxide radical and further changes to benzyl alcohol, benzaldehyde, or benzoic acid. Moreover, it turned out that a benzyl sulfenyl radical changes to dibenzyl sulfoxide in oxygen-containing atmosphere. And by performing analysis including these final products, the present inventors estimate the amount of copper sulfide produced with high accuracy even when the insulating oil in the oil-filled electrical equipment is in an oxygen-containing atmosphere. We have found that we can do it and have arrived at the present invention.
  • the present invention is a method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, (1) a step of measuring a concentration of one or more specific products contained in the insulating oil collected from the oil-filled electrical device; and (2) including a step of estimating a production amount of the copper sulfide based on a concentration of the specific product;
  • the method wherein the specific product comprises at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde, benzoic acid and dibenzyl sulfoxide.
  • the specific product preferably further contains bibenzyl and / or dibenzyl sulfide.
  • the step (2) Converting each concentration of the specific product to the molar concentration of the benzene ring, and calculating the total molar concentration of these, and It is preferable to include a step of estimating the production amount of the copper sulfide based on the total molar concentration.
  • the present invention also relates to a method for diagnosing the occurrence of an abnormality in an oil-filled electrical device based on the production amount of the copper sulfide estimated using the above method.
  • the present invention is a method for estimating the initial concentration of dibenzyl disulfide in insulating oil in oil-filled electrical equipment, (1) a step of measuring a concentration of one or more specific products contained in the insulating oil collected from the oil-filled electrical device; and (2) estimating an initial concentration of the dibenzyl disulfide based on the concentration of the specific product, Said specific product comprises at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde, benzoic acid and dibenzyl sulfoxide, and bibenzyl and / or dibenzyl sulfide, The step (2) Converting each concentration of the specific product to the molar concentration of the benzene ring, and calculating the total molar concentration of the total, From the total molar concentration, calculating a reduction amount of dibenzyl disulfide using a calibration curve prepared in advance, and The present invention relates to a method including a step of calculating an initial concentration of the dibenzyl
  • the present invention also relates to a method for diagnosing the possibility of occurrence of an abnormality in an oil-filled electrical device based on the initial concentration of the dibenzyl disulfide estimated using the above method.
  • the present invention by measuring the concentration of a specific product containing at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde, benzoic acid and dibenzyl sulfoxide in insulating oil, Even when the insulating oil is in an oxygen-containing atmosphere, the amount of copper sulfide produced can be estimated with high accuracy, and the occurrence of abnormality (sulfidation corrosion) in oil-filled electrical equipment can be diagnosed with high accuracy.
  • the concentration of a specific product further containing bibenzyl and / or dibenzyl sulfide is measured.
  • the amount of copper sulfide produced can be estimated with high accuracy regardless of whether the insulating oil is in an oxygen-containing atmosphere or an oxygen-free atmosphere. It is possible to diagnose the occurrence of abnormality (sulfidation corrosion) in oil-filled electrical equipment with high accuracy.
  • concentration of a specific product contained in insulating oil can be measured using various known methods, for example, gas chromatograph / mass spectrometer (GC / MS). Can be measured.
  • GC / MS gas chromatograph / mass spectrometer
  • the threshold value for the amount of copper sulfide produced varies depending on the type and structure of the oil-filled electrical device. For example, when the thickness of the insulator is sufficient, the threshold value for the amount of copper sulfide produced is large. When the thickness is small, the threshold value is small.
  • the oil-filled electrical device When the concentration of the specific product is equal to or higher than the specific reference value (threshold value), the oil-filled electrical device is diagnosed as having a defect (abnormality) due to copper sulfide deposition.
  • the For transformers that have been diagnosed as having abnormalities attention can be urged to preferentially take necessary measures.
  • concentration of a specific product contained in insulating oil can be measured using various known methods, for example, gas chromatograph / mass spectrometer (GC / MS). Can be measured.
  • GC / MS gas chromatograph / mass spectrometer
  • n1 represents benzyl alcohol
  • n2 represents benzaldehyde
  • n3 represents benzoic acid
  • n4 represents dibenzyl sulfoxide
  • n5 represents bibenzyl
  • n6 represents the concentration in oil ( ⁇ mol / g).
  • a calibration curve showing the correlation between the total molar concentration (N) and the copper sulfide production amount in advance is mentioned.
  • Such a calibration curve is obtained by, for example, filling an oil-filled electrical equipment model with an insulating oil whose initial concentration of the specific product and copper sulfide is known, and increasing the concentration of the specific product under each predetermined condition. It can be created by measuring the increasing concentration of copper sulfide.
  • the oxygen concentration in the insulating oil in the transformer ranges from 100 to 30000 ppm (v / v) depending on the transformer specifications and transformer operating conditions.
  • the oxygen concentration in the insulating oil varies as described above. Suitable for measuring oil-filled electrical equipment.
  • the generation amount of copper sulfide estimated in the present embodiment can be diagnosed in the oil-filled electrical device by comparing the generated amount of copper sulfide with a specific reference value (threshold value) as in the first embodiment. .
  • the initial concentration of DBDS is important as an index for diagnosing the possibility of occurrence of abnormality.
  • Concentration measurement of specific product and DBDS The concentration of the specific product contained in the insulating oil can be measured using various known methods, for example, a gas chromatograph / mass spectrometer (GC / MS).
  • Various known methods can be used as a method for measuring the (residual) concentration of DBDS in the collected insulating oil.
  • a method of analyzing by gas chromatograph for example, S. Toyama, J. Tanimura, N. Yamada, E. Nagao and T. Amimoto, “High sensitive detection method of dibenzyl disulfide and the elucidation of the mechanism of copper sulfide generation in insulating oil”, Doble Clientston Conf, USA, (See Paper IM-8A, 2008).
  • the method of estimating the DBDS initial concentration in the present embodiment is as follows. Converting each concentration of the specific product into a molar concentration of the benzene ring, and calculating the total molar concentration (N) of the total, From the total molar concentration (N), a step of calculating a decrease amount of dibenzyl disulfide using a calibration curve prepared in advance, and A step of calculating an initial DBDS concentration from the DBDS concentration and the DBDS decrease amount is included.
  • a calibration curve indicating the correlation between the total molar concentration (N) of the specific product and the amount of DBDS reduction is created in advance.
  • Such a calibration curve is obtained by, for example, filling an oil-filled electrical equipment model with an insulating oil whose DBDS initial concentration is known, and calculating the total molar concentration (N) of the specific product and the DBDS reduction amount under certain conditions. Can be created by asking.
  • the total molar concentration (N) of the molar concentration of the benzene ring is calculated from the concentration of the specific product using the above formula (1), and the calculated total molar concentration (N) From this, the amount of decrease in DBDS is calculated using the calibration curve.
  • the amount of DBDS which is a copper sulfide causative substance, decreases due to the formation of copper sulfide. Therefore, just because DBDS is not included in insulating oil collected from oil-filled electrical equipment that has been operating for years, it cannot be said that the transformer is safe against defects caused by copper sulfide. Moreover, it can be said that the amount of copper sulfide produced in the transformer depends on the concentration of DBDS. Therefore, when estimating the risk for copper sulfide, it is important to estimate the initial concentration of DBDS at the start of operation of the oil-filled electrical device.
  • the threshold value of the initial concentration of DBDS is, for example, a method of determining the threshold value in a test widely used as a test for corrosive sulfur of insulating oil.
  • JIS C 2101 17 corrosive sulfur test
  • ASTM D 1275B is often used overseas.
  • ASTM is an abbreviation for “American Society for Testing and Materials”.
  • the threshold value can be determined by the following procedure using 17 of JIS C 2101.
  • an insulating oil that does not exhibit corrosiveness according to 17 of JIS C 2101 is prepared.
  • a synthetic oil containing no sulfur such as alkylbenzene and ⁇ -olefin is preferably used.
  • a predetermined amount (for example, 50, 100, 150, 200 ppm) of DBDS is dissolved in this insulating oil to obtain a sample oil.
  • the test is conducted by the method described in 17.2 to 17.5 of JIS C 2101, and the corrosivity is judged by the method described in 17.6.
  • transformer oil (insulating oil) that was confirmed to be free of corrosive sulfur by ASTM D 1275B was prepared.
  • DBDS was added to this transformer oil to a concentration of 300 ppm.
  • 4 g of this transformer oil and a copper plate were sealed in a bottle having an internal volume of 10 cc, and after a rubber stopper was applied, it was heated at 165 ° C. for a predetermined time (1, 2, 3, 5, 7, 9 h).
  • the rubber plug was penetrated by a stainless steel pipe with an inner diameter of several millimeters so that the oil could freely come into contact with air.
  • the concentration of benzaldehyde and bibenzyl contained in the transformer oil after heating for each predetermined time was measured using a gas chromatograph / mass spectrometer (GC / MS).
  • FIG. 1 shows the relationship between the concentration of by-products (benzaldehyde or bibenzyl) and the amount of copper sulfide produced at each predetermined time.
  • the copper sulfide production amount has shown the copper plate weight change rate.
  • FIG. 2 shows the results of a similar test performed in a nitrogen atmosphere.
  • the amount of copper sulfide produced is a value obtained by dividing the change in weight of the copper plate per gram of oil by the molecular weight of sulfur.
  • a good correlation is observed between the amount of bibenzyl produced and the amount of copper sulfide produced under a nitrogen atmosphere (an atmosphere not containing oxygen).
  • Example 2 The same experiment as in Example 1 was performed, and the concentrations of benzoic acid, benzyl alcohol, benzaldehyde and dibenzyl sulfoxide, and bibenzyl and dibenzyl sulfide contained in the transformer oil after heating were measured with a gas chromatograph / mass spectrometer (GC / MS). By substituting these concentrations into the above formula (1), the total molar concentration (N) was determined.
  • GC / MS gas chromatograph / mass spectrometer
  • FIG. 3 shows the relationship between the total molar concentration (N) and the amount of copper sulfide produced when heated for a predetermined time in an air atmosphere and a nitrogen atmosphere.
  • the amount of copper sulfide produced is a value obtained by dividing the change in weight of the copper plate per gram of oil by the molecular weight of sulfur.
  • N total molar concentration
  • the same linear relationship is shown in an air atmosphere and a nitrogen atmosphere. Therefore, it can be seen that by using N as an index, the amount of copper sulfide produced can be estimated regardless of the oxygen concentration in the insulating oil. This indicates that the amount of copper sulfide produced can be estimated by the method as in Embodiment 2 regardless of the type of transformer (open type transformer or hermetically sealed transformer).
  • Example 3 An experiment similar to that in Example 2 was performed, N was determined by the same method as in Embodiment 2, and the concentration of DBDS in the insulating oil at each predetermined heating time was determined by a gas chromatograph / mass analyzer (GC / MS). It measured using. Then, the DBDS decrease amount ( ⁇ mol / g) was calculated from the DBDS addition concentration (300 ppm).
  • FIG. 4 shows the relationship between the obtained N and the amount of decrease in DBDS.
  • the amount of decrease in N and DBDS shows a good correlation. From this, it is possible to estimate the amount of decrease in DBDS by analyzing the insulating oil collected from the oil-filled electrical equipment in operation and obtaining N, and further calculating the initial concentration of DBDS from the above equation (2). I understand that I can do it.
  • the same linear relationship is shown in air and nitrogen. Therefore, it can be seen that by using N as an index, the initial concentration of DBDS can be estimated regardless of the oxygen concentration in the insulating oil. This indicates that the initial concentration of DBDS can be estimated by the method as in Embodiment 3 regardless of the type of transformer (open-type transformer or hermetically-sealed transformer).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

 本発明は、油入電気機器における硫化銅の生成量を推定する方法であって、 (1) 前記油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物の濃度を測定する工程、および、 (2) 前記特定の生成物の濃度に基づいて、前記硫化銅の生成量を推定する工程を含み、 前記特定の生成物は、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物を含む方法である。

Description

油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法
 この発明は、変圧器等の油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法に関する。
 油入変圧器などの油入電気機器においては、通電媒体であるコイル銅に絶縁紙が巻きつけられており、隣り合うターン間でコイル銅が短絡しないような構造が一般に採用されている。油入電気機器内において、これらのコイル銅および絶縁紙は、冷却媒体等の役割を担う絶縁油中に設置されている。
 一方、油入電気機器に使用される絶縁油には、硫黄成分を含むものがある。この場合、絶縁油中の硫黄成分が銅部品と反応することで絶縁紙表面に導電性の硫化銅が析出し、隣り合うターン間に導電路が形成されて絶縁破壊を引き起こす硫化腐食が発生する場合があることが知られている(例えば、非特許文献1:CIGRE TF A2.31, “Copper sulphide in transformer insulation,” ELECTRA, No. 224, pp. 20-23, 2006)。
 このような見地から、硫化銅が発生しにくい絶縁油の選定や硫化銅の抑制技術の開発が注目されている。しかし、油入電気機器に使用される絶縁油は、一般的に量が多く使用年数が長いため、交換が容易ではない。このため、硫黄成分を含む絶縁油を用いた個々の油入電気機器において、硫化銅の析出によって生じる絶縁破壊などの異常発生の可能性を予測できる方法が求められている。異常発生の可能性を予測することにより、個々の油入電気機器の状態に応じた適切な措置をとることができるためである。
 硫化銅を析出させる絶縁油中の原因物質としては、ジベンジルジスルフィドが知られている(例えば、非特許文献2:F. Scatiggio, V. Tumiatti, R. Maina, M. Tumiatti M. Pompilli and R. Bartnikas, “Corrosive Sulfur in Insulating Oils: Its Detection and Correlated Power Apparatus Failures”, IEEE Trans. Power Del., Vol. 23, pp. 508-509, 2008)。
 ジベンジルジスルフィドから硫化銅が生成するメカニズムを図5を用いて説明する。図5に示されるように、硫化銅は、以下の3段階の反応によって生成することがこれまでの研究で分かっている(非特許文献3:S.Toyama, J.Tanimura, N.Yamada, E.Nagao, T.Amimoto, "Highly Sensitive Detection Method of Dibenzyl Disulfide and Elucidation of Mechanism of Copper Sulfide Generation in Insulating Oil", IEEE TDEI, Vol 16, No. 2, pp509-515, 2009の513頁)。
(第1段階) ジベンジルジスルフィドが銅板に配位(吸着)する反応。
(第2段階) ジベンジルジスルフィドが銅と反応し、ジベンジルジスルフィド-Cu錯体を生成する反応。
(第3段階) ジベンジルジスルフィド-Cu錯体が、熱分解などにより、硫化銅と、ベンジルラジカルおよびベンジルスルフェニルラジカルとに分解される反応。
 したがって、硫化銅の生成によって、絶縁油中のジベンジルジスルフィドが消費され、ベンジルラジカルおよびベンジルスルフェニルラジカルが生成される。このベンジルラジカルおよびベンジルスルフェニルラジカルは、同種のラジカル同士または2種のラジカルの間で起こる反応により、ビベンジル、ジベンジルスルフィドおよびジベンジルジスルフィドを副生成物として生成する。したがって、これらの副生成物の生成量(濃度)を測定することにより、硫化銅の生成量に関する情報を得ることができると考えられる。
 しかしながら、開放型変圧器など油入電気機器において、絶縁油が空気雰囲気下(酸素含有雰囲気下)にある場合は、ほとんど生成しない場合があることが判明した。このような場合には、上記副生成物(ビベンジル、ジベンジルスルフィドおよびジベンジルジスルフィド)の生成量が、硫化銅の生成量に対して相関性を示さず、副生成物の生成量を測定しても、硫化銅の生成量に関する情報を得ることができないという問題があった。
CIGRE TF A2.31, "Copper sulphide in transformer insulation," ELECTRA, No. 224, pp. 20-23, 2006 F. Scatiggio, V. Tumiatti, R. Maina, M. Tumiatti M. Pompilli and R. Bartnikas, "Corrosive Sulfur in Insulating Oils: Its Detection and Correlated Power Apparatus Failures", IEEE Trans. Power Del., Vol. 23, pp. 508-509, 2008 S.Toyama, J.Tanimura, N.Yamada, E.Nagao, T.Amimoto, "Highly Sensitive Detection Method of Dibenzyl Disulfide and Elucidation of Mechanism of Copper Sulfide Generation in Insulating Oil", IEEE TDEI, Vol.16, No.2, pp509-515, 2009
 本発明は、油入電気機器中の絶縁油が酸素含有雰囲気下にある場合でも、絶縁油中の成分を分析することにより硫化銅の生成量を高い精度で推定することができ、油入電気機器における異常(硫化腐食)発生の可能性を高い精度で予測できる方法を提供することを目的とする。
 本発明者らは、上記の課題に鑑みて鋭意研究した結果、酸素含有雰囲気下では、ベンジルラジカルはベンジルペルオキシドラジカルに変化し、さらに、ベンジルアルコール、ベンズアルデヒドまたは安息香酸に変化することが分かった。また、酸素含有雰囲気下で、ベンジルスルフェニルラジカルは、ジベンジルスルホキシドに変化することが分かった。そして、本発明者らは、これらの最終生成物を含めた分析を行うことにより、油入電気機器中の絶縁油が酸素含有雰囲気下にある場合でも、硫化銅の生成量を高い精度で推定することができることを見出し、本発明に到達した。
 すなわち、本発明は、油入電気機器における硫化銅の生成量を推定する方法であって、
 (1) 前記油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物の濃度を測定する工程、および、
 (2) 前記特定の生成物の濃度に基づいて、前記硫化銅の生成量を推定する工程を含み、
 前記特定の生成物は、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物を含む方法。
 前記特定の生成物は、さらにビベンジルおよび/またはジベンジルスルフィドを含むことが好ましい。
 前記工程(2)は、
 前記特定の生成物の各濃度をベンゼン環のモル濃度に変換し、それらを合計した総モル濃度を算出する工程、および、
 前記総モル濃度に基づいて、前記硫化銅の生成量を推定する工程
 を含むことが好ましい。
 さらに、本発明は、上記の方法を用いて推定された前記硫化銅の生成量に基づいて、油入電気機器の異常発生を診断する方法にも関する。
 また、本発明は、油入電気機器における絶縁油中のジベンジルジスルフィドの初期濃度を推定する方法であって、
 (1) 前記油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物の濃度を測定する工程、および、
 (2) 前記特定の生成物の濃度に基づいて、前記ジベンジルジスルフィドの初期濃度を推定する工程を含み、
 前記特定の生成物は、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物、ならびに、ビベンジルおよび/またはジベンジルスルフィドを含み、
 前記工程(2)は、
 前記特定の生成物の各濃度をベンゼン環のモル濃度に変換し、それらを合計した総モル濃度を算出する工程、
 前記総モル濃度から、あらかじめ作成した検量線を用いてジベンジルジスルフィドの減少量を算出する工程、および、
 前記ジベンジルジスルフィドの濃度と前記ジベンジルジスルフィドの減少量とから、前記ジベンジルジスルフィドの初期濃度を算出する工程を含む方法に関する。
 さらに、本発明は、上記の方法を用いて推定された前記ジベンジルジスルフィドの初期濃度に基づいて、油入電気機器の異常発生の可能性を診断する方法にも関する。
 本発明においては、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物を含む特定の生成物の絶縁油中における濃度を測定することにより、油入電気機器中の絶縁油が酸素含有雰囲気下にある場合でも、硫化銅の生成量を高い精度で推定することができ、油入電気機器における異常(硫化腐食)の発生を高い精度で診断できる。
 また、本発明において、上記ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物に加えて、さらにビベンジルおよび/またはジベンジルスルフィドを含む特定の生成物の濃度を測定することで、油入電気機器の種類によらず、絶縁油が酸素含有雰囲気下にある場合および酸素を含まない雰囲気下にある場合のいずれにおいても、硫化銅の生成量を高い精度で推定することができ、油入電気機器における異常(硫化腐食)の発生を高い精度で診断できる。
 絶縁油が未使用であったときにおける硫化銅原因物質(ジベンジルジスルフィド)の初期濃度を推定することにより、その推定濃度に基づいて油入電気機器における異常(硫化腐食)の発生の可能性を診断することができる。
空気雰囲気下におけるビベンジル生成量と硫化銅生成量との関係、および、ベンズアルデヒド生成量と硫化銅生成量との関係を示すグラフである。 窒素雰囲気下におけるビベンジル生成量と硫化銅生成量との関係を示すグラフである。 空気雰囲気下および窒素雰囲気下における特定の生成物の総モル濃度(N)と硫化銅生成量との関係を示すグラフである。 空気雰囲気下および窒素雰囲気下における特定の生成物の総モル濃度(N)とジベンジルジスルフィドの減少量との関係を示すグラフである。 ジベンジルジスルフィドから硫化銅が生成するメカニズムを示す模式図である。
 (実施の形態1)
 <硫化銅生成量の推定>
 本実施形態においては、
 (1) 油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物として、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物のみの濃度が測定され、
 (2) この特定の生成物の濃度に基づいて、油入電気機器における硫化銅の生成量が推定される。
 (1) 特定の生成物の濃度測定
 絶縁油中に含まれる特定の生成物の濃度は、種々公知の方法を用いて測定することができ、例えば、ガスクロマトグラフ/質量分析器(GC/MS)を用いて測定することができる。
 (2) 硫化銅生成量の推定
 上記特定の生成物の濃度に基づいて、油入電気機器における硫化銅の生成量を推定する方法としては、あらかじめ、上記特定の生成物の濃度と硫化銅生成量との相関関係を示す検量線を作成する方法が挙げられる。かかる検量線は、例えば、上記特定の生成物および硫化銅の初期濃度が既知の絶縁油を油入電気機器のモデルに充填し、所定の各条件下で、上記特定の生成物の増加濃度と硫化銅の増加濃度を測定することにより作成できる。
 <異常発生の診断>
 さらに、本実施形態において推定された硫化銅の生成量を特定の基準値(閾値)と比較することで、油入電気機器における異常発生を診断することができる。
 ここで、硫化銅の生成量の閾値は、油入電気機器の種類や構造ごとに異なるものであり、例えば、絶縁物の厚みが十分にあるときには硫化銅生成量の閾値は大きくなり、絶縁物の厚みが薄いときは閾値は小さくなる。
 上記特定の生成物の濃度が、このような特定の基準値(閾値)以上であった場合には、当該油入電気機器は硫化銅の析出による不具合(異常)が発生していると診断される。異常が発生していると診断測された変圧器については、優先的に必要な措置をとるように注意を促すことができる。
 (実施の形態2)
 <硫化銅生成量の推定>
 本実施形態においては、
 (1) 油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物として、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物に加えて、さらにビベンジルおよび/またはジベンジルスルフィドの濃度が測定され、
 (2) この特定の生成物の濃度に基づいて、油入電気機器における硫化銅の生成量が推定される。
 (1) 特定の生成物の濃度測定
 絶縁油中に含まれる特定の生成物の濃度は、種々公知の方法を用いて測定することができ、例えば、ガスクロマトグラフ/質量分析器(GC/MS)を用いて測定することができる。
 (2) 硫化銅生成量の推定
 本実施形態では、上記の絶縁油中に含まれる特定の生成物を測定し、各成分の濃度をベンゼン環のモル濃度に変換し、それらを合計した総モル濃度(N)に基づいて、硫化銅の生成量を推定する。具体的に、総モル濃度(N)は各成分の濃度から下記式(1):

N(μmol/g)=n1+n2+n3+2×n4+2×n5+2×n6  ・・・(1)

 を用いて算出される。
 上記式(1)において、n1はベンジルアルコール、n2はベンズアルデヒド、n3は安息香酸、n4はジベンジルスルホキシド、n5はビベンジル、n6はジベンジルスルフィドの各々の油中濃度(μmol/g)を表す。
 上記総モル濃度(N)に基づいて、油入電気機器における硫化銅の生成量を推定する方法としては、あらかじめ、上記総モル濃度(N)と硫化銅生成量との相関関係を示す検量線を作成する方法が挙げられる。かかる検量線は、例えば、上記特定の生成物および硫化銅の初期濃度が既知の絶縁油を油入電気機器のモデルに充填し、所定の各条件下で、上記特定の生成物の増加濃度と硫化銅の増加濃度を測定することにより作成できる。
 実際の変圧器においては、変圧器の仕様および変圧器の運転状況により、変圧器内の絶縁油中の酸素濃度は100~30000ppm(v/v)まで幅があることが知られている。本実施形態は、絶縁油の雰囲気中(もしくは絶縁油中)の酸素濃度に影響を受けずに、硫化銅の生成量を推定することができるため、このように絶縁油中の酸素濃度が様々な油入電気機器を測定するのに適している。
 <異常発生の診断>
 さらに、本実施形態において推定された硫化銅の生成量を、実施形態1と同様にして、特定の基準値(閾値)と比較することで、油入電気機器における異常発生を診断することができる。
 実施形態1と同様に、異常が発生していると診断された変圧器については、優先的に必要な措置をとるように注意を促すことができる。
 (実施の形態3)
 <ジベンジルジスルフィド初期濃度の推定>
 本実施形態においては、
 (1) 油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物として、実施形態2と同様の特定の生成物の濃度が測定され、さらにジベンジルジスルフィド(以下、DBDSと略す。)の濃度が測定され、
 (2) この特定の生成物の各濃度およびDBDSの濃度に基づいて、油入電気機器における絶縁油中のDBDSの初期濃度が推定される。
 DBDSの初期濃度は、異常発生の可能性を診断する指標として重要である。
 (1) 特定の生成物およびDBDSの濃度測定
 絶縁油中に含まれる特定の生成物の濃度は、種々公知の方法を用いて測定することができ、例えば、ガスクロマトグラフ/質量分析器(GC/MS)を用いて測定することができる。
 また、採取した絶縁油中のDBDSの(残存)濃度を測定する方法としては、種々公知の方法を用いることができるが、例えば、ガスクロマトグラフで分析する方法が挙げられる(例えば、S. Toyama, J. Tanimura, N. Yamada, E. Nagao and T. Amimoto, “High sensitive detection method of dibenzyl disulfide and the elucidation of the mechanism of copper sulfide generation in insulating oil”, Doble Client Conf., Boston, MA, USA, Paper IM-8A, 2008 参照)。
 (2) DBDS初期濃度の推定
 本実施形態におけるDBDS初期濃度の推定方法は、
 上記特定の生成物の各濃度をベンゼン環のモル濃度に変換し、それらを合計した総モル濃度(N)を算出する工程、
 上記総モル濃度(N)から、あらかじめ作成した検量線を用いてジベンジルジスルフィドの減少量を算出する工程、および、
 上記DBDSの濃度と上記DBDSの減少量とから、DBDSの初期濃度を算出する工程を含む。
 したがって、本実施形態では、あらかじめ、上記特定の生成物の総モル濃度(N)とDBDSの減少量との相関関係を示す検量線が作成される。かかる検量線は、例えば、DBDSの初期濃度が既知の絶縁油を油入電気機器のモデルに充填し、一定の条件下で前記特定の生成物の総モル濃度(N)とDBDSの減少量を求めることによって作成できる。
 実施形態2と同様にして、上記特定の生成物の濃度から、上記式(1)を用いてベンゼン環のモル濃度の総モル濃度(N)を算出し、算出された総モル濃度(N)から上記検量線を用いてDBDSの減少量が算出される。
 そして、DBDSの初期濃度は、下記式(2):

「DBDSの初期濃度」=「DBDSの濃度」+「DBDSの減少量」  ・・・(2)

 から算出される。
 硫化銅原因物質であるDBDSは、硫化銅の生成によりその量が減少する。よって、稼動開始から年月を経た油入電気機器から採取した絶縁油にDBDSが含まれていなかったからといって、その変圧器が硫化銅による不良に対して安全であるとはいえない。また、その変圧器における硫化銅生成量はDBDSの濃度に依存するといえる。よって、硫化銅に対するリスクを見積もる際には、その油入電気機器の稼動開始時におけるDBDSの初期濃度を推定することは重要である。
 <異常発生の可能性の診断>
 以上のようにして推定されたDBDSの初期濃度を、特定の基準値(閾値)と比較することで、油入電気機器における異常発生の可能性を診断することができる。
 ここで、DBDSの初期濃度の閾値は、例えば、広く絶縁油の腐食性硫黄の試験として用いられている試験で閾値を決める方法が挙げられる。この種の試験としては、例えば、国内ではJIS C 2101の17(腐食性硫黄試験)が、海外ではASTM D 1275Bなどがよく用いられている。ここで、ASTMとは、「American Society for Testing and Materials」の略である。
 例えば、JIS C 2101の17を用いて、下記の手順で閾値を決定できる。まず、JIS C 2101の17で腐食性を示さない絶縁油を準備する。このような絶縁油としては、例えば、アルキルベンゼンやαオレフィンなど硫黄を含まない合成油が好適に用いられる。この絶縁油に所定量(例えば、50、100、150、200ppm)のDBDSを溶解し試料油とする。このようにして作成した試料油を用いてJIS C 2101の17.2~17.5に記載の方法で試験を実施し、同17.6に記載の方法で腐食性を判定する。この結果、例えば、DBDSの濃度が50および100ppmの試料油が非腐食性を示し、150および200ppmの試料油が腐食性を示した場合、非腐食性を示した上限である100ppmを閾値とすることができる。
 DBDSの初期濃度が、このような特定の基準値(閾値)以上であった場合には、当該油入電気機器は硫化銅の析出による不具合(異常)が発生する可能性があると診断される。異常発生の可能性があると診断された変圧器については、優先的に必要な措置をとるように注意を促すことができ、計画的に対処することができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
 まず、ASTM D 1275Bで腐食性の硫黄を含まないことを確認済みの変圧器油(絶縁油)を準備した。次に、この変圧器油にDBDSを300ppmの濃度となるように添加した。この変圧器油4グラムと銅板を10ccの内容積を持つ瓶に封入し、ゴム栓を施した後に165℃で所定の時間(1、2、3、5、7,9h)加熱した。ゴム栓には内径が数ミリメートルのステンレス管を貫通せしめ、油が自由に空気と接触できるようにした。
 各所定の時間加熱した後の変圧器油に含まれるベンズアルデヒドおよびビベンジルの濃度を、ガスクロマトグラフ/質量分析器(GC/MS)を用いて測定した。
 各所定の時間における副生成物(ベンズアルデヒドまたはビベンジル)の濃度と硫化銅生成量との関係を図1に示す。なお、硫化銅生成量は銅板重量変化率を示している。
 図1に示されるように、ベンズアルデヒド量と硫化銅生成量との間には良好な相関性があり、ベンズアルデヒド量を求めることによりその温度における硫化銅生成量を求めることができる。一方、ビベンジルは、空気雰囲気下(酸素含有雰囲気下)ではほとんど生成されず、硫化銅生成量との相関性を示さなかった。
 比較のために、窒素雰囲気下において同様の試験を行った結果を図2に示す。なお、硫化銅生成量は油1gあたりの銅板重量変化を硫黄の分子量で除した値を示している。図2に示されるように、窒素雰囲気下(酸素を含まない雰囲気下)においては、ビベンジルの生成量と硫化銅生成量との間に良好な相関性が認められる。
 図1に示す結果から、空気雰囲気下(酸素含有雰囲気下)においても、ベンズアルデヒドの濃度を指標とすれば、油入電気機器内における硫化銅の生成量が推定できることが分かる。このような関係はベンジルアルコール、ジベンジルスルホキシドおよび安息香酸でも得られ、これらの化合物量が決まれば硫化銅生成量を求めることができることが分かる。
 なお、硫化銅生成量の推定のためには、油入電気機器が設置された雰囲気の温度条件や稼動時間を決める必要があるが、これらは各油入電気機器の運転記録や環境の気温変動の記録などから決定することができる。
 (実施例2)
 実施例1と同じ実験を行い、加熱後の変圧器油に含まれる安息香酸、ベンジルアルコール、ベンズアルデヒドおよびジベンジルスルホキシド、ならびに、ビベンジルおよびジベンジルスルフィドの濃度を、ガスクロマトグラフ/質量分析器(GC/MS)で測定した。これらの濃度を上記式(1)に代入することにより、総モル濃度(N)を求めた。
 また、これと同様の実験を窒素雰囲気下で行った。
 本実施例において、空気雰囲気下および窒素雰囲気下で各所定の時間加熱した場合の総モル濃度(N)と硫化銅生成量との関係を図3に示す。なお、硫化銅生成量は油1gあたりの銅板重量変化を硫黄の分子量で除した値を示している。図3に示したようにNと硫化銅量との間には良好な相関性があり、Nを求めることによりその温度における硫化銅生成量を推定できることが分かる。
 また、図3から明らかなように、空気雰囲気下と窒素雰囲気下でほぼ同じ直線関係を示している。よって、Nを指標として用いることにより、絶縁油中の酸素濃度によらず硫化銅生成量を推定できることが分かる。このことは、上記実施形態2のような方法によって、変圧器の種類(開放型変圧器または密閉型変圧器)によらず、硫化銅生成量を推定できることを示している。
 (実施例3)
 実施例2と同様の実験を行ない、Nを実施の形態2と同じ方法で求め、さらに、各所定の加熱時間における絶縁油中のDBDSの濃度を、ガスクロマトグラフ/質量分析器(GC/MS)を用いて測定した。そして、DBDSの添加濃度(300ppm)からDBDSの減少量(μmol/g)を算出した。得られたNとDBDSの減少量との関係を図4に示す。
 図4に示されるように、NとDBDSの減少量は良好な相関性を示す。このことから、稼動中の油入電気機器から採取した絶縁油を分析し、Nを求めることにより、DBDSの減少量を推定することができ、さらに上記式(2)からDBDSの初期濃度を算出できることが分かる。
 また、図4から明らかなように、空気中と窒素中でほぼ同じ直線関係を示している。よって、Nを指標として用いることにより、絶縁油中の酸素濃度によらずDBDSの初期濃度を推定できることが分かる。このことは、上記実施形態3のような方法によって、変圧器の種類(開放型変圧器または密閉型変圧器)によらず、DBDSの初期濃度を推定できることを示している。
 この発明を詳細に説明し示してきたが、これは例示のためのみであって、限定ととってはならず、発明の範囲は添付の請求の範囲によって解釈されることが明らかに理解されるであろう。

Claims (6)

  1.  油入電気機器における硫化銅の生成量を推定する方法であって、
     (1) 前記油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物の濃度を測定する工程、および、
     (2) 前記特定の生成物の濃度に基づいて、前記硫化銅の生成量を推定する工程を含み、
     前記特定の生成物は、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物を含む方法。
  2.  前記特定の生成物は、さらにビベンジルおよび/またはジベンジルスルフィドを含む、請求の範囲1に記載の方法。
  3.  前記工程(2)は、
     前記特定の生成物の各濃度をベンゼン環のモル濃度に変換し、それらを合計した総モル濃度を算出する工程、および、
     前記総モル濃度に基づいて、前記硫化銅の生成量を推定する工程
     を含む、請求の範囲2に記載の方法。
  4.  請求の範囲1に記載の方法を用いて推定された前記硫化銅の生成量に基づいて、油入電気機器の異常発生を診断する方法。
  5.  油入電気機器における絶縁油中のジベンジルジスルフィドの初期濃度を推定する方法であって、
     (1) 前記油入電気機器から採取した絶縁油中に含まれる1種以上の特定の生成物の濃度を測定する工程、および、
     (2) 前記特定の生成物の濃度に基づいて、前記ジベンジルジスルフィドの初期濃度を推定する工程を含み、
     前記特定の生成物は、ベンジルアルコール、ベンズアルデヒド、安息香酸およびジベンジルスルホキシドからなる群から選ばれる少なくとも1つの化合物、ならびに、ビベンジルおよび/またはジベンジルスルフィドを含み、
     前記工程(2)は、
     前記特定の生成物の各濃度をベンゼン環のモル濃度に変換し、それらを合計した総モル濃度を算出する工程、
     前記総モル濃度から、あらかじめ作成した検量線を用いてジベンジルジスルフィドの減少量を算出する工程、および、
     前記ジベンジルジスルフィドの濃度と前記ジベンジルジスルフィドの減少量とから、前記ジベンジルジスルフィドの初期濃度を算出する工程を含む方法。
  6.  請求の範囲5に記載の方法を用いて推定された前記ジベンジルジスルフィドの初期濃度に基づいて、油入電気機器の異常発生の可能性を診断する方法。
PCT/JP2009/071739 2009-12-28 2009-12-28 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法 WO2011080812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09852790.6A EP2521145A4 (en) 2009-12-28 2009-12-28 METHOD FOR PREDICTING THE COPPER LEAF AMOUNT PRODUCED IN AN ELECTRIC OIL-FILLED DEVICE, METHOD FOR DIAGNOSIS OF THE OUTCOME OF ANOMALY EVENTS, METHOD FOR PREDICTING THE INITIAL CONCENTRATION OF DIBENZYL DISULFIDE IN INSULATING OIL, AND METHOD FOR DIAGNOSING THE POSSIBILITY OF THE EVENT OF ANOMALY EVENTS
PCT/JP2009/071739 WO2011080812A1 (ja) 2009-12-28 2009-12-28 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法
JP2011547198A JP5516601B2 (ja) 2009-12-28 2009-12-28 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071739 WO2011080812A1 (ja) 2009-12-28 2009-12-28 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法

Publications (1)

Publication Number Publication Date
WO2011080812A1 true WO2011080812A1 (ja) 2011-07-07

Family

ID=44226247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071739 WO2011080812A1 (ja) 2009-12-28 2009-12-28 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法

Country Status (3)

Country Link
EP (1) EP2521145A4 (ja)
JP (1) JP5516601B2 (ja)
WO (1) WO2011080812A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079936B1 (ja) * 2011-11-28 2012-11-21 三菱電機株式会社 油入電気機器の診断方法
JP5329008B1 (ja) * 2012-11-20 2013-10-30 三菱電機株式会社 油入電気機器の診断方法およびメンテナンス方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006946A (ja) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp 電気絶縁油の評価方法および電気絶縁油含有ヘテロ化合物の分析方法
WO2009054155A1 (ja) * 2007-10-26 2009-04-30 Mitsubishi Electric Corporation 油入電気機器の診断方法
JP2010010439A (ja) * 2008-06-27 2010-01-14 Mitsubishi Electric Corp 油入電気機器における硫化銅生成の推定方法および異常を診断する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161622A (en) * 1980-05-16 1981-12-12 Toshiba Corp Oil-immersed transformer
JPH0676635A (ja) * 1992-08-31 1994-03-18 Mitsubishi Electric Corp 油入電気機器
JPH07335446A (ja) * 1994-06-14 1995-12-22 Mitsubishi Electric Corp 絶縁油及び油入電気機器の診断方法
JP4494815B2 (ja) * 2004-02-05 2010-06-30 三菱電機株式会社 油入電気機器の流動帯電診断方法および流動帯電抑制方法
JP4994899B2 (ja) * 2007-03-14 2012-08-08 三菱電機株式会社 油入電気機器の流動帯電診断方法
JP2009150742A (ja) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The 絶縁油中のスルホキシド型硫黄分の分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006946A (ja) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp 電気絶縁油の評価方法および電気絶縁油含有ヘテロ化合物の分析方法
WO2009054155A1 (ja) * 2007-10-26 2009-04-30 Mitsubishi Electric Corporation 油入電気機器の診断方法
JP2010010439A (ja) * 2008-06-27 2010-01-14 Mitsubishi Electric Corp 油入電気機器における硫化銅生成の推定方法および異常を診断する方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Copper sulphide in transformer insulation", ELECTRA, 2006, pages 20 - 23
F. SCATIGGIO; V. TUMIATTI; R. MAINA; M. TUMIATTI; M. POMPILLI; R. BARTNIKAS: "Corrosive Sulfur in Insulating Oils: Its Detection and Correlated Power Apparatus Failures", IEEE TRANS. POWER DEL., vol. 23, 2008, pages 508 - 509
S. TOYAMA; J. TANIMURA; N. YAMADA; E. NAGAO; T. AMIMOTO: "High sensitive detection method of dibenzyl disulfide and the elucidation of the mechanism of copper sulfide generation in insulating oil", DOBLE CLIENT CONF., 2008
S. TOYAMA; J. TANIMURA; N. YAMADA; E. NAGAO; T. AMIMOTO: "Highly Sensitive Detection Method of Dibenzyl Disulfide and Elucidation of Mechanism of Copper Sulfide Generation in Insulating Oil", IEEE TDEI, vol. 16, no. 2, 2009, pages 509 - 515
See also references of EP2521145A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079936B1 (ja) * 2011-11-28 2012-11-21 三菱電機株式会社 油入電気機器の診断方法
JP5329008B1 (ja) * 2012-11-20 2013-10-30 三菱電機株式会社 油入電気機器の診断方法およびメンテナンス方法
WO2014080451A1 (ja) * 2012-11-20 2014-05-30 三菱電機株式会社 油入電気機器の診断方法およびメンテナンス方法

Also Published As

Publication number Publication date
EP2521145A4 (en) 2016-10-12
EP2521145A1 (en) 2012-11-07
JPWO2011080812A1 (ja) 2013-05-09
JP5516601B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
Degeratu et al. Condition monitoring of transformer oil using thermal analysis and other techniques
JP5111619B2 (ja) 油入電気機器における異常発生の可能性を予測する方法
JP4623334B1 (ja) 油入電気機器における異常発生の可能性を予測する方法
Wada et al. Method to evaluate the degradation condition of transformer insulating oil-establishment of the evaluation method and application to field transformer oil
JP5516601B2 (ja) 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法
JP5233021B2 (ja) 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法
JP4888402B2 (ja) 油入変圧器の余寿命診断方法
JP5337303B2 (ja) 油入電気機器の診断方法および診断装置
JP2010256208A (ja) 電気機器中絶縁油に対する経年劣化診断方法
JP5329008B1 (ja) 油入電気機器の診断方法およびメンテナンス方法
JP5516818B2 (ja) 油入電気機器における硫化銅生成量の推定方法、異常発生の診断方法、絶縁油中のジベンジルジスルフィド初期濃度の推定方法、および、異常発生の可能性の診断方法
JP2009168571A (ja) 油入変圧器の劣化診断方法
JP2010256207A (ja) 絶縁油中の累積劣化物による油入電気機器の劣化診断方法
JP4854822B1 (ja) 電気絶縁油の検査方法、電気絶縁油の処理方法、および、油入電気機器のメンテナンス方法
JP2010230483A (ja) 電気機器中絶縁油の絶縁劣化診断方法
JP5079936B1 (ja) 油入電気機器の診断方法
JP5442646B2 (ja) 油入電気機器の診断方法
Mtetwa Accuracy of furan analysis in estimating the degree of polymerization in power transformers
Collazos et al. Characterization of Faults in Power Transformers Based on Oil Chromatographic Analysis in the Coastal Zone
JP2023111322A (ja) 油入りケーブルの異常発生の危険度の診断方法
Paul et al. Influence of Ageing on Properties of Insulating Oil and Life Estimation of In-Service Transformer and Reactors: A Latent Variable Approach
Metebe Investigation Into the Correlation Between Paper Insulation Thermal Ageing Estimation Using the Arrhenius Equation and Other Methods for Generator Transformers
Monitoring Power Quality and Utilisation Guide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547198

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009852790

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE