WO2011077900A1 - 発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置 - Google Patents

発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置 Download PDF

Info

Publication number
WO2011077900A1
WO2011077900A1 PCT/JP2010/071165 JP2010071165W WO2011077900A1 WO 2011077900 A1 WO2011077900 A1 WO 2011077900A1 JP 2010071165 W JP2010071165 W JP 2010071165W WO 2011077900 A1 WO2011077900 A1 WO 2011077900A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light
led element
light source
light emitting
Prior art date
Application number
PCT/JP2010/071165
Other languages
English (en)
French (fr)
Inventor
賢司 高瀬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/513,689 priority Critical patent/US8902382B2/en
Publication of WO2011077900A1 publication Critical patent/WO2011077900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light emitting diode element, a light source device, a surface light source illumination device, and a liquid crystal display device.
  • FIG. 12 is an explanatory diagram of a conventional LED element 101.
  • FIG. 12A is a cross-sectional view of a conventional LED element 101.
  • FIG. 12B is a plan view of the conventional LED element 101.
  • FIG. 12C is a graph showing the electrical characteristics of the conventional LED element 101.
  • the LED element 101 includes a substrate (base material) 102, an LED (Light Emitting Diode) chip 103, an anode terminal 104, a cathode terminal 105, through holes 106 and 107, conductor patterns 108 and 109, A bonding wire 110 and a sealing resin 111 are provided.
  • the LED chip 103 is mounted on the conductor pattern 108 on the substrate 102.
  • the anode terminal 104 and the conductor pattern 108 are connected through a through hole 106 that penetrates the substrate 102.
  • the cathode terminal 105 and the conductor pattern 109 are connected through a through hole 107 penetrating the substrate 102. Further, the LED chip 103 and the conductor pattern 109 are connected by a bonding wire 110. Then, sealing with a sealing resin 111 is performed so as to cover the LED chip 103 and the conductor patterns 108 and 109.
  • Patent Document 1 discloses that the heat generated from the LED chip is dissipated to the metal surface on the back surface, and the frame member that forms the LED lens does not tilt.
  • An LED element characterized by a structure that can be bonded to a glass is disclosed.
  • the luminous intensity (unit cd (candela)) of the light emitted from the LED element 101 basically increases in proportion to the magnitude of the current (LED current in FIG. 12C) flowing through the LED element 101.
  • the LED element 101 (more specifically, the LED chip 103 in which the LED element is built) generates heat.
  • the light emission efficiency of the LED element 101 itself decreases and the LED element 101 becomes dark (that is, the luminance decreases, see the graph of FIG. 12C).
  • the luminous intensity is reduced by about 10% to 20%.
  • the LED element 101 itself is deteriorated by using it for a long time in a state where the heat is generated, the lifetime is shortened, and in some cases, it is destroyed.
  • the reason why the luminous efficiency of the LED element 101 itself is lowered will be described.
  • the heat generating part in the LED element 101 is a PN junction part of the LED chip 103 sealed with the sealing resin 111 in the LED element 101. If there is no cooling time, the temperature of the PN junction continues to rise as time passes.
  • the luminous efficiency of the LED element itself varies depending on the package loss (heat radiation characteristic) of the LED element and the heat radiation characteristic around the mounting portion of the LED element.
  • the LED element of Patent Document 1 that dissipates heat generated from the LED chip to the metal surface on the back surface has the following first to third problems.
  • the metal plate on which the LED chip is mounted is not sufficient.
  • the surface around the LED chip is formed of a laminated structure such as a resist or an adhesive, the reflectance is low to reflect the light emitted from the side of the LED chip in its cross section and there is a reflection loss. growing. Accordingly, the light emission efficiency of the LED element with respect to the light emission amount of the LED chip is lowered.
  • the distribution of light emitted from the LED elements is a distribution with high light condensing properties and very strong directivity. Therefore, it is difficult to control the light so as to have a specific light distribution such as a reverse distribution, that is, a wide light distribution (a distribution with low light collection and low directivity).
  • the present invention has been made in view of the above-described conventional problems, and its purpose is that the orientation distribution can be adjusted, heat dissipation and luminous efficiency can be improved, and the lifetime is longer than that of conventional light-emitting diode elements.
  • An object of the present invention is to provide a long light emitting diode element, a light source device, a surface light source illumination device, and a liquid crystal display device.
  • the light-emitting diode element of the present invention is a surface-emitting light-emitting diode element including a light-emitting diode chip, and the light-emitting diode chip is disposed on an upper surface to radiate heat generated by the light-emitting diode chip.
  • a heat sink, a reflector that reflects the light emitted from the light emitting diode chip, and a substrate provided between the heat sink and the reflector, the heat sink and the reflector are: The heat sink and the substrate are integrally formed by joining at one joint, and the surface of the heat sink and the surface of the reflector are covered with a conductor pattern.
  • the light-emitting diode element is a light-emitting diode element including the heat dissipation plate, and the reflection plate that reflects light emitted from the light-emitting diode chip is provided.
  • the light emitted from the light emitting diode chip can be efficiently reflected, and the normal direction (direction perpendicular to the exposed surface of the heat sink) and the reflector
  • the light distribution (the distribution of light emitted from the light emitting diode element) can be adjusted by adjusting (increasing / decreasing) the angle formed by.
  • the surface of the heat sink and the surface of the reflector are covered with the conductor pattern.
  • the conductor pattern is formed using a copper material, for example.
  • the said reflecting plate and the exposed surface of the said heat sink are joined in the said 1st junction part.
  • substrate are joined in the said 2nd junction part. Due to the first junction and the second junction, the volume of the heat dissipating part is larger than that of the conventional light emitting diode element, so that the heat capacity is larger than that of the conventional light emitting diode element. And heat dissipation can be improved by the synergistic effect of the heat dissipation effect in the said 1st junction part, and the heat dissipation effect in the said 2nd junction part.
  • the light emitting diode element can efficiently dissipate heat, heat can be dispersed without locally concentrating the heat.
  • the light emitting diode element radiates heat by the heat radiating plate and the reflecting plate around the light emitting diode chip. For this reason, the heat radiation characteristic is improved by the amount of the metal area larger than that of the conventional light emitting diode element.
  • the light emission efficiency is improved (that is, the light emission efficiency is increased). Moreover, since heat generation can be suppressed, the lifetime is longer than that of the conventional light emitting diode element.
  • the orientation distribution can be adjusted, the heat dissipation and the light emission efficiency can be improved, and a light emitting diode element having a longer life than the conventional light emitting diode element can be provided.
  • the light-emitting diode element of the present invention has the light-emitting diode chip disposed on the upper surface, dissipates heat generated by the light-emitting diode chip, and a reflector that reflects the light emitted from the light-emitting diode chip.
  • a substrate provided between the heat radiating plate and the reflecting plate, and the heat radiating plate and the reflecting plate are integrally formed by bonding at a first joint, and the heat radiating plate and the substrate are The surface of the heat sink and the surface of the reflector are covered with a conductor pattern.
  • a light emitting diode element a light source device, a surface light source illumination device, and a liquid crystal display device that can adjust the orientation distribution, can improve heat dissipation and light emission efficiency, and have a longer life than conventional light emitting diode elements. The effect of doing.
  • FIG. 1 is an explanatory diagram of an LED element 1 according to an embodiment of the present invention.
  • FIG. 1A is a cross-sectional view of an LED element 1 according to an embodiment of the present invention.
  • FIG. 1B is a plan view of the LED element 1 according to the embodiment of the present invention.
  • the LED element 1 is a surface emitting LED element including an LED (Light Emitting Diode) chip 3 (light emitting diode chip), and includes a substrate (base material) 2, an LED chip 3, (anode (Anode)) includes a heat sink 4, a cathode terminal 5, a through hole 6, a reflector 7, a conductor pattern 8, a bonding wire 9, and a sealing resin 10.
  • the surface indicates a surface of the heat radiating plate 4 on the side where the sealing resin 10 is formed.
  • the substrate 2 is provided between the heat radiating plate 4 and the reflecting plate.
  • the heat sink 4 and the reflecting plate 7 are made of metal, and it is preferable to use a metal having high thermal conductivity such as copper or aluminum.
  • the LED chip 3 is disposed on the upper surface of the heat radiating plate 4, and the heat generated by the LED chip 3 is radiated by the heat radiating plate 4. Further, the cathode terminal 5 and the conductor pattern 8 are connected through a through hole 6 penetrating the substrate 2. Further, the LED chip 3 and the conductor pattern 8 are connected (wire bonding) by a bonding wire 9. Further, a groove 11 is formed between the reflecting plate 7 and the conductor pattern 8. In the plan view of FIG. 1B, the groove 11 is L-shaped, but this is an example, and the shape of the groove 11 in the plan view is that the reflector 7 and the conductor pattern 8 are separated. A shape that can be used may be adopted.
  • the heat radiating plate 4 and the reflecting plate 7 are integrally formed (that is, integrated) by bonding at, for example, the bonding portion 12 (first bonding portion).
  • sealing with the sealing resin 10 is performed so as to cover the LED chip 3 (packaged).
  • the target of sealing with the sealing resin 10 is not limited to the LED chip 3, and sealing with the sealing resin 10 may be performed so as to cover the LED chip 3, the reflection plate 7, and the conductor pattern 8. .
  • the LED element 1 of the first embodiment is an LED element including a heat radiating plate 4, and is provided with a reflecting plate 7 that reflects light emitted from the LED chip 3.
  • the light emitted from the LED chip 3 can be efficiently reflected, and the normal direction (z direction, the direction perpendicular to the exposed surface 19 described later) and the reflector 7
  • the angle ⁇ [°] formed by the light distribution By adjusting (increasing / decreasing) the angle ⁇ [°] formed by the light distribution, the light distribution (the distribution of light emitted from the LED element 1) can be adjusted.
  • the reflecting plate 7 may be provided so as to guide the light emitted from the LED chip 3 to the surface. Thereby, the light radiated
  • the surface of the heat sink 4 and the surface of the reflector 7 are covered with a conductor pattern 13 (conductor pattern).
  • the conductor pattern 13 is formed using, for example, a copper material.
  • the reflecting plate 7 and the exposed surface 19 of the heat radiating plate 4 on which the LED chip 3 is disposed are joined at the joining portion 12.
  • substrate 2 are joined in the junction part 20 (2nd junction part). Since the volume of the heat radiating portion becomes larger than that of the conventional LED element, the heat capacity becomes larger than that of the conventional LED element. Further, heat dissipation can be enhanced by the synergistic effect of the heat dissipation effect at the joint 12 and the heat dissipation effect at the joint 20 (heat can be released outside the package).
  • the LED element 1 can efficiently dissipate heat, heat can be dispersed without locally concentrating the heat.
  • a plating process may be performed and a metal plate may be bonded together.
  • the LED chip 3 is arranged at the center of the hole 14 formed in the substrate 2.
  • the LED chip 3 is wire-bonded by a bonding wire 9, and the light emitting surface 15 (see FIG. 2B) of the LED chip 3 is sealed with a sealing resin 10.
  • the sealing resin 10 is, for example, a transparent epoxy resin.
  • FIG. 2 is an explanatory diagram of the LED element 1 according to Example 1 of the present invention.
  • FIG. 2A is a cross-sectional view of the LED element 1 according to the first embodiment of the present invention, and shows how heat is radiated in the LED element 1.
  • FIG. 2B is a partially enlarged view of the LED element 1 showing the light emitting surface 15 of the LED chip 3. In the LED element 1, light is radiated as indicated by a broken line arrow 18 in FIG.
  • the LED element 1 has a structure in which heat is radiated by the heat radiating plate 4 and the reflecting plate 7 located around the LED chip 3, and the area of the metal And as the thickness is larger, the heat dissipation characteristics are improved.
  • the sizes of arrows 16 and 17 and an arrow 17 'to be described later indicate the degree of heat dissipation, and the greater the arrow, the greater the amount of heat dissipation.
  • the heat dissipation path is indicated by arrows 16 and 17, but the groove 11 is formed in the portion shown on the right side of the reflecting plate 7 on the paper surface. Yes. Since the groove 11 is sealed with the sealing resin 10, the portion shown on the left side of the reflecting plate 7 is easier to dissipate than the portion shown on the right side of the reflecting plate 7. (Heat easily escapes). Then, heat is radiated through the sealing resin 10 in the groove 11 in the portion indicated by the arrow 17 ′ of the portion shown on the right side of the reflecting plate 7. For this reason, the portion indicated by the arrow 17 ′ has less heat radiation than the portion indicated by the arrow 17.
  • the light distribution characteristics of the LED element 1 (the horizontal axis represents the angle ⁇ and the vertical axis represents the luminous intensity ( The unit is cd (candela)), and it is easy to control (shown in (a) of FIG. 4 and (b) of FIG. 4).
  • FIG. 3 is a graph showing that the light emission efficiency is improved in the LED element 1 according to Example 1 of the present invention.
  • the horizontal axis represents the LED current flowing through the LED element 1 (unit: mA (milliampere)), and the vertical axis represents the luminous intensity.
  • the LED current flows through a path of the heat sink 4 (anode) ⁇ the LED chip 3 ⁇ the bonding wire 9 ⁇ the conductor pattern 8 ⁇ the through hole 6 ⁇ the cathode terminal 5.
  • the LED element 1 radiates heat by the heat radiating plate 4 and the reflecting plate 7 around the LED chip 3. For this reason, the heat dissipation characteristics are improved by the amount that the metal area is larger than that of the conventional LED element 101 of FIG.
  • the light emission efficiency is improved (that is, the light emission efficiency is increased and the power consumption is reduced). Moreover, since heat generation can be suppressed, the lifetime is longer than that of the conventional LED element 101.
  • the maximum rated current value of the LED element 1 can be set large by improving the heat dissipation characteristics. Accordingly, the luminance is improved as a result of the increase in luminous intensity.
  • FIG. 4 is an explanatory diagram of light distribution characteristics when the angle ⁇ in the LED element 1 according to Example 1 of the present invention is smaller.
  • 4A is a graph showing the light distribution characteristics when the angle ⁇ is smaller in the LED element 1 according to Example 1 of the present invention as shown in FIG. 4B.
  • FIG. 5 is an explanatory diagram of light distribution characteristics when the angle ⁇ in the LED element 1 according to Example 1 of the present invention is larger.
  • (A) of FIG. 5 is a graph which shows the light distribution characteristic in case the angle (theta) is larger in the LED element 1 which concerns on Example 1 of this invention as shown in (b) of FIG.
  • the directivity becomes narrower (becomes stronger) as shown in the graph of FIG.
  • the directivity becomes wider (becomes weaker) as shown in the graph of FIG.
  • the cross section around the LED chip is uniformly formed on the same plane by the reflector 7.
  • the surface of the LED element 1 is covered with a metal reflector 7, and the reflector 7 is joined to the heat sink 4 at the joint 12.
  • the light distribution can be freely designed.
  • the light reflection loss in the LED element 1 can be reduced, and characteristics with high luminous efficiency can be obtained.
  • Example 2 Another embodiment of the present invention will be described with reference to FIG.
  • the configuration other than that described in the second embodiment is the same as that of the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and explanation thereof is omitted.
  • FIG. 6 is an explanatory diagram of an LED element 21 according to another embodiment of the present invention.
  • FIG. 6A is a cross-sectional view of an LED element 21 according to another embodiment of the present invention.
  • FIG. 6B is a plan view of an LED element 21 according to another embodiment of the present invention. The following points are different between the LED element 21 of the second embodiment and the LED element 1 of the first embodiment.
  • a highly reflective plating 22 (plating) having a high light reflectance is applied to the conductor pattern 13 formed on the surface of the reflecting plate 7. That is, in the LED element 21, the reflection plate 7, the conductor pattern 13, and the high reflection plating 22 are laminated in this order.
  • the light reflectance is high (that is, high reflection) when the light reflectance is 60% or more and 90% or less, but this is merely an example.
  • the reflectance of the reflecting plate 7 can be further increased. Therefore, higher luminous efficiency can be obtained, leading to lower power consumption.
  • Ag (silver) or Au (gold) is used for the high reflection plating 22.
  • Example 3 The following will describe still another embodiment of the present invention with reference to FIG.
  • the configurations other than those described in the third embodiment are the same as those in the first and second embodiments.
  • members having the same functions as those shown in the drawings of the first and second embodiments are given the same reference numerals and explanation thereof is omitted.
  • FIG. 7 is an explanatory view of an LED element 31 according to still another embodiment of the present invention.
  • (A) of FIG. 7 is sectional drawing of the LED element 31 which concerns on another Example of this invention.
  • FIG. 7B is a plan view of an LED element 31 according to still another embodiment of the present invention. The following points differ between the LED element 31 of the third embodiment and the LED element 21 of the second embodiment.
  • At least one inner layer conductor pattern 32 is formed inside the substrate 2.
  • the inner layer conductor pattern 32 is joined to the reflector 7 at the joint 33 (third joint).
  • the area of the portion that radiates heat can be further widened to improve heat dissipation (the heat dissipation effect can be further increased).
  • the heat dissipation characteristics can be improved and the package loss of the LED element 31 can be reduced.
  • the inner layer conductor pattern 32 is preferably made of a metal having a high thermal conductivity (for example, a copper material or an aluminum material). Furthermore, the inner layer conductor pattern 32 is preferably thicker. By providing the inner layer conductor pattern 32 configured by appropriately combining these conditions, the heat dissipation effect can be further increased.
  • Example 4 A further embodiment of the present invention will be described with reference to FIG.
  • the configurations other than those described in the fourth embodiment are the same as those in the first to third embodiments.
  • members having the same functions as those shown in the drawings of Embodiments 1 to 3 are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 8 is an explanatory diagram of an LED element 41 according to still another embodiment of the present invention.
  • (A) of FIG. 8 is sectional drawing of the LED element 41 which concerns on another Example of this invention.
  • FIG. 8B is a plan view of an LED element 41 according to still another embodiment of the present invention.
  • the LED element 41 of the fourth embodiment and the LED element 31 of the third embodiment are different in the following points.
  • the substrate 42 of Examples 1 to 3 was used as the substrate 42 by including a filler material.
  • the filler material With the filler material, the thermal conductivity of the substrate 42 can be improved and the heat dissipation of the substrate 42 itself can be increased, so that the heat dissipation can be further improved. Further, the heat dissipation characteristics can be improved and the package loss of the LED element 41 can be reduced.
  • Example 5 Still another embodiment of the present invention will be described with reference to FIG.
  • the configurations other than those described in the fifth embodiment are the same as those in the first to fourth embodiments.
  • members having the same functions as those shown in the drawings of the first to fourth embodiments are given the same reference numerals, and explanation thereof is omitted.
  • FIG. 9 is an explanatory diagram of an LED element 51 according to still another embodiment of the present invention.
  • (A) of FIG. 9 is sectional drawing of the LED element 51 which concerns on another Example of this invention.
  • FIG. 9B is a partially enlarged view showing a portion subjected to the roughening treatment 52 in the LED element 51 according to still another embodiment of the present invention.
  • FIG. 9C is a plan view of an LED element 51 according to still another embodiment of the present invention. The following points are different between the LED element 51 of the fifth embodiment and the LED element 41 of the fourth embodiment.
  • FIG. 9B is an enlarged view of a portion indicated by a broken-line circle 53 in FIG.
  • Example 6 The following will describe still another embodiment of the present invention with reference to FIG.
  • the configurations other than those described in the sixth embodiment are the same as those in the first to fifth embodiments.
  • members having the same functions as those shown in the drawings of the first to fifth embodiments are given the same reference numerals, and explanation thereof is omitted.
  • Example 1 to Example 5 one LED element is formed on one substrate 2.
  • the present invention is not limited to this, and a plurality of LED elements may be formed (formed a plurality) on the same substrate.
  • FIG. 10 is an explanatory diagram of a light source 61 configured by forming a plurality of LED elements 51 (Example 5) on the same substrate 2 ′ (one substrate).
  • FIG. 10A is a cross-sectional view showing a light source 61 (light source device) configured by forming a plurality of LED elements 51 (Example 5) on the same substrate 2 ′ (one substrate).
  • FIG. 10B is a plan view of the light source 61.
  • the LED elements 51 of the fifth embodiment are used as the plurality of LED elements.
  • the LED elements 1, 21, 21 of the first to fourth embodiments are used as the plurality of LED elements.
  • 31 and 41 may be used similarly to the LED element 51.
  • the plurality of LED elements may be configured by mixing two or more types of LED elements.
  • the LED element 31 and the LED element 51 may be formed on the same substrate 2 ′, that is, the LED elements 31 and 51 may be mixed.
  • the light source 61 is configured as a single light source (a single substrate, that is, a light source formed using the same substrate 2 ′), and includes a plurality of LED elements, so that the luminance can be higher than that of one LED element. it can.
  • Example 7 A further embodiment of the present invention will be described with reference to FIG.
  • the configurations other than those described in the seventh embodiment are the same as those in the first to sixth embodiments.
  • members having the same functions as those shown in the drawings of Embodiments 1 to 6 are given the same reference numerals, and explanation thereof is omitted.
  • FIG. 11 is a cross-sectional view showing a surface light source illumination device 71 and a liquid crystal display device 72 according to still another embodiment of the present invention.
  • the surface light source illumination device 71 includes a light source 61 and an optical sheet 73.
  • the light emitted from the light source 61 irradiates the optical sheet 73 from the back, and the light distribution is made uniform by the optical sheet 73. Thereby, planar light can be emitted from the surface light source illumination device 71.
  • the liquid crystal display device 72 includes a light source 61, an optical sheet 73, and a liquid crystal display panel 74. That is, the liquid crystal display device 72 includes a surface light source illumination device 71 and a liquid crystal display panel 74. The liquid crystal display panel 74 is disposed on the upper surface of the surface light source illumination device 71. Thereby, the liquid crystal display device 72 can display an image or a moving image.
  • liquid crystal display panel 74 may be configured to be driven for each region including a plurality of pixels, and the surface light source illumination device 71 may be configured to be capable of adjusting luminance for each region including the plurality of pixels.
  • one optical sheet 73 is used, but instead of the optical sheet 73, an optical sheet group in which a plurality of optical sheets are stacked may be used.
  • the reflector may be provided to guide light emitted from the light emitting diode chip to the surface. Thereby, the light emitted from all directions of the light emitting diode chip can be efficiently reflected.
  • the conductor pattern may be plated with silver or gold. By the plating, the reflectance of the reflector can be further increased. Therefore, higher luminous efficiency can be obtained, leading to lower power consumption.
  • At least one or more inner layer conductor patterns are formed inside the substrate, and the inner layer conductor pattern and the reflector may be joined at a third joint portion.
  • the substrate may include a filler material.
  • the filler material can improve the thermal conductivity of the substrate and can also increase the heat dissipation of the substrate itself, so that the heat dissipation can be further improved. Further, the heat dissipation characteristics can be improved and the package loss of the light emitting diode element can be reduced.
  • the conductor pattern may be subjected to a roughening treatment.
  • the surface area of the portion subjected to the surface roughening treatment is increased, so that a higher heat dissipation effect can be obtained.
  • the light source device of the present invention is characterized in that a plurality of the light emitting diode elements are formed on a single substrate.
  • the light source device is configured as a light source formed using the one substrate, and includes a plurality of the light emitting diode elements, so that the luminance can be increased more than that of the one light emitting diode element.
  • the light emitting diode element is formed on the single substrate, the number of substrates and the number of manufacturing steps are reduced as compared with the case where the light source is constituted by a large number of single light emitting diode elements. As a result, the cost can be reduced.
  • the surface light source illuminating device of the present invention includes the light source device and an optical sheet, and the light emitted from the light source device irradiates the optical sheet from the back, and the optical sheet makes the light distribution uniform.
  • planar light can be emitted from the surface light source illumination device.
  • a liquid crystal display device includes the surface light source illumination device and a liquid crystal display panel disposed on an upper surface of the surface light source illumination device. Thereby, the liquid crystal display device can display an image or a moving image.
  • the light-emitting diode element of the present invention can be suitably used for a liquid crystal display device because the orientation distribution can be adjusted and heat dissipation and light emission efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)

Abstract

 LEDチップ(3)が上面に配置され、LEDチップ(3)が発する熱を放熱させる放熱板(4)と、LEDチップ(3)から放射される光を反射する反射板(7)と、放熱板(4)と反射板(7)との間に設けられる基板(2)とを備え、放熱板(4)と反射板(7)とは、接合部(12)における接合により一体に形成され、放熱板(4)と基板(2)とは、接合部(20)において接合され、放熱板(4)の表面及び反射板(7)の表面は、導体パターン(13)で覆われている。

Description

発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置
 本発明は、発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置に関するものである。
 液晶ディスプレイ用バックライトや照明機器などの光源に用いるものとして、LED素子の開発が進められている。図12は、従来のLED素子101の説明図である。図12の(a)は、従来のLED素子101の断面図である。図12の(b)は、従来のLED素子101の平面図である。図12の(c)は、従来のLED素子101の電気的特性を示すグラフである。
 LED素子101は、基板(基材)102、LED(Light Emitting Diode:発光ダイオード)チップ103、アノード(Anode)端子104、カソード(Cathode)端子105、スルーホール106,107、導体パターン108,109、ボンディングワイヤ110及び封止樹脂111を備えている。
 LED素子101では、基板102上の導体パターン108の上にLEDチップ103が実装されている。また、アノード端子104と導体パターン108とが、基板102を貫通するスルーホール106を介して接続されている。
 さらに、カソード端子105と導体パターン109とが、基板102を貫通するスルーホール107を介して接続されている。さらに、LEDチップ103と導体パターン109とが、ボンディングワイヤ110により接続されている。そして、LEDチップ103及び導体パターン108,109を覆うように、封止樹脂111による封止が行われている。
 図12のLED素子101と同様に、LEDチップを備えるLED素子として、特許文献1には、LEDチップから発する熱を裏面の金属面へ放熱させて、かつLEDレンズを形成する枠部材が傾かずに接着できる構造を特長としたLED素子が開示されている。
日本国公開特許公報「特開2004-200208号公報(2004年7月15日公開)」
 図12のLED素子101を照明に使用する場合、LED素子101が高光度で発光するために、LED素子101に高い電流を流す必要がある。
 LED素子101が発する光の光度(単位cd(カンデラ))は、基本的に、LED素子101に流す電流(図12の(c)のLED電流)の大きさに比例して高くなるが、上記電流が高くなるにつれてLED素子101(より具体的にはLED素子が内蔵しているLEDチップ103)が発熱する。これにより、LED素子101自体の発光効率が低下し、暗くなってくる(即ち輝度が低下する。図12の(c)のグラフ参照)。参考値として、LED素子101にLED最大定格電流を流すと、10%~20%程度の光度低下が起きる。
 また、この発熱した状態で長時間使用することにより、LED素子101自体が劣化して寿命が短くなり、場合によっては破壊される。以下の記載では、LED素子101自体の発光効率が低下する原因を説明する。
 LED素子101に流す電流が高ければ高い程、LEDチップ103の発熱量が多くなる一方、LED素子101のパッケージ損失(放熱特性)が悪い。このため、LEDチップ103自体の発光効率が低下することにより、LED素子101自体の発光効率が低下する。
 具体的には、LED素子101における発熱部は、LED素子101内に封止樹脂111で封止されているLEDチップ103のPN接合部である。該PN接合部は、冷却時間が無いと、時間の経過と共に温度が上昇し続ける。
 以上の理由より、LED素子自体の発光効率は、LED素子のパッケージ損失(放熱特性)と、LED素子の実装部周辺の放熱特性とにより変化する。
 また、LEDチップから発する熱を裏面の金属面へ放熱する特許文献1のLED素子は、以下に示す第1~第3の問題点を有している。
 第1の問題点として、LEDチップから発した熱を放熱させるには、LEDチップが実装された金属板だけでは不十分である。
 第2の問題点として、LEDチップ周辺の表面がレジストや接着剤などの積層構造で形成されているため、LEDチップのサイドから発する光をその断面で反射させるには反射率が低く反射ロスが大きくなる。従って、LEDチップの発光量に対するLED素子の発光効率が低下する。
 第3の問題点として、LED素子から発せられる光の分布(配光分布)は、集光性が高く非常に強い指向性を示す分布となる。従って、逆の分布、即ち、広い配光分布(集光性が低く指向性が弱い分布)など、特定の配光分布となるように光を制御することは困難である。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、配向分布が調整可能であり、放熱性及び発光効率を高めることが出来、従来の発光ダイオード素子よりも寿命が長い発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置を提供することにある。
 本発明の発光ダイオード素子は、上記課題を解決するために、発光ダイオードチップを備える表面発光の発光ダイオード素子であって、上記発光ダイオードチップが上面に配置され、上記発光ダイオードチップが発する熱を放熱させる放熱板と、上記発光ダイオードチップから放射される光を反射する反射板と、上記放熱板と上記反射板との間に設けられる基板とを備え、上記放熱板と上記反射板とは、第1接合部における接合により一体に形成され、上記放熱板と上記基板とは、第2接合部において接合され、上記放熱板の表面及び上記反射板の表面は、導体パターンで覆われていることを特徴とする。
 上記発明によれば、発光ダイオード素子は、上記放熱板を備える発光ダイオード素子であり、上記発光ダイオードチップから放射される光を反射する上記反射板を設けている。このような構造とすることで、上記発光ダイオードチップから放射される光を、効率良く反射させることが出来、法線方向(上記放熱板の露出面に対して垂直な方向)と上記反射板とのなす角度を調整(増減)することによって、配光分布(上記発光ダイオード素子から発せられる光の分布)を調整できる。
 また、上記放熱板の表面及び上記反射板の表面は、上記導体パターンで覆われている。上記導体パターンは、例えば銅材を用いて形成される。また、上記反射板と、上記放熱板の露出面とは、上記第1接合部において接合されている。さらに、上記放熱板と上記基板とは、上記第2接合部において接合されている。上記第1接合部及び上記第2接合部により、放熱部の体積が従来の発光ダイオード素子よりも大きくなるので、熱容量が従来の発光ダイオード素子よりも大きくなる。そして、上記第1接合部における放熱効果と上記第2接合部における放熱効果との相乗効果により、放熱性を高めることが出来る。
 このように、上記発光ダイオード素子は、効率よく放熱出来るため、局所的に熱が集中することなく、熱を分散させることができる。
 さらに、放熱について、上記発光ダイオード素子では、上記発光ダイオードチップ周辺の、上記放熱板及び上記反射板で放熱する。このため、従来の発光ダイオード素子よりも金属面積が大きくなった分だけ放熱特性が向上する。
 従って、従来の発光ダイオード素子よりも発熱を抑制出来るので、発光効率が良くなる(即ち、発光効率が高くなる)。また、発熱を抑制出来るので、従来の発光ダイオード素子よりも寿命が長くなる。
 従って、配向分布が調整可能であり、放熱性及び発光効率を高めることが出来、従来の発光ダイオード素子よりも寿命が長い発光ダイオード素子を提供出来る。
 本発明の発光ダイオード素子は、以上のように、発光ダイオードチップが上面に配置され、上記発光ダイオードチップが発する熱を放熱させる放熱板と、上記発光ダイオードチップから放射される光を反射する反射板と、上記放熱板と上記反射板との間に設けられる基板とを備え、上記放熱板と上記反射板とは、第1接合部における接合により一体に形成され、上記放熱板と上記基板とは、第2接合部において接合され、上記放熱板の表面及び上記反射板の表面は、導体パターンで覆われているものである。
 それゆえ、配向分布が調整可能であり、放熱性及び発光効率を高めることが出来、従来の発光ダイオード素子よりも寿命が長い発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置を提供するという効果を奏する。
本発明の実施例に係るLED素子の説明図であり、(a)は本発明の実施例に係るLED素子の断面図であり、(b)は本発明の実施例に係るLED素子の平面図である。 本発明の実施例に係るLED素子の説明図であり、(a)は本発明の実施例に係るLED素子においてどのように放熱が行われるかを示す図であり、(b)はLEDチップの発光面を示すLED素子の部分拡大図である。 本発明の実施例に係るLED素子において発光効率が向上することを示すグラフである。 本発明の実施例に係るLED素子における角度がより小さい場合の配光特性の説明図であり、(a)は、(b)に示すように、本発明の実施例に係るLED素子における角度がより小さい場合の配光特性を示すグラフである。 本発明の実施例に係るLED素子における角度がより大きい場合の配光特性の説明図であり、(a)は、(b)に示すように、本発明の実施例に係るLED素子における角度がより大きい場合の配光特性を示すグラフである。 本発明の他の実施例に係るLED素子の説明図であり、(a)は本発明の他の実施例に係るLED素子の断面図であり、(b)は本発明の他の実施例に係るLED素子の平面図である。 本発明のさらに別の実施例に係るLED素子の説明図であり、(a)は本発明のさらに別の実施例に係るLED素子の断面図であり、(b)は本発明のさらに別の実施例に係るLED素子の平面図である。 本発明のさらに別の実施例に係るLED素子の説明図であり、(a)は本発明のさらに別の実施例に係るLED素子の断面図であり、(b)は本発明のさらに別の実施例に係るLED素子の平面図である。 本発明のさらに別の実施例に係るLED素子の説明図であり、(a)は本発明のさらに別の実施例に係るLED素子の断面図であり、(b)は本発明のさらに別の実施例に係るLED素子において粗面化処理が施された部分を示す部分拡大図であり、(c)は本発明のさらに別の実施例に係るLED素子の平面図である。 同一基板上に複数のLED素子を形成して構成された光源の説明図であり、(a)は同一基板上に複数のLED素子を形成して構成された光源を示す断面図であり、(b)は上記光源の平面図である。 本発明のさらに別の実施例に係る、面光源照明装置及び液晶表示装置を示す断面図である。 従来のLED素子の説明図であり、(a)は従来のLED素子の断面図であり、(b)は従来のLED素子の平面図であり、(c)は従来のLED素子の電気的特性を示すグラフである。
 本発明の一実施形態について実施例1~実施例7、図1~図11に基づいて説明すれば、以下の通りである。
 〔実施例1〕
 本発明の一実施例について図1~図5に基づいて説明すれば、以下の通りである。
 図1は、本発明の実施例に係るLED素子1の説明図である。図1の(a)は、本発明の実施例に係るLED素子1の断面図である。図1の(b)は、本発明の実施例に係るLED素子1の平面図である。
 LED素子1(発光ダイオード素子)は、LED(Light Emitting Diode:発光ダイオード)チップ3(発光ダイオードチップ)を備える表面発光のLED素子であって、基板(基材)2、LEDチップ3、(アノード(Anode))としての放熱板4、カソード(Cathode)端子5、スルーホール6、反射板7、導体パターン8、ボンディングワイヤ9及び封止樹脂10を備えている。ここで、表面とは、放熱板4の、封止樹脂10が形成される側の面を示す。
 基板2は、放熱板4と反射板との間に設けられる。また、放熱板4及び反射板7は金属で形成されており、銅やアルミなどの熱伝導率の高い金属を用いると好適である。
 LED素子1では、放熱板4の上面にLEDチップ3が配置されており、LEDチップ3が発する熱を放熱板4により放熱させる。また、カソード端子5と導体パターン8とが、基板2を貫通するスルーホール6を介して接続されている。さらに、LEDチップ3と導体パターン8とが、ボンディングワイヤ9により接続(ワイヤーボンディング)されている。さらに、反射板7と導体パターン8との間には、溝11が形成されている。図1の(b)の平面図では、溝11はL字型をしているが、これは例示であり、平面図における溝11の形状としては、反射板7と導体パターン8とを分けることが出来る形状を採用すればよい。
 さらに、放熱板4と反射板7とは、例えば接合部12(第1接合部)において接合により一体に形成されている(即ち、一体化されている)。
 そして、LEDチップ3を覆うように、封止樹脂10による封止が行われている(パッケージングされている)。なお、封止樹脂10による封止の対象は、LEDチップ3に限定されず、LEDチップ3、反射板7及び導体パターン8を覆うように、封止樹脂10による封止が行われてもよい。
 本実施例1のLED素子1は、放熱板4を備えるLED素子であり、LEDチップ3から放射される光を反射する反射板7を設けている。このような構造とすることで、LEDチップ3から放射される光を、効率良く反射させることが出来、法線方向(z方向、後述する露出面19に対して垂直な方向)と反射板7とのなす角度θ〔°〕を調整(増減)することによって、配光分布(LED素子1から発せられる光の分布)を調整できる。
 LED素子1では、反射板7は、LEDチップ3から放射される光を上記表面へ導くように設けられてもよい。これにより、LEDチップ3の全方向から放射される光を、効率良く反射させることが出来る。
 放熱板4の表面及び反射板7の表面は、導体パターン13(導体パターン)で覆われている。導体パターン13は、例えば銅材を用いて形成される。また、上述したように、反射板7と、LEDチップ3が配置されている放熱板4の露出面19とは、接合部12において接合されている。さらに、放熱板4と、基板2とが接合部20(第2接合部)において接合されている。接合部12及び接合部20により、放熱部の体積が従来のLED素子よりも大きくなるので、熱容量が従来のLED素子よりも大きくなる。そして、接合部12における放熱効果と接合部20における放熱効果との相乗効果により、放熱性を高めることが出来る(熱をパッケージの外へ逃がすことが出来る)。
 このように、LED素子1は、効率よく放熱出来るため、局所的に熱が集中することなく、熱を分散させることができる。
 なお、放熱板4と基板2との接合部20では、メッキ加工が行われてもよく、金属板が貼り合わせられても良い。
 そして、基板2に形成される穴14の中心には、LEDチップ3が配置されている。LEDチップ3は、ボンディングワイヤ9によりワイヤーボンディングされ、LEDチップ3の発光面15(図2の(b)参照)は、封止樹脂10による樹脂封止が行われている。封止樹脂10は、例えば透明なエポキシ樹脂である。
 図2は、本発明の実施例1に係るLED素子1の説明図である。図2の(a)は、本発明の実施例1に係るLED素子1の断面図であり、LED素子1においてどのように放熱が行われるかを示す図である。図2の(b)は、LEDチップ3の発光面15を示すLED素子1の部分拡大図である。LED素子1では、図2の(a)の破線矢印18に示すように光が放射される。
 図2の(a)の矢印16,17に示すように、LED素子1では、LEDチップ3の周辺に位置する、放熱板4及び反射板7で放熱される構造になっており、金属の面積及び厚みが厚いほど、放熱特性が向上する。図2の(a)において、矢印16,17及び後述する矢印17’の大きさは、放熱の度合いを示しており、矢印が大きい箇所ほど放熱量が多い。
 ここで、図2の(a)のLED素子1では、放熱の経路を矢印16,17で示しているが、反射板7の紙面右側に示されている部分には、溝11が形成されている。溝11が封止樹脂10で封止されているために、反射板7の紙面右側に示されている部分よりも、反射板7の紙面左側に示されている部分の方が、放熱し易い(熱が逃げ易い)。そして、反射板7の紙面右側に示されている部分の、矢印17’で示されている部分では、溝11の封止樹脂10を介して放熱する。このため、矢印17’で示されている部分は、矢印17で示されている部分よりも、放熱量が少ない。
 また、法線方向(z方向)と反射板7とのなす角度θ〔度〕、及び、反射板7の形状により、LED素子1の配光特性(横軸を角度θ、縦軸を光度(単位はcd(カンデラ))としたグラフであり、図4の(a)及び図4の(b)に示す)を容易に制御できる。
 図3は、本発明の実施例1に係るLED素子1において発光効率が向上することを示すグラフである。図3のグラフにおいて、横軸はLED素子1に流れるLED電流(単位は例えばmA(ミリアンペア))であり、縦軸は光度である。LED電流は、LED素子1において、放熱板4(アノード(Anode))→LEDチップ3→ボンディングワイヤ9→導体パターン8→スルーホール6→カソード端子5の経路で流れる。
 放熱について、LED素子1では、LEDチップ3周辺の、放熱板4及び反射板7で放熱する。このため、図12の従来のLED素子101よりも金属面積が大きくなった分だけ放熱特性が向上する。
 従って、従来のLED素子101よりも発熱を抑制出来るので、発光効率が良くなる(即ち、発光効率が高くなり、消費電力がより少なくなる)。また、発熱を抑制出来るので、従来のLED素子101よりも寿命が長くなる。
 また、放熱特性が向上することにより、LED素子1の最大定格電流値を大きく設定することが出来る。従って、光度が向上する結果、輝度が向上する。
 図4は、本発明の実施例1に係るLED素子1における角度θがより小さい場合の配光特性の説明図である。図4の(a)は、図4の(b)に示すように、本発明の実施例1に係るLED素子1における角度θがより小さい場合の配光特性を示すグラフである。図5は、本発明の実施例1に係るLED素子1における角度θがより大きい場合の配光特性の説明図である。図5の(a)は、図5の(b)に示すように、本発明の実施例1に係るLED素子1における角度θがより大きい場合の配光特性を示すグラフである。
 配光分布について、法線方向に対する角度θがより小さいと、図4の(a)にグラフに示すように指向性がより狭くなる(より強くなる)。これに対して、法線方向に対する角度θがより小さいと、図5の(a)にグラフに示すように指向性がより広くなる(より弱くなる)。
 LED素子1と、従来のLED素子との間の構造面の違いとしては、LEDチップ周辺の断面が、反射板7により一律同一面上に形成されている。
 また、LED素子1は、表面が、金属の反射板7で覆われており、反射板7が放熱板4と接合部12において接合されている。
 さらに、断面構造に関して、特許文献1に記載されているレジスト材やインク材、枠部材、接着剤等を必要としない。
 さらに、配光分布の自由な設計ができる。
 さらに、LED素子1内の光反射ロスを低減でき、発光効率の高い特性が得られる。
 そして、放熱面積を大きく取れることにより放熱性が高くなるため、発光時の発熱による発光効率の低下や劣化など信頼性を向上することができる。
 〔実施例2〕
 本発明の他の実施例について図6に基づいて説明すれば、以下の通りである。なお、本実施例2において説明すること以外の構成は、前記実施例1と同じである。また、説明の便宜上、前記実施例1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 図6は、本発明の他の実施例に係るLED素子21の説明図である。図6の(a)は、本発明の他の実施例に係るLED素子21の断面図である。図6の(b)は、本発明の他の実施例に係るLED素子21の平面図である。本実施例2のLED素子21と、実施例1のLED素子1との間では、以下の点が異なる。
 LED素子21では、反射板7の表面に形成された導体パターン13に、光の反射率が高い高反射メッキ22(メッキ)が施されている。即ち、LED素子21では、反射板7、導体パターン13及び高反射メッキ22が、この順で積層されている。なお、本実施形態においては、光の反射率が60%以上90%以下の場合に、光の反射率が高い(即ち高反射である)とするが、これはあくまでも例示である。
 反射板7の導体パターン13に、高反射メッキ22を施すことにより、反射板7の反射率をより高く出来る。従って、より高い発光効率が得られ、低消費電力化にもつながる。高反射メッキ22には、例えばAg(銀)やAu(金)などが用いられる。
 〔実施例3〕
 本発明のさらに別の実施例について図7に基づいて説明すれば、以下の通りである。なお、本実施例3において説明すること以外の構成は、前記実施例1,2と同じである。また、説明の便宜上、前記実施例1,2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 図7は、本発明のさらに別の実施例に係るLED素子31の説明図である。図7の(a)は、本発明のさらに別の実施例に係るLED素子31の断面図である。図7の(b)は、本発明のさらに別の実施例に係るLED素子31の平面図である。本実施例3のLED素子31と、実施例2のLED素子21との間では、以下の点が異なる。
 LED素子31では、基板2の内部に、少なくとも1層以上の内層導体パターン32が形成されている。内層導体パターン32は、接合部33(第3接合部)において反射板7と接合されている。これにより、放熱する部分の面積をさらに広くして放熱性を高めることが出来る(放熱効果をより大きく出来る)。また、放熱特性を向上させてLED素子31のパッケージ損失を小さく出来る。
 内層数、即ちは内層導体パターン32の数は、多いほど良い。また、内層導体パターン32としては、熱伝導率の高い金属(例えば銅材やアルミ材など)が良い。さらに、内層導体パターン32は、厚い方が好ましい。これらの条件を適切に組み合わせて構成された内層導体パターン32を設けることにより、放熱効果をより大きくすることが出来る。
 〔実施例4〕
 本発明のさらに別の実施例について図8に基づいて説明すれば、以下の通りである。なお、本実施例4において説明すること以外の構成は、前記実施例1~3と同じである。また、説明の便宜上、前記実施例1~3の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 図8は、本発明のさらに別の実施例に係るLED素子41の説明図である。図8の(a)は、本発明のさらに別の実施例に係るLED素子41の断面図である。図8の(b)は、本発明のさらに別の実施例に係るLED素子41の平面図である。本実施例4のLED素子41と、実施例3のLED素子31との間では、以下の点が異なる。
 LED素子41では、実施例1~3の基板2内に、フィラ材を含めることにより、基板42とした。上記フィラ材により、基板42の熱伝導性を向上させ、基板42自体の放熱性も高めることが出来るので、放熱性をさらに高めることが出来る。また、放熱特性を向上させてLED素子41のパッケージ損失を小さく出来る。
 〔実施例5〕
 本発明のさらに別の実施例について図9に基づいて説明すれば、以下の通りである。なお、本実施例5において説明すること以外の構成は、前記実施例1~4と同じである。また、説明の便宜上、前記実施例1~4の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 図9は、本発明のさらに別の実施例に係るLED素子51の説明図である。図9の(a)は、本発明のさらに別の実施例に係るLED素子51の断面図である。図9の(b)は、本発明のさらに別の実施例に係るLED素子51において粗面化処理52が施された部分を示す部分拡大図である。図9の(c)は、本発明のさらに別の実施例に係るLED素子51の平面図である。本実施例5のLED素子51と、実施例4のLED素子41との間では、以下の点が異なる。
 LED素子51では、実施例4のLED素子41において高反射メッキ22を施す代わりに、導体パターン13及び放熱板4の露出面19に図9の(b)に示す粗面化処理52を施す。粗面化処理52は、放熱板4の、封止樹脂10が形成されない側の面(裏面)にも施される。図9の(b)は、図9の(a)の破線円53に示される部分の拡大図である。粗面化処理52を施すことにより、粗面化処理52を施した箇所の表面積が大きくなるので、より高い放熱効果が得られる。
 〔実施例6〕
 本発明のさらに別の実施例について図10に基づいて説明すれば、以下の通りである。なお、本実施例6において説明すること以外の構成は、前記実施例1~5と同じである。また、説明の便宜上、前記実施例1~5の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 実施例1~実施例5では、1つの基板2上に1つのLED素子を形成している。しかし本発明はこれに限定されず、複数のLED素子を同一基板上に形成(複数形成)してもよい。
 図10は、同一基板2’(1枚の基板)上に複数のLED素子51(実施例5)を形成して構成された光源61の説明図である。図10の(a)は、同一基板2’(1枚の基板)上に複数のLED素子51(実施例5)を形成して構成された光源61(光源装置)を示す断面図である。また、図10の(b)は、光源61の平面図である。
 なお、光源61では、複数のLED素子として実施例5のLED素子51を用いたが、これは例示に過ぎず、複数のLED素子として、実施例1~実施例4のLED素子1,21,31,41を、LED素子51と同様に用いても良い。また、複数のLED素子は、2種類以上のLED素子を混在させて構成されてもよい。例えば、同一基板2’上に、LED素子31とLED素子51とを形成してもよい、即ちLED素子31,51を混在させてもよい。
 光源61は、1枚光源(1枚の基板、即ち同一基板2’を用いて形成された光源)として構成されており、複数のLED素子を備えるので1つのLED素子よりも輝度を高めることができる。
 また、同一基板2’上に複数のLED素子を形成しているので、多数の単体LED素子により光源を構成するよりも、基板枚数及び製造工程数が低減される。この結果、コストダウンが可能となる。
 〔実施例7〕
 本発明のさらに別の実施例について図11に基づいて説明すれば、以下の通りである。なお、本実施例7において説明すること以外の構成は、前記実施例1~6と同じである。また、説明の便宜上、前記実施例1~6の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 本実施例7では、実施例1~実施例5のLED素子、または、実施例6の光源61を用いた、面光源照明装置71及び液晶表示装置72について述べる。
 図11は、本発明のさらに別の実施例に係る、面光源照明装置71及び液晶表示装置72を示す断面図である。
 面光源照明装置71は、光源61と光学シート73とを備えている。光源61の出射光は、光学シート73を背面から照射し、光学シート73により光分布が均一化される。これにより、面光源照明装置71から面状の光を出射出来る。
 液晶表示装置72は、光源61、光学シート73及び液晶表示パネル74を備えている。即ち、液晶表示装置72は、面光源照明装置71と液晶表示パネル74とを備えている。液晶表示パネル74は、面光源照明装置71の上面に配置される。これにより、液晶表示装置72は、画像または動画を表示出来る。
 なお、液晶表示パネル74は、複数の画素を含む領域ごとに駆動可能に構成され、面光源照明装置71は、前記複数の画素を含む領域毎に輝度が調整可能に構成されてもよい。
 また、面光源照明装置71及び液晶表示装置72では、1枚の光学シート73を用いているが、光学シート73に代えて、複数の光学シートを積層した光学シート群を用いても良い。
 上記発光ダイオード素子では、上記反射板は、上記発光ダイオードチップから放射される光を上記表面へ導くように設けられてもよい。これにより、上記発光ダイオードチップの全方向から放射される光を、効率良く反射させることが出来る。
 上記発光ダイオード素子では、上記導体パターンに、銀または金によりメッキが施されていてもよい。上記メッキにより、上記反射板の反射率をより高く出来る。従って、より高い発光効率が得られ、低消費電力化にもつながる。
 上記発光ダイオード素子では、上記基板の内部に、少なくとも1層以上の内層導体パターンが形成されており、上記内層導体パターンと上記反射板とは、第3接合部において接合されていてもよい。
 これにより、放熱する部分の面積をさらに広くして放熱性を高めることが出来る(放熱効果をより大きく出来る)。また、放熱特性を向上させて上記発光ダイオード素子のパッケージ損失を小さく出来る。
 上記発光ダイオード素子では、上記基板は、フィラ材を含んでもよい。上記フィラ材により、上記基板の熱伝導性を向上させ、上記基板自体の放熱性も高めることが出来るので、放熱性をさらに高めることが出来る。また、放熱特性を向上させて上記発光ダイオード素子のパッケージ損失を小さく出来る。
 上記発光ダイオード素子では、上記導体パターンは、粗面化処理が施されていてもよい。上記粗面化処理を施すことにより、上記粗面化処理を施した箇所の表面積が大きくなるので、より高い放熱効果が得られる。
 本発明の光源装置は、上記いずれかの発光ダイオード素子が、1枚の基板上に複数形成されていることを特徴とする。
 上記光源装置は、上記1枚の基板を用いて形成された光源として構成されており、複数の上記発光ダイオード素子を備えるので1つの上記発光ダイオード素子よりも輝度を高めることができる。
 また、上記1枚の基板上に上記発光ダイオード素子を形成しているので、多数の単体発光ダイオード素子により光源を構成するよりも、基板枚数及び製造工程数が低減される。この結果、コストダウンが可能となる。
 本発明の面光源照明装置は、上記光源装置と、光学シートとを備え、上記光源装置の出射光は、上記光学シートを背面から照射し、上記光学シートにより光分布が均一化されることを特徴とする。これにより、上記面光源照明装置から面状の光を出射出来る。
 本発明の液晶表示装置は、上記面光源照明装置と、上記面光源照明装置の上面に配置される液晶表示パネルとを備えることを特徴とする。これにより、上記液晶表示装置は、画像または動画を表示出来る。
 本発明は上述した各実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の発光ダイオード素子は、配向分布が調整可能であり、放熱性及び発光効率を高めることが出来るので、液晶表示装置に好適に用いることが出来る。
 1,21,31,41,51 LED素子(発光ダイオード素子)
 2,42 基板
 2’ 同一基板(1枚の基板)
 3 LEDチップ(発光ダイオードチップ)
 4 放熱板
 5 カソード端子
 6 スルーホール
 7 反射板
 8 導体パターン
 9 ボンディングワイヤ
 10 封止樹脂
 11 溝
 12 接合部(第1接合部)
 13 導体パターン(導体パターン)
 14 穴
 15 発光面
 16,17,17’ 矢印
 18 破線矢印
 19 面
 20 接合部(第2接合部)
 22 高反射メッキ(メッキ)
 32 内層導体パターン
 33 接合部(第3接合部)
 52 粗面化処理
 53 破線円
 61 光源(光源装置)
 71 面光源照明装置
 72 液晶表示装置
 73 光学シート
 74 液晶表示パネル
 θ 角度

Claims (9)

  1.  発光ダイオードチップを備える表面発光の発光ダイオード素子であって、
     上記発光ダイオードチップが上面に配置され、上記発光ダイオードチップが発する熱を放熱させる放熱板と、
     上記発光ダイオードチップから放射される光を反射する反射板と、
     上記放熱板と上記反射板との間に設けられる基板とを備え、
     上記放熱板と上記反射板とは、第1接合部における接合により一体に形成され、
     上記放熱板と上記基板とは、第2接合部において接合され、
     上記放熱板の表面及び上記反射板の表面は、導体パターンで覆われていることを特徴とする発光ダイオード素子。
  2.  上記反射板は、上記発光ダイオードチップから放射される光を上記表面へ導くように設けられることを特徴とする請求項1に記載の発光ダイオード素子。
  3.  上記導体パターンに、銀または金によりメッキが施されていることを特徴とする請求項1または2に記載の発光ダイオード素子。
  4.  上記基板の内部に、少なくとも1層以上の内層導体パターンが形成されており、
     上記内層導体パターンと上記反射板とは、第3接合部において接合されていることを特徴とする請求項1~3のいずれか1項に記載の発光ダイオード素子。
  5.  上記基板は、フィラ材を含むことを特徴とする請求項1~4のいずれか1項に記載の発光ダイオード素子。
  6.  上記導体パターンは、粗面化処理が施されていることを特徴とする請求項1または2に記載の発光ダイオード素子。
  7.  請求項1~6のいずれか1項に記載の発光ダイオード素子が、1枚の基板上に複数形成されていることを特徴とする光源装置。
  8.  請求項7に記載の光源装置と、
     光学シートとを備え、
     上記光源装置の出射光は、上記光学シートを背面から照射し、
     上記光学シートにより光分布が均一化されることを特徴とする面光源照明装置。
  9.  請求項8に記載の面光源照明装置と、
     請求項8に記載の面光源照明装置の上面に配置される液晶表示パネルとを備えることを特徴とする液晶表示装置。
     
PCT/JP2010/071165 2009-12-22 2010-11-26 発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置 WO2011077900A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/513,689 US8902382B2 (en) 2009-12-22 2010-11-26 Light emitting diode element, light source device, surface light source illumination device, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-291302 2009-12-22
JP2009291302 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011077900A1 true WO2011077900A1 (ja) 2011-06-30

Family

ID=44195439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071165 WO2011077900A1 (ja) 2009-12-22 2010-11-26 発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置

Country Status (2)

Country Link
US (1) US8902382B2 (ja)
WO (1) WO2011077900A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079835A (ja) * 2013-10-16 2015-04-23 大日本印刷株式会社 光半導体装置、光半導体装置用リードフレーム、及びそれらの製造方法
JP2017098498A (ja) * 2015-11-27 2017-06-01 ローム株式会社 Led発光装置
JP2017157684A (ja) * 2016-03-02 2017-09-07 ローム株式会社 発光装置およびその製造方法
JP2019040956A (ja) * 2017-08-23 2019-03-14 スタンレー電気株式会社 半導体発光装置
JPWO2019160062A1 (ja) * 2018-02-16 2021-02-12 京セラ株式会社 多数個取り素子収納用パッケージおよび多数個取り光半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI527166B (zh) * 2013-07-25 2016-03-21 The package structure of the optical module
WO2023244686A1 (en) * 2022-06-15 2023-12-21 Lumileds Llc Two-way transparent display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039691A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd Led照明装置用の熱伝導配線基板およびそれを用いたled照明装置、並びにそれらの製造方法
JP2006128512A (ja) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd 発光素子用セラミック基板
JP2006190814A (ja) * 2005-01-06 2006-07-20 Hitachi Aic Inc 発光素子用の配線基板
JP2007317701A (ja) * 2006-05-23 2007-12-06 Koha Co Ltd 光源用基板及びこれを用いた照明装置
JP2009295798A (ja) * 2008-06-05 2009-12-17 Harison Toshiba Lighting Corp 発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284990B2 (ja) 2002-12-16 2009-06-24 パナソニック電工株式会社 発光装置
CN101740560B (zh) * 2003-04-01 2012-11-21 夏普株式会社 发光装置、背侧光照射装置、显示装置
JP3976063B2 (ja) * 2003-10-31 2007-09-12 豊田合成株式会社 発光装置
US20080043444A1 (en) * 2004-04-27 2008-02-21 Kyocera Corporation Wiring Board for Light-Emitting Element
JP4062358B2 (ja) * 2004-09-16 2008-03-19 日立エーアイシー株式会社 Led装置
KR101255302B1 (ko) * 2006-03-31 2013-04-15 엘지디스플레이 주식회사 백라이트 유닛 및 이를 이용한 액정 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039691A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd Led照明装置用の熱伝導配線基板およびそれを用いたled照明装置、並びにそれらの製造方法
JP2006128512A (ja) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd 発光素子用セラミック基板
JP2006190814A (ja) * 2005-01-06 2006-07-20 Hitachi Aic Inc 発光素子用の配線基板
JP2007317701A (ja) * 2006-05-23 2007-12-06 Koha Co Ltd 光源用基板及びこれを用いた照明装置
JP2009295798A (ja) * 2008-06-05 2009-12-17 Harison Toshiba Lighting Corp 発光装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079835A (ja) * 2013-10-16 2015-04-23 大日本印刷株式会社 光半導体装置、光半導体装置用リードフレーム、及びそれらの製造方法
JP2017098498A (ja) * 2015-11-27 2017-06-01 ローム株式会社 Led発光装置
JP2017157684A (ja) * 2016-03-02 2017-09-07 ローム株式会社 発光装置およびその製造方法
JP2019040956A (ja) * 2017-08-23 2019-03-14 スタンレー電気株式会社 半導体発光装置
JP7048228B2 (ja) 2017-08-23 2022-04-05 スタンレー電気株式会社 半導体発光装置
JPWO2019160062A1 (ja) * 2018-02-16 2021-02-12 京セラ株式会社 多数個取り素子収納用パッケージおよび多数個取り光半導体装置
JP7072045B2 (ja) 2018-02-16 2022-05-19 京セラ株式会社 多数個取り素子収納用パッケージおよび多数個取り光半導体装置

Also Published As

Publication number Publication date
US8902382B2 (en) 2014-12-02
US20120242933A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP4674282B2 (ja) 線光源用ledモジュール
JP4755213B2 (ja) エッジライト式発光ダイオードバックライトモジュール
TWI581450B (zh) Semiconductor light emitting module and manufacturing method thereof
JP4635027B2 (ja) 光導波路を照明するための間接照明装置
JP4360858B2 (ja) 表面実装型led及びそれを用いた発光装置
JP4955422B2 (ja) 発光装置
WO2011077900A1 (ja) 発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置
JP5899507B2 (ja) 発光装置及びそれを用いた照明装置
JP4808550B2 (ja) 発光ダイオード光源装置、照明装置、表示装置及び交通信号機
KR20140071878A (ko) 발광장치 및 조명장치
JP2007142173A (ja) 照明装置
JP4683013B2 (ja) 発光装置
WO2011024861A1 (ja) 発光装置および照明装置
JP2014093148A (ja) 車両用灯具の半導体型光源、車両用灯具
JP2012119436A (ja) Led線状光源およびバックライト
US8872300B2 (en) Light emitting device module
JP2014082481A (ja) 発光装置
JP2012059737A (ja) 発光装置、バックライトユニット、液晶表示装置及び照明装置
JP5685865B2 (ja) 光源装置
JP5275140B2 (ja) 照明装置及び発光装置
JP2009245643A (ja) 照明装置
JP5935074B2 (ja) 実装基板および発光モジュール
JP2001230451A (ja) 発光ダイオード
JP6087098B2 (ja) 光源装置、ledランプ、および液晶表示装置
JP2011091126A (ja) 発光装置(cobモジュール)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13513689

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP