WO2011079631A1 - 一种拉线式串行机械手 - Google Patents

一种拉线式串行机械手 Download PDF

Info

Publication number
WO2011079631A1
WO2011079631A1 PCT/CN2010/077202 CN2010077202W WO2011079631A1 WO 2011079631 A1 WO2011079631 A1 WO 2011079631A1 CN 2010077202 W CN2010077202 W CN 2010077202W WO 2011079631 A1 WO2011079631 A1 WO 2011079631A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
pulley
wrist
wire
elbow
Prior art date
Application number
PCT/CN2010/077202
Other languages
English (en)
French (fr)
Inventor
张勤
王曼莉
郭福坤
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2011079631A1 publication Critical patent/WO2011079631A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type

Definitions

  • the present invention relates to a serial robot structure, and more particularly to a wire-type serial robot.
  • the manipulator has been applied to various fields in people's production and life.
  • the drive motor of the traditional manipulator is installed on the joint, which greatly increases the weight of the manipulator itself, reduces the bearing capacity of the manipulator, and is also extremely disadvantageous for high-speed movement and rapid response.
  • the power and energy consumption of the motor must be increased.
  • the drive motor and control circuit of the conventional manipulator are on the arm, which is susceptible to vibration and external pollution when they work. Damage caused by the influence of the object.
  • the structure of the parallel manipulator is large and complicated, and the weight of the additional device is usually equal to the weight of the motor. It cannot be ignored, the number of driving motors is large, the energy consumption is large, and the nonlinearity is strong, and it is not suitable for miniaturization and cost and energy consumption.
  • the structure of the serial pull type robot is not described in the literature at home and abroad.
  • the pull-line serial manipulator adopts the serial manipulator structure and has a simple structure; the drive motor is installed in the base drive box of the manipulator, and the power of the motor is transmitted to the manipulator by the pull wire, and the additional device is rarely used, and the weight of the motor on the arm is overcome to the manipulator.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a cable-type series manipulator.
  • the object of the present invention is achieved by the following technical solutions:
  • a pull-line serial manipulator comprising a wrist joint, an elbow joint, a shoulder joint and a base drive box, the wrist joint having two degrees of freedom of swinging of the wrist joint rod and axial rotation of the end of the manipulator, the elbow joint having one degree of freedom, the shoulder joint With two degrees of freedom, the motors for controlling the joint movement of the robot are mounted in the base drive box; the positive and negative movements of each degree of freedom in the wrist and elbow joint are driven by a corresponding motor winding mechanism.
  • Pulling line drive one degree of freedom corresponds to one pull wire and one motor winding mechanism; the pull wire is wound in the thread groove of the spiral cylinder of the motor winding mechanism, and both ends of each pull wire bypass several pulleys (one of the pulley functions is to change the pull wire
  • the direction is connected with the corresponding joint, and the forward and reverse movement of the corresponding degrees of freedom is realized under the driving of the driving motor of the motor winding mechanism.
  • the wrist joint includes a wrist joint axial rotation mechanism, a wrist joint rod, a wrist joint shaft, and a wrist joint swinging manipulation wire;
  • the wrist joint rod passes the wrist joint shaft and the elbow joint
  • the rod connection, the wrist joint swinging control wire are respectively fixed at two ends of the wrist joint rod centered on the wrist joint shaft, and one end of the wrist joint swinging control wire bypasses the first pulley installed in the inner groove of the elbow joint rod
  • the second pulley is finally wound in the spiral cylindrical thread groove of the corresponding motor winding mechanism, the other end bypasses the third pulley and the fourth pulley installed in the inner groove of the elbow joint rod, and finally wound around the corresponding motor winding mechanism
  • the wrist joint axial rotation mechanism includes a rotating screw, a bearing, a wrist joint axial rotation control wire, a driving slider and a robot end, and the rotating screw is mounted on the wrist joint rod through a bearing to drive the helical tooth of the slider Engaged with the thread groove of the rotating screw;
  • the elbow joint comprises an elbow joint, an elbow joint shaft and an elbow joint manipulation pull wire
  • the elbow joint rod is connected with the shoulder joint rod through the elbow joint shaft, and the elbow joint is operated with two pull wires.
  • the ends are respectively fixed at two ends of the elbow joint rod centered on the elbow joint shaft, wherein one end of the elbow joint manipulation wire bypasses the twelfth pulley and the thirteenth pulley installed in the inner groove of the shoulder joint rod, and finally is wound around
  • the other end of the spiral winding groove of the corresponding motor winding mechanism bypasses the fourteenth pulley and the fifteenth pulley installed in the inner groove of the shoulder joint rod, and is finally wound in the spiral cylindrical thread groove of the corresponding motor winding mechanism.
  • the shoulder joint includes a shoulder joint rod, a shoulder joint rotation and an up and down movement mechanism, and the shoulder joint rod is connected with the shoulder joint rotation and the up and down movement mechanism, and is directly mounted on the base drive box. on.
  • the motor winding mechanism comprises a spiral cylinder and a driving motor, and the steering cable is wound in the spiral of the spiral cylinder, and the motor is wound in the thread groove.
  • the pull wire is elongated at one end and shortened at the other end.
  • the corresponding motor winding mechanism for each of the wrist joints and the elbow joints is mounted on the base drive box, and the control wire is passed through the motor winding mechanism. And the pulley transmits the rotation of each motor to the corresponding degrees of freedom of the corresponding joint to realize the movement.
  • the second pulley and the fourth pulley are disposed on two sides of the inner groove edge of the elbow joint rod, and the first pulley and the third pulley are two pulleys coaxially. Installed in the chute on the elbow joint.
  • the eighth pulley and the eleventh pulley are disposed on both sides of the outer surface edge of the elbow joint, and the seventh pulley and the tenth pulley are coaxial two pulleys. Installed in the chute on the elbow joint; the sixth pulley and the ninth pulley are coaxial two pulleys mounted on the wrist joint shaft outside the elbow joint rod.
  • the thirteenth pulley and the fifteenth pulley are disposed on both sides of the slot edge of the shoulder joint rod, and the twelfth pulley and the fourteenth pulley are coaxial. Two pulleys are mounted in the chute on the shoulder joint.
  • a more preferable solution of the above-mentioned wire-type serial manipulator is that two small pulleys and two large pulleys having different radii are symmetrically mounted on the elbow joint shafts on both sides of the shoulder joint to form a wheel splitter pulley group, and the joint is passed through the joint.
  • the wrist joint swinging control wire is transmitted around the small pulley, and the wrist joint axial rotation of the joint shaft is used to guide the pull wire to pass around the large pulley.
  • the present invention has the following advantages and effects:
  • the invention installs the driving motor in the base driving box of the manipulator, and transmits the power of the motor to the manipulator by the pulling wire, thereby overcoming the influence of the weight of the motor on the arm on the bearing capacity and the movement flexibility of the manipulator; effectively overcoming the existing rope driving parallel
  • the manipulator has a complicated structure and a small working space problem; it solves the unidirectionality that can only be stretched and cannot be compressed in the line drive parallel mechanism; solves the problem of easy slippage of the winding mechanism and the multi-line interference problem in the serial line driving process.
  • each motor drives a joint free pulling wire, and when the motor rotates, one of the operating cable is extended, and the other pulling wire is shortened, so that the steering cable is always kept in tension during the control process, and the line driving parallel is solved.
  • the pulley distribution method proposed by the present invention can be performed according to the requirements of the angle range of the rotation angle of the manipulator.
  • the adjustment effectively overcomes the shortcomings of the small working space in the working process of the rope-driven parallel manipulator.
  • the multiple pulleys are passed through their own independent pulley chain to ensure the transmission.
  • the smoothness of the path solves the problem that many control cables are easy to transmit during the transmission process. Interference problems.
  • FIG. 1 is a schematic structural view of a pull-wire serial robot in an embodiment
  • FIG. 2 is a schematic view of a winding mechanism of a motor in an embodiment
  • Figure 3 is a schematic view showing the structure of the elbow joint in the embodiment
  • FIG. 4 is a schematic view showing a swinging structure of a wrist joint in an embodiment
  • Figure 5 is a schematic view showing the rotation structure of the end of the manipulator in the embodiment
  • Fig. 6 is a schematic view of a pulley block of a large and small wheel in an embodiment.
  • the robot base drive box is designed: the motor winding mechanism is installed in the robot base drive box, and the winding mechanism is a spiral cylinder with a thread groove, which is directly mounted on the rotating shaft of the motor for pulling the control cable. Movement; the rotation of the spiral cylindrical winding mechanism can extend one end of the manipulation wire wound in the spiral groove while the other end is shortened, and the elongation and the shortening amount of the two manipulation wires are the same to ensure the control during the control of the control line Tightening state.
  • Design of each joint 2 degrees of freedom wrist joint, 1 degree of freedom elbow joint and 2 degrees of freedom shoulder joint.
  • the wrist joint includes a wrist joint shaft, a wrist joint rod, and a wrist joint axial rotation mechanism.
  • the wrist joint rod is connected to the elbow joint rod through the wrist joint shaft, and the power of the motor is transmitted by manipulating the pull wire, and the wrist joint rod is rotated axially and counterclockwise around the wrist joint.
  • the wrist joint axial rotation mechanism is composed of a rotating screw, a bearing, a wrist joint axial rotation steering wire, a driving slider and a robot end.
  • the axial rotation of the wrist joint is fixed on the driving slider, and the bottom surface of the driving slider has a helical tooth which meshes with the thread on the rotating screw.
  • the other end of the rotating screw has six faces which are embedded with the inner six sides of the end of the robot.
  • the control pull wire pulls the drive slider to move, and drives the rotary screw to rotate, so that the end of the manipulator rotates.
  • the motor reverses, the direction of the manipulation wire is reversed, and the clockwise and counterclockwise rotation of the end of the wrist joint manipulator is realized.
  • the length of the threaded portion of the rotating screw can be set according to the range of the rotation angle, and the pitch of the rotating screw can be set according to the movement accuracy of the end of the robot.
  • the elbow joint includes an elbow joint shaft and an elbow joint rod.
  • the elbow joint is connected to the shoulder joint rod through the elbow joint shaft, and the elbow joint shaft is rotated around the elbow joint by the manipulation of the pull wire to transmit the power of the motor.
  • the shoulder joint includes a shoulder joint rotation movement and a shoulder joint up and down movement, and the rotation movement and the up and down movement of the shoulder joint are directly started by the motor and installed in the base driving box.
  • the wire-type series manipulator of the embodiment drives the winding mechanism to rotate by the motor mounted on the base, drives the manipulation wire wound around the winding mechanism to drive the wrist joint and the elbow joint movement, and one motor drives the two ends of the cable to complete A joint is smooth and counterclockwise.
  • FIG. 1 is a schematic structural view of a pull-wire serial robot according to the present invention.
  • the main structure of a wire-type serial robot includes a wrist joint 1, an elbow joint 2, a shoulder joint 3, and a base drive case 4 which are sequentially connected.
  • the wrist joint 1 has two degrees of freedom of swinging of the wrist joint rod and axial rotation of the end of the manipulator, the elbow joint 2 has one degree of freedom, and the shoulder joint 3 has two degrees of freedom of axial rotation and up and down movement.
  • the four components of the robot are described as follows:
  • the wrist joint 1 includes a wrist joint axial rotation mechanism 12, a wrist joint shaft 10, a wrist joint shaft 29, and a wrist joint swing manipulation wire.
  • the two degrees of freedom of the wrist joint are the swing of the wrist link around the wrist joint axis 29 and the axial rotation of the end of the manipulator.
  • the swing of the wrist joint rod around the wrist joint shaft is realized by the wrist joint swinging control wire, and the two ends of the swing control pull wire are respectively fixed on the wrist joint rod 10, and the specific position is the two ends of the wrist joint rod centered on the wrist joint shaft 29
  • the steering cable is passed around the pulley to the base drive box and wound around the spiral cylindrical spiral groove of the corresponding motor winding mechanism. As shown in FIG.
  • the wrist joint rod 10 is connected to the elbow joint rod 8 through the wrist joint shaft 29, and the two ends of the swing control pull wire are respectively fixed at both ends of the wrist joint rod centered on the wrist joint shaft, one end of which is bypassed and installed.
  • the first pulley 271 and the second pulley 31 in the inner groove of the elbow joint 8 are finally wound on the spiral cylindrical thread groove of the corresponding motor winding mechanism, and the other end of the manipulation wire is bypassed in the groove of the elbow joint 8
  • the third pulley 272 and the fourth pulley 26 are finally wound around the spiral cylindrical thread groove of the corresponding motor winding mechanism.
  • the second pulley 31 and the fourth pulley 26 are disposed on both sides of the groove edge of the elbow joint rod 8, and the first pulley 271 and the third pulley 272 are coaxial two pulleys, which are installed in the chute on the elbow joint rod,
  • the position of the pulley can be adjusted within the chute according to the range of the swing angle of the wrist joint rod, and can also be used to adjust the tension state of the pull wire.
  • the pulley adopts a groove wheel with a certain inclination.
  • the wrist joint axial rotation mechanism 12 of the present invention includes a rotary screw 33, a bearing 34, a wrist joint, a drive slider 36, a robot end 11 and an axial rotation steering cable.
  • the rotary screw 33 is mounted through the bearing 34.
  • a spiral groove is formed on the rod body of the rotating screw, and meshes with a helical tooth on one side of the driving slider 36.
  • One end of the axial rotation steering wire is fixedly connected to one end of the driving slider 36, and the end of the driving wire is wound.
  • a fifth pulley 38 mounted on the wrist joint rod a sixth pulley 291 mounted on the wrist joint shaft, a seventh pulley 131 and an eighth pulley 132 mounted on the outer surface of the elbow joint rod, and finally wound around the corresponding motor winding
  • the other end of the axial rotation steering cable is fixed to the other end of the driving slider 36, bypassing the ninth pulley 292 mounted on the wrist joint shaft, and the first surface mounted on the outer surface of the elbow joint rod
  • the ten pulley 133 and the eleventh pulley 134 are finally wound around the spiral cylindrical thread groove of the corresponding motor winding mechanism.
  • the eighth pulley 132 and the eleventh pulley 134 are disposed on both sides of the outer surface edge of the elbow joint rod, and the seventh pulley 131 and the tenth pulley 133 are coaxial two pulleys, which are installed in the sliding groove on the elbow joint rod,
  • the pulley position can be used to adjust the tension state adjustment of the cable;
  • the sixth pulley 291 and the ninth pulley 292 are coaxially mounted on the wrist shaft outside the elbow shaft.
  • the pulley adopts a groove wheel with a certain inclination.
  • FIG. 1 Two small pulleys 40 and two large pulleys 41 having different radii are respectively symmetrically mounted on the elbow joint shaft 24 on both sides of the shoulder joint, and constitute a large and small wheel pulley block 7, through which the wrist joint of the joint shaft is oscillated and manipulated.
  • the pulley 40 transmits, and the wrist joint axial rotation rotation of the joint shaft is transmitted around the large pulley 41; the radius of the small pulley 40 matches the second pulley 31 and the fourth pulley 26, and the radius of the large pulley 41 is the same.
  • the eight pulleys 132 and the eleventh pulley 134 are matched to ensure smooth movement of the steering cable.
  • the two-degree-of-freedom control cable of the wrist joint is separated by the pulley of the large and small wheel, so that each control cable passes through an independent pulley chain, which ensures the smoothness of the transmission path and solves the interference in the transmission process of the plurality of manipulation cables. problem.
  • the pulley adopts a groove wheel with a certain inclination.
  • the spiral cylinder mounted on the output shaft of the motor rotates to drive the wrist joint swinging and pulling the wire wound in the spiral cylindrical thread groove to make the steering cable
  • One end is elongated, the other end is shortened, and the elongation and the shortening amount of the pull wire are the same, and the pull wire transmits the power output from the motor to realize the swing of the wrist joint rod.
  • the motor rotates forward and backward, the forward and reverse movements of the wrist joint can be realized.
  • the spiral cylinder mounted on the output shaft of the motor rotates to drive the axial rotation of the wrist joint in the spiral cylindrical thread groove.
  • One end of the control pull wire is elongated, the other end is shortened, and the elongation and the shortening amount of the pull wire are the same.
  • the pull wire transmits the power outputted by the motor, pulls the drive slider to move, drives the rotary screw to rotate, and the end of the robot rotates, and the motor reverses.
  • the steering wire is moved in the opposite direction, the clockwise and counterclockwise rotation of the wrist end of the wrist is achieved.
  • the length of the threaded portion of the rotating screw can be set according to the range of the rotation angle, and the pitch of the rotating screw can be set according to the movement accuracy of the end of the robot.
  • the elbow joint 2 includes an elbow joint 8, an elbow joint shaft 24, and an elbow joint manipulation cable.
  • Figure 3 shows the structure of the elbow joint.
  • the elbow joint is connected to the shoulder joint rod 6 through the elbow joint shaft.
  • the elbow joint rod 8 can be rotated around the elbow joint shaft 24 by the action line of the manipulation pull wire.
  • the ends are respectively fixed at the two ends of the elbow joint 8 centered on the elbow joint shaft 24, so that the elongation of one end of the elbow joint lever during the movement is the same as the shortening of the other end, wherein one end of the pull wire is manipulated.
  • the twelfth pulley 221 and the thirteenth pulley 20 installed in the groove of the shoulder joint rod 6 are bypassed, and finally wound on the spiral cylindrical thread groove of the corresponding motor winding mechanism, and the other end of the manipulation cable is wound around the shoulder joint.
  • the fourteenth pulley 222 and the fifteenth pulley 21 in the inner groove of the rod 6 are finally wound around the spiral cylindrical thread groove of the corresponding motor winding mechanism.
  • the thirteenth pulley 20 and the fifteenth pulley 21 are disposed on both sides of the groove edge of the shoulder joint rod 6, and the twelfth pulley 221 and the fourteenth pulley 222 are coaxial two pulleys, which are mounted on the shoulder joint.
  • the position of the pulley can be adjusted within the chute according to the range of the swing angle of the elbow joint, and can also be used to adjust the tension state of the pull wire.
  • the pulley adopts a groove wheel with a certain inclination.
  • the shoulder joint 3 includes a shoulder joint rod 6, a shoulder joint rotation and an up and down movement mechanism 5, and the shoulder joint rod 6 is connected to the shoulder joint rotation and the up and down movement mechanism 5, and is directly mounted on the base drive box 4.
  • the shoulder joint includes a rotational movement and a vertical movement of the shoulder joint rod 6, wherein the rotation of the shoulder joint rod can be driven by a synchronous belt, and the shoulder joint rod is moved up and down by a cam structure.
  • the present invention centrally mounts the drive motor in the base drive case 4.
  • the motor winding mechanism 15 is as shown in FIG. 2, and the spiral cylinder 16 is mounted on the output shaft of the driving motor 19, and the steering cable is fastened to the spiral cylinder of the winding mechanism by the plum buckle, and wound in the thread groove of the spiral cylinder.
  • the rotation of the motor drives the spiral cylinder to rotate, preventing the steering cable from slipping on the winding mechanism.
  • the driving motor rotates, one end of the steering wire wound on the spiral cylinder is elongated, the other end is shortened, and the elongation of the steering wire is equal to the shortening amount, thereby ensuring that the steering wire is always kept in tension when controlling the joint movement, and the solution is solved.
  • the line drive parallel mechanism only the unidirectionality that cannot be contracted can be stretched.
  • the cable-type serial manipulator structure proposed by the invention drives the winding mechanism to rotate by the motor mounted on the base, drives the manipulation wire wound around the winding mechanism to drive the joint movements, and one motor drives a joint degree of freedom to operate the cable. Smooth and counterclockwise movement of joint freedom.
  • the invention has simple structure, and the distribution method of each pulley can be adjusted according to the requirement of the rotation angle range of the manipulator, thereby effectively overcoming the small problem of the existing working space of the rope-driven parallel manipulator;
  • each motor drives a joint free pulling wire, the rotation of the motor drives one of the pulling wires to extend, and the other wire is shortened, so that the steering wire is always kept in tension during the control process, and the solution is solved.
  • the pulley distribution method proposed by the present invention can be rotated according to the manipulator
  • the angle range needs to be adjusted to effectively overcome the shortcomings of the small working space in the working process of the rope-driven parallel manipulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

一种拉线式串行机械手
技术领域
本发明涉及一种串行机械手结构,特别是一种拉线式串行机械手。
背景技术
机械手已经应用于人们生产生活中的各个领域,传统机械手的驱动电机均安装在关节上,大大增加了机械手自身的重量,减小了机械手的承载能力,同时也对高速运动和快速响应极为不利。为了克服安装于机械手关节上的电机的重量,必须增大电机的功率和能耗;同时,传统的机械手的驱动电动机和控制电路都在机械臂上,在它们工作的时候容易受到震动,外界污染物的影响而造成损坏。
为了克服传统的机械手臂上述的缺点,用绳索、拉线将电机的动力传出,将机械手上的控制电机集中安装在远离末端执行器的底座上的方法逐渐得到重视,国内外的一些学者提出了不同机构形式的绳驱动的并行机械手,如美国国家标准与技术研究所(NIST)的柔索悬挂工作台的新型吊车ROBOCRANE。目前国内北京航空航天大学的陈海伟提出一种绳驱动并联机构机械臂,并对结构与运动学进行分析,这种绳驱动并联机器人将电机安装在机械手的底座上,通过绳索驱动机械手的末端运动。但并联机械手结构庞大复杂,附加装置的重量通常和电机重量相当,不容忽视,驱动电机数多,能耗大;且具有强非线性,不宜实现小型化和降低成本及能耗。关于串行拉线式机械手的结构,国内外文献中均未有记载。
拉线式串行机械手采用串行式机械手结构,构造简单;将驱动电机安装于机械手的底座驱动箱内,用拉线将电机的动力传递给机械手,附加装置极少,克服了手臂上电机重量对机械手承载能力和运动灵活性的影响;通过一个电机的正反转,实现机械手每个自由度的正反运动,使线在运动过程中,总是保持拉紧的状态,解决了线驱动并联机构中只能拉伸不能压缩的单向性;通过巧妙地配置传动滑轮的大小和位置,有效地克服了并联线驱动过程中的工作空间小的缺点。
发明内容
本发明的目的是克服现有技术存在的上述不足,提供一种拉线式串联机械手,本发明的目的通过如下技术方案实现:
一种拉线式串行机械手,包括腕关节、肘关节、肩关节和底座驱动箱,腕关节具有腕关节杆的摆动和机械手末端轴向旋转两个自由度,肘关节具有一个自由度,肩关节具有两个自由度,用于控制机械手各关节运动的电机都安装在底座驱动箱中;所述腕关节和肘关节中的每个自由度的正反运动均由一个相应的电机绕线机构带动拉线驱动,一个自由度对应一条拉线和一个电机绕线机构;拉线缠绕在电机绕线机构的螺旋圆柱的螺纹槽内,每条拉线的两端绕过若干滑轮(滑轮作用之一是改变拉线的走向)与相应关节连接,在电机绕线机构的驱动电机驱动下实现相应自由度的正反运动。
上述一种拉线式串行机械手的更优方案是,所述腕关节包括腕关节轴向旋转机构、腕关节杆、腕关节轴和腕关节摆动操纵拉线;腕关节杆通过腕关节轴与肘关节杆连接,腕关节摆动操纵拉线两端分别固接在以腕关节轴为中心的腕关节杆的两端,腕关节摆动操纵拉线中的一端绕过安装在肘关节杆内槽中的第一滑轮和第二滑轮,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内,另一端绕过安装在肘关节杆内槽中的第三滑轮和第四滑轮,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内;腕关节轴向旋转机构包括旋转螺杆、轴承、腕关节轴向旋转操纵拉线、驱动滑块和机械手末端,旋转螺杆通过轴承安装在腕关节杆上,驱动滑块的斜齿与旋转螺杆的螺纹槽相啮合;轴向旋转操纵拉线一端与驱动滑块的一端固接,操纵拉线的该端绕过安装在腕关节杆上的第五滑轮、安装在腕关节轴上的第六滑轮、安装在肘关节杆外表面的第七滑轮和第八滑轮,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内;轴向旋转操纵拉线的另一端与驱动滑块的另一端固接,绕过安装在腕关节轴上的第九滑轮、安装在肘关节杆外表面的第十滑轮和第十一滑轮,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内。
上述一种拉线式串行机械手的更优方案是,所述肘关节包括肘关节杆、肘关节轴和肘关节操纵拉线,肘关节杆通过肘关节轴与肩关节杆连接,肘关节操纵拉线两端分别固接在以肘关节轴为中心的肘关节杆的两端,其中肘关节操纵拉线的一端绕过安装在肩关节杆内槽中的第十二滑轮和第十三滑轮,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内,另一端绕过安装在肩关节杆内槽中的第十四滑轮和第十五滑轮,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内。
上述一种拉线式串行机械手的更优方案是,所述肩关节包括肩关节杆、肩关节旋转和上下移动机构,肩关节杆与肩关节旋转和上下移动机构相连,直接安装在底座驱动箱上。
上述一种拉线式串行机械手的更优方案是,所述电机绕线机构包括螺旋圆柱和驱动电机,操纵拉线缠绕在螺旋圆柱的螺旋纹内,电机转动时,使缠绕在螺纹槽内的操纵拉线一端伸长,另一端缩短。
上述一种拉线式串行机械手的更优方案是,所述腕关节和肘关节中每个自由度正反运动的相应电机绕线机构均安装在底座驱动箱上,操纵拉线通过电机绕线机构和滑轮将各电机的转动分别传递给相应关节的相应自由度实现运动。
上述一种拉线式串行机械手的更优方案是,所述第二滑轮和第四滑轮布置在肘关节杆内槽边缘的两侧,第一滑轮和第三滑轮为同轴的两个滑轮,安装在肘关节杆上的滑槽内。
上述一种拉线式串行机械手的更优方案是,所述第八滑轮和第十一滑轮布置在肘关节杆外表面边缘的两侧,第七滑轮和第十滑轮为同轴的两个滑轮,安装在肘关节杆上的滑槽内;第六滑轮和第九滑轮为同轴的两个滑轮,安装在肘关节杆外侧的腕关节轴上。
上述一种拉线式串行机械手的更优方案是,所述第十三滑轮和第十五滑轮布置在肩关节杆内槽边缘的两侧,第十二滑轮和第十四滑轮为同轴的两个滑轮,安装在肩关节上的滑槽内。
上述一种拉线式串行机械手的更优方案是,半径不同的两个小滑轮和两个大滑轮分别对称安装于肩关节两侧的肘关节轴上,组成大小轮分线滑轮组,通过此关节轴的腕关节摆动操纵拉线绕经小滑轮传递,通过此关节轴的腕关节轴向旋转操纵拉线绕经大滑轮传递。
与现有技术相比,本发明具有如下优点和效果:
本发明将驱动电机安装于机械手的底座驱动箱内,用拉线将电机的动力传递给机械手,克服了手臂上电机重量对机械手承载能力和运动灵活性的影响;有效地克服现有的绳驱动并联机械手结构复杂,工作空间小问题;解决了线驱动并联机构中只能拉伸不能压缩的单向性;解决绕线机构的易出现打滑问题和串行线驱动过程中的多线干涉问题。本发明提出的拉线式串行机械手的结构,与绳驱动的并行机械手相比,构造非常简单,附加装置极少,更有效地克服了手臂上电机重量对机械手承载能力和运动灵活性的影响;本发明中每个电机驱动一个关节自由的操纵拉线,电机的旋转时带动一条操纵拉线伸长,另一条操纵拉线缩短,使得操纵拉线在控制过程中总是保持拉紧状态,解决了线驱动并联机构中只能拉伸不能压缩的单向性;电机的正反转,驱动操纵拉线完成一个关节自由度的顺、逆时针运动;本发明提出的滑轮分布方法,可以根据机械手转动角度范围要求进行调整,有效地克服了绳驱动并联机械手工作过程中的工作空间小的缺点,通过巧妙地配置传动滑轮的大小和位置,使多条操纵拉线传递过程中均经过自己独立的滑轮链,保证了传送通路的流畅,解决了多条操纵拉线传送过程中易发生干涉的问题。
附图说明
图1为实施方式中一种拉线式串行机械手的结构示意图;
图2为实施方式中电机绕线机构示意图;
图3为实施方式中肘关节结构示意图;
图4为实施方式中腕关节摆动结构示意图;
图5为实施方式中机械手末端旋转结构示意图;
图6为实施方式中大小轮分线滑轮组示意图。
具体实施方式
本实施方式中机械手底座驱动箱设计:电机绕线机构安装在机械手底座驱动箱内,所述绕线机构为一带螺纹槽的螺旋圆柱,直接安装在电机的转动轴上,用于牵引操纵拉线的运动;螺旋圆柱绕线机构的旋转能使缠绕在螺旋槽内的操纵拉线一端伸长,同时另一端缩短,且两条操纵线的伸长量和缩短量相同,以保证操纵线控制过程中保持拉紧状态。
各关节的设计:包括2个自由度的腕关节、1个自由度的肘关节以及2个自由度的肩关节。
所述腕关节包括腕关节轴、腕关节杆和腕关节轴向旋转机构。腕关节杆通过腕关节轴与肘关节杆相连,通过操纵拉线传递电机的动力,完成腕关节杆绕腕关节轴顺、逆时针转动。所述腕关节轴向旋转机构由旋转螺杆、轴承、腕关节轴向旋转操纵拉线、驱动滑块和机械手末端组成。腕关节轴向旋转操纵拉线固结于驱动滑块上,驱动滑块底面有斜齿,与旋转螺杆上的螺纹相啮合,旋转螺杆另一端上有六个面,与机械手末端的内六面相嵌,操纵拉线拉动驱动滑块移动,带动旋转螺杆转动,使机械手末端旋转,电机反转时,操纵拉线运动的方向相反,实现腕关节机械手末端的顺时针和逆时针转动。可根据旋转角度范围来设定旋转螺杆螺纹部分的长度,根据机械手末端的运动精度要求设定旋转螺杆的螺距。
所述肘关节包括肘关节轴和肘关节杆。肘关节杆通过肘关节轴与肩关节杆相连,通过操纵拉线传递电机的动力,完成肘关节杆绕肘关节轴顺、逆时针转动。
所述肩关节包括肩关节旋转运动和肩关节上下移动,肩关节的旋转运动和上下移动直接由电机启动,安装于底座驱动箱内。
本实施方式的拉线式串联机械手,通过安装于底座的电机带动绕线机构转动,带动缠绕于绕线机构的操纵拉线运动,驱动腕关节和肘关节运动,一个电机驱动操纵拉线的两端,完成一个关节的顺,逆时针转动。下面结合附图对本发明的具体实施做进一步的详细描述,但本发明的实施不限于此。
图1为本发明一种拉线式串行机械手的结构示意图。如图1所示,一种拉线式串行机械手的主体结构包括依次连接的腕关节1,肘关节2,肩关节3和底座驱动箱4。腕关节1具有腕关节杆的摆动和机械手末端的轴向旋转两个自由度,肘关节2具有一个自由度,肩关节3具有轴向旋转和上下移动两个自由度。具体地按机械手的四个组成部分叙述如下:
1.腕关节1包括腕关节轴向旋转机构12、腕关节杆10、腕关节轴29和腕关节摆动操纵拉线。腕关节的两个自由度分别是腕关节杆绕腕关节轴29的摆动和机械手末端的轴向旋转。其中腕关节杆绕腕关节轴的摆动通过腕关节摆动操纵拉线实现,摆动操纵拉线的两端分别固接在腕关节杆10上,具体位置是以腕关节轴29为中心的腕关节杆两端;操纵拉线绕经滑轮传到底座驱动箱内,缠绕在相应电机绕线机构的螺旋圆柱螺旋槽上。如图4所示,腕关节杆10通过腕关节轴29与肘关节杆8连接,摆动操纵拉线的两端分别固定在以腕关节轴为中心的腕关节杆两端,其中一端绕过安装在肘关节杆8内槽中的第一滑轮271和第二滑轮31,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽上,操纵拉线的另一端绕过安装在肘关节杆8内槽中的第三滑轮272和第四滑轮26,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽上。第二滑轮31和第四滑轮26布置在肘关节杆8内槽边缘的两侧,第一滑轮271和第三滑轮272为同轴的两个滑轮,安装在肘关节杆上的滑槽内,滑轮位置可以根据腕关节杆的摆动角度范围在滑槽内调整,也可以用于操纵拉线的拉紧状态调整。为了保证操纵拉线在拉动过程中始终在传动轮上,滑轮采用具有一定斜度的凹槽轮。
如图5所示为本发明腕关节轴向旋转机构12,包括旋转螺杆33、轴承34、腕关节、驱动滑块36、机械手末端11和轴向旋转操纵拉线,旋转螺杆33通过轴承34安装在腕关节杆10上,旋转螺杆的杆身上开有螺旋槽,与驱动滑块36一面的斜齿相啮合,轴向旋转操纵拉线一端与驱动滑块36的一端固接,操纵拉线的该端绕过安装在腕关节杆上的第五滑轮38、安装在腕关节轴上的第六滑轮291、安装在肘关节杆外表面的第七滑轮131和第八滑轮132,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽上;轴向旋转操纵拉线的另一端与驱动滑块36的另一端固接,绕过安装在腕关节轴上的第九滑轮292、安装在肘关节杆外表面的第十滑轮133和第十一滑轮134,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽上。第八滑轮132和第十一滑轮134布置在肘关节杆外表面边缘的两侧,第七滑轮131和第十滑轮133为同轴的两个滑轮,安装在肘关节杆上的滑槽内,滑轮位置可用于操纵拉线的拉紧状态调整;第六滑轮291和第九滑轮292为同轴的两个滑轮安装在肘关节杆外侧的腕关节轴上。为了保证操纵拉线在拉动过程中始终在传动轮上,滑轮采用具有一定斜度的凹槽轮。
为了解决腕关节两个自由度的操纵拉线在传动工程中的干涉,本发明设计如图6所示为大小轮分线滑轮组7。半径不同的两个小滑轮40和两个大滑轮41分别对称安装于肩关节两侧的肘关节轴24上,组成大小轮分线滑轮组7,通过此关节轴的腕关节摆动操纵拉线绕经小滑轮40传递,通过此关节轴的腕关节轴向旋转操纵拉线绕经大滑轮41传递;小滑轮40的半径大小与第二滑轮31和第四滑轮26相匹配,大滑轮41的半径大小与第八滑轮132和第十一滑轮134相匹配,以保证操纵拉线运动的流畅。用大小轮分线滑轮组把腕关节两个自由度的操纵拉线分开,使每条操纵拉线均经过独立的滑轮链,保证了传送通路的流畅,解决了多条操纵拉线传送过程中易发生干涉的问题。为了保证操纵拉线在拉动过程中始终在传动轮上,滑轮采用具有一定斜度的凹槽轮。
安装在底座驱动箱内的腕关节摆动电机绕线机构的电机转动时,带动安装在电机输出轴上的螺旋圆柱旋转,驱动缠绕在螺旋圆柱螺纹槽内的腕关节摆动操纵拉线运动,使操纵拉线的一端伸长,另一端缩短,且拉线的伸长量和缩短量相同,拉线传递电机输出的动力,实现腕关节杆的摆动。电机正反转动时,能实现腕关节杆的正反两向运动。安装在底座驱动箱内的腕关节轴向旋转电机绕线机构的电机转动时,带动安装在电机输出轴上的螺旋圆柱旋转,驱动缠绕在螺旋圆柱螺纹槽内的腕关节轴向旋转操纵拉线运动,使操纵拉线的一端伸长,另一端缩短,且拉线的伸长量和缩短量相同,拉线传递电机输出的动力,拉动驱动滑块移动,带动旋转螺杆转动,使机械手末端旋转,电机反转时,操纵拉线运动的方向相反,实现腕关节机械手末端的顺时针和逆时针转动。可根据旋转角度范围来设定旋转螺杆螺纹部分的长度,根据机械手末端的运动精度要求设定旋转螺杆的螺距。
2.肘关节2包括肘关节杆8、肘关节轴24和肘关节操纵拉线。如图3所示为肘关节的结构示意图,肘关节杆通过肘关节轴与肩关节杆6连接,肘关节杆8能在操纵拉线的作用线绕肘关节轴24转动,肘关节操纵拉线的两端分别固接在以肘关节轴24为中心的肘关节杆8的两端,以使肘关节杆在运动过程中操纵拉线一端的伸长量与另一端的缩短量一样,其中操纵拉线的一端绕过安装在肩关节杆6内槽中的第十二滑轮221和第十三滑轮20,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽上,操纵拉线的另一端绕过安装在肩关节杆6内槽中的第十四滑轮222和第十五滑轮21,最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽上。第十三滑轮20和第十五滑轮21布置在肩关节杆6内槽边缘的两侧,第十二滑轮221和第十四滑轮222为同轴的两个滑轮,安装在肩关节上的滑槽内,滑轮位置可以根据肘关节杆的摆动角度范围在滑槽内调整,也可以用于操纵拉线的拉紧状态调整。为了保证操纵拉线在拉动过程中始终在传动轮上,滑轮采用具有一定斜度的凹槽轮。
安装在底座驱动箱内的肘关节相应电机绕线机构的电机转动时,带动安装在电机输出轴上的螺旋圆柱旋转,驱动缠绕在螺旋圆柱螺纹槽内的肘关节操纵拉线运动,使操纵拉线的一端伸长,另一端缩短,且拉线的伸长量和缩短量相同,拉线传递电机输出的动力,实现肘关节杆的转动。电机正反转动时,能实现肘关节杆的正反两向转动。
3.肩关节3包括肩关节杆6、肩关节旋转和上下移动机构5,肩关节杆6与肩关节旋转和上下移动机构5相连,直接安装在底座驱动箱4上。肩关节包括肩关节杆6的旋转运动和上下移动,其中肩关节杆的旋转可以采用同步带传动的方式,肩关节杆上下移动采用凸轮结构驱动。
4.本发明将驱动电机集中安装在底座驱动箱4内。其中电机绕线机构15如图2所示,将螺旋圆柱16安装于驱动电机19的输出轴上,用梅花扣将操纵拉线系于绕线机构的螺旋圆柱上,并缠绕在螺旋圆柱的螺纹槽内,电机转动带动螺旋圆柱旋转,防止操纵拉线在绕线机构上的打滑。驱动电机转动时,使缠绕在螺旋圆柱上的操纵拉线一端伸长,另一端缩短,且操纵线的伸长量与缩短量相等,保证了操纵线控制关节运动时始终保持拉紧状态,解决了线驱动并联机构中只能拉伸不能收缩的单向性。
本发明提出的拉线式串联机械手结构,通过安装于底座的电机带动绕线机构转动,带动缠绕于绕线机构的操纵拉线运动,驱动各关节运动,一个电机驱动一个关节自由度的操纵拉线,完成关节自由度的顺、逆时针运动。本发明结构简单,各滑轮的分布方法可以根据机械手转动角度范围要求进行调整,有效克服了现有的绳驱动并联机械手工作空间小问题;
由上述可知,本发明提出的拉线式串行机械手的结构,与绳驱动的并行机械手相比,构造非常简单,附加装置极少,更有效地克服了手臂上电机重量对机械手承载能力和运动灵活性的影响;本发明中每个电机驱动一个关节自由的操纵拉线,电机的旋转时带动一条操纵拉线伸长,另一条操纵拉线缩短,使得操纵拉线在控制过程中总是保持拉紧状态,解决了线驱动并联机构中只能拉伸不能压缩的单向性;电机的正反转,驱动操纵拉线完成一个关节自由度的顺、逆时针运动;本发明提出的滑轮分布方法,可以根据机械手转动角度范围要求进行调整,有效地克服了绳驱动并联机械手工作过程中的工作空间小的缺点,通过巧妙地配置传动滑轮的大小和位置,使多条操纵拉线传递过程中均经过自己独立的滑轮链,保证了传送通路的流畅,解决了多条操纵拉线传送过程中易发生干涉的问题。

Claims (1)

  1. 1.一种拉线式串行机械手,包括腕关节(1)、肘关节(2)、肩关节(3)和底座驱动箱(4),腕关节(1)具有腕关节杆(10)的摆动和机械手末端(11)的轴向旋转两个自由度,肘关节(2)具有一个自由度,肩关节(3)具有两个自由度,用于控制机械手各关节运动的电机都安装在底座驱动箱(4)中,其特征在于:腕关节(1)和肘关节(2)中的每个自由度的正反运动均由一个相应的电机绕线机构(15)带动拉线驱动,一个自由度对应一条拉线和一个电机绕线机构(15);拉线缠绕在电机绕线机构(15)的螺旋圆柱(16)的螺纹槽内,每条拉线的两端绕过若干滑轮与相应关节连接,在电机绕线机构(15)的驱动电机驱动下实现相应自由度的正反运动。
    2、根据权利要求1所述的一种拉线式串行机械手,其特征在于所述腕关节(1)包括腕关节轴向旋转机构(12)、腕关节杆(10)、腕关节轴(29)和腕关节摆动操纵拉线(28、30);腕关节杆(10)通过腕关节轴(29)与肘关节杆(8)连接,腕关节摆动操纵拉线(28、30)两端分别固接在以腕关节轴(29)为中心的腕关节杆(10)的两端,腕关节摆动操纵拉线(28、30)中的一端绕过安装在肘关节杆(8)内槽中的第一滑轮(271)和第二滑轮(31),最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内,另一端绕过安装在肘关节杆(8)内槽中的第三滑轮(272)和第四滑轮(26),最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内;腕关节轴向旋转机构(12)包括旋转螺杆(33)、轴承(34)、腕关节轴向旋转操纵拉线(35,37)、驱动滑块(36)和机械手末端(11),旋转螺杆(33)通过轴承(34)安装在腕关节杆(10)上,驱动滑块(36)的斜齿与旋转螺杆(33)的螺纹槽相啮合;轴向旋转操纵拉线(35,37)一端与驱动滑块(36)的一端固接,操纵拉线的该端绕过安装在腕关节杆上的第五滑轮(38)、安装在腕关节轴上的第六滑轮(291)、安装在肘关节杆外表面的第七滑轮(131)和第八滑轮(132),最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内;轴向旋转操纵拉线的另一端与驱动滑块(36)的另一端固接,绕过安装在腕关节轴上的第九滑轮(292)、安装在肘关节杆外表面的第十滑轮(133)和第十一滑轮(134),最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内。
    3、根据权利要求1所述的一种拉线式串行机械手,其特征在于所述肘关节(2)包括肘关节杆(8)、肘关节轴(24)和肘关节操纵拉线(23,25),肘关节杆(8)通过肘关节轴(24)与肩关节杆(6)连接,肘关节操纵拉线(23,25)两端分别固接在以肘关节轴(24)为中心的肘关节杆(8)的两端,其中肘关节操纵拉线的一端绕过安装在肩关节杆(6)内槽中的第十二滑轮(221)和第十三滑轮(20),最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内,另一端绕过安装在肩关节杆(6)内槽中的第十四滑轮(222)和第十五滑轮(21),最后缠绕在相应电机绕线机构的螺旋圆柱螺纹槽内。
    4、根据权利要求1所述的一种拉线式串行机械手,其特征在于所述肩关节(3)包括肩关节杆(6)、肩关节旋转和上下移动机构(5),肩关节杆(6)与肩关节旋转和上下移动机构(5)相连,直接安装在底座驱动箱(4)上。
    5、根据权利要求1所述的一种拉线式串行机械手,其特征在于所述电机绕线机构(15)包括螺旋圆柱(16)和驱动电机(19),操纵拉线缠绕在螺旋圆柱(16)的螺旋纹内,电机转动时,使缠绕在螺纹槽内的操纵拉线(17,18)一端伸长,另一端缩短。
    6、根据权利要求1所述的一种拉线式串行机械手,其特征在于所述腕关节(1)和肘关节(2)中每个自由度正反运动的相应电机绕线机构均安装在底座驱动箱(4)上,操纵拉线通过电机绕线机构和滑轮将各电机的转动分别传递给相应关节的相应自由度实现运动。
    7、根据权利要求2所述的一种拉线式串行机械手,其特征在于所述第二滑轮(31)和第四滑轮(26)布置在肘关节杆(8)内槽边缘的两侧,第一滑轮(271)和第三滑轮(272)为同轴的两个滑轮,安装在肘关节杆上的滑槽内。
    8、根据权利要求2所述的一种拉线式串行机械手,其特征在于所述第八滑轮(132)和第十一滑轮(134)布置在肘关节杆(8)外表面边缘的两侧,第七滑轮(131)和第十滑轮(133)为同轴的两个滑轮,安装在肘关节杆上的滑槽内;第六滑轮(291)和第九滑轮(292)为同轴的两个滑轮,安装在肘关节杆外侧的腕关节轴上。
    9.根据权利要求3所述的一种拉线式串行机械手,其特征在于所述第十三滑轮(20)和第十五滑轮(21)布置在肩关节杆(6)内槽边缘的两侧,第十二滑轮(221)和第十四滑轮(222)为同轴的两个滑轮,安装在肩关节上的滑槽内。
    10.根据权利要求1所述的一种拉线式串行机械手,其特征在于肩关节两侧的肘关节轴(24)上安装有半径不同的两个小滑轮(40)和两个大滑轮(41),组成大小轮分线滑轮组(7),通过此关节轴的腕关节摆动操纵拉线绕经小滑轮(40)传递,通过此关节轴的腕关节轴向旋转操纵拉线绕经大滑轮(41)传递。
PCT/CN2010/077202 2010-01-02 2010-09-21 一种拉线式串行机械手 WO2011079631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010003732.8 2010-01-02
CN2010100037328A CN101733743B (zh) 2010-01-02 2010-01-02 一种拉线式串行机械手

Publications (1)

Publication Number Publication Date
WO2011079631A1 true WO2011079631A1 (zh) 2011-07-07

Family

ID=42458041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077202 WO2011079631A1 (zh) 2010-01-02 2010-09-21 一种拉线式串行机械手

Country Status (2)

Country Link
CN (1) CN101733743B (zh)
WO (1) WO2011079631A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481277A (zh) * 2013-10-11 2014-01-01 浙江机电职业技术学院 抢险救灾机器人
CN105415356A (zh) * 2015-12-25 2016-03-23 哈尔滨工业大学 一种分段式超灵巧机械臂
CN107662197A (zh) * 2016-07-28 2018-02-06 深圳市赛尔西生物科技有限公司 机器人
CN107662196A (zh) * 2016-07-28 2018-02-06 深圳市赛尔西生物科技有限公司 机器人
CN108500970A (zh) * 2018-04-18 2018-09-07 广东工业大学 一种实现末端多自由度运动的管内绕绳机构
CN109454619A (zh) * 2018-12-06 2019-03-12 山东省科学院海洋仪器仪表研究所 一种新型多功能七自由度机器人
CN109848977A (zh) * 2019-03-28 2019-06-07 北京勤牛创智科技有限公司 一种小型桌面六自由度机械臂
CN109927021A (zh) * 2017-12-19 2019-06-25 广州中国科学院先进技术研究所 一种7自由度仿生人形机械臂
CN110640782A (zh) * 2019-08-27 2020-01-03 西安电子科技大学 采用拉线驱动的单驱动柔性机械控制系统及方法、机器人
CN112475107A (zh) * 2020-11-10 2021-03-12 国网河南省电力公司武陟县供电公司 一种电力线路拉线扼圈加紧装置
CN112605985A (zh) * 2020-12-23 2021-04-06 中原动力智能机器人有限公司 一种机械臂的拉线传动机构和一种机械臂
CN112847324A (zh) * 2021-01-07 2021-05-28 金陵科技学院 一种绳传动防缠绕装置
CN113183135A (zh) * 2021-05-10 2021-07-30 北京化工大学 一种基于串并混联的七自由度仿人机械臂装置
CN113305806A (zh) * 2021-05-08 2021-08-27 西安交通大学 一种线驱动连续体机器人的驱动机构
CN114795461A (zh) * 2022-05-24 2022-07-29 河北工业大学 一种血管介入机器人位姿调节助力用半自动机械臂
CN114851239A (zh) * 2022-03-04 2022-08-05 深圳鹏行智能研究有限公司 线驱机械首端关节、中间关节、可弯折机械部件及机器人
CN115284327A (zh) * 2022-08-25 2022-11-04 清华大学 一种多自由度腕关节、机械手和机器人
CN107662196B (zh) * 2016-07-28 2024-06-04 一诺云科技(武汉)有限公司 机器人

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733743B (zh) * 2010-01-02 2011-07-06 华南理工大学 一种拉线式串行机械手
CN101890723B (zh) * 2010-07-01 2011-12-21 北京航空航天大学 一种绳驱动拟人臂机器人的驱动机构
CN102672715B (zh) * 2012-05-15 2015-08-26 华南理工大学 一种助残/助老用绳驱动机械臂
CN102941573B (zh) * 2012-11-13 2015-02-25 庄德胜 一种绳驱动多关节机器人
CN103875364B (zh) * 2014-04-15 2016-11-23 王光树 摘果机械手
CN103895018A (zh) * 2014-04-15 2014-07-02 王光树 机械手的自断电装置
CN103878778A (zh) * 2014-04-15 2014-06-25 王光树 曲节机械手
CN103878779B (zh) * 2014-04-15 2016-08-17 机械科学研究总院青岛分院 船舶机械手
CN103895034A (zh) * 2014-04-15 2014-07-02 王光树 一种机械拉绳
CN103878782A (zh) * 2014-04-15 2014-06-25 王光树 自锁机械手
CN103895033A (zh) * 2014-04-15 2014-07-02 王光树 伸缩机械手
CN104440904B (zh) * 2014-12-29 2016-11-09 连云港贝斯特机械设备有限公司 一种钢丝绳传动的机械手
CN104546363B (zh) * 2015-01-08 2016-08-24 刘国青 全方位自动调节骨骼固定支架
CN106313107A (zh) * 2015-06-23 2017-01-11 湖北飞歌科技有限公司 一种机器人仿身臂以及机器人
CN105773598B (zh) * 2016-05-05 2018-10-16 四川大学 一种基于绳体拉力传动的机械手
CN105835050B (zh) * 2016-05-23 2017-11-10 西安电子科技大学 一种三自由度索驱动串联机器人装置
CN105881513B (zh) * 2016-05-28 2017-11-21 苏州工业园区明源金属股份有限公司 一对小臂上设有机械爪手的机器人
CN107685974A (zh) * 2016-08-03 2018-02-13 刘刚 一种将药材串成串的电气机械设备
KR101904524B1 (ko) * 2016-11-16 2018-10-05 재단법인 아산사회복지재단 와이어를 이용한 로봇 관절 구동 장치, 이를 포함하는 내시경 로봇 장치 및 의료용 로봇 장치
CN107253182B (zh) * 2017-06-26 2023-05-23 南京航空航天大学 绳索驱动多自由度串联机械臂及其驱动方法
CN108222527A (zh) * 2018-01-19 2018-06-29 郑军生 一种全自动砌砖机器人
CN108393878A (zh) * 2018-03-05 2018-08-14 宁波Gqy视讯股份有限公司 一种线控手臂及机器人
CN111356561B (zh) * 2018-03-30 2023-07-18 深圳蓝胖子机器人有限公司 一种指节组件、手指机构及机械手
CN108432462B (zh) * 2018-04-18 2023-10-03 广东工业大学 一种摇臂式簇状水果采摘装置
CN108657786A (zh) * 2018-06-06 2018-10-16 江苏创新包装科技有限公司 一种仰角可调式袋体夹取装置
CN108999875B (zh) * 2018-07-26 2021-03-09 北京机械设备研究所 一种用于博登拉线的柔顺转向机构
CN108858164B (zh) * 2018-08-13 2021-07-30 品湛自动化设备制造(苏州)有限公司 一种工业机器人大手臂结构
CN109109017B (zh) * 2018-09-12 2023-10-20 华南农业大学 一种用于绳索牵引机器人的自动排线绕线机构
CN112111933A (zh) * 2019-06-19 2020-12-22 青岛海尔智能技术研发有限公司 洗衣机平衡装置和洗衣机
CN110547094A (zh) * 2019-09-06 2019-12-10 贵州航天智慧农业有限公司 一种微型三自由度采摘机械手
CN110813834B (zh) * 2019-11-05 2021-09-17 宁波大学 一种基于非接触式并联线驱动的太阳能面板清洁机器人
CN112109071A (zh) * 2020-08-31 2020-12-22 中国科学院沈阳自动化研究所 狭窄空间内高灵巧装配机构
CN112453997B (zh) * 2020-11-11 2022-05-27 山东大学 一种刀具的自动冷却系统及工作方法
CN113103276B (zh) * 2021-03-16 2022-12-06 广东省科学院智能制造研究所 一种柔性驱动的协作机器臂关节模块
CN112692862B (zh) * 2021-03-25 2021-10-26 成都博恩思医学机器人有限公司 一种用于机器人的多自由度器械
CN113733150B (zh) * 2021-08-05 2023-02-21 中国科学院自动化研究所 轻量化协作机械臂
CN115781754A (zh) * 2022-11-24 2023-03-14 北京大学第三医院 一种八自由度被动机械臂夹持装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1511609A (en) * 1975-06-03 1978-05-24 Akers Mek Verksted As Robot
DE3034912A1 (de) * 1979-09-17 1981-04-02 Kurt Dipl.-Ing. Steinmaur Ehrat Industrieroboter
WO1989010242A1 (en) * 1988-04-21 1989-11-02 Massachusetts Institute Of Technology Compact cable transmission with cable differential
US5193963A (en) * 1990-10-31 1993-03-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Force reflecting hand controller
CN1136988A (zh) * 1995-05-31 1996-12-04 北京航空航天大学 一种关节驱动机构驱动方法和用途
JP2006192523A (ja) * 2005-01-12 2006-07-27 Sharp Corp 多関節指機構
CN101028712A (zh) * 2007-02-09 2007-09-05 北京航空航天大学 一种绳驱动冗余度机械臂
CN101733743A (zh) * 2010-01-02 2010-06-16 华南理工大学 一种拉线式串行机械手

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1511609A (en) * 1975-06-03 1978-05-24 Akers Mek Verksted As Robot
DE3034912A1 (de) * 1979-09-17 1981-04-02 Kurt Dipl.-Ing. Steinmaur Ehrat Industrieroboter
WO1989010242A1 (en) * 1988-04-21 1989-11-02 Massachusetts Institute Of Technology Compact cable transmission with cable differential
US5193963A (en) * 1990-10-31 1993-03-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Force reflecting hand controller
CN1136988A (zh) * 1995-05-31 1996-12-04 北京航空航天大学 一种关节驱动机构驱动方法和用途
JP2006192523A (ja) * 2005-01-12 2006-07-27 Sharp Corp 多関節指機構
CN101028712A (zh) * 2007-02-09 2007-09-05 北京航空航天大学 一种绳驱动冗余度机械臂
CN101733743A (zh) * 2010-01-02 2010-06-16 华南理工大学 一种拉线式串行机械手

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481277A (zh) * 2013-10-11 2014-01-01 浙江机电职业技术学院 抢险救灾机器人
CN105415356A (zh) * 2015-12-25 2016-03-23 哈尔滨工业大学 一种分段式超灵巧机械臂
CN107662197A (zh) * 2016-07-28 2018-02-06 深圳市赛尔西生物科技有限公司 机器人
CN107662196A (zh) * 2016-07-28 2018-02-06 深圳市赛尔西生物科技有限公司 机器人
CN107662196B (zh) * 2016-07-28 2024-06-04 一诺云科技(武汉)有限公司 机器人
CN107662197B (zh) * 2016-07-28 2024-05-03 南京勤德智能科技有限公司 机器人
CN109927021A (zh) * 2017-12-19 2019-06-25 广州中国科学院先进技术研究所 一种7自由度仿生人形机械臂
CN108500970B (zh) * 2018-04-18 2023-10-03 广东工业大学 一种实现末端多自由度运动的管内绕绳机构
CN108500970A (zh) * 2018-04-18 2018-09-07 广东工业大学 一种实现末端多自由度运动的管内绕绳机构
CN109454619A (zh) * 2018-12-06 2019-03-12 山东省科学院海洋仪器仪表研究所 一种新型多功能七自由度机器人
CN109848977A (zh) * 2019-03-28 2019-06-07 北京勤牛创智科技有限公司 一种小型桌面六自由度机械臂
CN109848977B (zh) * 2019-03-28 2024-03-26 北京勤牛创智科技有限公司 一种小型桌面六自由度机械臂
CN110640782A (zh) * 2019-08-27 2020-01-03 西安电子科技大学 采用拉线驱动的单驱动柔性机械控制系统及方法、机器人
CN112475107A (zh) * 2020-11-10 2021-03-12 国网河南省电力公司武陟县供电公司 一种电力线路拉线扼圈加紧装置
CN112605985A (zh) * 2020-12-23 2021-04-06 中原动力智能机器人有限公司 一种机械臂的拉线传动机构和一种机械臂
CN112847324A (zh) * 2021-01-07 2021-05-28 金陵科技学院 一种绳传动防缠绕装置
CN112847324B (zh) * 2021-01-07 2022-07-19 金陵科技学院 一种绳传动防缠绕装置
CN113305806A (zh) * 2021-05-08 2021-08-27 西安交通大学 一种线驱动连续体机器人的驱动机构
CN113183135A (zh) * 2021-05-10 2021-07-30 北京化工大学 一种基于串并混联的七自由度仿人机械臂装置
CN113183135B (zh) * 2021-05-10 2023-12-15 北京化工大学 一种基于串并混联的七自由度仿人机械臂装置
CN114851239B (zh) * 2022-03-04 2024-03-12 深圳鹏行智能研究有限公司 线驱机械首端关节、中间关节、可弯折机械部件及机器人
CN114851239A (zh) * 2022-03-04 2022-08-05 深圳鹏行智能研究有限公司 线驱机械首端关节、中间关节、可弯折机械部件及机器人
CN114795461B (zh) * 2022-05-24 2024-04-09 河北工业大学 一种血管介入机器人位姿调节助力用半自动机械臂
CN114795461A (zh) * 2022-05-24 2022-07-29 河北工业大学 一种血管介入机器人位姿调节助力用半自动机械臂
CN115284327A (zh) * 2022-08-25 2022-11-04 清华大学 一种多自由度腕关节、机械手和机器人

Also Published As

Publication number Publication date
CN101733743B (zh) 2011-07-06
CN101733743A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2011079631A1 (zh) 一种拉线式串行机械手
CN105662783B (zh) 一种外骨骼式上肢康复训练机器人
US11439519B2 (en) Under-driven prosthetic hand with self-adaptive grasping function
CN208005702U (zh) 一种杠杆式张角可变机械爪
CN107253182B (zh) 绳索驱动多自由度串联机械臂及其驱动方法
CN102672715B (zh) 一种助残/助老用绳驱动机械臂
CN110315511A (zh) 一种采用被动弹簧张紧的索驱动并联分拣机器人
CN110154045B (zh) 一种柔索驱动串联四自由度喷涂机械臂
CN108994864A (zh) 双腱绳串联式耦合自适应手指装置
CN104942818B (zh) 一种7自由度五指机械手
CN107199573A (zh) 一种生产线夹持工件用机械手
CN101508115B (zh) 变序欠驱动两关节机器人手指装置
CN108908382A (zh) 腱绳传动的耦合自适应三指差动机器人手爪装置
WO2021012731A1 (zh) 一种绳索驱动三自由度的训练机器人
CN201824353U (zh) 一种拉线式串行机械手
CN105455902A (zh) 机器人手腕和手术机器人
CN108544518B (zh) 一种主动双模式绳驱动五指灵巧机械手
CN112936322B (zh) 一种基于张拉整体结构的多指机械手爪、机器人
CN202878318U (zh) 一种水下牵引滑轮式拟人机械手
CN108237522A (zh) 一种绳索驱动装置及机械臂
CN112536789A (zh) 一种刚柔结合式外肢体机械臂及其辅助作业装置
WO2023138071A1 (zh) 一种欠驱动连续体机械臂
CN202788411U (zh) 拉伸弹簧式提升门
CN115107003A (zh) 面向水果采摘的刚柔耦合绳驱动外肢体机器人
CN101549497A (zh) 轻型机械臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840420

Country of ref document: EP

Kind code of ref document: A1