WO2011079508A1 - 原油降粘降凝组合物 - Google Patents

原油降粘降凝组合物 Download PDF

Info

Publication number
WO2011079508A1
WO2011079508A1 PCT/CN2010/002019 CN2010002019W WO2011079508A1 WO 2011079508 A1 WO2011079508 A1 WO 2011079508A1 CN 2010002019 W CN2010002019 W CN 2010002019W WO 2011079508 A1 WO2011079508 A1 WO 2011079508A1
Authority
WO
WIPO (PCT)
Prior art keywords
pour point
organic
crude oil
clay
group
Prior art date
Application number
PCT/CN2010/002019
Other languages
English (en)
French (fr)
Inventor
张冬敏
阳明书
张立新
丁燕芬
姜保良
张世民
李莉
王峰
支树洁
霍连风
欧阳欣
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2011079508A1 publication Critical patent/WO2011079508A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay

Definitions

  • the invention relates to a crude oil viscosity reducing and depressing composition, relating to the technical fields of organic chemistry, petroleum industry and pipeline system.
  • Crude oil is a multi-component, complex hydrocarbon mixture containing paraffin and also contains a certain amount of gum and asphaltenes. Paraffin wax is easily dissolved in crude oil, and will precipitate from the crude oil when the temperature is lowered to form wax crystals; and as the temperature decreases, the wax crystals increase, forming a three-dimensional network structure, which causes the crude oil to lose fluidity, and is used for oil exploitation and transportation. It is very difficult. As the volume of crude oil extraction and transportation continues to increase, the proportion of low-wax crude oil declines, and the proportion of high-wax crude oil increases. This type of crude oil is characterized by high condensation points, high apparent viscosity at low temperatures, poor fluidity, and difficulty in pipe transportation.
  • the above-mentioned high-condensation crude oil is used in the form of a station-by-station heating, but the investment in the heating station is relatively large, and the fuel and power consumption is high.
  • the pipeline fails to replenish heat energy for crude oil for some reason, the pipeline has the danger of "condensation pipe", and it is difficult to achieve efficient and safe transportation.
  • Emulsion technology is one of the solutions for the transport of high-condensation crude oils, requiring the use of surfactant-based emulsifier compositions.
  • CN 1091133C Patent No. ZL 97105954. 3
  • CN 1073139C discloses a composition consisting of lignin, fatty alcohol polyepoxyether sulfate, polyacrylamide, sodium tripolycitrate and sodium hydroxide
  • CN 1233783C patent number ZL 02159001.
  • a composition comprising a carboxylated polyether, sodium carbonate, sodium decyl sulfonate and a cationic polyelectrolyte PF-C is disclosed.
  • These emulsifier compositions are mixed with crude oil and water in a certain ratio to form an oil-in-water emulsion, and then transported by pipeline, but this The high moisture content of some oil-in-water emulsions will reduce the efficiency of pipeline transportation, and there is a problem of emulsion demulsification and dehydration, and the overall operation cost is high.
  • pour point depressant From the point of view of reducing transportation energy consumption and cost, adding chemical pour point depressant to crude oil is the easiest and most effective way to achieve normal temperature transportation of crude oil.
  • a good chemical pour point depressant not only reduces the freezing point of the crude oil, but also reduces the viscosity of the crude oil.
  • the basic mechanism of pour point depressing is: changing the wax crystal form precipitated by paraffin in the cooling process of crude oil, inhibiting the formation of three-dimensional network structure of wax crystal in crude oil, producing the effect of depressing and reducing viscosity, improving the low temperature fluidity of crude oil, thereby achieving waxy
  • the pour point depressant achieves the purpose of pour point reduction through nucleation, eutectication and adsorption.
  • the existing chemical pour point depressant is an organic polymer compound composed of two kinds of different polar units of a non- (weak) polar alkyl group and a polar group, in order to distinguish from the pour point depressant based on the inorganic nanoparticles of the present invention, They are referred to as "organic pour point depressants" in the present invention.
  • organic pour point depressants can be traced back to the chlorinated paraffin and naphthalene condensation products (trade name Paraflow) disclosed in U.S. Patent No. 1,815,022, the disclosure of which is incorporated herein by reference.
  • the coagulant is a fine resin particle which does not indicate a specific component; U.S. Patent No. 3,048,479, issued to U.S.
  • Patent No. 3,048,479 discloses the use of an ethylene-vinyl acetate copolymer as a crude oil pour point depressant. Most of the subsequent pour point depressants were modified on the basis of this, such as changing the copolymer composition, introducing a third copolymer unit, multi-component compounding, and the like.
  • US 4,160,459 discloses an ethylene-vinyl acetate-acrylate terpolymer crude oil pour point depressant, CN 1074037C (Patent No. ZL 96115577.
  • CN 1141372C discloses a maleic anhydride-2-methacrylate monovinyl carboxylate ternary random copolymer pour point depressant and a pour point depressant combination thereof with a nonionic surfactant , CN 1141372C (Patent No. ZL 00135876. 6) discloses an ethylene-vinyl acetate copolymer, a high alcohol ester of acrylic acid-maleic anhydride-vinyl acetate copolymer, a high alcohol ester of acrylic acid.
  • a liquid crude oil pour point depressant prepared by proportioning a plurality of high molecular polymers such as polymers, epoxy resins and polyethers with an organic solvent, CN 101100599A (Application No.
  • pour point depressant leads to an increase in the amount of deposition in the pipeline, increasing the transport resistance and reducing the effective diameter.
  • Clay is a kind of natural layered silicate mineral with a thickness of about 1 nm, length and width (diameter) ⁇ ) 1 ⁇ ) 2 nm, belonging to two-dimensional inorganic nanomaterials. Among them, there is a kind of swelling clay which has strong water swelling and can separate the free nano-sheets in water at low concentration.
  • a typical representative of expansive clay is the Smectite Group clay, including montmorillonite.
  • montmorillonite (Montmorillonite), Hectorite, Nontronite, Saponite, etc. Recently, there are some synthetic products, in which montmorillonite is bentonite
  • the smectite clay has a strong adsorption capacity for polar organic molecules, and a large amount of hydrated metal cations (Na + , Ca 2+ , etc.) between the sheets can be replaced by other cations (including inorganic cations and organic cations).
  • the hydroxyl group (less) at the edge of the layer also has a certain chemical reactivity; therefore, it can be adsorbed, cation exchanged or chemically reacted with a reactive hydroxyl group.
  • the smectite clay should be modified to form a modified clay product.
  • the smectite clay and its modified products are widely used in various industries, mainly including oil exploitation, paint coating, adsorbent, cosmetics and so on.
  • smectite clay has also been used for the modification of polymer materials, and polymer-clay nanocomposites can be obtained.
  • the mechanical properties, heat resistance, barrier properties, P and flammability of the materials are different. Improvement.
  • the crystallization behavior of polymers tends to be quite different from that of polymer bodies due to the presence of clay nanosheets.
  • the specific performance is: crystal size decreases, crystallization rate changes, and even Crystal form variation occurs.
  • the polymer-clay nanocomposite also has a rheological behavior of "shear thinning", that is, the viscosity of the nanocomposite melt decreases at high shear rates.
  • shear thinning the viscosity of the nanocomposite melt decreases at high shear rates.
  • An object of the present invention is to provide a crude oil viscosity reducing pour point depressing composition which has a better pour point depressing effect and a low temperature long term stabilizing effect.
  • the invention consists of clay, organic pour point depressant and dispersion medium.
  • the weight ratio of clay to organic pour point depressant is 1:0 to 1:5, and the dispersion medium accounts for 1% ⁇ 99% of the total weight ratio.
  • the clay of the present invention is selected from the group consisting of smectite clays, specifically including smectite, hectorite, nontronite and saponite, wherein montmorillonite is effective as bentonite mineral, wherein montmorillonite is an active ingredient of bentonite mineral
  • smectite clay is an unmodified inorganic clay or an organic clay modified by an organic substance; the smectite clay is an unmodified inorganic clay;
  • the unmodified inorganic clay is a sodium-based clay or a soda-calcium-based clay;
  • the so-called sodium-based and so-sodium-calcium-based refers to the type of exchangeable cation cation between clay sheets:
  • the exchangeable cations in the sodium-based clay are basically It is Na + ;
  • the exchangeable cations in the soda-calcium-based clay are mainly Na + , and there is also a relatively small amount of Ca 2+ ;
  • the above inorganic clay is relatively easy to disperse into clay sheet nanoparticles; as for the calcium-sodium-based viscosity Soil, calcium-based clay or other types of inorganic clay, relatively poorly dispersed, should be converted to sodium-based clay before use;
  • the organic clay is an organic clay obtained by modifying an inorganic clay with an organic cation, or an organic clay modified by an organic cation and treated with a silane coupling agent; the selected organic cation includes an organic ammonium salt cation, an organic phosphorus salt.
  • the cation is selected from the group consisting of a long-chain quaternary ammonium salt and a quaternary phosphonium salt cation, wherein the number of long carbon chains is 2 or 1, and the long carbon chain is C 12 3 .
  • a short carbon chain of methyl, benzyl or hydroxyethyl selected from the group consisting of dodecyltrimethylammonium, tetradecyltrimethylammonium, hexamethylenetrimethylammonium, ten Octa-trimethylammonium, hydrogenated cocotrimethylammonium, hydrogenated tallow trimethylammonium, cetyldimethylbenzylammonium, 18-yard trimethylbenzylammonium, two Decenyltrimethylammonium, dodecyltrimethylammonium, bishydroxyethylhexadecanylmethylammonium, bishydroxyethyloctadecylmethylammonium, bis-dodecyldimethyl chloride Ammonium, dihexadecyldimethylammonium chloride, hydrogenated dimethyl dimethylammonium, octadecyl dimethyl ammonium chloride, dihydrogenated tallow dimethyl
  • the silicon germanium coupling agent used is selected from one or a combination of any of the following coupling agents:
  • X′ is selected from ⁇ -aminopropyl, ⁇ -( ⁇ -aminoethyl) 1-aminopropyl , ⁇ , ⁇ '- ( ⁇ -aminoethyl)-aminopropyl and aniline methyl;
  • Epoxy alkyl silane coupling agent ( ⁇ '- R') n - Si- X «- n) , X' is an epoxy group, and R' is selected from -CH 2 - 0- (CH 2 a 3 -, - (CH 2 ) plant and - (CH 2 ) 8 - one;
  • X' is a group selected from the group consisting of a mercapto group, an isocyanate group, and a fluorine atom group;
  • the hydrolyzable group X is selected from one or more groups selected from the group consisting of chlorine, methoxy, ethoxy, methoxyethoxy and acetoxy, and R is the number of carbon chains.
  • a hydrocarbon group of 1 to 18, n is 1 to 3;
  • the organic clay is characterized in that: the organic clay obtained by the organic cation modification is prepared by an organic modification method of a conventional inorganic clay, that is, an ion adsorption or exchange method; The organic clay modified by the organic cation and treated by the silicon compound coupling agent is prepared by an organic modification method of conventional inorganic clay, that is, an ion adsorption or exchange method, and then a conventional coupling agent treatment method. ;
  • the clay has strong adsorption capacity for polar organic molecules; the unmodified inorganic clay can adsorb organic polar molecules such as colloidal compounds in crude oil, thereby being further dispersed in the form of lamellar nanoparticles.
  • organic polar molecules such as colloidal compounds in crude oil
  • the organic clay modified by the organic matter reduces the polarity of the clay layer, improves the lipophilicity, and is more conducive to dispersing and dissociating into the nano-clay layer in the crude oil; these clays form nanometers in the crude oil.
  • Particles as a heterogeneous nucleating agent for paraffin crystals, change the wax crystal morphology precipitated by paraffin in the cooling process of crude oil by nucleation, eutectic action and adsorption, reduce the temperature of wax crystal precipitation, change wax crystal size, and inhibit
  • the wax crystal forms a three-dimensional network structure in the crude oil, which improves the low-temperature fluidity of the crude oil and achieves the effect of reducing the viscosity and reducing the viscosity;
  • the organic pour point depressant of the present invention includes, for example, an ethylene-vinyl acetate copolymer pour point depressant, an ethylene monoacrylate copolymer pour point depressant, an ethylene-vinyl acetate monoacrylate terpolymer pour point depressant, ethylene monovinyl acetate.
  • the dispersion medium is toluene, xylene, diesel, kerosene or crude oil.
  • Example 1 Commercially available bentonite having a particle size of 325 mesh and a particle size of 45 ⁇ m. Its active ingredient is sodium-based montmorillonite with a content of 90%.
  • a reduced viscosity pour point depressing composition comprising sodium montmorillonite and an ethylene-vinyl acetate copolymer pour point depressant is added to the waxy crude oil in the following manner: first 50 ppm by weight of sodium montmorillonite and 50 ppm by weight of ethylene -
  • the crude oil viscosity reducing pour point depressant of vinyl acetate copolymer pour point depressant is dispersed in diesel oil at a concentration of 1%, and then added to the waxy crude oil, the temperature is controlled at about 64 ;; mechanical stirring at a speed of 1000 rpm, so that the crude oil is reduced in viscosity
  • the pour point depressing composition was uniformly dispersed in the crude oil, and stirred for 5 minutes and then cooled. Save under 25 ⁇
  • Example 2 Preparation of organic montmorillonite: 100 g of raw material sodium montmorillonite was stirred in 500 ml of a deionized water dispersion medium to form a suspension dispersion A; then the treatment agent dioctadecyldimethylammonium chloride was prepared. 70g was added to the suspension A, and the mixture was stirred at 80 to 90 ° C for 4 hours. After filtration, the filtrate was washed several times with deionized water until no halogen ions were present in the wash solution. In. The filtrate is dried and pulverized to obtain an organic clay having a particle diameter of 20 to 30 Mm and a modified component of dioctadecyldimethylammonium cation.
  • the octadecyldimethylammonium cation-modified organic clay is added to the waxy crude oil as follows: First, 50 ppm by weight of the octadecyldimethylammonium cation-modified organic clay is directly added to the In the wax crude oil, the control temperature is about 55 ° C; mechanical stirring is performed at a speed of 1000 rpm, so that the organic clay is uniformly dispersed in the crude oil, and stirred for 5 minutes and then cooled. Store at 25 °C. The viscosity of crude oil added to organic clay and crude oil without any treatment is compared as shown in the following table.
  • Example 3 Preparation of organic montmorillonite: 100 g of raw material sodium montmorillonite was stirred in 500 ml of a deionized water dispersion medium to form a suspension dispersion A; then the treatment agent dihydrogenated tallow dimethyl ammonium 60 g The mixture was added to the suspension A, and the mixture was stirred at 80 to 90 ° C for 4 hours, and filtered; the filtrate was washed several times with deionized water until no 3 ⁇ 4 ions were present in the washing solution. The filtrate is dried and pulverized to obtain an organic clay having a particle size of 20 to 30 Mm and a modified component of a dihydrogenated tallow dimethylammonium cation.
  • the organic clay modified with dihydrogenated tallow dimethyl ammonium cation is added to the waxy crude oil in the following manner: 250 P pm parts by weight of the hydrogenated tallow dimethylammonium cation-modified organic clay is firstly The concentration of 10 wt% was dispersed in xylene, and then added to the waxy crude oil, and the temperature was controlled at about 64 ° C; the mechanical stirring was performed at a speed of 1000 rpm, so that the organic clay was uniformly dispersed in the crude oil, and stirred for 5 minutes and then cooled. Store at 25 °C. Adding organic clay to crude oil without any treatment The viscosity of crude oil is compared as shown in the table below.
  • Example 4 A crude oil viscosity reducing pour point depressant composition comprising the bis-octadecyl dimethylammonium cation-modified organic clay obtained in Example 2 and an ethylene-vinyl acetate copolymer pour point depressant was added as follows To waxy crude oil: firstly disperse 50ppm part by weight of organic clay and 50ppm part by weight of ethylene-vinyl acetate copolymer pour point depressant in kerosene at a concentration of 10wt%, then add it to waxy crude oil, and control the temperature at 70 ° C is about to be; mechanically stirred at a speed of l lOO rpm, so that the crude oil viscosity reducing and depressing composition is uniformly dispersed in the crude oil, and stirred for 10 minutes and then cooled. Store at 25 °C. The viscosity of crude oil added to the crude oil viscosity reducing pour point depressant composition and crude oil without any treatment is compared as
  • Example 5 A crude oil viscosity reducing pour point depressing composition composed of the octadecyldimethylammonium cation-modified organic clay obtained in Example 2 and an ethylene-vinyl acetate copolymer pour point depressant was added as follows.
  • Example 6 Preparation of organic montmorillonite: 100 g of raw material sodium montmorillonite was stirred in 500 ml of a deionized water dispersion medium to form a suspension dispersion A; then a treatment agent of docosatrimethylammonium 65 g was added thereto. In the suspension A, the mixture was stirred at 80 to 90 ° C for 4 hours, and then filtered; the filtrate was washed several times with deionized water until no halogen ions were present in the washing liquid. The filtrate was dried and pulverized to obtain an organic clay having a particle size of 2 (T30 Mm and a modified component of a docosatrimethylammonium cation).
  • An organic clay modified with a docosatrimethylammonium cation is added to the wax as follows
  • crude oil 50 ppm by weight of docosatrimethylammonium cation-modified organic clay and 50 ppm by weight of ethylene-vinyl acetate copolymer pour point depressant are dispersed in crude oil at a concentration of 5%, and then added
  • the control temperature is about 60 ° C; mechanical stirring is carried out at 150 rpm, so that the organic clay is uniformly dispersed in the crude oil, and stirred for 5 minutes and then cooled.
  • Store at 25 °C Store at 25 °C.
  • the viscosity of crude oil added to the crude oil viscosity reducing pour point depressant composition and crude oil without any treatment is compared as shown in the following table.
  • Example 7 The viscosity reduction and coagulation of crude oil composed of the octadecyldimethylammonium cation-modified organic clay obtained in Example 2 and a styrene-maleic anhydride-acrylate terpolymer pour point depressant
  • the composition is added to the waxy crude oil in such a manner that 150 ppm by weight of the organic clay and 50 ppra parts by weight of the styrene-maleic anhydride-acrylate terpolymer pour point depressant are dispersed at a concentration of 10% by weight.
  • Example 8 Preparation of organic montmorillonite: 100 g of raw material sodium montmorillonite was stirred in 500 ml of a deionized water dispersion medium to form a suspension dispersion A; then a treating agent cetyltrimethylammonium bromide 40 g was prepared. Adding to the suspension A, the mixture is stirred at 80 to 9 (TC under stirring for 4.5 hours); the filtrate is washed several times with deionized water until no 3 ⁇ 4 ions are present in the washing solution. The material is dried and pulverized to obtain an organic montmorillonite modified with a particle size of 20 to 30 Mm of hexadecanyltrimethylammonium bromide.
  • a crude oil viscosity reducing pour point depressing composition comprising a hexadecanyltrimethylammonium bromide modified and a 12-mercaptotrimethoxysilane-treated organic clay and an acetamethylene-vinyl acetate copolymer pour point depressant as follows Adding to the waxy crude oil: First, 50ppm parts by weight of 16-grafted trimethylammonium bromide modified and 12-mercaptotrimethoxysilane-treated organic clay and 50ppm by weight of ethylene-vinyl acetate copolymer are set.
  • the crude oil viscosity reducing and depressing composition composed of the agent is dispersed in the kerosene at a concentration of 8%, and then added In the waxy crude oil, the control temperature is about 64 ° C; mechanical stirring is performed at a speed of 1000 rpm, so that the crude oil viscosity reducing and depressing composition is uniformly dispersed in the crude oil, and stirred for 5 minutes and then cooled. Store at 25 °C.
  • the viscosity of crude oil added to the crude oil viscosity reducing pour point depressant composition and crude oil without any treatment is compared as shown in the following table.
  • ethylene-vinyl acetate copolymer pour point depressant 50 ppm by weight of ethylene-vinyl acetate copolymer pour point depressant is dispersed in diesel oil at a concentration of 1 wt%, and then added to waxy crude oil, the temperature is controlled at about 64 ° C; mechanical stirring at 100 rpm, so that the nanoparticles are lowered The coagulant was uniformly dispersed in the crude oil, and stirred for 5 minutes and then cooled. Store at 25 °C. The viscosity of the crude oil to which the ethylene-vinyl acetate copolymer pour point depressant was added and the crude oil which was not subjected to any treatment were compared as shown in the following table.
  • the viscosity of crude oil decreases, the viscosity decreases further under the shear field, and has good fluidity; whether there is stirring cooling or stirring cooling, the temperature of crude oil drops to 15 ⁇ 35 °C. When it is between, it has good low temperature fluidity and good rheology and aging.
  • the crude oil viscosity reduction and pour point depressing composition of the invention changes the wax crystal morphology precipitated by the paraffin wax during the cooling process of the crude oil, reduces the temperature of wax crystal precipitation, changes the wax crystal size, inhibits the wax crystal from forming a three-dimensional network structure in the crude oil, and improves the crude oil.
  • the low temperature fluidity achieves the effect of depressing and reducing viscosity, and has good pour point depressing and viscosity reducing effects on different oil products, and has good timeliness.
  • the viscosity of the crude oil decreases, the viscosity decreases further under the shear field, and the fluidity is good; whether the mixture has agitation cooling or no stirring cooling, the low temperature fluidity is good. , has good rheology and timeliness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

原油降粘降凝组合物 技术领域
本发明是一种原油降粘降凝组合物,涉及有机化学、石油工业及管道系 统技术领域。
背景技术
原油是一种含有石蜡的多组分的复杂烃类混合物, 并且还含有一定量 的胶质和沥青质。 石蜡易溶解于原油中, 在温度降低时会从原油中析出, 形成蜡晶; 且随着温度下降, 蜡晶增多, 形成三维网状结构, 使原油失去 流动性, 给石油的开采和输送带来很大困难。 而随着原油开采及运输量的 不断增加, 低蜡原油比重下降, 高蜡原油比重增加。 这类原油的特点是凝 点高, 低温时表观黏度大、 流动性差、 管输困难。 传统上对这类高凝原油 均采用逐站加热输送, 但是这种方法加热站的投资较大, 燃料和动力消耗 较高, 加热自耗燃料原油达输送原油量的 0. 6%以上; 而管道一旦因某种原 因而无法正常为原油补充热能, 管线有 "凝管"的危险, 难以达到高效安 全输送的目的。
乳液技术是针对高凝原油输送的解决方案之一, 需要使用以表面活性 剂为核心的乳化剂组合物。 例如, CN 1091133C (专利号 ZL 97105954. 3) 公开了一种由十二垸基苯磺酸钠、 院基酚聚氧乙烯醚、 油酸钠和碱构成的 组合物, CN 1073139C (专利号 ZL 98120311. 6 )公开了一种由木质素、脂 肪醇聚环氧乙垸醚硫酸酯、 聚丙烯酰胺、 三聚磔酸钠和氢氧化钠构成的组 合物, CN 1233783C (专利号 ZL 02159001. X)公开了一种包含羧基化聚醚、 碳酸钠、焼基磺酸钠和阳离子聚电解质 PF-C的组合物。将这些乳化剂组合 物与原油和水按一定比例混合制成水包油乳液后再进行管线输送, 但是这 些水包油乳液中水分含量很高,会降低管线输送效率,且存在乳液的破乳、 脱水问题, 整体运行成本较高。
从降低输送能耗和成本来看, 向原油中添加化学降凝剂是实现原油常 温输送的最简便和最有效的方法。 良好的化学降凝剂不但可以降低原油的 凝点, 而且可以降低原油的黏度。 其基本降凝机理是: 改变石蜡在原油冷 却过程中析出的蜡晶形态, 抑制蜡晶在原油中形成三维网状结构, 产生降 凝降黏效果, 改善原油的低温流动性, 从而达到含蜡原油在常温下输送的 目的。 降凝剂通过晶核作用、 共晶作用和吸附作用实现降凝目的。
现有化学降凝剂是由非(弱)极性烷基基团和极性基团两类不同极性 单元的有机高分子化合物,为了和本发明基于无机纳米粒子的降凝剂区别, 在本发明中将它们称为"有机降凝剂"。最早的有机降凝剂可以追溯到 1930 年的美国专利 US 1815022 公开的氯化石蜡和萘缩合产物 (商品名 Paraflow) , 至今仍在应用在润滑油中; 1942年美国专利 US 2303823中描 述的降凝剂则是一种未标明具体成分的树脂细小颗粒; 1959年的美国专利 US 3048479首次公开了乙烯一醋酸乙烯酯共聚物用作原油降凝剂。后来的 降凝剂大多在此基础上进行改进, 如改变共聚物成分、 引入第三共聚物单 元、多组分复配等等。 US 4160459公开了一种乙烯一醋酸乙烯一丙烯酸酯 三元共聚物原油降凝剂, CN 1074037C (专利号 ZL 96115577. 9)公开了一 种丙烯酸 Clfr24酯一醋酸乙烯酯共聚物与表面活性剂十二浣基苯磺酸钠复配 的原油降凝剂, CN 1247633C (专利号 ZL 02153773. 9)公开了一种乙烯一 醋酸乙烯一聚醚基乙烯三元共聚物降凝剂, CN 101381640A (申请号 200810155817. 0)公开了一种马来酸酐一 2-甲基丙烯酸酯一羧酸乙烯酯三 元无规共聚物降凝剂及其与非离子表面活性剂组成的降凝剂组合物, CN 1141372C (专利号 ZL 00135876. 6)公开了一种由乙烯一醋酸乙烯酯共 聚物、 丙烯酸高碳醇酯一马来酸酐一醋酸乙烯酯共聚物、 丙烯酸高碳醇酯 聚合物、 环氧树脂和聚醚等多种高分子聚合物与有机溶剂按比例配制的液 态原油降凝剂, CN 101100599A (申请号 200610090684. 4)公开了一种由 惰性流体物质、 分散剂、 聚合物降凝剂 (或进一步包括增稠剂、 稳定剂) 配混而成的油溶性降凝剂悬浮液。 使用这些原油降凝剂的确改善了原油的 低温流动性, 但仍然存在一些不足:
1、 添加降凝剂后, 含蜡原油温度回升对低温流变性影响较大, 存在 温度回升恶化区;
2、 降凝剂的抗剪切性问题: 在原油的长距离输送过程中, 经历多个 中间站输油泵短时间的强烈剪切和管流长时间的中低速剪切后, 降凝剂的效果下降, 导致原油的凝点和黏度上升, 难以完全满足 管线安全运行条件;
3、 经过降凝剂处理后, 含蜡原油的静态稳定的时效较短, 稍长时间 的静态贮存后流动性恶化;
4、 降凝剂的加入导致管线中沉积量增加, 增加输送阻力并降低有效 管径。
黏土是一类天然层状硅酸盐矿物,结构片层厚度约 1 nm,长宽(直径) ^)1〜^)2 nm, 属于二维无机纳米材料。 其中有一类膨胀性黏土, 具有很强 的吸水膨胀性, 低浓度下在水中可以解离出独立游离的纳米片层。 膨胀性 黏土的典型代表是蒙皂石族 (Smectite Group ) 黏土, 包括蒙脱石
(Montmorillonite)、锂蒙脱石(Hectorite)、绿脱石(Nontronite)、 -¾ 石 (Saponite ) 等, 近来还有一些合成产品, 其中蒙脱石是膨润土
(Bentonite)的有效成分。蒙皂石族黏土对极性有机分子有很强的吸附能 力,其片层间的大量水合金属阳离子(Na+、 Ca2+等)可以被其他阳离子(包 括无机阳离子和有机阳离子)置换, 片层边缘的羟基(较少)也有一定的 化学反应活性; 因此可以通过吸附、 阳离子交换或与反应性羟基的化学反 应对蒙皂石黏土进行修饰改性, 形成改性黏土产品。 蒙皂石族黏土及其改 性产品广泛用于各行各业, 主要包括石油开采、 油漆涂料、 吸附剂、 化妆 品等。最近 20余年,蒙皂石族黏土还被用于高分子材料的改性,可以得到 高分子一黏土纳米复合材料, 材料的力学性能、 耐热性、 阻隔性、 P且燃性 都有不同程度的改善。 有趣的是, 对于结晶性高分子材料, 由于黏土纳米 片层的存在, 高分子的结晶行为往往与高分子本体有很大的差异, 具体表 现是: 结晶尺寸减小, 结晶速率改变, 甚至会发生晶型变异。 此外, 高分 子一黏土纳米复合材料还具有 "剪切变稀"的流变行为, 即在高剪切速率 下, 纳米复合材料熔体的黏度有所下降。 然而到目前为止, 尚没有将黏土 用于原油降凝剂的报道。
发明内容
本发明的目的在于发明一种具有更好的降凝降粘效果和低温长时稳定 效果的原油降粘降凝组合物。
本发明由黏土、 有机降凝剂、 分散介质组成, 黏土和有机降凝剂的重 量比例为 1 : 0到 1 : 5, 分散介质占总重量比的 1%〜99%。
其中:
本发明所述的黏土选自蒙皂石族黏土, 具体包括蒙脱石、 锂蒙脱石、 绿脱石和皂石, 其中蒙脱石是膨润土矿物的有效其中蒙脱石是膨润土矿物 的有效成分, 来源广泛, 原料易得, 价格低廉, 因此本发明优选蒙脱石; 所述的蒙皂石族黏土是未经改性的无机黏土, 或是经过有机物质改性 的有机黏土;
所述的未经改性的无机黏土,是钠基黏土或钠钙基黏土;所谓钠基和钠 钙基是指黏土片层间可交换水合阳离子的种类: 钠基黏土中可交换阳离子 基本上是 Na+; 而钠钙基黏土中可交换阳离子主要是 Na+, 同时还有相对少 量的 Ca2+;上述无机黏土比较容易分散成黏土片层纳米粒子;至于钙钠基黏 土、 钙基黏土或其他类型的无机黏土, 分散性相对较差, 使用前应当转化 成钠基黏土;
所述的有机黏土, 是无机黏土经过有机阳离子改性得到的有机黏土, 或是经过有机阳离子改性和经过硅烷偶联剂处理的有机黏土;选用的有机 阳离子包括有机铵盐阳离子、 有机磷盐阳离子, 选自长链型的季铵盐、 季 磷盐阳离子,其中长碳链的数目为 2个或 1个,长碳链为 C12 3。,优选 C16 24, 短碳链为甲基、 苄基或羟乙基, 选自十二烷基三甲基铵、 十四烧基三甲基 铵、 十六院基三甲基铵、 十八'垸基三甲基铵、 氢化椰油基三甲基铵、 氢化 牛油基三甲基铵、 十六烷基二甲基苄基铵、 十八院基三甲基苄基铵、 二十 烷基三甲基铵、 二十二基三甲基铵、 双羟乙基十六院基甲基铵、 双羟乙基 十八烷基甲基铵、 双十二垸基二甲基氯化铵、 双十六烷基二甲基氯化铵、 双氢化椰油基二甲基铵、 双十八烧基二甲基氯化铵、 双氢化牛油基二甲基 铵、 十八垸基十六烷基二甲基氯化铵、 十六烷基三甲基磷、 十八烷基三甲 基磷中的一种或任意多种的组合; ,
所用硅垸偶联剂选自下列偶联剂中的一种或任意多种的组合:
( 1 )含可水解基团的垸基硅垸偶联剂 R„-Si-X(4-n) ;
(2 )氨基硅垸偶联剂 (X'-R)„- Si- X(4n), X'选自 γ-氨丙基、 Ν- (β-氨乙 基) 1-氨丙基、 Ν, Ν'- (β-氨乙基 ) -氨丙基及苯胺甲基中的一种;
(3)链烯基硅垸偶联剂, (CH2=CH- R) nSi- Χ(4—„);
(4)环氧烧基硅烷偶联剂 (Χ'- R') n- Si- X«-n), X'为环氧乙垸基, R'选自 -CH2- 0- (CH2) 3-、 - (CH2)厂及- (CH2) 8-中的一种;
(5)垸基丙烯酰氧基硅烷偶联剂, (CH2=CR'-C00-R) nSi-X(4-n), R'为甲 基或乙基;
(6) (X'-R) n-Si-X(4-n) , X'选自巯基、 异氰酸酯基及氟原子基中的一种 基团; 以上所述硅烷偶联剂中, 可水解基团 X选自氯、 甲氧基、 乙氧基、 甲 氧基乙氧基及乙酰氧基中的一种以上基团, R是碳链数目为 1〜18的烃基, n为 1〜3;
所述的有机黏土, 其特征是: 所述的无机黏土经过有机阳离子改性得 到的有机黏土, 其制备方法是常规无机黏土的有机改性方法, 即离子吸附 或交换方法制得; 所述的经过有机阳离子改性和经过硅院偶联剂处理的有 机黏土, 其制备方法是先通过常规无机黏土的有机改性方法, 即离子吸附 或交换方法, 然后通过常规的偶联剂处理方法制得;
所述的黏土,对极性有机分子有很强的吸附能力;未经改性的无机黏土 可以吸附原油中的胶质化合物等有机极性分子, 从而能够以片层状纳米粒 子的形式进一步分散在原油中; 而经过有机物质改性得到的有机黏土, 降 低了黏土片层的极性, 亲油性提高, 更利于在原油中分散并解离成纳米黏 土片层;这些黏土在原油中形成纳米粒子,作为石蜡结晶的异相成核剂,通 过晶核作用、 共晶作用和吸附作用, 改变石蜡在原油冷却过程中析出的蜡 晶形态, 降低蜡晶析出的温度, 改变蜡晶尺寸, 抑制蜡晶在原油中形成三 维网状结构, 改善原油的低温流动性, 达到降凝降黏的效果;
本发明所述的有机降凝剂包括例如乙烯 -醋酸乙烯共聚物降凝剂、乙烯 一丙烯酸酯共聚物降凝剂、乙烯一醋酸乙烯一丙烯酸酯三元共聚物降凝剂、 乙烯一醋酸乙烯一聚醚基乙烯三元共聚物降凝剂、 马来酸酐一甲基丙烯酸 酯一醋酸乙烯三元共聚物降凝剂、 苯乙烯 -马来酸酐-丙烯酸酯三元共聚物 降凝剂的一种或任意多种的组合;这些有机降凝剂在领域内已是众所周知, 不必 列举;
所述分散介质是甲苯、 二甲苯、 柴油、 煤油或原油。
具体实施方式 以下结合实施例对本发明的技术方案作进一步的说明, 但这些实施例 仅仅是对本发明的有限举例, 不构成对本发明内容的限制。
实施例 1.市售膨润土, 粒度 325目, 粒径 45μιη。其有效成分为钠基 蒙脱石,含量 90%。将钠基蒙脱石与乙烯 -醋酸乙烯共聚物降凝剂组成的降 黏降凝组合物, 以如下方式加入到含蜡原油中: 先将 50ppm重量份钠基蒙 脱石和 50ppm重量份乙烯 -醋酸乙烯共聚物降凝剂的原油降粘降凝组合物 以 1^%的浓度分散在柴油中,然后加入含蜡原油中,控制温度在 64Ό左右; 以 lOOOOrpm的转速机械搅拌, 使得原油降粘降凝组合物在原油中分散均 匀,搅拌 5min后冷却。 25Ό条件下保存。加入原油降粘降凝组合物的原油 与未经任何处理的原油的粘度比较如下表。
Figure imgf000009_0001
实施例 2.制备有机蒙脱石: 将原料钠基蒙脱石 100g在 500ml的去离 子水分散介质中搅拌, 形成悬浮分散液 A; 然后将处理剂双十八烷基二甲 基氯化铵 70g加入到悬浮液 A中,将混合液在 80〜90°C下搅拌反应 4. 5小 时后过滤; 将滤出物用去离子水洗漆数次, 直到洗漆液中没有卤素离子存 在。滤出物经干燥、粉碎, 得到一种粒径为 20〜30Mm、 改性成分为双十八 烷基二甲基铵阳离子的有机黏土。
将双十八浣基二甲基铵阳离子改性的有机黏土, 以如下方式加入到含 蜡原油中: 先将 50ppm重量份双十八浣基二甲基铵阳离子改性的有机黏土 直接加入含蜡原油中, 控制温度在 55°C左右; 以 lOOOOrpm的转速机械搅 拌,使得有机黏土在原油中分散均匀,搅拌 5min后冷却。 25°C条件下保存。 加入有机黏土的原油与未经任何处理的原油的粘度比较如下表。
Figure imgf000010_0001
实施例 3.制备有机蒙脱石: 将原料钠基蒙脱石 100g在 500ml的去离 子水分散介质中搅拌, 形成悬浮分散液 A; 然后将处理剂双氢化牛油基二 甲基铵 60g加入到悬浮液 A中,将混合液在 80〜90°C下搅拌反应 4. 5小时 后过滤;将滤出物用去离子水洗涤数次,直到洗涤液中没有 ¾素离子存在。 滤出物经干燥、粉碎, 得到一种粒径为 20〜30Mm、 改性成分为双氢化牛油 基二甲基铵阳离子的有机黏土。
将双氢化牛油基二甲基铵阳离子改性的有机黏土, 以如下方式加入到 含蜡原油中:先将 250Ppm重量份双氢化牛油基二甲基铵阳离子改性的有机 黏土以 10wt%的浓度分散在二甲苯中, 然后加入含蜡原油中, 控制温度在 64°C左右;以 lOOOOrpm的转速机械搅拌,使得有机黏土在原油中分散均匀, 搅拌 5min后冷却。 25°C条件下保存。加入有机黏土的原油与未经任何处理 的原油的粘度比较如下表。
Figure imgf000011_0001
实施例 4.将实施例 2中得到的双十八嫁基二甲基铵阳离子改性的有机 黏土与乙烯-醋酸乙烯共聚物降凝剂组成的原油降粘降凝组合物,以如下方 式加入到含蜡原油中: 先将 50ppm重量份的有机黏土与 50ppm重量份的乙 烯 -醋酸乙烯共聚物降凝剂以 10wt%的浓度分散在煤油中,然后加入含蜡原 油中, 控制温度在 70 °C左右; 以 l lOOrpm的转速机械搅拌, 使得原油降粘 降凝组合物在原油中分散均匀, 搅拌 lOmin后冷却。 25°C条件下保存。 加 入原油降粘降凝组合物的原油与未经任何处理的原油的粘度比较如下表。
Figure imgf000011_0002
实施例 5.将实施例 2中得到的双十八焼基二甲基铵阳离子改性的有机 黏土与乙烯 -醋酸乙烯共聚物降凝剂组成的原油降粘降凝组合物,以如下方 式加入到含蜡原油中: 先将 25ppm重量份的有机黏土与 75ppm重量份的乙 烯 -醋酸乙烯共聚物降凝剂以 10wt%的浓度分散在柴油中,然后加入含蜡原 油中, 控制温度在 60°C左右; 以 5000rpm的转速机械搅拌, 使得原油降粘 降凝组合物在原油中分散均匀,搅拌 5min后冷却。 25°C条件下保存。加入 原油降粘降凝组合物的原油与未经任何处理的原油的 1 天粘度比较如下 表。
Figure imgf000012_0001
实施例 6.制备有机蒙脱石: 将原料钠基蒙脱石 100g在 500ml的去离 子水分散介质中搅拌, 形成悬浮分散液 A; 然后将处理剂二十二基三甲基 铵 65g加入到悬浮液 A中,将混合液在 80〜90°C下搅拌反应 4. 5小时后过 滤; 将滤出物用去离子水洗涤数次, 直到洗涤液中没有卤素离子存在。 滤 出物经干^、 粉碎, 得到一种粒径为 2(T30Mm、 改性成分为二十二基三甲 基铵阳离子的有机黏土。
将二十二基三甲基铵阳离子改性的有机黏土, 以如下方式加入到含蜡 原油中: 先将 50ppm重量份二十二基三甲基铵阳离子改性的有机黏土与 50ppm重量份的乙烯 -醋酸乙烯共聚物降凝剂以 5^%的浓度分散在原油中, 然后加入含蜡原油中,控制温度在 60°C左右; 以 150rpm的转速机械搅拌, 使得有机黏土在原油中分散均匀,搅拌 5min后冷却。 25°C条件下保存。加 入原油降粘降凝组合物的原油与未经任何处理的原油的粘度比较如下表。
Figure imgf000013_0001
实施例 7.将实施例 2中得到的双十八垸基二甲基铵阳离子改性的有机 黏土与苯乙烯 -马来酸酐-丙烯酸酯三元共聚物降凝剂组成的原油降黏降凝 组合物,以如下方式加入到含蜡原油中:先将 150ppm重量份的有机黏土与 50ppra重量份的苯乙烯-马来酸酐-丙烯酸酯三元共聚物降凝剂以 10^%的 浓度分散在煤油中, 然后加入含蜡原油中, 控制温度在 64 °C左右; 以 lOOOOrpm的转速机械搅拌, 使得原油降粘降凝组合物在原油中分散均匀, 搅拌 5min后冷却。 25°C条件下保存。加入原油降粘降凝组合物的原油与未 经任何处理的原油的粘度比较如下表。
Figure imgf000013_0002
S S s S 原油 0 4333 3125 2420 1978 1366 771. 1 加原油降粘降
1 115. 5 112. 6 109. 9 107. 5 106. 1 99. 6 凝组合物
加原油降粘降
8 175. 5 165. 3 156. 5 147. 6 139. 4 132. 7 凝组合物
实施例 8.制备有机蒙脱石: 将原料钠基蒙脱石 100g在 500ml的去离 子水分散介质中搅拌, 形成悬浮分散液 A; 然后将处理剂十六烷基三甲基 溴化铵 40g加入到悬浮液 A中,将混合液在 80〜9(TC下搅拌反应 4. 5小时 后过滤;将滤出物用去离子水洗涤数次,直到洗涤液中没有 ¾素离子存在。 滤出物经干燥、粉碎,得到一种粒径为 20〜30Mm十六焼基三甲基溴化铵改 性的有机蒙脱石。
硅垸偶联剂进一步改性:将 100g的十六院基三甲基溴化铵改性的有机 蒙脱石在 500ml的丙酮分散介质中搅泮, 形成悬浮分散液 B; 然后将 23g 十二烷基三甲氧基硅院, 用分液漏斗缓慢滴加到悬浮分散液 B中, 将混合 液在 80〜90°C下搅拌反应 6小时后过滤; 将滤出物用丙酮洗漆数次。滤出 物经干燥、粉碎,得到一种粒径为 20〜30Mm十六烷基三甲基溴化铵改性和 十二垸基三甲氧基硅烷处理的有机黏土。
将十六垸基三甲基溴化铵改性和十二垸基三甲氧基硅垸处理的有机黏 土与乙晞-醋酸乙烯共聚物降凝剂组成的原油降黏降凝组合物,以如下方式 加入到含蜡原油中: 先将 50ppm重量份十六嫁基三甲基溴化铵改性和十二 垸基三甲氧基硅烷处理的有机黏土与 50ppm重量份乙烯-醋酸乙烯共聚物 降凝剂组成的原油降黏降凝组合物以 8^%的浓度分散在煤油中,然后加入 含蜡原油中, 控制温度在 64°C左右; 以 lOOOOrpm的转速机械搅拌, 使得 原油降粘降凝组合物在原油中分散均匀,搅拌 5min后冷却。 25°C条件下保 存。 加入原油降粘降凝组合物的原油与未经任何处理的原油的粘度比较如 下表。
Figure imgf000015_0001
对比实施例 1
将乙烯 -醋酸乙烯共聚物降凝剂, 以如下方式加入到含蜡原油中: 将
50ppm重量份的乙烯 -醋酸乙烯共聚物降凝剂以 1 wt%的浓度分散在柴油中, 然后加入含蜡原油中,控制温度在 64°C左右; 以 lOOrpm的转速机械搅拌, 使得纳米粒子降凝剂在原油中分散均匀,搅拌 5min后冷却。 25°C条件下保 存。加入乙烯-醋酸乙烯共聚物降凝剂的原油与未经任何处理的原油的粘度 比较如下表。
Figure imgf000015_0002
原油 0 0 4333 3125 2420 1978 1366 771. 1 加乙烯-醋酸乙
50 1 185. 1 178. 8 172. 1 165. 1 157. 7 150. 6 烯共聚物降凝剂
加乙烯-醋酸乙
50 8 2536 1918 1483 1164 923. 4 754. 4 烯共聚物降凝剂
通过多组实施例的试验, 原油粘度下降, 在剪切场下粘度有进一步下 降的趋势, 具有良好的流动性; 无论是有搅拌冷却还是无搅拌冷却, 原油 温度降至 15〜35°C之间时, 低温流动性良好, 具有很好的流变时效性。
工业实用性
本发明的原油降粘降凝组合物, 改变石蜡在原油冷却过程中析出的蜡 晶形态, 降低蜡晶析出的温度, 改变蜡晶尺寸, 抑制蜡晶在原油中形成三 维网状结构, 改善原油的低温流动性, 达到降凝降粘的效果, 对不同油品 都有很好的降凝降粘和减阻作用, 时效性优良。
采用本发明的原油降粘降凝组合物后, 原油粘度下降, 在剪切场下粘 度有进一步下降的趋势, 具有良好的流动性; 无论是有搅拌冷却还是无搅 拌冷却, 低温流动性均良好, 具有很好的流变时效性。

Claims

权利要求
1.一种原油降粘降凝组合物, 其特征是它由黏土、 有机降凝剂、 分散 介质组成,黏土和有机降凝剂的重量比为 1 : 0到 1 : 5,分散介质占总重量比 的 1%〜99%。
2.根据权利要求 1所述的原油降粘降凝组合物, 其特征是所述的黏土 包括蒙脱石、 锂蒙脱石、 绿脱石或皂石。
3.根据权利要求 1或 2所述的原油降粘降凝组合物, 其特征是所述的 黏土是未经改性的无机黏土, 或是经过有机改性得到的有机黏土。
4.根据权利要求 3所述的原油降粘降凝组合物, 其特征是所述的经过 有机改性得到的有机黏土是无机黏土经过有机阳离子改性得到的有机黏 土, 或是经过有机阳离子改性和经过硅烷偶联剂处理的有机黏土。
5.根据权利要求 4所述的原油降粘降凝组合物, 其特征是所述有机阳 离子包括有机铵盐阳离子、 有机憐盐阳离子, 选长链型的季铵盐、 季磷盐 阳离子,其中长碳链的数目为 2个或 1个,长碳链为 C123。,短碳链为甲基、 苄基或羟乙基。
6. 根据权利要求 5所述的原油降粘降凝组合物,其特征是所述有机阳 离子选自十二院基三甲基铵、 十四院基三甲基铵、 十六烧基三甲基铵、 十 八烷基三甲基铵、 氢化椰油基三甲基铵、 氢化牛油基三甲基铵、 十六垸基 二甲基苄基铵、 十八垸基三甲基苄基铵、 二十垸基三甲基铵、 二十二基三 甲基铵、 双羟乙基十六垸基甲基铵、 双羟乙基十八垸基甲基铵、 双十二垸 基二甲基氯化铵、 双十六垸基二甲基氯化铵、 双氢化椰油基二甲基铵、 双 十八浣基二甲基氯化铵、 双氢化牛油基二甲基铵、 十八浣基十六烷基二甲 基氯化铵、 十六烷基三甲基磷、 十八院基三甲基磷中的一种或任意多种的 组合。
7.根据权利要求 4所述的原油降粘降凝组合物, 其特征是所述硅烷偶 联剂选自下列偶联剂中的一种或任意多种的组合:
( 1 )含可水解基团的垸基硅垸偶联剂 R„- Si-X<4-„);
(2 )氨基硅垸偶联剂 (Χ'- R)„- Si- X(4-n), X'选自 γ-氨丙基、 Ν- (β-氨乙 基) 1-氨丙基、 Ν, Ν'- (β-氨乙基 氨丙基及苯胺甲基中的一种;
(3)链烯基硅烷偶联剂, (CH2=CH- R) nSi-X(4η) ;
(4)环氧烷基硅烷偶联剂 (X'-R') n-Si- X(4-n), X'为环氧乙烷基, R'选自 - CH2- 0- (CH2) 3-、 - (CH2) 4-及- (CH2) a-中的一种;
(5 )垸基丙烯酰氧基硅垸偶联剂, (CH2=CR'-C00-R) nSi-X(4-„), R'为甲 基或乙基;
(6) (X'-R) n- Si-X(4-n), X'选自巯基、 异氰酸酯基及氟原子基中的一种 基团;
以上所述硅垸偶联剂中, 可水解基团 X选自氯、 甲氧基、 乙氧基、 甲 氧基乙氧基及乙酰氧基中的一种以上基团, R是碳链数目为 1〜18的经基, n为 1〜3。
8.根据权利要求 4所述的原油降粘降凝组合物, 其特征是所述的无机 黏土经过有机阳离子改性得到的有机黏土是常规无机黏土通过离子吸附或 交换方法改性得到的有机黏土; 所述的经过有机阳离子改性和经过硅垸偶 联剂处理的有机黏土是通过离子吸附或交换方法, 然后通过常规的偶联剂 处理方法得到有机黏土。
9.根据权利要求 1所述的原油降粘降凝组合物, 其特征是所述的普通 有机降凝剂选自乙烯 -醋酸乙烯共聚物降凝剂、乙烯一丙烯酸酯共聚物降凝 剂、 乙烯一醋酸乙烯一丙烯酸酯三元共聚物降凝剂、 乙烯一醋酸乙烯一聚 醚基乙稀三元共聚物降凝剂、 马来酸酐一甲基丙烯酸酯一醋酸乙烯三元共 聚物降凝剂、 苯乙烯 -马来酸酐-丙烯酸酯三元共聚物降凝剂中的一种或任 意多种的组合。
10. 根据权利要求 1所述的原油降粘降凝组合物,其特征是所述分散介 质是甲苯、 二甲苯、 柴油、 煤油或原油。
PCT/CN2010/002019 2009-12-29 2010-12-10 原油降粘降凝组合物 WO2011079508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910243238 CN102108292B (zh) 2009-12-29 2009-12-29 原油降粘降凝组合物
CN200910243238.6 2009-12-29

Publications (1)

Publication Number Publication Date
WO2011079508A1 true WO2011079508A1 (zh) 2011-07-07

Family

ID=44172576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002019 WO2011079508A1 (zh) 2009-12-29 2010-12-10 原油降粘降凝组合物

Country Status (2)

Country Link
CN (1) CN102108292B (zh)
WO (1) WO2011079508A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106641727A (zh) * 2016-12-14 2017-05-10 钦州学院 一种原油降黏降凝剂及其制备方法
CN107448777A (zh) * 2016-05-31 2017-12-08 中国科学院化学研究所 一种原油纳米降黏降凝剂组合物及其制备方法和应用
EP3613825A1 (en) * 2018-08-20 2020-02-26 China University of Petroleum-Beijing Nanocomposite pour point depressant, preparation method and use thereof
US11193053B2 (en) 2017-04-13 2021-12-07 Bl Technologies, Inc. Wax inhibitors for oil compositions and methods of using wax inhibitors to reduce wax deposition from oil

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329401B (zh) * 2011-08-19 2013-04-24 中国石油天然气股份有限公司 一种聚合物基微观复合油品减阻聚合物的制备方法
CN102492460A (zh) * 2011-12-21 2012-06-13 孙安顺 一种原油低温破乳剂制备方法及其应用
CN102659970B (zh) * 2012-04-28 2014-07-09 山东大学 稠油纳米降粘剂及其制备方法
CN102796387A (zh) * 2012-09-03 2012-11-28 黄卫 环氧胶粉沥青材料及其制备方法
CN103626914B (zh) * 2013-11-29 2015-12-30 中国石油天然气股份有限公司 一种降凝降粘剂及其制备方法
CN104154421A (zh) * 2014-07-15 2014-11-19 中国石油天然气股份有限公司 一种原油降凝剂纳米级基材、其应用方法及原油
CN104154422A (zh) * 2014-07-15 2014-11-19 中国石油天然气股份有限公司 一种原油降凝降粘纳米基材复合物、其制备方法及原油
CN105086974A (zh) * 2014-09-19 2015-11-25 兰德伟业科技集团有限公司 一种适用于含水量较高的油品的纳米清防蜡剂
CN105647502B (zh) * 2014-11-10 2018-09-04 中国石油天然气股份有限公司 一种稠油降粘剂及其制备方法
CN104676251A (zh) * 2014-12-26 2015-06-03 北京迪威尔石油天然气技术开发有限公司 一种高蜡原油管输用纳米降凝剂复合物
CN104745169A (zh) * 2015-02-15 2015-07-01 中国石油集团西部钻探工程有限公司 稠油复合乳化降粘剂及其制备方法
CN104788975B (zh) * 2015-04-20 2017-07-11 武汉理工大学 一种具有改性功能的沥青再生剂及其制备方法
CN104927806B (zh) * 2015-05-11 2018-05-01 中国地质大学(北京) 阴-阳离子型有机粘土在油基钻井液中的应用
CN105199699B (zh) * 2015-10-15 2018-06-15 中国石油大学(华东) 一种用于稠油降粘的低成本油溶性降粘剂及制备方法
CN105602534A (zh) * 2016-02-17 2016-05-25 河北硅谷化工有限公司 钻井液用硅氟抗高温稀释剂的生产工艺
CN105694838B (zh) * 2016-03-08 2018-05-25 陕西友邦石油工程技术有限公司 一种表面活性剂耐酸增稠剂及其使用方法
CN106281289A (zh) * 2016-08-18 2017-01-04 克拉玛依新科澳石油天然气技术股份有限公司 采油用降凝降粘脱水剂及其制备方法
CN108084982B (zh) * 2016-11-21 2020-08-21 中国科学院化学研究所 纳米降粘降凝剂稳定乳液及其制备方法和用途
CN106833589A (zh) * 2016-12-30 2017-06-13 丁玉琴 一种复合稠油降粘剂的制备方法
CN107652408B (zh) * 2017-10-17 2020-03-06 中国海洋石油集团有限公司 一种反相微乳液聚合层间修饰粘土改性am-mah原油降凝剂及其制备方法
CN108977187A (zh) * 2018-08-23 2018-12-11 北京宝辰联合科技股份有限公司 一种复合原油降粘剂及其制备方法
CN109169654A (zh) * 2018-10-28 2019-01-11 扬州润达油田化学剂有限公司 一种稠油井采出液降粘杀菌剂及其制备方法
CN109897620A (zh) * 2019-03-27 2019-06-18 广州市天河区车陂亚贝思烘焙店 一种低温高效原油降凝剂
CN110804191B (zh) * 2019-11-21 2020-11-27 东北石油大学 一种纳米防蜡降凝剂的制备方法
CN110903819B (zh) * 2019-11-23 2022-02-01 克拉玛依新科澳石油天然气技术股份有限公司 耐温耐盐抽油杆化学解卡剂及其制备方法和使用方法
CN111120872B (zh) * 2020-03-30 2021-05-14 中国石油大学胜利学院 减阻和降凝双功能高蜡原油减阻剂的制备方法
CN113480989A (zh) * 2021-06-02 2021-10-08 德仕能源科技集团股份有限公司 一种高凝点原油用四元共聚物类降凝剂及其制备方法
CN114183107A (zh) * 2021-12-03 2022-03-15 中国石油大学(华东) 一种环保型稠油降粘冷采的方法
CN117777978B (zh) * 2024-02-28 2024-05-07 东营才聚科技有限责任公司 一种含水原油用防蜡降凝剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434076A (en) * 1981-10-19 1984-02-28 Nl Industries, Inc. Clay cation complexes and their use to increase viscosity of liquid organic systems
US5336647A (en) * 1991-11-14 1994-08-09 Rheox, Inc. Organoclay compositions prepared with a mixture of two organic cations and their use in non-aqueous systems
CN1278547A (zh) * 1999-06-19 2001-01-03 张瑾 调剖驱油剂
CN1424364A (zh) * 2002-12-13 2003-06-18 清华大学 由钙基蒙脱土制备高分子复合材料用的有机化蒙脱土方法
US20050113261A1 (en) * 2003-10-09 2005-05-26 Georg Huber Process for the preparation of a homogeneous, low-viscosity and long-term-stable polymer dispersion in mineral oils
CN101037507A (zh) * 2007-04-09 2007-09-19 中国石油化工集团公司 一种多功能减阻聚合物悬浮液的制备方法
CN101370901A (zh) * 2006-02-22 2009-02-18 伊莱门蒂斯专业有限公司 亲有机粘土添加剂和具有更少依赖于温度的流变学特性的油基钻井液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434076A (en) * 1981-10-19 1984-02-28 Nl Industries, Inc. Clay cation complexes and their use to increase viscosity of liquid organic systems
US5336647A (en) * 1991-11-14 1994-08-09 Rheox, Inc. Organoclay compositions prepared with a mixture of two organic cations and their use in non-aqueous systems
CN1278547A (zh) * 1999-06-19 2001-01-03 张瑾 调剖驱油剂
CN1424364A (zh) * 2002-12-13 2003-06-18 清华大学 由钙基蒙脱土制备高分子复合材料用的有机化蒙脱土方法
US20050113261A1 (en) * 2003-10-09 2005-05-26 Georg Huber Process for the preparation of a homogeneous, low-viscosity and long-term-stable polymer dispersion in mineral oils
CN101370901A (zh) * 2006-02-22 2009-02-18 伊莱门蒂斯专业有限公司 亲有机粘土添加剂和具有更少依赖于温度的流变学特性的油基钻井液
CN101037507A (zh) * 2007-04-09 2007-09-19 中国石油化工集团公司 一种多功能减阻聚合物悬浮液的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI WEIJIA ET AL.: "Depressation Mechanism of Pour Point for High Wax Crude Oil and Influencing Factors of Depressation", ADVANCES IN FINE PETROCHEMICALS, vol. 10, no. 5, May 2009 (2009-05-01), pages 28 - 31 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448777A (zh) * 2016-05-31 2017-12-08 中国科学院化学研究所 一种原油纳米降黏降凝剂组合物及其制备方法和应用
CN107448777B (zh) * 2016-05-31 2019-05-28 中国科学院化学研究所 一种原油纳米降黏降凝剂组合物及其制备方法和应用
CN106641727A (zh) * 2016-12-14 2017-05-10 钦州学院 一种原油降黏降凝剂及其制备方法
US11193053B2 (en) 2017-04-13 2021-12-07 Bl Technologies, Inc. Wax inhibitors for oil compositions and methods of using wax inhibitors to reduce wax deposition from oil
US11261369B2 (en) 2017-04-13 2022-03-01 Bl Technologies, Inc. Maleic anhydride copolymer with broadly dispersed ester side chain as wax inhibitor and wax crystallization enhancer
EP3613825A1 (en) * 2018-08-20 2020-02-26 China University of Petroleum-Beijing Nanocomposite pour point depressant, preparation method and use thereof

Also Published As

Publication number Publication date
CN102108292A (zh) 2011-06-29
CN102108292B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011079508A1 (zh) 原油降粘降凝组合物
CN107448777B (zh) 一种原油纳米降黏降凝剂组合物及其制备方法和应用
Yao et al. Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosage of the amino-functionalized polymethylsilsesquioxane (PAMSQ) microsphere
Yao et al. Organically modified nano-clay facilitates pour point depressing activity of polyoctadecylacrylate
Yao et al. Ethylene–vinyl acetate copolymer and resin-stabilized asphaltenes synergistically improve the flow behavior of model waxy oils. 1. Effect of wax content and the synergistic mechanism
CN102127409B (zh) 原油降黏降凝剂组合物及其制备方法和应用
Xi et al. Modification of Wyoming montmorillonite surfaces using a cationic surfactant
CN101525492A (zh) 一种插层和偶联双重处理的层状硅酸盐纳米改性沥青及其制备方法
Yoon et al. Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation
Li et al. Effect evaluation of ethylene vinyl acetate/nano-montmorillonite pour-point depressant on improving the flow properties of model oil
WO2018090944A1 (zh) 纳米降粘降凝剂稳定乳液及其制备方法和用途
Zhuang et al. Rheological properties of organo-palygorskite in oil-based drilling fluids aged at different temperatures
BR112017019466B1 (pt) Composição para o tratamento de óleo e gás compreendendo hidroxietil celulose e polivinilpirrolidona reticulada
Mrah et al. In situ polymerization of styrene–clay nanocomposites and their properties
US11028307B2 (en) Modified cellulose nanocrystals and their use in drilling fluids
Zhu et al. Effective modified xanthan gum fluid loss agent for high-temperature water-based drilling fluid and the filtration control mechanism
CN105037903A (zh) 一种含蜡原油流变助剂
Zhuang et al. Synergistically using layered and fibrous organoclays to enhance the rheological properties of oil-based drilling fluids
CN110452677A (zh) 一种基于改性MoS2制备减阻剂的方法
CN111440604B (zh) 一种自破乳型抗盐稠油冷采驱油剂及其制备方法和应用
CN105400495A (zh) 一种复合相变储能材料及其制备方法
Zheng et al. Sepiolite nanofluids with liquid-like behavior
Ning et al. Insights into flow improving for waxy crude oil doped with EVA/SiO2 nanohybrids
Gao et al. One-layer-only molecular deposition filming flooding: A review
CN111849443A (zh) 一种污水净化或驱油用液相组合物及其制备方法、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840298

Country of ref document: EP

Kind code of ref document: A1