JP4955422B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP4955422B2
JP4955422B2 JP2007057772A JP2007057772A JP4955422B2 JP 4955422 B2 JP4955422 B2 JP 4955422B2 JP 2007057772 A JP2007057772 A JP 2007057772A JP 2007057772 A JP2007057772 A JP 2007057772A JP 4955422 B2 JP4955422 B2 JP 4955422B2
Authority
JP
Japan
Prior art keywords
emitting device
light
light emitting
led
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007057772A
Other languages
English (en)
Other versions
JP2007273972A (ja
Inventor
卓生 村井
秀樹 福田
貴雄 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007057772A priority Critical patent/JP4955422B2/ja
Publication of JP2007273972A publication Critical patent/JP2007273972A/ja
Application granted granted Critical
Publication of JP4955422B2 publication Critical patent/JP4955422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、例えば、紫外線や青紫、あるいは青色の光色を発する発光ダイオード(LED:Light Emitting Diode)などの半導体発光素子を用いた発光装置に関する。
現在、LEDを用いた多くの発光装置の提案がなされている。しかしながら、LEDパッケージアレイを励起光源とし、発光装置内部にその励起光源により励起する蛍光面を備えた発光装置は数少ない。反射型の発光装置は、励起光に対して蛍光変換部を透過的に用いて波長変換を行う透過型に比較して、その蛍光面の設計自由度が高く、発光の面で高効率な構成とすることが可能である(非特許文献1参照)。さらに、一部放熱性を考慮した反射型LED発光装置の構成も提案されている(例えば、特許文献1参照)。
高効率電光変換化合物半導体開発(21世紀のあかり計画)成果報告書(平成14年度p238)新エネルギー・産業技術総合開発機構(NEDO)委託研究、金属系材料研究開発センター15年3月) 国際公開05/055328号パンフレット
しかしながら、従来技術には次のような課題がある。一般的に、複数のLEDチップが直並列に高密度実装されたLED発光装置では、LEDチップ放熱路がしっかりと確保されないと、LEDジャンクション温度の上昇に伴って発光効率が低下するとともに、装置自体の短寿命化を招くという課題を有している。例えば、あるパッケージLEDでは、10°C上昇で10%程度の発光効率ダウンを招くものもある。さらに、電流制限抵抗などを含む周辺回路部品を用いて、複数のLEDへの安定した電源供給を行い、光出力の安定性を備えることが要求される。
また、透過型に比較して構成の複雑な反射型構成においては、前記特許文献含め、これまで、必ずしも光出力に影響する電気的安定性、およびLED発生熱の放熱性の両面を十分確保、実現する具体構成は示されてはいなかった。
本発明は上述のような課題を解決するためになされたもので、反射型構成において、大光束化(すなわち、大電力投入)、および装置小型化に対応可能であり、電気的安定性およびLED熱の放熱性を備えた発光効率のよい高演色性、あるいは高色再現性を実現する発光装置を得ることを目的とする。
本発明に係る発光装置は、表面にLEDチップが実装された熱伝導性のLEDパッケージ基板と、LEDパッケージ基板が実装され、LEDチップに外部電源を供給するフレキシブル基板と、高反射率特性の凹部形状表面を有する筐体本体と、LEDパッケージ基板が実装されたフレキシブル基板が取り付けられ、LEDパッケージ基板上のLEDチップの発光方向が凹部形状表面に向くように筐体本体に固定される放熱性の筐体背面板とを備えた発光装置であって、LEDパッケージ基板は、背面端部に背面導電パタンを有し、背面導電パタンがフレキシブル基板と接続され、背面導電パタンを有していない背面中央部が筐体背面板と面接触されるように構成され、筐体背面板は、フレキシブル基板以上の厚みの段差を有し、LEDパッケージ基板の背面と面接触する突出部を有し、筐体本体は、LED発光光に励起して波長変換を行う波長変換材料を凹部形状表面に有し、LEDパッケージ基板は、複数のLEDチップが実装されたキャビティを複数有し、キャビティ間のそれぞれのLEDチップを複数の直列ラインにより電気的に直列連結する構成を備え、LEDパッケージ基板の複数キャビティ内のそれぞれに実装される複数のLEDチップは、LEDパッケージ基板に対向する凹部形状表面に対して上部方向に配置されるLEDチップを左右方向に並べることにより、上部方向に行くほど配置密度を密にして実装されるものである。

本発明によれば、LEDパッケージ基板の背面端部をフレキシブル基板に接続させるとともに、背面端部以外の背面中央部を筐体と面接触させることにより、反射型構成において、大光束化(すなわち、大電力投入)、および装置小型化に対応可能であり、電気的安定性およびLED熱の放熱性を備えた発光効率のよい高演色性、あるいは広い色再現性を実現する発光装置を得ることができる。
以下、本発明の発光装置の好適な実施の形態につき図面を用いて説明する。
本装置は、広い拡散面で発光するため、従来LEDの微小発光源に比して不快グレアや減能グレアの少ない装置とすることができる。このような効果を有する本装置の用途は広く、表示用(サイン灯や液晶バックライト)や照明用として、例えば直射照明や間接照明、内照型面照明、あるいは導光板を用いたサイドライト型面照明用の照明器具に組込み使用することができる。
実施の形態1.
図1は、本発明の実施の形態1における発光装置の全体構成図である。この図1において、(a)は、部品構成図、(b)は、組上げ時の前方斜視図、そして、(c)は、組上げ時の後方斜視図を示している。
また、図2は、本発明の実施の形態1における発光装置の上面図、断面図、および背面図を示したものである。この図2において、(a)は、発光装置の上面図である。また、(b)および(c)は、それぞれ図2(a)のI−I’断面図およびII−II’断面図である。さらに、(d)は、筐体背面板側から見た背面図である。
本発明の発光装置は、筐体本体10、側板20、筐体背面板30を備えた筐体部、発光源であるLEDを備えた熱伝導性のLEDパッケージ基板40、およびLEDパッケージ基板40が実装されるフレキシブル基板50を主な構成要素とする。
筐体本体10は、LEDパッケージ基板40からの発光光を励起光とし、波長変換を可能とする波長変換材料12を表面に有する筐体凹部11(凹部形状表面に相当)を有している。また、側板20も、その内側表面に波長変換材料12を有している。
さらに、筐体背面板30には、LEDパッケージ基板40が実装されたフレキシブル基板50が取り付けられる。ここで、筐体背面板30は、放熱性を有しているとともに突出部31を備えており(図1(a)参照)、この突出部31は、後で詳述されるLEDパッケージ基板40の背面と面接触する部分となる。
また、フレキシブル基板50は、LEDパッケージ基板40内のLEDに供給される電流の制限用抵抗であるチップ抵抗51と、LEDパッケージ基板40への電源供給を行うための電源端子52とを備えている(図2(d)参照)。
そして、このフレキシブル基板50は、止め具33によって、筐体背面板30と筐体本体10との間に挟み込まれるようにして固定される(図2(b)参照)。また、筐体本体10の上部には、筐体凹部で波長変換された光を透過する表面透過板14が取り付けられる(図2(b)参照)。さらに、側板20を、止め口13を利用して取り付ける(図2(a)参照)ことにより、発光装置が構成される。
次に、LEDパッケージ基板40の詳細について説明する。図3は、本発明の実施の形態1におけるLEDパッケージ基板40の構成を示す断面図である。LEDパッケージ基板40は、リフレクタ41a、表面導電パタン41b、電気接続部41cおよび背面導電パタン41dを含むLED実装基板41上に、LEDチップ42を実装し、さらに封止樹脂43でモールドされた構成を有している。
LED実装基板41は、表面反射率が比較的高く熱伝導性のよいアルミナセラミック材料と導電材料との積層構造とし、リフレクタ41a、表面導電パタン41b、および電気接続部41cが通電するような構成としている。
このLED実装基板41の別の構成例として、より熱伝導率の高い窒化アルミセラミックを主材とすることで、さらに優れた放熱性装置を実現することができる。ただし、窒化アルミ自体は、表面反射率が低いため、表面に高反射材料を形成して用いることで、光吸収の少ない(すなわち、装置発光効率向上に寄与する)構成として使用することが可能である。また、放熱性を確保する基板として、セラミック以外にアルミや銅をベースとした金属基板を用いてもよい。
この場合、リフレクタ41a内表面材料は、高いLED発光効率を維持するため放熱性でかつ鏡面性のある材料で形成する。銅や金などでも構わないが、励起LED光の吸収を少なくする部材で形成することが望ましく、例えば、短波長LEDに対しても比較的高い反射特性を有している銀やアルミニウムなどで形成する。本実施の形態においては銀で形成している。また、別の形態として、表面導電パタン41bを、絶縁層を設けたアルミ板表面上に形成し、その表面の必要部分を絶縁、さらにその上にLEDを囲むようにリフレクタを形成した金属ベース基板で構成しても、同様に放熱性の効果を有することが可能である。
LEDチップ42(ここではフリップチップLED)は、リフレクタ41a底面に実装され、リフレクタ41a内部を、LEDチップ42を覆うように封止樹脂43でドーム状に封止している。ここで、LEDチップ42自体は、ノーマル/ラージ、あるいは、フェースアップ/フリップチップの種別を限定するものではない。
フリップチップ実装の際には、例えば、LEDと基板とをバンプを介した超音波接合などにより電気的に接続する。また、実装を行った後に、接続強度を高めるとともに封止樹脂43中への気泡混入を防ぐなどの目的でアンダーフィル剤を充填し、さらに樹脂モールドを行うような形態としてもよい。
次に、図4は、本発明の実施の形態1におけるLEDパッケージ基板40の実装例を示す図である。図4(a)は、LED実装基板41の上面図であり、LED実装基板41は、5つのリフレクタ41aを有するように形成されている。さらに、LED実装基板41の端部には、背面導電パタン41dとの接続を行う電気接続部41cが設けられている。
図4(b)は、導電パタンとLEDの第1の実装例を示すものである。具体的には、1つのリフレクタ41aの内部に3つのLEDチップ42を実装し、リフレクタ41a内のそれぞれのLEDチップ42を直接接続として、やや高い密度で実装(LED5直列3並列、□0.35mm程度のレギュラーチップでトータル約1(W)程度の入力)した場合を示している。
さらに、図4(c)は、LED実装基板41の背面図である。図4(c)に示すように、LED実装基板41の背面には、端部にのみ背面導電パタン41dを形成して電気接続部41cを介して表面導電パタン41bと電気的に接続されるとともに、背面端部以外の背面には背面導電パタン41dを設けない構成としている。
また、図4(d)は、導電パタンとLEDの第2の実装例を示すものである。背面導電パタン41dは、図4(c)と同じである。そして、この背面導電パタン41dを設けない背面中央部が、図1(a)に示した突出部31と直接、面接触することとなる。このような構成を有することにより、本発明におけるLEDパッケージ基板40は、LED入力に対して現状7〜8割程度の比率で発生するLED発生熱を、放熱性基板であるLED実装基板41の裏側の広い領域を通して外部に放熱することを可能としている。
図5は、本発明の実施の形態1における図4の構成を有するLED実装基板41に対応する回路構成図である。図5において、点線部で示された部分は、LED実装基板41の一つのリフレクタ内の3つのLEDチップ42のグループを示しており、チップ抵抗51は、フレキシブル基板50に実装されるLED電流制限用の抵抗である。
次に、LEDパッケージ基板40に対する電源供給回路について説明する。図6は、本発明の実施の形態1におけるLEDパッケージ基板40へ電源供給を行うためのフレキシブル基板50の構成図である。図6に示すように、フレキシブル基板50は、LED実装基板41の背面端部に設けられた背面導電パタン41dと接続されるとともに、LED実装基板41の背面中央部に対応する部分には、フレキシブル基板50が存在せず、背面中央部が解放される状態となるように凹形状を有している。
そして、このフレキシブル基板50の凹形状を有している部分に対応して、先の図1あるいは図2に示されている、筐体背面板30の突出部31は、フレキシブル基板50以上の厚みの段差で突出する形状を有している。従って、LED実装基板41を実装したフレキシブル基板50を、放熱性の筐体背面板30に取り付けることにより、LED実装基板41の背面中央部は、フレキシブル基板50を介さずに直接、突出部31と面接触することとなる。
さらに、このフレキシブル基板50上には、LEDチップ42の各直列分の電流制限を行うチップ抵抗51、LEDパッケージ基板40への電源供給を行う電源端子52、および回路導電パタン53が形成されている。
このようなフレキシブル基板50を用いることで、図1に示した反射型発光装置のような複雑な形態に対しても、LED実装基板41の放熱性を考慮した組込み装着が可能となる。さらに、制限抵抗(チップ抵抗51)を実装しているため、個々のLEDに順電圧バラツキがあったとしても、各直列LEDへの分流比をおよそ等しくすることができ、安定点灯を図ることが可能となる。
さらに、このように放熱性と光出力安定性に優れた構造を有することにより、これを1つの光源エレメントとして複数エレメントを用い、大光束型光源として使用することも可能である。
さらに、チップ抵抗51の実装方法によっても、放熱性を改善することが可能である。図7は、本発明の実施の形態1におけるフレキシブル基板50上に実装されたチップ抵抗51およびLED実装基板41の配置を示す図である。図7に示すように、フレキシブル基板50上には、LEDパッケージ基板40の発光側の向きと、チップ抵抗51表面の向きとが相反する方向になるように、チップ抵抗51およびLED実装基板41が実装されている。このようなフレキシブル基板50を、LEDパッケージ基板40の下部を折り曲げたような形態で、筐体本体10と背面金属板からなる放熱性の筐体背面板30とで挟み込むように設置する(図2(b)参照)。
この際、筐体背面板30には、図2に示したような開口部32が設けられており、ちょうどフレキシブル基板50上のチップ抵抗51および電源端子52が大気中(本装置筐体外側)に置かれるように構成されている。チップ抵抗51は、電流が流れる際に発熱するが、このような開口部32を備えた構成をとることにより、発生した熱が装置内部に放たれることなく、効率よく外部に放出されることとなる。したがって、チップ抵抗51の周辺からの発熱によるLEDチップ42自体の温度上昇を防ぐことができ、発光効率を高く維持することが可能である。
また、筐体本体10を金属材料など熱伝導性のよいもので形成し、さらに、フレキシブル基板50上のチップ抵抗51の実装部分の背面に該当する面を、熱伝導性グリスや熱伝導性の両面シールなどにより筐体本体10と密着させる構成をとることができる。これにより、チップ抵抗51の熱を大気中のみならず装置筐体へも逃がすことができ、大電流駆動時においても、温度的に安定した発光装置を得ることができる。
この際、フレキシブル基板50は、筐体背面板30の開口部32よりも大きな面積を有するよう形成しておくことで、筐体本体10と放熱性の筐体背面板30との間に挟み込む形で固定することが可能である。
なお、LEDパッケージ基板40のフレキシブル基板50への実装は、図7(a)のように、フレキシブル基板50上の電気回路パタンを基板両面に形成し、LEDパッケージ基板40の背面導電パタン41dとフレキシブル基板50とを接続する構成とすることができる。
あるいは、図7(b)のように、フレキシブル基板50上の回路パタンを基板片面で形成し、LEDパッケージ基板40の表面導電パタン41bの端部とフレキシブル基板50とを接続する構成とすることもできる。そして、何れの構成においても同じ効果を得ることができる。
なお、何れの構成においても、筐体背面板30を金属体で形成した場合には、フレキシブル基板50上のLED実装基板41の端子部分の背面部は、筐体背面板30との接触によるショートを防ぐため、絶縁処理するように形成されている。
また、上述したように、放熱性の筐体背面板30は、少なくともフレキシブル基板50以上の厚みを有する突出部31を有しており、この突出部31に、フレキシブル基板50に実装されたLEDパッケージ基板40の背面中央部が面接触するように取付ける。図8は、本発明の実施の形態1におけるLED実装基板41と突出部31との面接触の説明図である。図8において、LED実装基板41は、中間層に薄手の熱伝導性両面接着シール60を介して突出部31と接続されるように形成されている。
放熱効率向上のためには、LED実装基板41と突出部31との間に空気層を設けないようにすることが理想である。そこで、中間媒体としては、熱伝導性両面接着シール60の他に、熱伝導グリスを用い、筐体凹部11の内側にLEDパッケージ基板固定部15などを設け、LEDパッケージ基板40を押さえつけ固定するような構成としてもよい(図2(c)参照)。
本構成では、発光装置の使用時の方向(凹部が横向きなら横発光、凹部が下向きなら通常照明のような下面発光)によらず、LEDを電流駆動した際に発生する熱を、LEDパッケージ基板40および薄手の熱伝導性材料(熱伝導性両面接着シール60)を通して、筐体背面板30へ放熱する放熱路を確保することができる。
モジュール筐体主材を約30×23×13(mm)のアルミ材料、LEDパッケージ基板40の主材を約24×4×0.8mmのアルミナ基板、筐体背面板30の厚さを3mm(最大厚さ7mm)として、本発明による発光装置を実際に試作し、温度特性測定を実施した。室温27°Cで、LED標準定格電流時にLEDチップ42を含むリフレクタ41a内部の平均で46°C、アルミナ基板上面で52°C、アルミ筐体背面板30裏側で54°Cとなり、LED周辺温度上昇を抑えた良好な熱的特性を得ることができた。
以上のような構成にすることにより、LEDチップ42の温度上昇による発光効率低下を抑える発光装置を得ることができる。さらに、LED実装密度が高い状態においても、効率よくLED熱を外部に放出することができる。これにより、発光効率を高く維持するとともに、長寿命化を実現する発光装置を得ることが可能となる。
さらに、電流制限抵抗(チップ抵抗51)も装置内部にその熱がこもらないような構成として組込んでいるため、個々のLED電圧バラツキによる点灯むら(光強度むら)や、電源変動に依存した光変動を抑制することができる。この結果、光安定性を実現するとともに、LEDチップの周囲温度上昇を防ぐことができ、駆動電流が大きくなる場合にも、高効率安定発光を実現することができる。
また、図1(b)あるいは(c)のように発光装置として組み上がった状態で、筐体凹部11の表面に対向して露出するフレキシブル基板50の表面は、高反射率表面絶縁の鏡面とするか、あるいは、拡散面仕上げ、さらには凹部内と同じ波長変換を行う波長変換面とすることができる。これにより、フレキシブル基板50での光吸収、およびフレキシブル基板50を透過しての光漏れを抑えることができる。鏡面、拡散面、あるいは波長変換面形成は、シート状のものを貼り付けるような構成、あるいは塗布加工等で実現可能であり、本構成より発光効率の高い発光装置を得ることができる。
また、図9は、本発明の実施の形態1におけるLED実装基板41と突出部31との面接触の別の説明図である。フレキシブル基板50とLEDパッケージ基板40との接続は、図9に示すように、あらかじめフレキシブル基板50にソケット54を実装しておき、ソケット54に対してLEDパッケージ基板40を着脱する形態としてもよい。
図9の構成とすれば、フレキシブル基板50上に実装されるLEDパッケージ基板40の着脱が容易となり、点灯不具合や長時間使用した際には、LEDパッケージ基板40のみを交換することができ、保守性に優れた発光装置とすることができる。
また、本発光装置の開口部32の厚み部分を電源端子52以上の厚みとしておくことで(図2(a)参照)、前述したように、本発光装置を光源エレメントとして複数重ねて使用することや、筐体背面板30を背中合わせとするなど密接させ大光束発光装置として連結使用することもできる。
たとえば、1つの発光装置を1つのモジュールとして重ね合わせて使用する際に、筐体背面板30および筐体本体10を熱伝導性の高い、たとえばアルミ材や銅材などを用いて形成する。これにより、LEDチップ42の発生熱の放熱路を広げることができ、複数モジュールからなる照明装置として使用する場合にも、放熱性のよい形態として用いることが可能となる。
また、筐体背面板30の裏側に放熱フィンを備えることで、さらに放熱効果を有し、LED発熱によるLED自身の温度上昇を抑制し、発光効率を維持しつつ長寿命化を実現する発光装置を得ることができる。また、必要に応じ、冷却ファンと組み合わせて本発光装置利用のアプリケーション形態をとることで、さらに放熱性のよい大型面照明装置を得ることが可能である。
本発光装置の構成において、LEDチップ42として紫、青紫、青の発光色(波長域で370〜460nm程度)を発するものを用いた場合には、波長変換材料12としては、近紫外から青色の領域において励起する複数色の蛍光材料を用いることができる。そして、これらの蛍光材料の組合せにより、表示用としての色再現性を広くするRGB3色発光型の波長変換、あるいは、さらに他蛍光色も加えた広い可視光域の連続波長を有する高演色性の波長変換が可能になる。
したがって、本発光装置の構成により、高演色性あるいは広い色再現性の質の高い光を発する発光装置を実現することができる。この際、波長変換材料は、例えば、蛍光体とそれをバインドする樹脂材料とで形成し、その背面に高反射層を設けるような構成として実現する。この詳細については、実施の形態2で詳述する。
蛍光体は、LEDチップに青色LEDを用いる場合には、例えば、YAG系やシリケート系の黄色蛍光体、窒化物系や酸化物系の赤色あるいは緑色蛍光体などを用いて構成する。紫や青紫色LEDチップを用いる場合には、それら短波長発光領域に励起帯域を持つようなもので構成する。
より具体的には、赤色蛍光体として、Y2O2S:Eu、La2O2S:Eu、LiW2O8:Eu、Sm、(Sr、Ca、Ba、Mg)10(PO4)6Cl2:Eu、Mn、Ba3MgSi2O8:Eu、Mn、緑色蛍光体として、ZnS:Cu、Al、BaMgAl10O17:Eu、Mn、SrAl2O4:Eu、青色蛍光体として(Sr、Ca、Ba、Mg)10(PO4)6Cl2:Eu、(Ba、Sr)MgAl10O17:Eu、(Sr、Ba)3MgSi2O8:Euなどを用いて蛍光変換部を構成することにより、所望の相関色温度や黒体軌跡からの偏差を実現することができる。また、蛍光体の発光色を問わず、短波長に励起域を有するシリケート系蛍光体も適用可能である。
この際、LEDの封止樹脂43として、エポキシ材料と比較して短波長の吸収が低いシリコーン材料を用いることで、長時間使用の際にも、発光装置の発光色の色変化(黄変)を抑えることが可能である。また、このシリコーン材料は、熱的特性も良好であるため、LED実装基板41への封止樹脂43として適するものである。
なお、上述においては、本発光装置の筐体凹部11には、LED発光光に励起し、それと異なる波長で発光する波長変換材料12を適用した例について説明してきた。しかしながら、波長変換材料12を持たずに、凹部表面をLED発光波長に対し高反射特性を有する高反射材料で構成することによっても、LED光をそのまま広く発光させる発光装置を実現することができる。
この場合、LED波長の範囲や種類は、特に特定されるものではなく、例えば、RGBなど複数種類のLEDを発光源として用いることができる。例えば、図4に示したリフレクタ41a内部の3つのLEDチップ42を、それぞれRGBの3種類のLEDで構成し、適当な調光比で駆動することで、色可変可能かつ調光可能な発光装置を実現することもできる。この際、LED熱の放熱効果や光出力安定性は、これまで説明した発光装置の構成と同様の構成により、良好な特性として得ることができる。また、使用LEDを赤外線LEDとして、例えば暗視空間の撮像用発光源として構成することも可能である。
以上のように、実施の形態1によれば、筐体上端部から筐体凹部へ向けてLED発光を行う反射型構成の発光装置において、フレキシブル基板を用いてLEDモジュール基板に電源供給するとともに、フレキシブル基板を介さずにLEDモジュール基板を筐体と面接触させた構成とすることにより、放熱効果を高めた発光装置を得ることができる。これにより、LEDへ安定した電源供給を行うことができ、安定した光出力が得られるとともに、LEDチップ温度自体の温度上昇を抑制することができる。また、特にLEDが短波長LEDの場合、発光表面に短波長成分カット機能を有する短波長カットシートやフィルタを装着することで、筺体凹部内で波長変換しきれなかった波長成分(例えば紫外〜近紫外成分)をカットし、生体および被照明体への悪影響を排除しつつ、特に照明用途として実用上の課題となる防虫効果も得ることができる。
この結果、LED発光効率を高く維持することができるとともに、長寿命化を実現できる。さらに、温度上昇による発光波長シフトも抑制することができるため、筐体凹部内で波長変換される光の光色変化も抑制することができる。したがって、大光束化や小型化に対応した光安定性のある光質の良好な発光装置を実現することができる。
実施の形態2.
本実施の形態2では、実際に試作したLEDパッケージ基板40(図4参照)と、その発光装置への適用性および効果について説明を加える。先の図4の例における本装置のLEDパッケージ基板40は、その各々のリフレクタ41a内に3個のLEDチップ42を具備するとともに、異なるリフレクタ間の5個のそれぞれのLEDチップ42を電気的に直列連結する3つの直列ラインで構成されている。
この場合の駆動(点灯)は、LEDパッケージ基板40に、発光装置筐体内外を問わず、各直列ラインに制限チップ抵抗51を直列接続し、それに電圧印加、または定電流を流すことによって行う。このような構成にすることで、複数LEDの順電圧のばらつきによらず、各接続ラインにほぼ等しい順電流を流すことができるため、各LEDチップ42とも安定した光出力を得ることが可能である。
また、LEDパッケージ基板40中に複数の直列ラインを構成することで、あるラインのLEDチップ42がオープンモードで故障した場合にも、その他のラインのLEDチップ42は、消灯することがなく、LEDが突然故障を来たした際にも、パッケージが全消灯してしまうといった不具合を避けることが可能となる。なお、本構成は、大光束出力を実現するためにLED実装数をさらに多くした場合にも、同様に、光出力安定化および突然の全消灯防止の効果を得ることができる。
また、前述したとおり、LEDパッケージ基板40を用いて試作した発光装置においては、装置内部にLEDパッケージ基板40のそれぞれの直列ラインに対する制限チップ抵抗51を備えており、それらの制限チップ抵抗51は、フレキシブル基板50上に回路部品として実装するように構成される。このような構成により、本発光装置は、装置の駆動用として外部電源(乾電池を含む)を用意することだけで、簡単に安定した動作を得ることが可能である。
また、本実施の形態2における第1の実装例としては、このようなLEDパッケージ基板40として、5個のキャビティのそれぞれに実装される3個のLEDチップ42を、先の図4(d)のように、各リフレクタ41a内で発光装置開口面(図2(b)における表面透過板14が設けられた面)側から見て、上から下へ直線上に3個並べる構成として、基板デザインを行い実装した。より具体的には、この図4(d)の配列は、LEDチップ42の発光方向においてLEDパッケージ基板40と対向する筐体凹部11の表面に対して、LEDチップ42を上下方向に配列したものに相当する。
リフレクタ41a内のこのようなLED配置構成により、LEDパッケージ基板40の配光は、凹面に沿う方向で、広い配光とすることができる。したがって、LEDパッケージ基板40を適用した発光装置においては、筐体凹部11の湾曲面に沿った方向(すなわち、LEDチップの配列方向と同じ方向)で、広くLED光を照射することが可能となる。
図10は、本発明の実施の形態2における第1の実装例によるLEDパッケージ基板を用いた発光装置の断面図である。これにより、筐体凹部11を、照射むらを少なくして照射することが可能となり、凹面に波長変換材料を有する構成の発光装置においては、凹面の広い面積全域で波長変換を行うことができる。この結果、凹面発光むらの少ない、そして発光効率の高い発光装置を得ることができる。
また、本実施の形態2における第2の実装例としては、このようなLEDパッケージ基板40として、先の図4(b)のように、5つのリフレクタ41aに実装される3個のLEDチップ42を、各キャビティ内で発光装置開口面側から見て、上から下に向かい実装数が少なくなるように(逆三角形を構成するように)基板デザインを行い実装した。
より具体的には、この図4(b)の配列は、LEDチップ42の発光方向においてLEDパッケージ基板40と対向する筐体凹部11の表面に対して、3つのLEDチップ42のうちの2つのLEDチップ42を左右方向に並べた上で、残りの1つのLEDチップを上下方向に配列して逆三角形を構成したものに相当する。
図11は、本発明の実施の形態2における第2の実装例によるLEDパッケージ基板を用いた発光装置の断面図である。第2の実施例によるLEDパッケージ基板40を発光装置に組み込むことで、リフレクタ41aの上側へ配置したLED発光光が、リフレクタ41a内上部で反射し、直接波長変換面の底面側を照射する光の割合を大きくする方向に作用する(LED発光光線の様子を図11中の矢印で示す)。
ここで、試作した先の図4のLEDパッケージ基板40は、リフレクタ41aの底面直径を2mm強、高さ約0.4mm、立ち上がり角約70°としてデザインした。図4(b)のリフレクタ41a内の3個のLEDチップ42によって構成される三角形は、1辺が約0.9mm程度のおよそ正三角形になるように実装した。
そして、図4(b)(d)それぞれの構成のLEDパッケージ基板を装置に組込み、出力特性を測定した。なお、LED(400nm程度の近紫外線発光)は、厚み1.0〜1.5mm程度のシリコーンモールドを行い、筐体凹部11(後述する図13の形態)には、複数種類の蛍光体を用いた波長変換材料を敷設し、装置発光色が白色となるように調整したものである。
発光装置にLEDパッケージ基板40として図4(b)および(d)のものを組込み、駆動条件を揃えて発光特性を測定した。この結果、前者のものが後者に対し、8%ほど高い光出力を示し、キャビティ内で逆三角形となるLED配置構成が発光効率向上に寄与する傾向にあることが認められた。
したがって、これと同様にして、リフレクタ41a内に複数のLEDチップ42を配置する場合には、上部リフレクタ反射により凹面照明光を増やす構成、すなわち、キャビティ上側から下側に向けてLED配置密度が少なくなるように実装配置することで、発光効率の高い発光装置を実現することができる。
さらに、発光効率の改善等を行うためには、筐体凹部11の形状をさらに工夫することが考えられる。図12は、本発明の実施の形態2における筐体凹部11の第1の形状の説明図である。筐体凹部11は、図12に示したように、少なくとも光源軸に沿った凹部底面の両端が湾曲し(凹部内に角を持たず)、さらに、光源対抗面側での湾曲部の湾曲面積S2が、光源下の湾曲面積S1に対して、同等以上となるように構成する。
すなわち、図12における筐体凹部11は、筐体背面板30に近い部分に当たる第1の湾曲部の湾曲面積がS1であり、筐体背面板から遠い部分に当たる第2の湾曲部の湾曲面積がS2であり、S1とS2との間に平坦部を備えることにより、凹部内に角を持たない凹部表面形状となっている。
一般的に、角を持つ凹面に光を照射した場合、角の近辺で光が多重反射して光損失が大きくなる傾向にある。したがって、図12の筐体凹部11において、特に、光照射方向に沿う方向の筐体表面には、鋭角のへこみを持たないように構成する。
これにより、その周辺での光多重反射による光損失を抑えることが可能となり、少なくとも極端な発光効率低下を防ぐことができる。さらに、特に、照射量の多くなるLEDパッケージ基板40の対向面側曲面(図12中のS2)では、パッケージ基板直下曲面(S1)よりも曲率を小さめ(もっと緩やかな曲面)とすることで、やはり極端な光損失を抑えることが可能である。
また、装置筐体のLEDパッケージ基板40の取付面と垂直をなす側の凹面についても、同様に、鋭角をもたないように少しでも湾曲面を形成することが、発光効率の低下防止に貢献する。
また、図13は、本発明の実施の形態2における筐体凹部11の第2の形状の説明図である。筐体凹部11は、図13に示したように、開口部平面Pに中心を有する半円形の凹部形状として構成されている(パッケージ設置角度45度、R1=R2=10mm)。LEDパッケージは、発光装置凹部のほぼ開口部端に、凹面へ向け約45度傾斜を持たせて配置する。
なお、本装置では、LEDパッケージ基板40のリフレクタ41aを発光源と仮定(LEDチップ自体は、□0.35mm程度であるが、高反射率キャビティのため、それを擬似光源と仮定)して、その直径に対して、反射面までの距離をおよそ点光源とみなせる距離として、約5倍の距離を確保した。このとき、LEDパッケージ基板40の出力光が効率よく凹面を照射するように、パッケージ光軸(図13におけるB)と凹面との交点が、およそ筐体凹部最下点(図13におけるP0)から、凹部湾曲面両端部から凹部底面へ向け距離(図13におけるd)が等しくなる部分(図13におけるP1)までの間に位置するような構成とする。
パッケージ設置角度がθ=45度以上では、LED発光光のうち、直接凹面を照射せず直接発光するものの比率が大きくなり、効率よく凹部照射せず発光効率が低下する傾向にある。また、θ=45度以下とすると、主にパッケージ下方向の領域を照射し、逆に広い凹面を照射しきれず、また、凹部反射光をパッケージ自体が障害物となってしまい、その結果として発光効率が低下する傾向にある。
また、凹面上へ向かって入射した励起光(LED1次照射光:図13のL0)の一部は、波長変換されず、その表面で正反射に近い形で反射し、1次反射成分(図13のL2)となる。一方、その他の一部は、波長変換材料により拡散性を持った波長変換光(図13のL1)となって放射する性質を有する。
したがって、凹部深さをあまり浅くする(例えば、半円ではなく半楕円にする)と、LED発光1次反射成分の凹部への2次照射割合(図13のL2)が低くなり、波長変換効率および発光効率が低下する傾向にある。一方、反射凹面深さをあまり深くすると、逆に、凹面での反射回数が増加し光反射損失が増加するため、同様に、発効効率が低下する傾向にある。
また、P0〜P1の領域では、発光効率の変化が大きくないが、この領域を外れると、これも上述した設置角度と同様の作用として働き、方向によらず、発光源から遠ざかる距離が大きくなるにつれて、発光効率が低下する傾向にある。したがって、開口面積を一定のものとした場合、上述したように、凹部を半円状とし、パッケージ光源をおよそ凹部最深部付近に向けて約45度に設置することで、安定した高い発効効率を得ることができる。
なお、ここでは、凹部を半円形としているが、このR1≒R2の条件下では、放物線形状であってもその曲率に大きな違いがなく、同じように安定した高い発光効率を得ることができる。
また、この図13のような構成の発光装置において、特に発光表面面積を狭めて用いるような場合には、次のような構成とすることができる。図14は、本発明の実施の形態2における筐体凹部11の第3の形状の説明図であり、発光表面面積を狭めた形状に相当する。図14における筐体凹部11は、筐体凹部11の最下面よりLEDパッケージ基板40対向面側(図14における筐体凹部11の最下面より右側の部分に相当)に、凹面からLEDパッケージ基板40対向側の発光装置開口端面へ向かう、光軸と交わらない立ち上がり平面、あるいは急峻な湾曲面の立ち上がり面として、面61を有するように構成されている。
特に、装置厚さには依存しない形で、開口面積のみを小さくする場合には、凹面深さを浅くして、全凹面の湾曲性を保たせることは、前述したようなLED発光1次反射成分の凹部への2次照射割合が低くなり、波長変換効率および結果発光効率も低下する傾向にある。
これに対して、2次照射の割合を高くできることが可能な、前述した半円凹面形状を基本形としてLEDパッケージ基板40と対向する反射面に急峻な立ち上がり面として面61を設けることで、凹部の面積的にも高い波長変換率および発光効率を保つことができる傾向にある。
なお、光軸が立ち上がり面と交差するような構成では、光のかなりの量が立ち上がり面で正反射方向に反射する光が増加するため、LEDパッケージ基板40付近に進み、パッケージ自身が障害となって光損失比率が増加する。そこで、このような光損失比率の増加を抑えるために、光軸と立ち上がり面とは、互いに交差しないように構成される。しかしながら、交差する状況においても、発光効率は高くはないが、発光装置としての機能を失うわけではない。
また、先の実施の形態1において、筐体凹面11を形成する波長変換材料12は、LEDチップを励起光として波長変換を行う蛍光体と、それをバインドするバインド材料(樹脂材料など)とを含むような構成で実現することを説明した。これに対して、本実施の形態2では、別の波長変換材料を用いる場合について説明する。
図15〜図18は、本発明の実施の形態2における波長変換材料の構造に関する説明図である。これらの波長変換材料は、蛍光体62、バインド材料63、および高反射材料64で構成されている。ここで、図15、図16は、凹凸の少ない平面でバインド樹脂を形成する場合を例示している。これに対して、図17、図18は、図15、図16に比べて凹凸のある平面でバインド樹脂を形成する場合を例示している。
図17、図18における波長変換材料表面は、蛍光体62の一部がバインド材料63で高反射材料64上にバインダされるように構成される。一般に、バインド樹脂も凹凸の少ない平面(例えば、図15、図16)で形成すると、鏡面反射成分をもち、波長変換効率は100%ではない。このため、特に、LED照射光のうち波長変換に寄与しないものは、バインド材料63の表面で正反射し、結果的に励起LED光色の色むらとして指向性をもって認められるような場合がある。
そこで、図17、図18のように、蛍光体62の表面の一部でバインドするような波長変換面構成とすることにより、特に励起光に対して蛍光体62の粒子表面が微細凹凸(例えば、数μm〜数十μm、大きくても数百μm程度)として機能し、励起光の反射成分を拡散させることができる。
これにより、励起光の指向性を少なくし、また表面反射光のうち少なくない割合の光が2次励起光として再び広く波長変換面へ入射し、一部は波長変換に寄与する。したがって、励起光の偏角発光(反射)による色むら低減や、発光装置の発光効率向上の効果を有する。
なお、蛍光体62の種類によっては、その表面露出が耐候性の面から寿命に影響することがある。その場合には、例えば、直接周囲環境にさらされることがないように、蛍光体62の表面を耐候処理し、その一部表面をバインドするような方法を用いて構成することができる。
また、発光色が白色の発光装置を得る目的で、波長変換材料12に赤色蛍光体を含む複数蛍光体を混入する場合には、次のような構成とすることが考えられる。図19は、本発明の実施の形態2における波長変換材料の別の構造に関する説明図である。この波長変換材料は、蛍光体62として、粒径の大きい蛍光体62a(例えば、赤色蛍光体)と、粒径の小さい蛍光体62bで構成されている。
特に、近紫外線LED用赤色蛍光体の発光効率は、現在のところ高いといえず、白色発光を得るためのRGB配合比では、R成分が大きい傾向にある。一方、蛍光体は、粒径を大とすることで表面状態が良好となり、発光効率が向上する特性を示すことが多い。本装置構成では、波長変換を反射的に行うため、通常の透過的波長変換とは異なり、膜厚が厚くなっても構わないという構成上の利点がある。したがって、発光効率向上へ向け、蛍光体62の大粒径化の効力を発揮させることができる。
ブラウン管や蛍光管など、透過的に波長変換するようなデバイスでは、通常、数μm〜十数μm程度の粒子径の蛍光体を用いることが多い。これに対して、本発光装置の一例として、赤色蛍光体のみの粒子径を他色の蛍光体よりも明らかに大きく制御した、RGB蛍光体で構成した白色波長変換材料を試作した。
このような白色波長変換材料において、赤色蛍光体の粒径を100μmとしたものは、通常の粒径とした場合のRGB配合比をほとんど変えることなく、十数μmの粒子径使用の場合に対して約11%の発光効率改善効果が認められた。
このように、本発光装置では、透過的に波長変換する構成の発光装置とは異なるため、大粒径の蛍光体材料の適用が可能であり、その適用により、発光効率が大きく改善する。また、蛍光体粒径が厚くなることにより、波長変換面の厚さも厚くなるが、厚みは数百μm程度でもその効果が十分認められ、装置本来の諸特性に悪影響することはなく、良好な方向に作用する。
また、異なる粒子径の蛍光体を含む場合の波長変換材料12は、粒径が大きいものを下層として密に配置し、その粒子間に粒径の小さい蛍光体が配置するように構成することができる。すなわち、このような構成により、均一配列する大粒子径蛍光体62aの隣接するもの同士で形成される凹部に、小粒子径蛍光体62bを配置することができる。
この結果、空間的にほぼ均一な蛍光体間比率の波長変換材料を構成することが可能になる。したがって、ランダム混合の場合に生じる粒径の異なる蛍光体の分散偏りにより生じる、波長変換材料面表面での発光色の色むらを抑えることができ、色均一性の高い面発光装置を得ることができる。
また、図20は、本発明の実施の形態2における筐体凹部11に敷設された第1の波長変換材料の説明図である。図20に示すように、第1の波長変換材料は、その表面に無数のディンプル(微細凹凸)を備え持つように構成される。
ディンプル付き波長変換材料の効果を、次の2つの方法により試作した波長変換材料(いずれもシート状のもの)を用いて比較した。ディンプルなしの波長変換材料は、蛍光体をシリコーン中に混入させた材料で表面を平坦に形成することにより試作した。また、第1の波長変換材料であるディンプル付きのものは、ディンプルなしの波長変換材料と同じ材料を用いて表面に微細凹凸転写(凸高さ、凹凸ピッチともに150〜200μm程度(図20のh1に相当)、波長変換材料ベース厚みは、250〜350μm程度(図20のh0に相当)とした)を行うことにより形成した。
そして、このように形成されたディンプルなしの波長変換材料およびディンプル付きの波長変換材料(第1の波長変換材料)を、それぞれ先の図13の形状の本発光装置の凹面に設置し、発光効率の測定を実施した。ここで、凹凸の寸法は、上述した赤色蛍光体の粒径(約100μm)以上、すなわち、蛍光体中で最も大きい粒径の1.5倍〜2倍程度の寸法として構成した。その結果、平坦面のものに対し、ディンプル付のもので約7%程度の発光効率向上が認められた。
また、表面平坦シートでは、反射励起光の出力が筐体凹部11の凹面に沿った方向に強い指向性を示していたが、上記のような寸法で微細凹凸加工したものでは、そのような極端な色むらは認められず、反射指向性を抑える効果があることを確認した。
また、発光凹面を直接見たときに、前者が励起光源の青紫色の強い映りこみが強かったのに対して、後者ではそのような映りこみがほとんど認められず、装置波長変換面(距離を離して見ると面発光源となる面)上の色むら低減にも寄与することが確認された。
この効果は、波長変換面を照射するLED1次励起光の正反射による励起発光色の色指向性を抑えながら、波長変換面微細ディンプル内側での多重反射による発光効率向上に効果を有するものといえる。ただし、凹凸寸法をあまり大きくすると、上述したLED励起光の反射指向性や映り込みが、若干大きくなる傾向も認められた。
さらに、図21は、本発明の実施の形態2における筐体凹部11に敷設された第2の波長変換材料の説明図であり、図22は、本発明の実施の形態2における筐体凹部11に敷設された第3の波長変換材料の説明図である。これらは、筐体微細凹部11aに波長変換材料12を配置した構成を示している。具体的には、波長変換材料12を敷設する筐体凹部11に、表面が金属めっきや金属蒸着による高反射加工処理を施した複数の細かい、深さ数百μm程度の凹溝からなる筐体微細凹部11aを持たせた構造となっている。
本装置は、反射的に波長変換させる構成であるので、凹面上波長変換膜の厚みに多少のばらつきがあっても、発光効率などに大きく影響することがない長所を有している。そこで、まずは、筐体微細凹部11aを有する形状の筐体を作製しておく。そして、流動性の高くない蛍光体入りの樹脂原液を、例えば、スキージやローラを利用して筐体凹部11表面の筐体微細凹部11aに塗りつけ熱硬化させるなどの、比較的難易度の高くない製造方法によって、波長変換面を形成することが可能である。
なお、筐体微細凹部11aは、塗りこみ方向を考慮して、例えば、ドットやストライプ上の規則性あるパタンで構成する。このように、微細凹部加工と高反射処理を施した筐体を用いて波長変換材料12を敷設するような構成をとることにより、比較的簡単な製法により、凹部面発光を行う、発光効率のよい発光装置を得ることができる。
また、波長変換材料12の敷設量の密度(敷設密度)を変えることも可能である。図23は、本発明の実施の形態2における筐体凹部11に敷設される波長変換材料の敷設密度を異ならせた場合の説明図である。図23に示すように、波長変換材料12の筐体凹部11の凹面上湾曲方向に沿った敷設密度が、凹面上光軸と交わる領域(図23におけるP)でほぼ最小であり、その領域より装置開口端面に向かう(図23の矢印方向)に従い大きくなるように構成する。図23においては、筐体微細凹部11aの深さを変えることにより敷設密度を可変にする場合を例示しているが、例えば、筐体微細凹部11aの間口の大小により敷設密度を可変にすることも可能である。
このような敷設密度を持たせることにより、凹面上に入射するLED励起光の配光強度にあわせた形で波長変換密度を変えることでき、発光面(凹面)の発光均斉度を向上させた発光装置を得ることができる。
より具体的には、凹面上の空間的波長変換材料の敷設密度設定は、例えば、LEDパッケージ基板40の構成で決められる配光特性により、凹面上の各位置の放射照度を推定し、その量に逆比例するように、波長変換面の面積比を定めるようにして行うことができる。また、空間的に波長変換材料12の面積を変える代わりに、波長変換材料12の厚みを調整する方法で空間的波長変換効率を制御する方法でも面発光強度を均斉化することが可能である。
さらに、複数の波長変換材料12を持たせることも可能である。図24は、本発明の実施の形態2における筐体凹部11に複数の波長変換材料を敷設した場合の説明図である。図24に示すように、筐体凹部11の凹面上配置領域をいくつかに分割して、それぞれの領域に対して異なる複数の波長変換材料12を持たせることが考えられる。
あるいは、分割された領域によって蛍光体混合比の異なる同一の波長変換材料を持たせることも可能であり、さらに、両者により構成することも可能である。
このような構成により、発光面に複数発光色を持つ色彩的に風変わりな、演出照明用発光装置としての機能を得ることができる。なお、この際、波長変換材料面には、複数種の蛍光体構成により、表面に文字パタンや絵パタンが浮かび上がるような構成とすれば、凹面上での演出機能を備えた発光装置とすることができる。
本発明の実施の形態1における発光装置の全体構成図である。 本発明の実施の形態1における発光装置の上面図、断面図、および背面図を示したものである。 本発明の実施の形態1におけるLEDパッケージ基板の構成を示す断面図である。 本発明の実施の形態1におけるLEDパッケージ基板の実装例を示す図である。 本発明の実施の形態1における図4の構成を有するLED実装基板に対応する回路構成図である。 本発明の実施の形態1におけるLEDパッケージ基板へ電源供給を行うためのフレキシブル基板の構成図である。 本発明の実施の形態1におけるフレキシブル基板上に実装されたチップ抵抗51およびLED実装基板の配置を示す図である。 本発明の実施の形態1におけるLED実装基板と突出部との面接触の説明図である。 本発明の実施の形態1におけるLED実装基板と突出部との面接触の別の説明図である。 本発明の実施の形態2における第1の実装例によるLEDパッケージ基板を用いた発光装置の断面図である。 本発明の実施の形態2における第2の実装例によるLEDパッケージ基板を用いた発光装置の断面図である。 本発明の実施の形態2における筐体凹部の第1の形状の説明図である。 本発明の実施の形態2における筐体凹部の第2の形状の説明図である。 本発明の実施の形態2における筐体凹部の第3の形状の説明図である。 本発明の実施の形態2における波長変換材料の構造に関する説明図である。 本発明の実施の形態2における波長変換材料の構造に関する説明図である。 本発明の実施の形態2における波長変換材料の構造に関する説明図である。 本発明の実施の形態2における波長変換材料の構造に関する説明図である。 本発明の実施の形態2における波長変換材料の別の構造に関する説明図である。 本発明の実施の形態2における筐体凹部に敷設された第1の波長変換材料の説明図である。 本発明の実施の形態2における筐体凹部に敷設された第2の波長変換材料の説明図である。 本発明の実施の形態2における筐体凹部に敷設された第3の波長変換材料の説明図である。 本発明の実施の形態2における波長変換材料の敷設密度を異ならせた筐体凹部の形状の説明図である。 本発明の実施の形態2における筐体凹部に複数の波長変換材料を敷設した場合の説明図である。
符号の説明
10 筐体本体、11 筐体凹部、11a 筐体微細凹部、12 波長変換材料、13 止め口、14 表面透過板、15 LEDパッケージ基板固定部、20 側板、30 筐体背面板、31 突出部、32 開口部、33 止め具、40 LEDパッケージ基板、41 LED実装基板、41a リフレクタ、41b 表面導電パタン、41c 電気接続部、41d 背面導電パタン、42 LEDチップ、43 封止樹脂、50 フレキシブル基板、51 チップ抵抗(回路部品)、52 電源端子、53 回路導電パタン、54 ソケット、60 熱伝導性両面接着シール(熱伝導性材料)、61 面、62 蛍光体、62a 蛍光体(粒径大)、62b 蛍光体(粒径小)63 バインド材料、64 高反射性材料。

Claims (29)

  1. 表面にLEDチップが実装された熱伝導性のLEDパッケージ基板と、
    前記LEDパッケージ基板が実装され、前記LEDチップに外部電源を供給するフレキシブル基板と、
    高反射率特性の凹部形状表面を有する筐体本体と、
    前記LEDパッケージ基板が実装された前記フレキシブル基板が取り付けられ、前記LEDパッケージ基板上の前記LEDチップの発光方向が前記凹部形状表面に向くように前記筐体本体に固定される放熱性の筐体背面板と
    を備えた発光装置であって、
    前記LEDパッケージ基板は、背面端部に背面導電パタンを有し、前記背面導電パタンが前記フレキシブル基板と接続され、前記背面導電パタンを有していない背面中央部が前記筐体背面板と面接触されるように構成され、
    前記筐体背面板は、前記フレキシブル基板以上の厚みの段差を有し、前記LEDパッケージ基板の前記背面と面接触する突出部を有し、
    前記筐体本体は、LED発光光に励起して波長変換を行う波長変換材料を前記凹部形状表面に有し、
    前記LEDパッケージ基板は、複数のLEDチップが実装されたキャビティを複数有し、キャビティ間のそれぞれのLEDチップを複数の直列ラインにより電気的に直列連結する構成を備え、
    前記LEDパッケージ基板の複数キャビティ内のそれぞれに実装される前記複数のLEDチップは、前記LEDパッケージ基板に対向する前記凹部形状表面に対して上部方向に配置されるLEDチップを左右方向に並べることにより、上部方向に行くほど配置密度を密にして実装される
    ことを特徴とする発光装置。
  2. 請求項1に記載の発光装置において、
    前記筐体背面板の前記突出部は、熱伝導性材料を介して前記LEDパッケージ基板の前記背面と面接触することを特徴とする発光装置。
  3. 請求項1または2に記載の発光装置において、
    前記フレキシブル基板は、前記LEDチップの発光方向と逆の面に回路部品および電源端子を有し、前記回路部品および前記電源端子が前記筐体本体の外側に向けて取付けられるように構成されることを特徴とする発光装置。
  4. 請求項3に記載の発光装置において、
    前記フレキシブル基板は、両面実装基板であり、一方の面に前記LEDパッケージ基板を実装し、他方の面に前記回路部品および前記電源端子を実装し、前記LEDパッケージ基板が実装された前記一方の面の裏側に対応する前記他方の面の部分を絶縁処理したこと
    を特徴とする発光装置。
  5. 請求項1ないし4のいずれか1項に記載の発光装置において、
    前記フレキシブル基板は、前記筐体背面板と前記筐体本体との間に挟み込まれて固定されるように構成されることを特徴とする発光装置。
  6. 請求項1ないし5のいずれか1項に記載の発光装置において、
    前記フレキシブル基板は、少なくとも前記回路部品実装部分の背面が、熱伝導性の接着部材を介して前記筐体背面板あるいは前記筐体本体に取付けられることを特徴とする発光装置。
  7. 請求項1ないし6のいずれか1項に記載の発光装置において、
    前記筐体本体は、前記LEDパッケージ基板の表面を押さえつける基板固定部を有することを特徴とする発光装置。
  8. 請求項1ないし7のいずれか1項に記載の発光装置において、
    前記フレキシブル基板は、前記LEDパッケージ基板を着脱可能とするソケットを有することを特徴とする発光装置。
  9. 請求項1ないし8のいずれか1項に記載の発光装置において、
    前記LEDパッケージ基板の背面に廃熱用の放熱フィンをさらに備えたことを特徴とする発光装置。
  10. 請求項1ないし9のいずれか1項に記載の発光装置において、
    前記フレキシブル基板は、前記筐体背面板を前記筐体本体に取り付けた状態で、前記凹部形状表面に対向して露出する部分を、絶縁性の高反射率材料で表面形成したことを特徴とする発光装置。
  11. 請求項1ないし10のいずれか1項に記載の発光装置において、
    前記LEDチップは、発光色が紫、青紫、青色のうちいずれかの光色であることを特徴とする発光装置。
  12. 請求項1ないし11のいずれか1項に記載の発光装置において、
    前記LEDパッケージ基板は、LED実装面およびリフレクタ部分が鏡面反射性材料で形成されたセラミック基板であり、基板側面に設けられた電気接続部を介して前記LED実装面が前記背面導電パタンと電気的に接続されることを特徴とする発光装置。
  13. 請求項12に記載の発光装置において、
    前記セラミック基板は、実装された前記LEDチップをシリコーン材料で封止したことを特徴とする発光装置。
  14. 請求項13に記載の発光装置において、
    前記セラミック基板は、前記LEDチップの封止部を除く表面を高反射率材料で形成したことを特徴とする発光装置。
  15. 請求項に記載の発光装置において、
    前記フレキシブル基板は、前記複数の直列ラインのそれぞれに接続される制限抵抗が実装されることを特徴とする発光装置。
  16. 請求項または15に記載の発光装置において、
    前記LEDパッケージ基板の複数キャビティ内のそれぞれに実装される前記複数のLEDチップは、前記LEDパッケージ基板に対向する前記凹部形状表面に対して上下方向となるように各キャビティ内に並べて実装されることを特徴とする発光装置。
  17. 請求項1ないし16のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、前記筐体背面板に近い部分に当たる第1の湾曲部と、前記筐体背面板から遠い部分に当たる第2の湾曲部と、前記第1の湾曲部と前記第2の湾曲部との間の平坦部とを含み、表面に角を持たない形状を有し、前記第2の湾曲部の湾曲面積が前記第1の湾曲部の湾曲面積に対して同等以上となるように構成されることを特徴とする発光装置。
  18. 請求項1ないし16のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、前記筐体背面板に近い部分に当たる第1の湾曲部と、前記筐体背面板から遠い部分に当たる第2の湾曲部と、前記第1の湾曲部と前記第2の湾曲部との間の平坦部とを含み、表面に角を持たない形状を有し、前記第2の湾曲部の曲率が前記第1の湾曲部の曲率より小さくなるように構成されることを特徴とする発光装置。
  19. 請求項1ないし16のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、前記凹部形状表面で反射した光が外部に発光される前記筐体本体の上部面上に中心を有する半円状または放物線上の表面形状を有し、
    前記LEDパッケージ基板は、前記LEDチップの発光方向が前記凹部形状表面の凹部最深部に向き、前記LEDチップから前記最深部までの距離が、前記最深部から前記上部面までの距離と略同一となるように配置される
    ことを特徴とする発光装置。
  20. 請求項1ないし16のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、前記筐体背面板から遠い部分に、前記凹部形状表面で反射した光が外部に発光される前記筐体本体の上部面に向けて、前記LEDチップの発光方向と交差しない立ち上がり平面または急峻な湾曲面を有することを特徴とする発光装置。
  21. 請求項1に記載の発光装置において、
    前記波長変換材料は、前記LEDチップを励起光として波長変換を行う蛍光体と、前記蛍光体をバインドするバインド材料とを含むことを特徴とする発光装置。
  22. 請求項21に記載の発光装置において、
    前記波長変換材料は、前記蛍光体の一部がバインドされた凹凸面を表面に備えることを特徴とする発光装置。
  23. 請求項21または22に記載の発光装置において、
    前記波長変換材料に含まれる前記蛍光体は、粒子径が異なる複数の発光体を含むことを特徴とする発光装置。
  24. 請求項23に記載の発光装置において、
    前記波長変換材料に含まれる前記蛍光体は、赤色蛍光体とその他の蛍光体とを含み、前記赤色蛍光体の粒子径が前記他の蛍光体の粒子径よりも大きいことを特徴とする発光装置。
  25. 請求項23または24に記載の発光装置において、
    前記波長変換材料は、粒子径が大きい蛍光体を下層として密に配置し、粒径の小さい蛍光体を前記粒子径が大きい蛍光体の間に配置するように構成されることを特徴とする発光装置。
  26. 請求項21ないし請求項25のいずれか1項に記載の発光装置において、
    前記波長変換材料は、前記蛍光体の最大粒子径の1.5〜2倍の寸法の筐体微細凹部を表面にさらに備えることを特徴とする発光装置。
  27. 請求項21ないし請求項26のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、高反射加工処理を施した溝深さ数十〜数百μmの複数の細かい凹部を有し、前記複数の細かい凹部に前記波長変換材料が配置されることを特徴とする発光装置。
  28. 請求項21ないし請求項27のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、前記LEDチップの発光方向と交わる表面領域において前記波長変換材料の敷設密度が最小となり、前記表面領域から遠ざかるにしたがって前記波長変換材料の敷設密度が大きくなるように構成されることを特徴とする発光装置。
  29. 請求項21ないし請求項28のいずれか1項に記載の発光装置において、
    前記筐体本体の前記凹部形状表面は、複数領域に分割され、分割された前記複数領域に、それぞれ異なる波長変換材料、または蛍光体混合比の異なる同一の波長変換材料、または蛍光体混合比の異なる同一の波長変換材料からなる複数の異なる波長変換材料により構成されることを特徴とする発光装置。
JP2007057772A 2006-03-08 2007-03-07 発光装置 Active JP4955422B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057772A JP4955422B2 (ja) 2006-03-08 2007-03-07 発光装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006062886 2006-03-08
JP2006062886 2006-03-08
JP2007057772A JP4955422B2 (ja) 2006-03-08 2007-03-07 発光装置

Publications (2)

Publication Number Publication Date
JP2007273972A JP2007273972A (ja) 2007-10-18
JP4955422B2 true JP4955422B2 (ja) 2012-06-20

Family

ID=38676392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057772A Active JP4955422B2 (ja) 2006-03-08 2007-03-07 発光装置

Country Status (1)

Country Link
JP (1) JP4955422B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8348458B2 (en) * 2008-04-03 2013-01-08 Koninklijke Philips Electronics N.V. White light-emitting device
JP2009267279A (ja) * 2008-04-30 2009-11-12 Showa Denko Kk 発光装置、表示装置
EP2218571A1 (en) 2009-01-30 2010-08-18 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Illumination system for use in a stereolithography apparatus
JP5304420B2 (ja) * 2009-05-01 2013-10-02 岩崎電気株式会社 Led照明器具
JP5408428B2 (ja) * 2009-10-22 2014-02-05 オーウエル株式会社 チップ型発光ダイオード装置
KR101479012B1 (ko) * 2010-08-09 2015-01-05 에어 모션 시스템즈, 인크. 절연된 엘이디 장치
KR101781129B1 (ko) * 2010-09-20 2017-09-22 삼성전자주식회사 어플리케이션을 다운로드받아 설치하는 단말장치 및 그 방법
JP5666865B2 (ja) * 2010-09-24 2015-02-12 カシオ計算機株式会社 光源ユニット及びプロジェクタ
JP5672949B2 (ja) * 2010-10-25 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP5467232B2 (ja) * 2010-11-26 2014-04-09 シーシーエス株式会社 光照射装置
JP5274586B2 (ja) 2011-01-17 2013-08-28 キヤノン・コンポーネンツ株式会社 フレキシブル回路基板
US9232634B2 (en) 2011-01-17 2016-01-05 Canon Components, Inc. Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus
KR20160038325A (ko) * 2014-09-30 2016-04-07 코닝정밀소재 주식회사 색변환용 기판, 그 제조방법 및 이를 포함하는 디스플레이 장치
CN105927864B (zh) * 2015-02-27 2020-02-21 日亚化学工业株式会社 发光装置
JP6094663B2 (ja) * 2015-02-27 2017-03-15 日亜化学工業株式会社 発光装置
JP6596348B2 (ja) * 2016-02-01 2019-10-23 シャープ株式会社 発光部および照明装置
KR101936048B1 (ko) * 2017-07-25 2019-04-04 주식회사 에이유이 측면 발광 반사형 led 모듈 및 이를 이용한 반사 발광 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255103A (ja) * 1999-03-11 2000-09-19 Matsushita Electronics Industry Corp 画像書込み用発光装置
JP4737575B2 (ja) * 2001-01-30 2011-08-03 ハリソン東芝ライティング株式会社 発光ダイオードアレイ及び光源装置
JP4360858B2 (ja) * 2003-07-29 2009-11-11 シチズン電子株式会社 表面実装型led及びそれを用いた発光装置
US7607801B2 (en) * 2003-10-31 2009-10-27 Toyoda Gosei Co., Ltd. Light emitting apparatus
CN101363578B (zh) * 2003-12-05 2011-01-12 三菱电机株式会社 发光装置
JP4572312B2 (ja) * 2004-02-23 2010-11-04 スタンレー電気株式会社 Led及びその製造方法

Also Published As

Publication number Publication date
JP2007273972A (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4955422B2 (ja) 発光装置
JP4869275B2 (ja) 光源モジュール及び発光装置
JP6493345B2 (ja) 発光装置
KR101937643B1 (ko) 발광 모듈, 램프, 조명기구 및 디스플레이 장치
US8106584B2 (en) Light emitting device and illumination apparatus
TWI529348B (zh) 發光模組、燈、燈具及顯示裝置
TWI581450B (zh) Semiconductor light emitting module and manufacturing method thereof
TWI245436B (en) Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
JP5810301B2 (ja) 照明装置
JP5899507B2 (ja) 発光装置及びそれを用いた照明装置
JP7174216B2 (ja) 発光モジュールおよび集積型発光モジュール
US20050133808A1 (en) Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
JP7082273B2 (ja) 発光装置、集積型発光装置および発光モジュール
KR20130036218A (ko) 발광 다이오드 기반의 받침대 타입 조명 구조물
JP5443959B2 (ja) 照明装置
JP2009266974A (ja) 発光装置並びに発光器具
JP4986608B2 (ja) 発光装置および照明装置
JP4938255B2 (ja) 発光素子収納用パッケージ、光源および発光装置
WO2011077900A1 (ja) 発光ダイオード素子、光源装置、面光源照明装置、及び液晶表示装置
JP2007294890A (ja) 発光装置
JP2006066657A (ja) 発光装置および照明装置
JP6997869B2 (ja) 波長変換素子および光源装置
JP5678462B2 (ja) 発光装置
JP4417757B2 (ja) 発光装置およびその製造方法ならびに照明装置
JP2011222642A (ja) 発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Ref document number: 4955422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250