WO2011077856A1 - Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法 - Google Patents

Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法 Download PDF

Info

Publication number
WO2011077856A1
WO2011077856A1 PCT/JP2010/070292 JP2010070292W WO2011077856A1 WO 2011077856 A1 WO2011077856 A1 WO 2011077856A1 JP 2010070292 W JP2010070292 W JP 2010070292W WO 2011077856 A1 WO2011077856 A1 WO 2011077856A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
group iii
iii nitride
angle
plane
Prior art date
Application number
PCT/JP2010/070292
Other languages
English (en)
French (fr)
Inventor
祐介 善積
高木 慎平
隆俊 池上
上野 昌紀
片山 浩二
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP10839092.3A priority Critical patent/EP2518839A4/en
Priority to CN201080058983.4A priority patent/CN102668279B/zh
Publication of WO2011077856A1 publication Critical patent/WO2011077856A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/14Semiconductor lasers with special structural design for lasing in a specific polarisation mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation

Definitions

  • the present invention relates to a group III nitride semiconductor laser device and a method for manufacturing a group III nitride semiconductor laser device.
  • Patent Document 1 describes a laser device. If the surface inclined at 28.1 degrees from the ⁇ 0001 ⁇ plane toward the direction equivalent to the [1-100] direction is the main surface of the substrate, the secondary cleavage surface is both the main surface and the optical resonator surface. The ⁇ 11-20 ⁇ plane is perpendicular to the surface, and the laser device has a rectangular parallelepiped shape.
  • Patent Document 2 describes a nitride semiconductor device.
  • the back surface of the substrate for cleavage is polished to reduce the total thickness to about 100 ⁇ m.
  • a dielectric multilayer film is deposited on the cleavage plane.
  • Patent Document 3 describes a nitride-based compound semiconductor element.
  • the substrate used for the nitride-based compound semiconductor element is made of a nitride-based compound semiconductor having a threading dislocation density of 3 ⁇ 10 6 cm ⁇ 2 or less, and the threading dislocation density is substantially uniform in the plane.
  • Patent Document 4 describes a nitride semiconductor laser element.
  • a cleavage plane is formed as follows. Using a laser scriber while avoiding the protrusions formed during the etching process of the resonator surface of the n-type GaN substrate with respect to the recesses formed by the etching process so as to reach the n-type GaN substrate from the semiconductor laser element layer
  • the scribe grooves are formed in a broken line shape (at intervals of about 40 ⁇ m) in a direction orthogonal to the direction in which the ridge portion extends. Then, the wafer is cleaved at the position of the scribe groove.
  • each element isolation surface is formed as a cleavage plane made of the (0001) plane of the n-type GaN substrate.
  • Patent Document 5 describes a light emitting element. According to the light emitting element, long wavelength light emission can be easily obtained without impairing the light emission efficiency in the light emitting layer.
  • Patent Document 6 describes a nitride-based semiconductor laser.
  • a nitride-based semiconductor element layer having a light emitting layer is formed on the main surface of the substrate.
  • a resonator surface is formed at an end of a region including the light emitting layer of the nitride-based semiconductor element layer, and extends in a direction substantially perpendicular to the main surface of the substrate.
  • the element isolation surface is a cleavage plane of the substrate, and extends at an angle with respect to the resonator surface.
  • Non-Patent Document 1 describes a semiconductor laser in which a waveguide is provided in the off direction on a semipolar (10-11) plane and a mirror is formed by a reactive ion etching method.
  • Non-Patent Document 2 describes the angle of the laser waveguide.
  • the band structure of a gallium nitride semiconductor there are several transitions capable of laser oscillation.
  • the laser beam is guided along a plane defined by the c-axis and the m-axis.
  • the threshold current can be lowered when extending the waveguide.
  • the mode with the smallest transition energy difference between conduction band energy and valence band energy
  • the threshold is set. The current can be lowered.
  • a conventional cleavage plane such as c-plane, a-plane or m-plane cannot be used for the resonator mirror.
  • the dry etching surface of the semiconductor layer has been formed using reactive ion etching (RIE) for the fabrication of the resonator mirror.
  • RIE reactive ion etching
  • a resonator mirror formed by the RIE method is desired to be improved in terms of perpendicularity to a laser waveguide, flatness of a dry etching surface, or ion damage.
  • derivation of process conditions for obtaining a good dry etching surface at the current technical level is a heavy burden.
  • the return light to the semiconductor laser greatly affects the oscillation characteristics of the semiconductor laser and makes the operation of the semiconductor laser unstable. For this reason, an optical isolator is required in a nitride semiconductor laser module. The addition of an optical isolator increases the cost of the module. Also, return light is generated when laser light from a nitride semiconductor laser passes through an optical component (lens, filter, mirror, etc.). The return light returns to the waveguide of the semiconductor laser, so that the operation of the nitride semiconductor laser becomes unstable.
  • the resonator end face is fabricated by dry etching and the substrate is cleaved to expose the c-plane on the substrate end face.
  • This method and structure require two processes, dry etching and cleavage, in the manufacturing process.
  • the angle of the substrate end face composed of the cleavage plane is defined in a plane defined by the normal line of the cleavage plane of the substrate end face and the normal line of the substrate main surface.
  • the object is to provide a nitride semiconductor laser device, and to provide a method for producing the group III nitride semiconductor laser device.
  • a group III nitride semiconductor laser device includes: (a) a support base made of a hexagonal group III nitride semiconductor and having a semipolar main surface; and the semipolar main surface of the support base A laser structure including the semiconductor region provided; and (b) an electrode provided on the semiconductor region of the laser structure.
  • the semiconductor region includes a first cladding layer made of a gallium nitride semiconductor of a first conductivity type, a second cladding layer made of a gallium nitride semiconductor of a second conductivity type, the first cladding layer, and the first cladding layer.
  • the first cladding layer, the second cladding layer and the active layer are arranged along a normal axis of the semipolar main surface.
  • the active layer includes a gallium nitride based semiconductor layer, and the c-axis of the hexagonal group III nitride semiconductor of the support base is the normal axis in the direction of the m axis of the hexagonal group III nitride semiconductor.
  • the laser structure is inclined at a finite angle CALPHA, and the laser structure intersects the mn plane defined by the m-axis and the normal axis of the hexagonal group III nitride semiconductor.
  • the laser resonator of the element includes the first and second fractured surfaces
  • the laser structure includes first and second surfaces
  • the first surface is a surface opposite to the second surface.
  • the first and second fractured surfaces extend from an edge of the first surface to an edge of the second surface.
  • the angle formed between the normal axis and the c-axis of the hexagonal III-nitride semiconductor is in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees.
  • the first fractured section is inclined at an angle ⁇ with respect to a reference plane orthogonal to the waveguide vector in a first plane orthogonal to the mn plane, and the angle ⁇ is equal to the first plane.
  • the first split section is inclined at an angle ⁇ with respect to the reference plane in a second plane orthogonal to the mn plane;
  • the angle ⁇ is on the end face of the active layer in the first fractured section.
  • the angle ⁇ is different from the angle beta, the difference between the angle ⁇ and the angle beta is not less than 0.1 degrees.
  • the first and second fractured sections serving as laser resonators are in the mn plane defined by the m axis and the normal axis of the hexagonal group III nitride semiconductor. Since they intersect, a laser waveguide extending in the direction of the intersecting line between the mn plane and the semipolar plane can be provided. Further, at an angle of less than 45 degrees and greater than 135 degrees, there is a high possibility that the end surface formed by pressing is an m-plane. Further, when the angle is more than 80 degrees and less than 100 degrees, the desired flatness and perpendicularity may not be obtained.
  • the split section Since the first split section is a plane different from the cleavage plane, the split section is inclined at an angle ⁇ with respect to the reference plane (plane orthogonal to the waveguide vector) on the end face of the support base, and the active layer Is inclined with respect to the reference plane at an angle ⁇ .
  • this split section is a curved surface in which the difference between the angle ⁇ and the angle ⁇ is 0.1 degrees or more, rather than a plane close to a plane. Therefore, since the above-mentioned split section is inclined with respect to the angle defined in the above-mentioned reference plane, this split section reduces the influence of disturbance due to the return light incident on the split section (active layer end face and substrate end face). it can.
  • the angle ⁇ is larger than the angle ⁇ .
  • the amount of return light that reaches the end face of the support base and enters the substrate can be reduced, and the angle ⁇ at the end face of the active layer can be reduced.
  • the waveguide vector includes an a-plane normal vector defined by the a-axis and the normal axis of the hexagonal group-III nitride semiconductor, and An angle of 0.1 degrees or more can be formed.
  • the laser waveguide is inclined with respect to the normal vector of the an plane, so that the influence of disturbance of the return light is strong. Furthermore, in the group III nitride semiconductor laser device according to the present invention, the angle ⁇ may be 0.5 degrees or less. When this angle is too large, the laser oscillation characteristics deteriorate.
  • the thickness of the support base is preferably 400 ⁇ m or less. This group III nitride semiconductor laser device is good for obtaining a high-quality fractured surface for the laser resonator.
  • the thickness of the support base is not less than 50 ⁇ m and not more than 100 ⁇ m.
  • the thickness is 50 ⁇ m or more, handling becomes easy and production yield is improved. If it is 100 ⁇ m or less, it is better to obtain a high-quality fractured surface for the laser resonator.
  • the laser light from the active layer is polarized in the a-axis direction of the hexagonal group III nitride semiconductor.
  • a band transition capable of realizing a low threshold current has polarization.
  • light in the LED mode in the group III nitride semiconductor laser device is polarized with the polarization component I1 in the direction of the a-axis of the hexagonal group III nitride semiconductor.
  • the polarization component I2 is included in a direction in which the c-axis of the hexagonal group III nitride semiconductor is projected onto the principal surface, and the polarization component I1 is larger than the polarization component I2. According to this group III nitride semiconductor laser element, light having a large emission intensity in the LED mode can be laser-oscillated using the laser resonator.
  • an angle formed between the normal axis and the c axis of the hexagonal group III nitride semiconductor is 63 degrees or more and 80 degrees or less, or 100 degrees or more and 117 degrees. The following range is even better.
  • this group III nitride semiconductor laser device in the range of 63 degrees to 80 degrees or 100 degrees to 117 degrees, there is a high possibility that the end face formed by pressing is nearly perpendicular to the substrate main surface. Become. Further, when the angle is more than 80 degrees and less than 100 degrees, the desired flatness and perpendicularity may not be obtained.
  • the semipolar principal surface includes ⁇ 20-21 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10- 1-1 ⁇ plane.
  • the first and second flatness and perpendicularity sufficient to configure the laser resonator of the group III nitride semiconductor laser device on these typical semipolar planes.
  • Two end faces can be provided.
  • the semipolar principal surface includes ⁇ 20-21 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10- A surface having a slight inclination in a range of ⁇ 4 degrees to +4 degrees in the m-plane direction from any semipolar plane of the 1-1 ⁇ plane is also good as the main plane.
  • the flatness and perpendicularity sufficient to configure the laser resonator of the group III nitride semiconductor laser device on the slightly inclined surface from these typical semipolar planes.
  • the stacking fault density of the support substrate is preferably 1 ⁇ 10 4 cm ⁇ 1 or less.
  • the stacking fault density is 1 ⁇ 10 4 cm ⁇ 1 or less, there is a low possibility that the flatness and / or the perpendicularity of the fractured section will be disturbed due to accidental circumstances.
  • the support base may be made of any one of GaN, AlGaN, AlN, InGaN, and InAlGaN.
  • the first and second end faces that can be used as a resonator can be obtained.
  • an AlN substrate or an AlGaN substrate the degree of polarization can be increased, and light confinement can be enhanced by a low refractive index.
  • an InGaN substrate the lattice mismatch rate between the substrate and the light emitting layer can be reduced, and the crystal quality can be improved.
  • the group III nitride semiconductor laser device may further include a dielectric multilayer film provided on at least one of the first and second fractured faces.
  • an end face coat can be applied to the fracture surface.
  • the reflectance can be adjusted by the end face coating.
  • the active layer may include a quantum well structure provided to generate light having a wavelength of 360 nm to 600 nm.
  • This group III nitride semiconductor laser device can obtain a group III nitride semiconductor laser device that effectively utilizes polarized light in the LED mode by utilizing a semipolar plane, and can obtain a low threshold current.
  • the active layer includes a quantum well structure provided to generate light having a wavelength of 430 nm or more and 550 nm or less.
  • This group III nitride semiconductor laser device can improve quantum efficiency by reducing the piezoelectric field and improving the crystal quality of the light emitting layer region by utilizing a semipolar plane, and can generate light with a wavelength of 430 nm to 550 nm. It is good.
  • an end face of the support base and an end face of the semiconductor region appear in each of the first and second fractured faces
  • the angle formed between the end face of the active layer and the reference plane perpendicular to the m-axis of the support base made of the hexagonal nitride semiconductor is a first plane defined by the c-axis and the m-axis of the group III nitride semiconductor. The angle is in the range of (CALPHA-5) degrees to (CALPHA + 5) degrees.
  • This group III nitride semiconductor laser device has an end face that satisfies the above-described perpendicularity with respect to an angle taken from one of the c-axis and the m-axis to the other.
  • the angle is preferably in the range of ⁇ 5 degrees to +5 degrees in the first plane and the second plane orthogonal to the normal axis.
  • This group III nitride semiconductor laser device has an end face that satisfies the above-mentioned perpendicularity with respect to an angle defined in a plane perpendicular to the normal axis of the semipolar plane.
  • the electrode extends in the direction of a predetermined axis, and the first and second fractured surfaces intersect the predetermined axis.
  • Another aspect of the present invention relates to a method for manufacturing a group III nitride semiconductor laser device.
  • This method includes (a) a step of preparing a substrate made of a hexagonal group III nitride semiconductor and having a semipolar main surface; and (b) a semiconductor region formed on the semipolar main surface and the substrate.
  • Forming a substrate product having a laser structure, an anode electrode, and a cathode electrode comprising (c) a first surface of the substrate product in the direction of the a-axis of the hexagonal group III nitride semiconductor; A step of partially scribing; and (d) separating the substrate product by pressing the substrate product against a second surface to form another substrate product and a laser bar.
  • the first surface is a surface opposite to the second surface
  • the semiconductor region is located between the second surface and the substrate
  • the laser bar extends from the first surface to the first surface.
  • the first and second end faces extending to the second face and formed by the separation, wherein the first and second end faces constitute a laser resonator of the group III nitride semiconductor laser element,
  • An anode electrode and a cathode electrode are formed on the laser structure, and the semiconductor region is formed of a first cladding layer made of a first conductivity type gallium nitride semiconductor and a second conductivity type gallium nitride semiconductor.
  • the active layer includes a gallium nitride based semiconductor layer, and the c-axis of the hexagonal group III nitride semiconductor of the substrate is in the direction of the m axis of the hexagonal group III nitride semiconductor with respect to the normal axis.
  • the first and second end faces intersect the mn plane defined by the m-axis and the normal axis of the hexagonal group III nitride semiconductor.
  • the angle formed between the normal axis and the c-axis of the hexagonal group III nitride semiconductor is in a range of 45 degrees to 80 degrees or 100 degrees to 135 degrees
  • the laser structure includes the substrate A laser waveguide extending on a semipolar main surface, wherein the laser waveguide extends in the direction of a waveguide vector directed from one of the first and second end faces to the other, and the first The end face of 1 is inclined at an angle ⁇ with respect to a reference plane perpendicular to the waveguide vector in a first plane perpendicular to the mn plane, and the angle ⁇ is equal to the angle at the first end face.
  • the first end surface is defined on the end surface of the substrate, and the first end surface is inclined at an angle ⁇ with respect to the reference plane in a second plane orthogonal to the mn plane, and the angle ⁇ is Defined on the end face of the active layer at the first end face,
  • the angle ⁇ different from the angle beta, the angle ⁇ and the angle beta has the same sign, the difference between the angle ⁇ and the angle beta is not less than 0.1 degrees.
  • the substrate product is separated by pressing the substrate product against the second surface.
  • the first and second end faces are formed on the laser bar so as to intersect the mn plane defined by the m-axis and the normal axis of the hexagonal group III nitride semiconductor.
  • the first and second end faces are provided with a mirror mirror surface having sufficient flatness, perpendicularity, or ion damage sufficient to constitute a laser resonator of the group III nitride semiconductor laser element.
  • the laser waveguide extends in the direction of the c-axis inclination of the hexagonal group III nitride, and the cavity mirror end face that can provide this laser waveguide is not used as a dry etching surface. Is formed.
  • the split section Since the first split section is a plane different from the cleavage plane, the split section is inclined at an angle ⁇ with respect to the reference plane (plane orthogonal to the waveguide vector) on the end face of the support base, and the active layer Is inclined with respect to the reference plane at an angle ⁇ .
  • this split section is a curved surface in which the difference between the angle ⁇ and the angle ⁇ is 0.1 degrees or more, rather than a plane close to a plane. Therefore, since the above-mentioned split section is inclined with respect to the angle defined in the above-mentioned reference plane, this split section reduces the influence of disturbance due to the return light incident on the split section (the active layer end face and the substrate end face). it can.
  • the angle ⁇ is larger than the angle ⁇ . According to this method, the amount of return light that reaches the end face of the support base and enters the substrate can be reduced, and the angle ⁇ at the end face of the active layer can be reduced.
  • the waveguide vector may be a normal vector of an an plane defined by the a-axis and the normal axis of the hexagonal group III nitride semiconductor, and 0. It can be at an angle of 1 degree or more. According to this method, since the laser waveguide is inclined with respect to the normal vector of the an plane, the influence of disturbance of the return light is strong. Furthermore, in the method according to another aspect of the present invention, the angle ⁇ may be 0.5 degrees or less. When this angle is too large, the laser oscillation characteristics deteriorate.
  • the substrate in the step of forming the substrate product, is subjected to processing such as slicing or grinding so that the thickness of the substrate is 400 ⁇ m or less.
  • the surface may be a processed surface formed by the processing. Alternatively, it can be a surface including an electrode formed on the processed surface.
  • the substrate in the step of forming the substrate product, is polished so that a thickness of the substrate is 50 ⁇ m or more and 100 ⁇ m or less, and the second surface is It can be a polished surface formed by polishing. Alternatively, it can be a surface including an electrode formed on the polished surface.
  • the first and second end faces having sufficient flatness, perpendicularity, or ion damage sufficient to constitute a laser resonator of the group III nitride semiconductor laser element can be formed with high yield. .
  • the angle CALPHA may be in the range of 45 degrees to 80 degrees and 100 degrees to 135 degrees. If the angle is less than 45 degrees or more than 135 degrees, there is a high possibility that the end face formed by pressing is an m-plane. Further, when the angle is more than 80 degrees and less than 100 degrees, desired flatness and perpendicularity cannot be obtained.
  • the angle CALPHA is more preferably in the range of 63 degrees to 80 degrees and 100 degrees to 117 degrees. If the angle is less than 63 degrees or more than 117 degrees, the m-plane may appear in a part of the end face formed by pressing. Further, when the angle is more than 80 degrees and less than 100 degrees, desired flatness and perpendicularity cannot be obtained.
  • the semipolar principal surface is a ⁇ 20-21 ⁇ plane, a ⁇ 10-11 ⁇ plane, a ⁇ 20-2-1 ⁇ plane, and a ⁇ 10-1-1 ⁇ plane. It is good to be either.
  • first and second end faces without flatness, perpendicularity, or ion damage sufficient to constitute a laser resonator of the group III nitride semiconductor laser element.
  • the semipolar principal surface is a ⁇ 20-21 ⁇ plane, a ⁇ 10-11 ⁇ plane, a ⁇ 20-2-1 ⁇ plane, and a ⁇ 10-1-1 ⁇ plane.
  • a surface having a slight inclination in a range of ⁇ 4 degrees or more and +4 degrees or less in the m-plane direction from any of the semipolar planes is also preferable as the main surface.
  • the first and second layers do not have sufficient flatness, perpendicularity, or ion damage that can constitute a laser resonator of the group III nitride semiconductor laser device. Can provide end face.
  • the scribe is performed using a laser scriber, a scribe groove is formed by the scribe, and the length of the scribe groove is the length of the hexagonal group III nitride semiconductor. It is shorter than the length of the intersecting line between the an plane and the first plane defined by the a axis and the normal axis.
  • another substrate product and a laser bar are formed by cleaving the substrate product.
  • This cleaving is caused by using a scribe groove that is shorter than the cleaving line of the laser bar.
  • the end face of the active layer in each of the first and second end faces is in relation to a reference plane perpendicular to the m-axis of the support base made of the hexagonal nitride semiconductor.
  • an angle in the range of (CALPHA-5) degrees or more and (CALPHA + 5) degrees or less can be formed on the plane defined by the c-axis and m-axis of the hexagonal group III nitride semiconductor.
  • the end face having the above-described perpendicularity can be formed with respect to the angle taken from one of the c-axis and the m-axis to the other.
  • the substrate can be made of any one of GaN, AlN, AlGaN, InGaN, and InAlGaN. According to this method, when using a substrate made of these gallium nitride based semiconductors, the first and second end faces usable as a resonator can be obtained.
  • the present invention As described above, according to the present invention, on the semipolar plane of the support base in which the c-axis of the hexagonal group III nitride is inclined in the m-axis direction, disturbance due to return light can be reduced.
  • a group III nitride semiconductor laser device having a laser resonator that enables a low threshold current is provided, and according to the present invention, a method for manufacturing the group III nitride semiconductor laser device is provided.
  • FIG. 1 is a drawing schematically showing a structure of a group III nitride semiconductor laser device according to the present embodiment.
  • FIG. 2 is a drawing showing an example of the shape of a fractured section.
  • FIG. 3 is a drawing showing a band structure in an active layer in a group III nitride semiconductor laser device.
  • FIG. 4 is a drawing showing the polarization of light emission in the active layer of the group III nitride semiconductor laser device.
  • FIG. 5 is a drawing showing the relationship between the end face of the group III nitride semiconductor laser device and the m-plane of the active layer.
  • FIG. 6 is a process flow diagram showing the main steps of the method of manufacturing the group III nitride semiconductor laser device according to the present embodiment.
  • FIG. 6 is a process flow diagram showing the main steps of the method of manufacturing the group III nitride semiconductor laser device according to the present embodiment.
  • FIG. 7 is a drawing schematically showing main steps of a method for producing a group III nitride semiconductor laser device according to the present embodiment.
  • FIG. 8 is a drawing showing a scanning electron microscope image of the resonator end face as well as the ⁇ 20-21 ⁇ plane in the crystal lattice.
  • FIG. 9 is a drawing showing the structure of the laser diode shown in Example 1.
  • FIG. 10 is a diagram showing the relationship between the obtained degree of polarization ⁇ and the threshold current density.
  • FIG. 11 is a drawing showing the relationship between the inclination angle of the c-axis in the m-axis direction of the GaN substrate and the oscillation yield.
  • FIG. 12 is a diagram showing the relationship between stacking fault density and oscillation yield.
  • FIG. 13 is a diagram showing the relationship between the substrate thickness and the oscillation yield.
  • FIG. 14 is a view showing an angle formed by the (20-21) plane and another plane orientation (index).
  • FIG. 15 is a drawing schematically showing the structure of an index guide laser having a ridge structure.
  • FIG. 16 is a drawing schematically showing an apparatus for cleaving and a cut section.
  • FIG. 17 is a drawing showing the influence of different return light depending on the inclination of the end face in the group III nitride semiconductor laser device.
  • FIG. 18 is a drawing showing the influence of return light on the group III nitride semiconductor laser device according to the present embodiment.
  • FIG. 19 is a drawing showing the relationship between the deviation angle ⁇ at the end face and the number of return light reciprocations.
  • FIG. 20 is a drawing showing the relationship between the angle ⁇ and the shift angles ⁇ and ⁇ at the end face obtained when the substrate thickness T, angle ⁇ , and semiconductor chip width W are set.
  • FIG. 21 is a drawing schematically showing a process of forming a split section according to the present embodiment.
  • FIG. 22 is a drawing showing atomic arrangements in the (20-21) plane, the ( ⁇ 101-6) plane, and the ( ⁇ 1016) plane.
  • FIG. 23 is a drawing showing atomic arrangements in the (20-21) plane, the ( ⁇ 101-7) plane, and the ( ⁇ 1017) plane.
  • FIG. 24 is a drawing showing atomic arrangements in the (20-21) plane, the ( ⁇ 101-8) plane, and the ( ⁇ 1018) plane.
  • FIG. 1 is a drawing schematically showing the structure of a group III nitride semiconductor laser device according to the present embodiment.
  • group III nitride semiconductor laser device 11 has a gain guide type structure, the present embodiment is not limited to the gain guide type structure.
  • the group III nitride semiconductor laser device 11 includes a laser structure 13 and an electrode 15.
  • the laser structure 13 includes a support base 17 and a semiconductor region 19.
  • the support base 17 is made of a hexagonal group III nitride semiconductor and has a semipolar main surface 17a and a back surface 17b.
  • the semiconductor region 19 is provided on the semipolar main surface 17 a of the support base 17.
  • the electrode 15 is provided on the semiconductor region 19 of the laser structure 13.
  • the semiconductor region 19 includes a first cladding layer 21, a second cladding layer 23, and an active layer 25.
  • the first cladding layer 21 is made of a first conductivity type gallium nitride semiconductor, and is made of, for example, n-type AlGaN, n-type InAlGaN, or the like.
  • the second cladding layer 23 is made of a second conductivity type gallium nitride based semiconductor, for example, p-type AlGaN, p-type InAlGaN, or the like.
  • the active layer 25 is provided between the first cladding layer 21 and the second cladding layer 23.
  • the active layer 25 includes a gallium nitride based semiconductor layer, and this gallium nitride based semiconductor layer is, for example, a well layer 25a.
  • the active layer 25 includes barrier layers 25b made of a gallium nitride semiconductor, and the well layers 25a and the barrier layers 25b are alternately arranged.
  • the well layer 25a is made of, for example, InGaN
  • the barrier layer 25b is made of, for example, GaN, InGaN, or the like.
  • the active layer 25 can include a quantum well structure provided to generate light having a wavelength of 360 nm to 600 nm. Use of a semipolar surface is good for generation of light having a wavelength of 430 nm or more and 550 nm or less.
  • the first cladding layer 21, the second cladding layer 23, and the active layer 25 are arranged along the normal axis NX of the semipolar principal surface 17a.
  • the laser structure 13 includes the first fractured surface 27 and the first section 27 intersecting the mn plane defined by the m axis and the normal axis NX of the hexagonal group III nitride semiconductor. 2 split sections 29 are included.
  • FIG. 1 an orthogonal coordinate system S and a crystal coordinate system CR are drawn.
  • the normal axis NX is directed in the direction of the Z axis of the orthogonal coordinate system S.
  • the semipolar principal surface 17a extends in parallel to a predetermined plane defined by the X axis and the Y axis of the orthogonal coordinate system S.
  • FIG. 1 also shows a representative c-plane Sc.
  • the c-axis of the hexagonal group III nitride semiconductor of the support base 17 is inclined at a finite angle CALPHA with respect to the normal axis NX in the m-axis direction of the hexagonal group III nitride semiconductor.
  • the group III nitride semiconductor laser device 11 further includes an insulating film 31.
  • the insulating film 31 covers the surface 19 a of the semiconductor region 19 of the laser structure 13, and the semiconductor region 19 is located between the insulating film 31 and the support base 17.
  • the support base 17 is made of a hexagonal group III nitride semiconductor.
  • the insulating film 31 has an opening 31a.
  • the opening 31a extends in the direction of the intersection line LIX between the surface 19a of the semiconductor region 19 and the mn plane, and has, for example, a stripe shape.
  • the electrode 15 is in contact with the surface 19a (for example, the second conductivity type contact layer 33) of the semiconductor region 19 through the opening 31a, and extends in the direction of the intersection line LIX.
  • the laser waveguide includes the first cladding layer 21, the second cladding layer 23, and the active layer 25, and extends in the direction of the intersection line LIX.
  • the opening 31a of the insulating film 31 has, for example, a stripe shape, and the direction of the laser waveguide is in the extending direction of the stripe opening.
  • the semiconductor region 19 of the laser structure 13 has a ridge structure, and the direction of the laser waveguide is in the extending direction of the ridge structure.
  • the waveguide vector LGV indicates the direction of the laser waveguide.
  • the first fractured surface 27 and the second fractured surface 29 intersect the mn plane defined by the m-axis and the normal axis NX of the hexagonal group III nitride semiconductor.
  • the laser resonator of the group III nitride semiconductor laser device 11 includes first and second fractured faces 27 and 29, and a laser waveguide is provided from one of the first fractured face 27 and the second fractured face 29 to the other. It is extended.
  • the laser structure 13 includes a first surface 13a and a second surface 13b, and the first surface 13a is a surface opposite to the second surface 13b.
  • the first and second fractured surfaces 27 and 29 extend from the edge 13c of the first surface 13a to the edge 13d of the second surface 13b.
  • the first and second fractured surfaces 27 and 29 are different from conventional cleavage planes such as c-plane, m-plane, or a-plane.
  • cleavage planes such as c-plane, m-plane, or a-plane.
  • FIG. 1 in order to avoid making the drawing complicated, the shape of the fractured surface 27 is simplified and drawn.
  • the group III nitride semiconductor laser device 11 According to the group III nitride semiconductor laser device 11, the first and second fractured surfaces 27 and 29 constituting the laser resonator intersect with the mn plane. Therefore, it is possible to provide a laser waveguide extending in the direction of the intersecting line between the mn plane and the semipolar plane 17a. Therefore, the group III nitride semiconductor laser device 11 has a laser resonator that enables a low threshold current.
  • the angle CALPHA formed between the normal axis NX and the c axis of the hexagonal group III nitride semiconductor is in the range of 45 degrees to 80 degrees or 100 degrees to 135 degrees.
  • the laser structure 13 includes a laser waveguide extending on the semipolar main surface 17 a of the support base 17. This laser waveguide extends in the direction of a waveguide vector LGV that faces in the direction from one of the first and second fractured surfaces 27 and 29 to the other.
  • FIG. 2 is a drawing showing an example of the shape of the fractured section.
  • scribe marks are not drawn to avoid complicating the drawing.
  • the line indicating the split section is drawn as a straight line in the sections shown in FIG. 2 (a) to FIG. 2 (c). However, it is not always a straight line in an actual split section.
  • Part (a) of FIG. 2 is a cross-sectional view showing the group III nitride semiconductor laser device 11.
  • Part (b) of FIG. 2 is a cross-sectional view showing an active layer of the group III nitride semiconductor laser device 11.
  • FIG. 2 is a plan view showing the back surface of the group III nitride semiconductor laser device 11.
  • the cross-sectional view of part (a) of FIG. 2 is taken along the line II-II shown in part (c) of FIG.
  • the cross-sectional view of the part (b) of FIG. 2 is taken along the line II shown in the part (a) of FIG.
  • the fractured surface 27 is inclined at an angle ⁇ with respect to the an plane.
  • the fractured surface 27 is inclined at an angle ⁇ with respect to the an plane.
  • the fractured surface 27 is inclined at an angle ⁇ with respect to the an plane.
  • the fractured surface 27 is inclined at an angle ⁇ with respect to the an plane.
  • the split section is inclined.
  • Angle ⁇ and angle ⁇ have the same sign. Since the first fractured surface 27 is a surface different from the cleavage plane, the fractured surface 27 is inclined at an angle ⁇ on the end face of the support substrate 17 and at an angle ⁇ on the end face of the active layer. Further, the split section 27 as a whole is inclined with respect to the an plane. Further, the split section 27 is a curved surface in which the difference between the angle ⁇ and the angle ⁇ is 0.1 degrees or more, rather than a plane close to a plane. Since the fractured surface 27 is inclined with respect to the angles ⁇ and ⁇ defined in the reference plane, the fractured surface 27 is affected by disturbance due to return light incident on the fractured surface (for example, the active layer end face and the substrate end face). Can be reduced.
  • the angle ⁇ is, for example, greater than 0 degrees, and the angle ⁇ is, for example, 0.5 degrees or less.
  • the angle ⁇ is greater than 0 degrees, for example, and the angle ⁇ is 5 degrees or less, for
  • the support base 17 of the laser structure 13 has a recess provided in one of the split sections (for example, the first split section 27).
  • FIG. 1 shows recesses 28 and 30 having exemplary shapes.
  • the recesses 28 and 30 extend from the back surface 17 b of the support base 17.
  • the recesses 28 and 30 are provided in a part of the edge 13c of the first surface 13a.
  • the end points 28a and 30a of the recesses 28 and 30 are spaced from the edge 13d of the second surface 13b.
  • the recesses 28 and 30 extend along the an plane defined by the a axis and the normal axis NX of the hexagonal group III nitride semiconductor. Therefore, better flatness is provided to the active layer end face exposed in the fractured surface 27.
  • the recesses 28 and 30 correspond to the scribe grooves before cleaving, and are therefore scribe marks.
  • the recess 28 extends from the side surface 20b along the an plane.
  • the recess 28 is located at one end of the side surface 20b.
  • the recess 30 extends from the side surface 20a along the an plane.
  • the recess 30 is located at one end of the side surface 20a.
  • the scribe groove is provided on the substrate back surface 17b. Breakage can be caused by pressing the blade toward the thin film side opposite to the back surface of the substrate.
  • the split section provided in this way has flatness and perpendicularity that are excellent enough to be used as an end face for an optical resonator.
  • Recesses 28 and 30 are related to the scribe groove.
  • the scribe groove serves to guide the direction in which the splitting proceeds.
  • a scribe groove is formed on the back surface of the substrate (support base 17), and the second surface 13b of the laser structure 13 is pressed. Since the pressing force for cleaving is applied to the second surface (epi surface) 13b in accordance with the arrangement of the scribe grooves, the edge 13d of the second surface 13b is compared with the edge 13c of the first surface 13a.
  • the scribe grooves are formed near the arrangement line and the an plane, and the deviation from the arrangement line (an plane) is small.
  • the split section 27 includes a surface connecting the edges 13 c and 13 d and the edges of the recesses 28 and 30. A part of the split cross section extends between the edge 13d and the edge of the recess 28. A part of the split section extends between the edge 13d and the edge of the recess 30. A portion of the split cross section extends between the edges of the recesses 28 and 30.
  • An intersecting line between the fractured surface 27 and the mn plane (defined on the fractured surface 27 to be orthogonal to the main surface 17a from one point of the edge 13d of the second surface 13b to one point of the edge 13c of the first surface 13a. Between the edge 13d and the edge 13c increases in the direction from the edge 13d to the edge 13c.
  • a line segment connecting one point on the edge 13c (for example, a certain Y coordinate Y1) and one point on the edge 13d (Y coordinate Y1) is inclined with respect to the an plane.
  • the distance (vertical length) between one point on this line segment and the perpendicular foot from this point to the an plane increases (in the direction of the perpendicular) toward the negative direction of the Z-axis.
  • the Y coordinate Y1 is in the position in the vicinity of the side edge 28b of the scribe mark 28, the position in the vicinity of the side edge 30b of the scribe mark 30, and the center position of the side edge 28b and the side edge 30b, three Is defined.
  • These line segments are not parallel, and on the edge 13d, the distance (the length of the perpendicular line) in these three line segments increases from one of the side surface 20a and the side surface 20b toward the other, for example.
  • the above-mentioned distance (the length of the perpendicular) at these three points increases, for example, from one of the side surface 20a and the side surface 20b toward the other at the same Z coordinate. The direction of this increase corresponds to the progress direction of cleaving.
  • the side edges 28b and 30b of the recesses 28 and 30 pass through the opening 31a of the insulating film 31 and the light emitting region of the active layer 25 and are spaced from the reference plane defined in the direction of the normal axis NX.
  • the support base 17 of the laser structure 13 can have a recess 32 corresponding to the scribe groove provided on the other split section (for example, the second split section 29).
  • the recess 32 extends along the side surface 20a of the group III nitride semiconductor laser device 11, for example.
  • the recessed portion 32 also includes a scribe mark as in the recessed portion 30.
  • the recess 32 can also have the same shape as the recess 30, for example.
  • the recess 32 also extends along the an plane like the recess 30.
  • Scribe groove is useful for guiding the direction of breaking.
  • the recesses 30 and 32 may reach the semiconductor region 19.
  • the split section 29 can also have the same shape as the split section 27.
  • the group III nitride semiconductor laser device 11 includes an n-side light guide layer 35 and a p-side light guide layer 37.
  • the n-side light guide layer 35 includes a first portion 35a and a second portion 35b, and the n-side light guide layer 35 is made of, for example, GaN, InGaN, or the like.
  • the p-side light guide layer 37 includes a first portion 37a and a second portion 37b, and the p-side light guide layer 37 is made of, for example, GaN, InGaN, or the like.
  • the carrier block layer 39 is provided, for example, between the first portion 37a and the second portion 37b.
  • Another electrode 41 is provided on the back surface 17b of the support base 17, and the electrode 41 covers, for example, the back surface 17b of the support base 17.
  • FIG. 3 is a drawing showing a band structure in an active layer in a group III nitride semiconductor laser device.
  • FIG. 4 is a diagram showing the polarization of light emission in the active layer 25 of the group III nitride semiconductor laser device 11.
  • FIG. 5 is a drawing schematically showing a cross section defined by the c-axis and the m-axis. Referring to part (a) of FIG. 3, there are three possible transitions between the conduction band and the valence band near the ⁇ point of the band structure BAND. The A band and the B band are relatively small energy differences.
  • the light emission due to the transition Ea between the conduction band and the A band is polarized in the a-axis direction, and the light emission due to the transition Eb between the conduction band and the B band is polarized in the direction projected on the principal plane.
  • the threshold value of the transition Ea is smaller than the threshold value of the transition Eb.
  • the light in the LED mode includes a polarization component I1 in the direction of the a-axis of the hexagonal group III nitride semiconductor and a polarization component I2 in a direction of projecting the c-axis of the hexagonal group III nitride semiconductor on the main surface,
  • the polarization component I1 is larger than the polarization component I2.
  • the degree of polarization ⁇ is defined by (I1 ⁇ I2) / (I1 + I2).
  • dielectric multilayer films 43 a and 43 b provided on at least one of the first and second fractured surfaces 27 and 29, or each of them, can be further provided.
  • An end face coat can also be applied to the fracture surfaces 27 and 29. The reflectance can be adjusted by the end face coating.
  • the laser beam L from the active layer 25 is polarized in the a-axis direction of the hexagonal group III nitride semiconductor.
  • the band transition capable of realizing a low threshold current has polarization.
  • the first and second fractured surfaces 27 and 29 for the laser resonator are different from conventional cleavage planes such as c-plane, m-plane or a-plane.
  • the first and second fractured surfaces 27 and 29 have flatness and perpendicularity as mirrors for the resonator. Therefore, using the first and second fractured surfaces 27 and 29 and the laser waveguide extending between these fractured surfaces 27 and 29, as shown in FIG.
  • the end surface 17c of the support base 17 and the end surface 19c of the semiconductor region 19 appear in each of the first and second fractured surfaces 27 and 29, and the end surface 17c and the end surface 19c are It is covered with a dielectric multilayer film 43a.
  • An angle GAMMA formed by the normal vector NA of the end surface 17c of the support substrate 17 and the end surface 25c of the active layer 25 and the m-axis vector MA of the active layer 25 is a plane defined by the c-axis and the m-axis of the group III nitride semiconductor.
  • the component (GAMMA) 1 is preferably in the range of (CALPHA-5) degrees to (CALPHA + 5) degrees in the plane S1 defined by the c-axis and m-axis of the group III nitride semiconductor.
  • This angle range is shown in FIG. 5 as an angle formed by a representative m-plane SM and the reference plane F A.
  • a representative m-plane SM is depicted from the inside to the outside of the laser structure in FIG. 5 for ease of understanding.
  • the reference plane F A extends along the end face 25c of the active layer 25.
  • This group III nitride semiconductor laser device 11 has an end face that satisfies the above-described perpendicularity with respect to the angle GAMMA taken from one of the c-axis and the m-axis to the other.
  • the component (GAMMA) 2 is preferably in the range of not less than ⁇ 5 degrees and not more than +5 degrees in the plane S2.
  • GAMMA 2 (GAMMA) 1 2 + (GAMMA) 2 2 .
  • the end faces 27 and 29 of the group III nitride semiconductor laser device 11 satisfy the above-described perpendicularity with respect to an angle defined in a plane perpendicular to the normal axis NX of the semipolar surface 17a.
  • the thickness DSUB of the support base 17 is preferably 400 ⁇ m or less. This group III nitride semiconductor laser device is good for obtaining a high-quality fractured surface for a laser resonator. In the group III nitride semiconductor laser device 11, the thickness DSUB of the support base 17 is more preferably 50 ⁇ m or more and 100 ⁇ m or less. This group III nitride semiconductor laser device 11 is even better for obtaining a high-quality fractured surface for the laser resonator. Moreover, handling becomes easy and production yield can be improved.
  • the angle CALPHA formed by the normal axis NX and the c axis of the hexagonal group III nitride semiconductor is preferably 45 degrees or more, and preferably 80 degrees or less. Further, the angle CALPHA is preferably 100 degrees or more, and preferably 135 degrees or less. If the angle is less than 45 degrees or more than 135 degrees, there is a high possibility that the end face formed by pressing is an m-plane. Further, when the angle is more than 80 degrees and less than 100 degrees, the desired flatness and perpendicularity may not be obtained.
  • the angle CALPHA formed by the normal axis NX and the c axis of the hexagonal group III nitride semiconductor is preferably 63 degrees or more and 80 degrees or less. good. Further, the angle CALPHA is preferably 100 degrees or more, and preferably 117 degrees or less. If the angle is less than 63 degrees or more than 117 degrees, the m-plane may appear in a part of the end face formed by pressing. Further, when the angle is more than 80 degrees and less than 100 degrees, the desired flatness and perpendicularity may not be obtained.
  • the semipolar main surface 17a can be any one of ⁇ 20-21 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10-1-1 ⁇ plane. Further, a surface slightly inclined from these surfaces within a range of ⁇ 4 degrees or more and +4 degrees or less is also preferable as the main surface.
  • the first and second end surfaces 27 and 29 having sufficient flatness and perpendicularity that can constitute the laser resonator of the group III nitride semiconductor laser device 11 can be provided.
  • an end face exhibiting sufficient flatness and perpendicularity can be obtained.
  • the stacking fault density of the support base 17 can be 1 ⁇ 10 4 cm ⁇ 1 or less. Since the stacking fault density is 1 ⁇ 10 4 cm ⁇ 1 or less, there is a low possibility that the flatness and / or perpendicularity of the fractured section will be disturbed due to accidental circumstances.
  • the support base 17 can be made of any one of GaN, AlN, AlGaN, InGaN, and InAlGaN. When these gallium nitride semiconductor substrates are used, end faces 27 and 29 that can be used as resonators can be obtained.
  • the degree of polarization can be increased, and light confinement can be enhanced by a low refractive index.
  • the lattice mismatch rate between the substrate and the light emitting layer can be reduced, and the crystal quality can be improved.
  • FIG. 6 is a drawing showing the main steps of a method for producing a group III nitride semiconductor laser device according to the present embodiment.
  • a substrate 51 is shown.
  • step S101 a substrate 51 for preparing a group III nitride semiconductor laser device is prepared.
  • the c-axis (vector VC) of the hexagonal group III nitride semiconductor of the substrate 51 is inclined at a finite angle CALPHA with respect to the normal axis NX in the m-axis direction (vector VM) of the hexagonal group III nitride semiconductor. ing. Therefore, the substrate 51 has a semipolar main surface 51a made of a hexagonal group III nitride semiconductor.
  • a substrate product SP is formed.
  • the substrate product SP is drawn as a substantially disk-shaped member, but the shape of the substrate product SP is not limited to this.
  • the laser structure 55 is formed.
  • the laser structure 55 includes a semiconductor region 53 and a substrate 51.
  • the semiconductor region 53 is formed on the semipolar main surface 51a.
  • a first conductivity type gallium nitride based semiconductor region 57, a light emitting layer 59, and a second conductivity type gallium nitride based semiconductor region 61 are sequentially grown on the semipolar main surface 51a.
  • the gallium nitride based semiconductor region 57 can include, for example, an n-type cladding layer, and the gallium nitride based semiconductor region 61 can include, for example, a p-type cladding layer.
  • the light emitting layer 59 is provided between the gallium nitride based semiconductor region 57 and the gallium nitride based semiconductor region 61, and may include an active layer, a light guide layer, an electron blocking layer, and the like.
  • the gallium nitride based semiconductor region 57, the light emitting layer 59, and the second conductivity type gallium nitride based semiconductor region 61 are arranged along the normal axis NX of the semipolar principal surface 51a.
  • the semiconductor region 53 is covered with an insulating film 54.
  • the insulating film 54 is made of, for example, silicon oxide.
  • An opening 54 a of the insulating film 54 is provided.
  • the opening 54a has, for example, a stripe shape.
  • the anode electrode 58a and the cathode electrode 58b are formed on the laser structure 55.
  • the back surface of the substrate used for crystal growth is polished to form a substrate product SP having a desired thickness DSUB.
  • the anode electrode 58a is formed on the semiconductor region 53
  • the cathode electrode 58b is formed on the back surface (polishing surface) 51b of the substrate 51.
  • the anode electrode 58a extends in the X-axis direction
  • the cathode electrode 58b covers the entire back surface 51b.
  • step S105 the first surface 63a of the substrate product SP is scribed as shown in part (b) of FIG.
  • This scribing is performed using a laser scriber 10a.
  • a scribe groove 65a is formed by scribing.
  • five scribe grooves are already formed, and the formation of the scribe groove 65b is advanced using the laser beam LB.
  • the length of the scribe groove 65a is shorter than the length of the intersection line AIS between the an plane and the first plane 63a defined by the a axis and the normal axis NX of the hexagonal group III nitride semiconductor.
  • the laser beam LB is irradiated on a part of the AIS.
  • the scribe groove 65a can be formed at one edge of the substrate product SP, for example.
  • a plurality of scribe grooves arranged along the cross line AIS can be formed.
  • the laser beam LB is incident on the first surface 63a substantially perpendicularly.
  • the scribe groove 65a is useful for guiding the direction in which the breaking proceeds.
  • the scribe groove 65a has a depth (value in the Z-axis direction), a width (value in the Y-axis direction), and a length (value in the X-axis direction). It extends along the n-plane.
  • the scribe groove 65 a serves to guide the direction in which the cleavage proceeds, and is formed on the back surface 51 a of the substrate (support base 17) 51.
  • the second surface 65b of the laser structure 55 is pressed. The cleaving proceeds in the direction from the first surface 63a to the second surface 63b with the scribe groove 65a as a starting point, and also proceeds in the direction intersecting this.
  • step S106 the substrate product SP is separated by pressing the substrate product SP against the second surface 63b to form the substrate product SP1 and the laser bar LB1.
  • the pressing is performed using a breaking device such as a blade 69.
  • the blade 69 includes an edge 69a extending in one direction and at least two blade surfaces 69b and 69c defining the edge 69a.
  • the substrate product SP1 is pressed on the support device 70.
  • the support device 70 includes a support surface 70a and a recess 70b, and the recess 70b extends in one direction.
  • the recess 70b is formed in the support surface 70a.
  • the substrate product SP1 is positioned on the recess 70b on the support device 70 by aligning the direction and position of the scribe groove 65a of the substrate product SP1 with the extending direction of the recess 70b of the support device 70.
  • the direction of the edge of the breaking device is aligned with the extending direction of the recess 70b, and the edge of the breaking device is pressed against the substrate product SP1 from the direction intersecting the second surface 63b.
  • the intersecting direction is preferably substantially perpendicular to the second surface 63b. Thereby, the substrate product SP is separated to form the substrate product SP1 and the laser bar LB1.
  • the laser bar LB1 having the first and second end faces 67a and 67b is formed, and these end faces 67a and 67b are at least perpendicular to the light emitting layer and applicable to the resonant mirror of the semiconductor laser. It has flatness.
  • An array of scribe grooves is formed on the back surface 51b of the substrate 51 and the second surface 63b of the laser structure 55 is pressed so as to guide the direction in which the cleaving proceeds.
  • the cleaving proceeds in the direction from the first surface 63a to the second surface 63b (for example, the Z-axis direction) starting from the scribe groove, and also proceeds in the direction intersecting this (for example, the Y-axis direction).
  • the flatness and perpendicularity applicable to the laser resonator can be obtained when a scribe groove and its array are formed on the back surface of the substrate along a plane defined by the a-axis and the normal axis, and when the break is caused by pressing the blade toward the thin film While maintaining, it is possible to provide a slight inclination to the cut surface, and to improve the resistance to return light in the semiconductor laser on the semipolar plane.
  • scribe grooves can be formed at a pitch equal to the element width of the group III nitride semiconductor laser element. Since the scribe grooves are formed at a pitch of the element width, the cleaving guidance is performed at a distance for each element in progressing to the cleaving in the Y-axis direction. Therefore, reliable guidance can be expected with respect to the generation direction of the cleaving.
  • the scribe grooves arranged at a pitch equal to the element width guide the direction of the progress of the cleaving and serve to control the slight inclination for the cleaved section. Further, the quality of the end face of the laser stripe located between these scribe grooves can be improved.
  • the formed laser bar LB1 has first and second end surfaces 67a and 67b formed by the above separation, and each of the end surfaces 67a and 67b extends from the first surface 63a to the second surface 63b.
  • the end faces 67a and 67b constitute a laser resonator of the group III nitride semiconductor laser element and intersect the XZ plane.
  • This XZ plane corresponds to the mn plane defined by the m-axis and the normal axis NX of the hexagonal group III nitride semiconductor.
  • the substrate product SP is pressed against the second surface 63b.
  • the product SP is separated to form a new substrate product SP1 and a laser bar LB1. Therefore, the first and second end faces 67a and 67b are formed on the laser bar LB1 so as to intersect the mn plane.
  • This end face formation provides sufficient flatness and perpendicularity to the extent that a laser resonator of the group III nitride semiconductor laser element can be formed on the first and second end faces 67a and 67b.
  • the formed laser waveguide extends in the direction of the c-axis inclination of the hexagonal group III nitride.
  • a resonator mirror end face capable of providing this laser waveguide is formed without using a dry etching surface.
  • a new substrate product SP1 and a laser bar LB1 are formed by cleaving the substrate product SP1.
  • separation by pressing is repeated to produce a large number of laser bars.
  • This cleaving is caused by using a scribe groove 65a shorter than the breaking line BRAK of the laser bar LB1.
  • step S108 a dielectric multilayer film is formed on the end faces 67a and 67b of the laser bar LB1 to form a laser bar product.
  • step S109 the laser bar product is separated into individual semiconductor laser chips. A pair of side surfaces for the semiconductor laser is formed on the semiconductor laser chip.
  • the angle CALPHA can be in the range of 45 degrees to 80 degrees and 100 degrees to 135 degrees. If the angle is less than 45 degrees or more than 135 degrees, there is a high possibility that the end face formed by pressing is an m-plane. Further, when the angle is more than 80 degrees and less than 100 degrees, the desired flatness and perpendicularity may not be obtained.
  • the angle CALPHA may be in the range of 63 degrees to 80 degrees and 100 degrees to 117 degrees. If the angle is less than 45 degrees or more than 135 degrees, the m-plane may appear in a part of the end face formed by pressing. Further, when the angle is more than 80 degrees and less than 100 degrees, the desired flatness and perpendicularity may not be obtained.
  • the semipolar main surface 51a can be any one of ⁇ 20-21 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10-1-1 ⁇ plane. Further, a surface slightly inclined from these surfaces within a range of ⁇ 4 degrees or more and +4 degrees or less is also preferable as the main surface. In these typical semipolar planes, it is possible to provide an end face for the laser resonator with sufficient flatness and perpendicularity that can constitute the laser resonator of the group III nitride semiconductor laser device.
  • the substrate 51 can be made of any one of GaN, AlN, AlGaN, InGaN, and InAlGaN. When these gallium nitride semiconductor substrates are used, an end face that can be used as a laser resonator can be obtained.
  • the substrate 51 is preferably made of GaN.
  • step S104 for forming the substrate product SP the semiconductor substrate used for crystal growth was subjected to processing such as slicing or grinding so that the substrate thickness was 400 ⁇ m or less, and the second surface 63b was formed by polishing. It can be a machined surface. With this substrate thickness, end faces 67a and 67b free from flatness, perpendicularity, or ion damage sufficient to constitute a laser resonator of the group III nitride semiconductor laser device can be formed with high yield. It is even better if the second surface 63b is a polished surface formed by polishing and is polished to a substrate thickness of 100 ⁇ m or less. In order to handle the substrate product SP relatively easily, the substrate thickness is preferably 50 ⁇ m or more.
  • the angle GAMMA described with reference to FIG. 4 is defined also in the laser bar LB1.
  • the component of the angle GAMMA (GAMMA) 1 is (CALPHA) on the first plane (plane corresponding to the plane S1 in the description with reference to FIG. 4) defined by the c-axis and m-axis of the group III nitride semiconductor. It is preferable to be in the range of ⁇ 5) degrees or more and (CALPHA + 5) degrees or less.
  • the end faces 67a and 67b of the laser bar LB1 satisfy the above-described perpendicularity with respect to the angle component of the angle GAMMA taken from one of the c-axis and the m-axis to the other.
  • the component (GAMMA) 2 of the angle GAMMA is preferably in the range of ⁇ 5 degrees to +5 degrees on the second plane (the plane corresponding to the second plane S2 shown in FIG. 4).
  • the end faces 67a and 67b of the laser bar LB1 satisfy the above-described perpendicularity with respect to the angle component of the angle GAMMA defined in the plane perpendicular to the normal axis NX of the semipolar surface 51a.
  • the end faces 67a and 67b are formed by a break by pressing against a plurality of gallium nitride based semiconductor layers epitaxially grown on the semipolar surface 51a. Because of the epitaxial film on the semipolar surface 51a, the end surfaces 67a and 67b are not cleaved surfaces with a low index such as the c-plane, m-plane, or a-plane that have been used as resonator mirrors. However, in the break of the lamination of the epitaxial film on the semipolar surface 51a, the end surfaces 67a and 67b have flatness and perpendicularity applicable as resonator mirrors.
  • Example 1 A semipolar plane GaN substrate was prepared as follows, and the perpendicularity of the fractured surface was observed.
  • the substrate used was a ⁇ 20-21 ⁇ plane GaN substrate cut from a (0001) GaN ingot grown thick by HVPE at an angle of 75 degrees in the m-axis direction.
  • the main surface of the GaN substrate was mirror-finished and the back surface was polished and finished in a satin state.
  • the thickness of the substrate was 370 ⁇ m.
  • a marking line was put on the back side of the satin surface perpendicular to the direction in which the c-axis was projected onto the main surface of the substrate using a diamond pen, and then pressed to cleave the substrate.
  • the substrate was observed from the a-plane direction using a scanning electron microscope.
  • SEM 8A is a scanning electron microscope (SEM) image obtained by observing the fractured surface from the a-plane direction, and the right end surface is the fractured surface.
  • This split section has flatness and perpendicularity in the section of this SEM sample.
  • Example 2 In Example 1, in a GaN substrate having a semipolar ⁇ 20-21 ⁇ plane, a fractured surface obtained by pressing with a marking line perpendicular to the direction in which the c-axis is projected onto the substrate main surface is formed on the substrate main surface. On the other hand, it was found to have flatness and perpendicularity. Therefore, in order to examine the usefulness of this split section as a laser resonator, the laser diode shown in FIG. 9 was grown by metal organic vapor phase epitaxy as follows. Trimethylgallium (TMGa), trimethylaluminum (TMAl), trimethylindium (TMIn), ammonia (NH 3 ), and silane (SiH 4 ) were used as raw materials.
  • TMGa Trimethylgallium
  • TMAl trimethylaluminum
  • TMIn trimethylindium
  • NH 3 ammonia
  • SiH 4 silane
  • a substrate 71 was prepared.
  • a substrate 71 is cut from a (0001) GaN ingot grown thick by HVPE using a wafer slicing device at an angle in the range of 0 to 90 degrees in the m-axis direction, and the c-axis tilt angle CALPHA in the m-axis direction is cut.
  • a GaN substrate having a desired off angle in the range of 0 to 90 degrees was produced.
  • a ⁇ 20-21 ⁇ plane GaN substrate is obtained, which is indicated by reference numeral 71a in the hexagonal crystal lattice shown in FIG. 8 (b).
  • the substrate was observed by the cathodoluminescence method in order to investigate the stacking fault density of the substrate.
  • cathodoluminescence the emission process of carriers excited by an electron beam is observed, but if a stacking fault exists, carriers are not re-emitted in the vicinity, and thus are observed as dark lines.
  • the density per unit length of the dark line was determined and defined as the stacking fault density.
  • the cathodoluminescence method of nondestructive measurement was used, but a transmission electron microscope of destructive measurement may be used.
  • a defect extending in the m-axis direction from the substrate toward the sample surface is a stacking fault included in the support base, and as in the case of the cathodoluminescence method.
  • the line density of stacking faults can be determined.
  • an epitaxial layer was grown by the following growth procedure. First, n-type GaN 72 having a thickness of 1000 nm was grown. Next, an n-type InAlGaN cladding layer 73 having a thickness of 1200 nm was grown. Subsequently, after growing an n-type GaN guide layer 74a having a thickness of 200 nm and an undoped InGaN guide layer 74b having a thickness of 65 nm, a three-period MQW 75 composed of a GaN thickness of 15 nm / InGaN thickness of 3 nm was grown.
  • an undoped InGaN guide layer 76a having a thickness of 65 nm, a p-type AlGaN blocking layer 77a having a thickness of 20 nm, and a p-type GaN guide layer 76b having a thickness of 200 nm were grown.
  • a p-type InAlGaN cladding layer 77b having a thickness of 400 nm was grown.
  • a stripe window having a width of 10 ⁇ m was formed by wet etching using photolithography.
  • contact windows in the stripe direction were formed in the following two ways. Laser stripes are (1) in the M direction (the contact window is along a predetermined plane defined by the c-axis and m-axis) and (2) in the A direction: ⁇ 11-20> direction. .
  • a p-side electrode 80a made of Ni / Au and a pad electrode made of Ti / Al were deposited.
  • the back surface of the GaN substrate (GaN wafer) was polished with diamond slurry to produce a substrate product with the back surface in a mirror state.
  • the thickness of the substrate product was measured using a contact-type film thickness meter. The thickness may be measured by a microscope from a sample cross section. As the microscope, an optical microscope or a scanning electron microscope can be used.
  • An n-side electrode 80b made of Ti / Al / Ti / Au was formed on the back surface (polished surface) of the GaN substrate (GaN wafer) by vapor deposition.
  • a laser scriber using a YAG laser having a wavelength of 355 nm was used for manufacturing the resonator mirror for these two types of laser stripes.
  • the following conditions were used for forming the scribe grooves: laser light output 100 mW; scanning speed 5 mm / s.
  • the formed scribe groove was, for example, a groove having a length of 30 ⁇ m, a width of 10 ⁇ m, and a depth of 40 ⁇ m.
  • a scribe groove was formed by directly irradiating the epitaxial surface with laser light through an insulating film opening portion of the substrate at a pitch of 800 ⁇ m.
  • the resonator length was 600 ⁇ m.
  • FIG. 8 (b) shows a case where a laser stripe is provided in the (1) M direction, and end faces 81a and 81b for the laser resonator are shown together with the semipolar surface 71a.
  • the end surfaces 81a and 81b are substantially orthogonal to the semipolar surface 71a, but are different from conventional cleavage surfaces such as the conventional c-plane, m-plane, or a-plane.
  • 8C shows a case where laser stripes are provided in the (2) ⁇ 11-20> direction, and end faces 81c and 81d for the laser resonator are shown together with the semipolar surface 71a.
  • the end surfaces 81c and 81d are substantially orthogonal to the semipolar surface 71a and are composed of a-planes.
  • the flatness (size of irregularities) of the fractured surface is estimated to be 20 nm or less. Further, the perpendicularity of the cut surface to the sample surface was within a range of ⁇ 5 degrees.
  • a dielectric multilayer film was coated on the end face of the laser bar by vacuum deposition.
  • the dielectric multilayer film was configured by alternately laminating SiO 2 and TiO 2 .
  • Each film thickness was adjusted in the range of 50 to 100 nm and designed so that the central wavelength of reflectance was in the range of 500 to 530 nm.
  • the reflective surface on one side was set to 10 periods, the design value of reflectivity was designed to about 95%, the reflective surface on the other side was set to 6 periods, and the design value of reflectivity was about 80%.
  • Evaluation by energization was performed at room temperature.
  • a pulse power source having a pulse width of 500 ns and a duty ratio of 0.1% was used, and electricity was applied by dropping a needle on the surface electrode.
  • the light output the light emission from the end face of the laser bar was detected by a photodiode, and the current-light output characteristic (IL characteristic) was examined.
  • the emission wavelength the light emitted from the end face of the laser bar was passed through an optical fiber, and the spectrum was measured using a spectrum analyzer as a detector.
  • the polarization state was examined by rotating the light emitted from the laser bar through the polarizing plate.
  • the LED mode light the light emitted from the surface was measured by arranging the optical fiber on the laser bar surface side.
  • the oscillation wavelength was 500 to 530 nm.
  • the polarization state of LED mode was measured with all lasers.
  • the polarization component in the a-axis direction is defined as I1
  • the polarization component in the direction in which the m-axis is projected onto the principal surface is defined as I2
  • (I1-I2) / (I1 + I2) is defined as the degree of polarization ⁇ .
  • the threshold current density is greatly reduced when the degree of polarization is positive (I1> I2) and the waveguide is provided in the off direction.
  • the data shown in FIG. 10 is as follows. Threshold current, threshold current. Polarization degree, (M direction stripe), ( ⁇ 11-20> stripe). 0.08, 64, 20. 0.05, 18, 42. 0.15, 9, 48. 0.276, 7, 52. 0.4,6.
  • FIG. 11 is a plot of a substrate having a stacking fault density of 1 ⁇ 10 4 (cm ⁇ 1 ) or less and a laser stripe of (1) M direction laser.
  • FIG. 11 shows that the oscillation yield is extremely low when the off angle is 45 degrees or less.
  • the off angle when the off angle is in the range of 63 degrees to 80 degrees, the verticality is improved and the oscillation yield is increased to 50% or more. From these facts, the optimum range of the off-angle of the GaN substrate is 63 degrees or more and 80 degrees or less. Similar results can be obtained even in the range of 100 degrees to 117 degrees, which is the angle range in which the crystallographically equivalent end faces are provided.
  • the data shown in FIG. 11 is as follows. Tilt angle, yield. 10, 0.1. 43, 0.2. 58, 50. 63, 65. 66, 80. 71, 85. 75, 80. 79, 75. 85, 45. 90, 35.
  • FIG. 12 As a result of investigating the relationship between the stacking fault density and the oscillation yield, FIG. 12 was obtained.
  • the definition of the oscillation yield is the same as described above. From FIG. 12, it can be seen that when the stacking fault density exceeds 1 ⁇ 10 4 (cm ⁇ 1 ), the oscillation yield rapidly decreases.
  • the sample having a reduced oscillation yield did not have a flat split surface with severe end face unevenness. The cause is thought to be a difference in the ease of cracking due to the presence of stacking faults. For this reason, the stacking fault density included in the substrate needs to be 1 ⁇ 10 4 (cm ⁇ 1 ) or less.
  • the data shown in FIG. 12 is as follows. Stacking fault density (cm ⁇ 1 ), yield. 500, 80. 1000, 75. 4000, 70. 8000, 65. 10000, 20. 50000, 2.
  • FIG. 13 As a result of investigating the relationship between the substrate thickness and the oscillation yield, FIG. 13 was obtained.
  • the definition of the oscillation yield is the same as described above.
  • the plotting is performed in the case where the stacking fault density of the substrate is 1 ⁇ 10 4 (cm ⁇ 1 ) or less and the laser stripe is (1) M direction laser. From FIG. 13, when the substrate thickness is thinner than 100 ⁇ m and thicker than 50 ⁇ m, the oscillation yield is high. This is because if the substrate thickness is thicker than 100 ⁇ m, the perpendicularity of the fractured surface deteriorates. On the other hand, when the thickness is less than 50 ⁇ m, handling is difficult and the chip is easily broken.
  • the optimal thickness of the substrate is 50 ⁇ m or more and 100 ⁇ m or less.
  • the data shown in FIG. 13 is as follows. Substrate thickness, yield. 48, 10. 80, 65. 90, 70. 110, 45. 150, 48. 200, 30. 400, 20.
  • Example 3 In Example 2, a plurality of epitaxial films for a semiconductor laser were grown on a GaN substrate having a ⁇ 20-21 ⁇ plane. As described above, the end face for the optical resonator was formed by forming and pressing the scribe groove. In order to find candidates for these end faces, a plane orientation different from the a-plane with an angle of about 90 degrees with the (20-21) plane was obtained by calculation. Referring to FIG. 14, the following angles and plane orientations have angles near 90 degrees with respect to the (20-21) plane. Specific plane index, angle with respect to ⁇ 20-21 ⁇ plane. (-1016): 92.46 degrees. ( ⁇ 1017): 90.10 degrees. (-1018): 88.29 degrees.
  • Example 4 In a GaN substrate having a semipolar ⁇ 20-21 ⁇ plane, a fractured surface obtained by pressing with a marking line perpendicular to the direction in which the c-axis is projected onto the substrate main surface is flat with respect to the substrate main surface and It was shown to have verticality.
  • a laser diode was grown by metal organic vapor phase epitaxy as follows. Trimethylgallium (TMGa), trimethylaluminum (TMAl), trimethylindium (TMIn), ammonia (NH 3 ), and silane (SiH 4 ) were used as raw materials.
  • TMGa Trimethylgallium
  • TMAl trimethylaluminum
  • TMIn trimethylindium
  • NH 3 ammonia
  • SiH 4 silane
  • an epitaxial substrate was grown by the following growth procedure.
  • This epitaxial substrate includes the epitaxial layer shown in FIG. First, an n-type GaN layer having a thickness of 1000 nm was grown. Next, an n-type InAlGaN cladding layer having a thickness of 1200 nm was grown. Subsequently, after growing an n-type GaN guide layer having a thickness of 200 nm and an undoped InGaN guide layer having a thickness of 115 nm, a quantum well structure was grown.
  • This quantum well structure includes a two-period MQW composed of a GaN barrier layer (thickness 15 nm) / InGaN well layer (thickness 3 nm). Subsequently, an undoped InGaN guide layer having a thickness of 65 nm, a p-type AlGaN block layer having a thickness of 20 nm, a p-type InGaN guide layer having a thickness of 50 nm, and a p-type GaN guide layer having a thickness of 200 nm were grown. Next, a p-type InAlGaN cladding layer having a thickness of 400 nm was grown. Finally, a p-type GaN contact layer having a thickness of 50 nm was grown.
  • a mask was provided by a positive resist having a width of 2 ⁇ m by photolithography.
  • the laser waveguide direction was oriented so as to be parallel to the direction of the projection component projected on the principal surface with the c-axis.
  • a ridge structure was produced by dry etching using Cl 2 . The etching depth was 0.7 ⁇ m, and the semiconductor region of the epitaxial substrate was etched until the AlGaN block layer was exposed. After the etching, the resist mask was removed.
  • a stripe mask having a width of about 2 ⁇ m was left on the ridge structure using photolithography. The direction of the stripe mask was adjusted to the direction of the ridge structure.
  • SiO 2 was deposited on the side surface of the ridge using a vacuum deposition method. After vapor deposition of the insulating film, SiO 2 on the ridge was removed by a lift-off method to form an insulating film having a stripe-shaped opening. Next, an anode electrode and a cathode electrode were formed to produce a substrate product.
  • a p-side electrode AND made of Ni / Au and a pad electrode made of Ti / Au were deposited.
  • the back surface of the GaN substrate (GaN wafer) was polished with diamond slurry to produce a substrate product with the back surface in a mirror state.
  • An n-side electrode CTD made of Ti / Al / Ti / Au was formed on the back surface (polished surface) of the GaN substrate (GaN wafer) by vapor deposition.
  • a laser scriber using a YAG laser with a wavelength of 355 nm was used to manufacture the resonator mirror for these laser stripes.
  • a scribe groove is formed using a laser scriber and a break is made, the oscillation chip yield can be improved as compared with the case where a diamond scribe is used.
  • the following were used as the scribe groove formation conditions.
  • Laser light output 100 mW.
  • the scanning speed is 5 mm / s.
  • the scribe groove formed under these conditions was, for example, a groove having a length of 30 ⁇ m, a width of 10 ⁇ m, and a depth of 40 ⁇ m. Scribe grooves were periodically formed by directly irradiating the surface of the substrate with laser light through the electrode openings at intervals of 400 ⁇ m.
  • the resonator length was 600 ⁇ m.
  • a resonant mirror was prepared by cleaving using a blade.
  • LN1 indicated by a broken line is a plane inclined several degrees from ⁇ 10-1-7 ⁇ which is a plane perpendicular to the ⁇ 20-21 ⁇ plane, for example, ⁇ 10-1- 6 ⁇
  • a broken line LN2 indicates an array line of scribe grooves.
  • the broken line LN2 extends, for example, in the direction of the a axis, and the scribe groove extends along the an plane defined by the normal axis of the main surface of the substrate and the a axis of the substrate.
  • a laser bar was produced by breaking at the end on the back side of the substrate by pressing.
  • a split section CVT for the laser resonator is formed by a method in which an end surface perpendicular to the laser waveguide provided in parallel to the direction in which the c-axis is projected onto the main surface on the semipolar plane is a mirror surface.
  • This split section CVT is different from the cleaved surface of the m-plane, a-plane, or c-plane which becomes the end face for the optical resonator in the conventional laser on the c-plane principal plane or m-plane principal plane.
  • the remainder of the scribe groove (scribe mark 64a) separated by the cleavage appears.
  • the fractured face that is separated from the broken line LN2 from one end of the scribe groove 65a is returned to the broken line (scribe line arrangement line) LN2 by the next scribe groove 65a. For this reason, the fractured surface is formed into a convexly curved shape. Since the pressure is applied to the epi surface of the substrate product, the curvature at the lower edge of the substrate is greater than the curvature at the upper edge of the semiconductor region.
  • the end face of the laser bar was coated with a dielectric multilayer film by vacuum deposition.
  • the dielectric multilayer film was configured by alternately laminating SiO 2 and TiO 2 .
  • the film thickness was adjusted in the range of 50 to 100 nm, and the central wavelength of the reflectance was adjusted to be in the wavelength range of 500 to 530 nm.
  • the reflective surface on one side was set to 10 periods, the design value of reflectivity was designed to about 95%, the reflective surface on the other side was set to 6 periods, and the design value of reflectivity was about 80%.
  • the surface of the dielectric multilayer film has a shape reflecting the shape of the fractured surface of the base, and therefore, the rules relating to the angle and shape related to the fractured surface described above are also applied to the surface of the dielectric multilayer film.
  • Evaluation by energization was performed at room temperature.
  • a pulse power source having a pulse width of 500 ns and a duty ratio of 0.1% was used, and electricity was applied by dropping a needle on the surface electrode.
  • the light output the light emission from the end face of the laser bar was detected by a photodiode, and the current-light output characteristic (IL characteristic) was examined.
  • the emission wavelength the light emitted from the end face of the laser bar was passed through an optical fiber, and the spectrum was measured using a spectrum analyzer as a detector.
  • the oscillation wavelength was 500 to 530 nm.
  • the effect of return light on nitride semiconductor lasers was investigated.
  • the angle formed by the end face of the main surface of the laser bar was examined with a scanning electron microscope.
  • the angle ⁇ defined by the waveguide vector and the normal vector of the active layer end face on the substrate surface side is defined as the angle ⁇ formed by the waveguide vector and the normal vector of the end surface on the substrate rear surface side.
  • RIN relative noise intensity
  • the relative noise intensity was good. These components reduce the adverse effects of the return light by scattering the return light closer to the back side of the substrate than the active layer into the laser chip in a direction that is not parallel to the waveguide. It is considered possible.
  • the crossing angle ⁇ between the end face of the semiconductor laser and the waveguide is set substantially perpendicular to the position of the active layer end face, and is set to a crossing angle ⁇ larger than the crossing angle ⁇ at the position of the substrate end face. Further, improved relative noise intensity can be obtained.
  • FIG. 17A shows a semiconductor laser having an end face inclined in the same direction as in Patent Document 6.
  • An anode electrode AN1 is formed on the epitaxial surface of the laser structure, and a cathode electrode CT1 is formed on the back surface of the substrate of the laser structure.
  • the active layer AL1 extends from the end face CC1 to the end face CC2.
  • Three return lights LR1, LR2, and LR3 incident at different positions are shown.
  • the return light LR1 is substantially incident on the end face of the active layer. Since the return light LR1 is directly incident on the active layer, this light propagates through the waveguide while being totally reflected by the optical confinement structure formed above and below the active layer in the waveguide.
  • the threshold current is greatly increased.
  • the return lights LR2 and LR3 incident on the end surface away from the end surface of the active layer are reflected on the back surface of the substrate, and the reflection component returns to the active layer.
  • FIG. 17 (b) shows a semiconductor laser having an end face inclined in the same direction as in the present embodiment.
  • An anode electrode AN2 is formed on the epitaxial surface of the laser structure, and a cathode electrode is formed on the back surface of the substrate of the laser structure.
  • the active layer AL2 extends from the end face BC1 to the end face BC2.
  • Three return lights LR4, LR5, and LR6 that are substantially the same as the height of the active layer AL2 but are incident on different positions in the width direction of the element are shown.
  • the return light LR5 is substantially incident on the end face of the active layer.
  • the return light LR5 is directly incident on the active layer, it is not confined in the lateral direction and propagates in a direction different from the extending direction of the optical waveguide WG in the element. Therefore, a relatively large resistance to the return light can be obtained by the slight inclination angles ⁇ and ⁇ .
  • the return lights LR4 and LR6 incident on the end face away from the end face of the active layer also propagate in a direction different from the extending direction of the optical waveguide WG.
  • the anode electrode AN3 is formed on the epitaxial surface of the laser structure, and the cathode electrode CT3 is formed on the back surface of the substrate of the laser structure.
  • the active layer AL2 extends from the end face BC1 to the end face BC2.
  • Return light LR1 to LR3 returns to the end face in the same manner as in the part (a) of FIG. 17 and the part (b) of FIG. Since the active layer position is close to the pressed epi surface, the angle ⁇ is therefore small.
  • the increase in threshold value due to the return light LR1 is small. Although there is no influence of the return light, the return light LR1 is incident on the very surface. Referring to FIG. 18B, FIG. 18C, and FIG. 18D, the end surface inclination ( ⁇ 1 ⁇ 2) is relatively large at the position where the return lights LR2 and LR3 are incident. Therefore, the traveling direction of light and the waveguide direction are different. For this reason, the incident return light cannot be guided, and therefore has no influence on the increase of the threshold value. Most of the light that reaches the side surface of the semiconductor laser is not reflected but attenuates while being scattered. In this nitride semiconductor laser, the inclination angle gradually increases in this direction on the line extending in the direction from the epi surface to the back surface of the substrate on the end face where the laser waveguide appears (( ⁇ ⁇ 1 ⁇ 2)). .
  • FIG. 19 is a drawing showing the relationship between the deviation angle ⁇ at the end face and the number of return light reciprocations.
  • the vertical inclination angle ⁇ of the end face, the horizontal inclination angle ⁇ of the end face at the active layer position, and the horizontal inclination angle ⁇ of the end face at the position of the substrate end face in the vicinity of the back surface are not zero.
  • is different from angle ⁇ ( ⁇ ⁇ 0 degree, ⁇ ⁇ ⁇ ⁇ 0).
  • the thickness T, the angle ⁇ , and the width W of the semiconductor chip were given, and the possible values of the angle ⁇ and the angle ⁇ were examined.
  • the lateral inclination angle ⁇ of the end face at the active layer position is defined as follows.
  • the lateral inclination angle ⁇ of the end surface at the position of the substrate end surface is defined as follows.
  • the angle ⁇ 0.4 degrees or more, the angle ⁇ is smaller than 0.2 degrees and the angle ⁇ is larger than 0.2 degrees. This indicates that almost the desired end face can be produced.
  • a nitride semiconductor laser having this end face is strong against return light and has a low threshold value.
  • a method for realizing these end faces will be exemplarily described for a semiconductor laser fabricated on the ⁇ 20-21 ⁇ plane.
  • the surface perpendicular to the main surface of the substrate is a surface CP1 (for example, ⁇ 1017 ⁇ surface at the end surface facing the positive direction of the c-axis ).
  • a plane index such as another plane CP2 (for example, ⁇ -1016 ⁇ plane or ⁇ 10-1-6 ⁇ plane closer to the plane CP1 than this plane CP1).
  • the crystal plane) is likely to appear during a break.
  • the blade is applied to the surface (epi surface) of the substrate product to break the substrate product.
  • a broken line DL indicates a position along the ⁇ 10-1-6 ⁇ plane from the position where the blade contacts on the epi plane.
  • the crack BK1 when cleaved progresses from the scribe groove as shown in part (b) of FIG. Since the surface indicated by the surface index ⁇ 1016 ⁇ is more susceptible to cracking than the surface indicated by the surface index ⁇ 1017 ⁇ , the crack BK2 extends in the direction in which the surface that is easily cracked appears as shown in FIG. 21 (c).
  • the present embodiment is not limited to the range of the above embodiment, and can provide a predetermined range of inclination to the fractured surface at the inclination angle of the semipolar plane described in the present embodiment.
  • the front surface of the substrate product is formed after forming a row of scribe grooves extending along the an plane on the back surface of the substrate. Press (Epi surface side).
  • a fragile surface appears near the intersection line between the an surface and the front surface of the substrate product. In the same manner as described above, the crack is curved and propagates in a direction in which a fragile surface appears.
  • FIG. 22 is a drawing showing atomic arrangements in the (20-21) plane, the ( ⁇ 101-6) plane, and the ( ⁇ 1016) plane.
  • FIG. 23 is a drawing showing atomic arrangements in the (20-21) plane, the ( ⁇ 101-7) plane, and the ( ⁇ 1017) plane.
  • FIG. 24 is a drawing showing atomic arrangements in the (20-21) plane, the ( ⁇ 101-8) plane, and the ( ⁇ 1018) plane.
  • the local atomic arrangement indicated by the arrow indicates the arrangement of charge neutral atoms, and the electrically neutral atomic arrangement appears periodically.
  • This charge-neutral atomic arrangement appears periodically, which suggests that the generation of the split section is relatively stable. There is sex.
  • the angle CALPHA can be in the range of 45 degrees to 80 degrees and 100 degrees to 135 degrees. In order to improve the oscillation chip yield, the angle CALPHA can be in the range of 63 degrees to 80 degrees and 100 degrees to 117 degrees. It can be any of a typical semipolar principal surface, ⁇ 20-21 ⁇ surface, ⁇ 10-11 ⁇ surface, ⁇ 20-2-1 ⁇ surface, and ⁇ 10-1-1 ⁇ surface. Furthermore, it can be a slightly inclined surface from these semipolar surfaces.
  • the semipolar principal surface is an m-plane direction from any one of ⁇ 20-21 ⁇ , ⁇ 10-11 ⁇ , ⁇ 20-2-1 ⁇ , and ⁇ 10-1-1 ⁇ planes. Further, it can be a slightly inclined surface that is turned off within a range of ⁇ 4 degrees or more and +4 degrees or less.
  • a group III nitride semiconductor laser device having a laser resonator that enables a low threshold current is provided, and according to the present embodiment, this group III nitride semiconductor laser device is manufactured. A method is provided.
  • SYMBOLS 11 Group III nitride semiconductor laser element, 13 ... Laser structure, 13a ... 1st surface, 13b ... 2nd surface, 13c, 13d ... Edge, 15 ... Electrode, 17 ... Support base

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

六方晶系III族窒化物のc軸がm軸の方向に傾斜した支持基体の半極性面上において、戻り光による撹乱の低減を可能にするレーザ共振器を有するIII族窒化物半導体レーザ素子を提供する。レーザ共振器となる第1及び第2の割断面27、29がm-n面に交差する。III族窒化物半導体レーザ素子11は、低しきい値電流を可能にするバンド遷移の発光を利用するために、m-n面と半極性面17aとの交差線の方向に延在するレーザ導波路を有する。第1及び第2の割断面27、29は、第1の面13aのエッジ13cから第2の面13bのエッジ13dまで延在する。割断面27、29は、ドライエッチングにより形成されず、c面、m面又はa面等のこれまでのへき開面とは異なる。角度αは角度βと異なり、角度αと角度βとの差が0.1度以上である。

Description

III族窒化物半導体レーザ素子、及びIII族窒化物半導体レーザ素子を作製する方法
 本発明は、III族窒化物半導体レーザ素子、及びIII族窒化物半導体レーザ素子を作製する方法に関する。
 特許文献1には、レーザ装置が記載されている。{0001}面から[1-100]方向に等価な方向に向かって28.1度で傾斜した面を基板の主面とすると、2次劈開面は、主面及び光共振器面の両方に対して垂直である{11-20}面となり、レーザ装置は直方体状になる。
 特許文献2には、窒化物半導体装置が記載されている。へき開のための基板の裏面を研磨し総層厚を100μm程度に薄膜化する。へき開面に誘電体多層膜を堆積する。
 特許文献3には、窒化物系化合物半導体素子が記載されている。窒化物系化合物半導体素子に用いる基板は、3×10cm-2以下である貫通転位密度の窒化物系化合物半導体からなり、貫通転位密度が面内で略均一である。
 特許文献4には、窒化物系半導体レーザ素子が記載されている。窒化物系半導体レーザ素子では、以下のようにへき開面を形成する。半導体レーザ素子層からn型GaN基板に達するようにエッチング加工により形成された凹部に対して、n型GaN基板の共振器面のエッチング加工時に形成される凸部を避けながら、レーザスクライバを用いて、リッジ部の延びる方向と直交する方向に破線状(約40μm間隔)にスクライブ溝を形成する。
そして、ウエハを、スクライブ溝の位置で劈開する。また、この際、凸部などのスクライブ溝が形成されていない領域は、隣接するスクライブ溝を起点として劈開される。この結果、素子分離面は、それぞれ、n型GaN基板の(0001)面からなる劈開面として形成される。
 特許文献5には、発光素子が記載されている。発光素子によれば、発光層における発光効率を損なうことなく、長波長の発光を容易に得ることができる。
 特許文献6には、窒化物系半導体レーザが記載されている。この半導体レーザにおいて、発光層を有する窒化物系半導体素子層が基板の主表面上に形成される。共振器面が、窒化物系半導体素子層の発光層を含む領域の端部に形成されており、前記基板の主表面に対して略垂直な方向に延びる。素子分離面が基板の劈開面からなり、共振器面に対してある角度で傾斜して延びる。
 非特許文献1には、半極性(10-11)面上で、導波路をオフ方向に設けて、反応性イオンエッチング法でミラーを形成した半導体レーザが記載されている。また、非特許文献2には、レーザ導波路の角度について記載されている。
特開2001-230497号公報 特開2005-353690号公報 特開2007-184353号公報 特開2009-081336号公報 特開2008-235804号公報 特開2009-081336号公報
Jpn. J. Appl. Phys. Vol.46 No.19 (2007) L444 III族窒化物半導体、1999年、培風館、264頁、赤崎勇編著
 窒化ガリウム系半導体のバンド構造によれば、レーザ発振可能ないくつかの遷移が存在する。発明者の知見によれば、c軸がm軸の方向に傾斜した半極性面の支持基体を用いるIII族窒化物半導体レーザ素子では、c軸及びm軸によって規定される面に沿ってレーザ導波路を延在させるとき、しきい値電流を下げることができると考えている。このレーザ導波路の向きでは、これらのうち遷移エネルギ(伝導帯エネルギと価電子帯エネルギとの差)の最も小さいモードがレーザ発振可能になり、このモードの発振が可能になるとき、しきい値電流を下げることができる。
 しかしながら、このレーザ導波路の向きでは、共振器ミラーのために、c面、a面又はm面という従来のへき開面を利用することはできない。これ故に、共振器ミラーの作製のために、反応性イオンエッチング(RIE)を用いて半導体層のドライエッチング面を形成してきた。RIE法で形成された共振器ミラーは、レーザ導波路に対する垂直性、ドライエッチング面の平坦性又はイオンダメージの点で、改善が望まれている。また、現在の技術レベルにおける良好なドライエッチング面を得るためのプロセス条件の導出が大きな負担となる。
 c面を用いるIII族窒化物半導体レーザ素子の作製においては、従来の劈開面を利用して共振器ミラーを形成するとき、エピ面側の薄膜上にスクライブ溝を形成すると共に基板の裏面へのブレードの押圧によりへき開面を作製してきた。発明者が知る限りにおいて、これまで、上記の半極性面上に形成されたIII族窒化物半導体レーザ素子において、c軸の傾斜方向(オフ方向)に延在するレーザ導波路とドライエッチングを用いずに形成された共振器ミラー用端面との両方が達成されていない。
 しかしながら、既に説明したように、c軸の傾斜方向(オフ方向)に延在するレーザ導波路の向きでは、従来の劈開面を利用して共振器ミラーを作製することができない。発明者らの知見によれば、c軸がm軸の方向に傾斜した半極性面の基板を用いるIII族窒化物半導体レーザ素子では、へき開面と異なる端面を共振器ミラーとして利用できる。本件の出願人は、光共振器のための割断面を含むIII族窒化物半導体レーザ素子に関連する特許出願(特願2009-144442号)を行っている。
 共振器ミラーのためにへき開面と異なる端面を用いる半導体レーザでは、半導体レーザへの戻り光は、半導体レーザの発振特性に大きく影響して、半導体レーザの動作を不安定にする。このため、窒化物系半導体レーザをモジュールでは、光アイソレータが必要になる。光アイソレータの追加はモジュールのコストを上昇させる。また、窒化物系半導体レーザからのレーザ光が光部品(レンズ、フィルター、ミラー等)を通過する際にも戻り光を発生させる。これらの戻り光が半導体レーザの導波路内に戻ることによって、窒化物系半導体レーザの動作が不安定になる。
 発明者らの実験によれば、戻り光のうち大部分は、活性層の端面ではなく、基板の端面を介して半導体レーザ内に入射する。基板端面に戻るこの成分を排除できるならば、窒化物系半導体レーザにおいて戻り光の影響を低減できる。
 特許文献6では、共振器端面をドライエッチングによって作製すると共に基板のへき開を行って基板端面にc面を露出させている。この方法及び構造は、ドライエッチングとへき開の2つの処理が作製工程において必要とされる。また、へき開面を利用するので、へき開面からなる基板端面の角度は、基板端面のへき開面の法線と基板主面の法線とにより規定される平面において規定される。
 本発明の目的は、六方晶系III族窒化物のc軸からm軸の方向に傾斜した支持基体の半極性面上において、戻り光による撹乱の低減を可能にするレーザ共振器を有するIII族窒化物半導体レーザ素子を提供することにあり、またこのIII族窒化物半導体レーザ素子を作製する方法を提供することにある。
 本発明の一側面に係るIII族窒化物半導体レーザ素子は、(a)六方晶系III族窒化物半導体からなり半極性主面を有する支持基体、及び前記支持基体の前記半極性主面上に設けられた半導体領域を含むレーザ構造体と、(b)前記レーザ構造体の前記半導体領域上に設けられた電極とを備える。前記半導体領域は、第1導電型の窒化ガリウム系半導体からなる第1のクラッド層と、第2導電型の窒化ガリウム系半導体からなる第2のクラッド層と、前記第1のクラッド層と前記第2のクラッド層との間に設けられた活性層とを含み、前記第1のクラッド層、前記第2のクラッド層及び前記活性層は、前記半極性主面の法線軸に沿って配列されており、前記活性層は窒化ガリウム系半導体層を含み、前記支持基体の前記六方晶系III族窒化物半導体のc軸は、前記六方晶系III族窒化物半導体のm軸の方向に前記法線軸に対して有限な角度CALPHAで傾斜しており、前記レーザ構造体は、前記六方晶系III族窒化物半導体のm軸及び前記法線軸によって規定されるm-n面に交差する第1及び第2の割断面を含み、当該III族窒化物半導体レーザ素子のレーザ共振器は前記第1及び第2の割断面を含み、前記レーザ構造体は第1及び第2の面を含み、前記第1の面は前記第2の面の反対側の面であり、前記第1及び第2の割断面は、前記第1の面のエッジから前記第2の面のエッジまで延在する。前記法線軸と前記六方晶系III族窒化物半導体のc軸との成す角度は、45度以上80度以下又は100度以上135度以下の範囲であり、前記レーザ構造体は、前記支持基体の前記半極性主面上に延在するレーザ導波路を含み、前記レーザ導波路は、前記第1及び第2の割断面の一方から他方への方向に向く導波路ベクトルの方向に延在し、前記第1の割断面は、前記m-n面に直交する第1の平面内において前記導波路ベクトルに直交する基準面に対して角度βで傾斜しており、前記角度βは、前記第1の割断面における前記支持基体の端面上において規定され、前記第1の割断面は、前記m-n面に直交する第2の平面内において前記基準面に対して角度αで傾斜しており、前記角度αは、前記第1の割断面における前記活性層の端面上において規定され、前記角度αは前記角度βと異なり、前記角度αと前記角度βとの差が0.1度以上である。
 このIII族窒化物半導体レーザ素子によれば、レーザ共振器となる第1及び第2の割断面が、六方晶系III族窒化物半導体のm軸及び法線軸によって規定されるm-n面に交差するので、m-n面と半極性面との交差線の方向に延在するレーザ導波路を設けることができる。また、45度未満及び135度を越える角度では、押圧により形成される端面がm面からなる可能性が高くなる。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られないおそれがある。
 第1の割断面はへき開面と異なる面であるので、この割断面は支持基体の端面上において上記の基準面(導波路ベクトルの直交する面)に対して角度βで傾斜すると共に、活性層の端面上において該基準面に対して角度αで傾斜する。また、この割断面は、平面に近い面というより角度αと角度βとの差が0.1度以上であるような曲面である。これ故に、上記の割断面は、上記の基準面内において規定される角度に関して傾斜するので、この割断面は、割断面(活性層端面及び基板端面)に入射する戻り光による撹乱の影響を低減できる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記角度βが前記角度αより大きい。このIII族窒化物半導体レーザ素子によれば、支持基体の端面に到達して基板内に入射する戻り光の量を低減できると共に、活性層の端面における角度αを小さくできる。また、本発明に係るIII族窒化物半導体レーザ素子では、前記導波路ベクトルは、前記六方晶系III族窒化物半導体のa軸及び前記法線軸によって規定されるa-n面の法線ベクトルと0.1度以上の角度を成していることができる。このIII族窒化物半導体レーザ素子によれば、レーザ導波路がa-n面の法線ベクトルに対して傾斜するので、戻り光の撹乱による影響に強くなる。さらに、本発明に係るIII族窒化物半導体レーザ素子では、前記角度αは0.5度以下であることができる。この角度が大きすぎるとき、レーザ発振特性が低下する。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記支持基体の厚さは400μm以下であることが良い。このIII族窒化物半導体レーザ素子では、レーザ共振器のための良質な割断面を得るために良い。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記支持基体の厚さは50μm以上100μm以下であることが更に良い。厚さ50μm以上であれば、ハンドリングが容易になり、生産歩留まりが向上する。100μm以下であれば、レーザ共振器のための良質な割断面を得るために更に良い。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記活性層からのレーザ光は、前記六方晶系III族窒化物半導体のa軸の方向に偏光している。このIII族窒化物半導体レーザ素子において、低しきい値電流を実現できるバンド遷移は偏光性を有する。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、当該III族窒化物半導体レーザ素子におけるLEDモードにおける光は、前記六方晶系III族窒化物半導体のa軸の方向に偏光成分I1と、前記六方晶系III族窒化物半導体のc軸を主面に投影した方向に偏光成分I2を含み、前記偏光成分I1は前記偏光成分I2よりも大きい。このIII族窒化物半導体レーザ素子によれば、LEDモードにおいて大きな発光強度のモードの光を、レーザ共振器を用いてレーザ発振させることができる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記法線軸と前記六方晶系III族窒化物半導体のc軸との成す角度は、63度以上80度以下又は100度以上117度以下の範囲であることが更に良い。
 このIII族窒化物半導体レーザ素子では、63度以上80度以下又は100度以上117度以下の範囲では、押圧により形成される端面が、基板主面に垂直に近い面が得られる可能性が高くなる。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られないおそれがある。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかであることが良い。
 このIII族窒化物半導体レーザ素子によれば、これら典型的な半極性面において、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性及び垂直性の第1及び第2の端面を提供できる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかの半極性面から、m面方向に-4度以上+4度以下の範囲の微傾斜を有する面も前記主面として良好である。
 このIII族窒化物半導体レーザ素子によれば、これら典型的な半極性面からの微傾斜面において、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性及び垂直性の第1及び第2の端面を提供できる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記支持基体の積層欠陥密度は1×10cm-1以下であることが良い。
 このIII族窒化物半導体レーザ素子によれば、積層欠陥密度が1×10cm-1以下であるので、偶発的な事情により割断面の平坦性及び/又は垂直性が乱れる可能性が低い。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記支持基体は、GaN、AlGaN、AlN、InGaN及びInAlGaNのいずれかからなることができる。
 このIII族窒化物半導体レーザ素子によれば、これらの窒化ガリウム系半導体からなる基板を用いるとき、共振器として利用可能な第1及び第2の端面を得ることができる。AlN基板又はAlGaN基板を用いるとき、偏光度を大きくでき、また低屈折率により光閉じ込めを強化できる。InGaN基板を用いるとき、基板と発光層との格子不整合率を小さくでき、結晶品質を向上できる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記第1及び第2の割断面の少なくともいずれか一方に設けられた誘電体多層膜を更に備えることができる。
 このIII族窒化物半導体レーザ素子においても、破断面にも端面コートを適用できる。端面コートにより反射率を調整できる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記活性層は、波長360nm以上600nm以下の光を発生するように設けられた量子井戸構造を含むことができる。このIII族窒化物半導体レーザ素子は、半極性面の利用により、LEDモードの偏光を有効に利用したIII族窒化物半導体レーザ素子を得ることができ、低しきい値電流を得ることができる。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記活性層は、波長430nm以上550nm以下の光を発生するように設けられた量子井戸構造を含むことが更に良い。このIII族窒化物半導体レーザ素子は、半極性面の利用により、ピエゾ電界の低減と発光層領域の結晶品質向上によって量子効率を向上させることが可能となり、波長430nm以上550nm以下の光の発生に良好である。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記第1及び第2の割断面の各々には、前記支持基体の端面及び前記半導体領域の端面が現れており、前記半導体領域の前記活性層における端面と前記六方晶系窒化物半導体からなる支持基体のm軸に直交する基準面との成す角度は、前記III族窒化物半導体のc軸及びm軸によって規定される第1平面において(CALPHA-5)度以上(CALPHA+5)度以下の範囲の角度を成す。
 このIII族窒化物半導体レーザ素子は、c軸及びm軸の一方から他方に取られる角度に関して、上記の垂直性を満たす端面を有する。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記角度は、前記第1平面及び前記法線軸に直交する第2平面において-5度以上+5度以下の範囲であることが良い。
 このIII族窒化物半導体レーザ素子は、半極性面の法線軸に垂直な面において規定される角度に関して、上記の垂直性を満たす端面を有する。
 本発明の一側面に係るIII族窒化物半導体レーザ素子では、前記電極は所定の軸の方向に延在しており、前記第1及び第2の割断面は前記所定の軸に交差する。
 本発明の別の側面は、III族窒化物半導体レーザ素子を作製する方法に係る。この方法は、(a)六方晶系III族窒化物半導体からなり半極性主面を有する基板を準備する工程と、(b)前記半極性主面上に形成された半導体領域と前記基板とを含むレーザ構造体、アノード電極、及びカソード電極を有する基板生産物を形成する工程と、(c)前記六方晶系III族窒化物半導体のa軸の方向に前記基板生産物の第1の面を部分的にスクライブする工程と、(d)前記基板生産物の第2の面への押圧により前記基板生産物の分離を行って、別の基板生産物及びレーザバーを形成する工程とを備える。前記第1の面は前記第2の面の反対側の面であり、前記半導体領域は前記第2の面と前記基板との間に位置し、前記レーザバーは、前記第1の面から前記第2の面まで延在し前記分離により形成された第1及び第2の端面を有し、前記第1及び第2の端面は当該III族窒化物半導体レーザ素子のレーザ共振器を構成し、前記アノード電極及びカソード電極は、前記レーザ構造体上に形成され、前記半導体領域は、第1導電型の窒化ガリウム系半導体からなる第1のクラッド層と、第2導電型の窒化ガリウム系半導体からなる第2のクラッド層と、前記第1のクラッド層と前記第2のクラッド層との間に設けられた活性層とを含み、前記第1のクラッド層、前記第2のクラッド層及び前記活性層は、前記半極性主面の法線軸に沿って配列されており、前記活性層は窒化ガリウム系半導体層を含み、前記基板の前記六方晶系III族窒化物半導体のc軸は、前記六方晶系III族窒化物半導体のm軸の方向に前記法線軸に対して有限な角度CALPHAで傾斜しており、前記第1及び第2の端面は、前記六方晶系III族窒化物半導体のm軸及び前記法線軸によって規定されるm-n面に交差する。前記法線軸と前記六方晶系III族窒化物半導体のc軸との成す角度は、45度以上80度以下又は100度以上135度以下の範囲であり、前記レーザ構造体は、前記基板の前記半極性主面上に延在するレーザ導波路を含み、前記レーザ導波路は、前記第1及び第2の端面の一方から他方への方向に向く導波路ベクトルの方向に延在し、前記第1の端面は、前記m-n面に直交する第1の平面内において前記導波路ベクトルに直交する基準面に対して角度βで傾斜しており、前記角度βは、前記第1の端面における前記基板の端面上において規定され、前記第1の端面は、前記m-n面に直交する第2の平面内において前記基準面に対して角度αで傾斜しており、前記角度αは、前記第1の端面における前記活性層の端面上において規定され、前記角度αは前記角度βと異なり、前記角度α及び前記角度βは同じ符号を有し、前記角度αと前記角度βとの差が0.1度以上である。
 この方法によれば、六方晶系III族窒化物半導体のa軸の方向に基板生産物の第1の面をスクライブした後に、基板生産物の第2の面への押圧により基板生産物の分離を行って、別の基板生産物及びレーザバーを形成する。これ故に、六方晶系III族窒化物半導体のm軸と法線軸とによって規定されるm-n面に交差するように、レーザバーに第1及び第2の端面が形成される。この端面形成によれば、第1及び第2の端面に当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性、垂直性又はイオンダメージの無い共振ミラー面が提供される。
 また、この方法では、レーザ導波路は、六方晶系III族窒化物のc軸の傾斜の方向に延在しており、このレーザ導波路を提供できる共振器ミラー端面をドライエッチング面を用いずに形成している。
 第1の割断面はへき開面と異なる面であるので、この割断面は支持基体の端面上において上記の基準面(導波路ベクトルの直交する面)に対して角度βで傾斜すると共に、活性層の端面上において該基準面に対して角度αで傾斜する。また、この割断面は、平面に近い面というより角度αと角度βとの差が0.1度以上であるような曲面である。これ故に、上記の割断面は、上記の基準面内において規定される角度に関して傾斜する故に、この割断面は、割断面(活性層端面及び基板端面)に入射する戻り光による撹乱の影響を低減できる。
 本発明の別の側面に係る方法では、前記角度βが前記角度αより大きい。この方法によれば、支持基体の端面に到達して基板内に入射する戻り光の量を低減できると共に、活性層の端面おける角度αを小さくできる。また、本発明の別の側面に係る方法では、前記導波路ベクトルは、前記六方晶系III族窒化物半導体のa軸及び前記法線軸によって規定されるa-n面の法線ベクトルと0.1度以上の角度を成していることができる。この方法によれば、レーザ導波路がa-n面の法線ベクトルに対して傾斜するので、戻り光の撹乱による影響に強くなる。さらに、本発明の別の側面に係る方法では、前記角度αは0.5度以下であることができる。この角度が大きすぎるとき、レーザ発振特性が低下する。
 本発明の別の側面に係る方法では、前記基板生産物を形成する前記工程において、前記基板は、前記基板の厚さが400μm以下になるようにスライス又は研削といった加工が施され、前記第2の面は前記加工により形成された加工面であることができる。もしくは、前記加工面上に形成された電極を含む面であることができる。
 本発明の別の側面に係る方法では、前記基板生産物を形成する前記工程において、前記基板は、前記基板の厚さが50μm以上100μm以下になるように研磨され、前記第2の面は前記研磨により形成された研磨面であることができる。もしくは、前記研磨面上に形成された電極を含む面であることができる。
 このような厚さの基板では、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性、垂直性又はイオンダメージの無い第1及び第2の端面を歩留まりよく形成できる。
 本発明の別の側面に係る方法では、前記角度CALPHAは、45度以上80度以下及び100度以上135度以下の範囲であることができる。45度未満及び135度を越える角度では、押圧により形成される端面がm面からなる可能性が高くなる。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られない。
 本発明の別の側面に係る方法では、前記角度CALPHAは、63度以上80度以下及び100度以上117度以下の範囲であることが更に良い。63度未満及び117度を越える角度では、押圧により形成される端面の一部に、m面が出現する可能性がある。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られない。
 本発明の別の側面に係る方法では、前記半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかであることが良い。
 これら典型的な半極性面においても、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性、垂直性又はイオンダメージの無い第1及び第2の端面を提供できる。
 本発明の別の側面に係る方法では、前記半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかの半極性面から、m面方向に-4度以上+4度以下の範囲の微傾斜を有する面も前記主面として良好である。
 これら典型的な半極性面からの微傾斜面においても、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性、垂直性又はイオンダメージの無い第1及び第2の端面を提供できる。
 本発明の別の側面に係る方法では、前記スクライブは、レーザスクライバを用いて行われ、前記スクライブによりスクライブ溝が形成され、前記スクライブ溝の長さは、前記六方晶系III族窒化物半導体のa軸及び前記法線軸によって規定されるa-n面と前記第1の面との交差線の長さよりも短い。
 この方法によれば、基板生産物の割断により、別の基板生産物及びレーザバーが形成される。この割断は、レーザバーの割断線に比べて短いスクライブ溝を用いて引き起こされる。
 本発明の別の側面に係る方法では、前記第1及び第2の端面の各々における前記活性層の端面は、前記六方晶系窒化物半導体からなる支持基体のm軸に直交する基準面に対して、前記六方晶系III族窒化物半導体のc軸及びm軸によって規定される平面において(CALPHA-5)度以上(CALPHA+5)度以下の範囲の角度を成すことができる。
 この方法によれば、c軸及びm軸の一方から他方に取られる角度に関して、上記の垂直性を有する端面を形成できる。
 本発明の別の側面に係る方法では、前記基板は、GaN、AlN、AlGaN、InGaN及びInAlGaNのいずれかからなることができる。この方法によれば、これらの窒化ガリウム系半導体からなる基板を用いるとき、共振器として利用可能な第1及び第2の端面を得ることができる。
 本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
 以上説明したように、本発明によれば、六方晶系III族窒化物のc軸がm軸の方向に傾斜した支持基体の半極性面上において、戻り光による撹乱の低減を可能できることに加えて低しきい値電流を可能にするレーザ共振器を有するIII族窒化物半導体レーザ素子が提供される、また、本発明によれば、このIII族窒化物半導体レーザ素子を作製する方法が提供される。
図1は、本実施の形態に係るIII族窒化物半導体レーザ素子の構造を概略的に示す図面である。 図2は、割断面の形状の一例を示す図面である。 図3は、III族窒化物半導体レーザ素子における活性層におけるバンド構造を示す図面である。 図4は、III族窒化物半導体レーザ素子の活性層における発光の偏光を示す図面である。 図5は、III族窒化物半導体レーザ素子の端面と活性層のm面との関係を示す図面である。 図6は、本実施の形態に係るIII族窒化物半導体レーザ素子を作製する方法の主要な工程を示す工程フロー図である。 図7は、本実施の形態に係るIII族窒化物半導体レーザ素子を作製する方法の主要な工程を模式的に示す図面である。 図8は、結晶格子における{20-21}面を示すと共に、共振器端面の走査型電子顕微鏡像を示す図面である。 図9は、実施例1に示されたレーザーダイオードの構造を示す図面である。 図10は、求めた偏光度ρとしきい値電流密度の関係を示す図面である。 図11は、GaN基板のm軸方向へのc軸の傾斜角と発振歩留まりとの関係を示す図面である。 図12は、積層欠陥密度と発振歩留まりとの関係を示す図面である。 図13は、基板厚みと発振歩留まりとの関係を示す図面である。 図14は、(20-21)面と他の面方位(指数)との成す角度を示す図面である。 図15は、リッジ構造を有するインデックスガイドレーザの構造を模式的に示す図面である。 図16は、割断を行う装置及び割断面を模式的に示す図面である。 図17は、III族窒化物半導体レーザ素子において、端面の傾斜に応じて異なる戻り光の影響を示す図面である。 図18は、本実施の形態に係るIII族窒化物半導体レーザ素子への戻り光の影響を示す図面である。 図19は、端面におけるずれ角度αと戻り光の往復回数との関係を示す図面である。 図20は、基板の厚みT、角度θ、半導体チップ幅Wを設定したときに得られる、角度θと端面におけるずれ角度α及びβとの関係を示す図面である。 図21は、本実施の形態に係わる割断面の形成過程を模式的に示す図面である。 図22は、(20-21)面と(-101-6)面及び(-1016)面おける原子配置を示す図面である。 図23は、(20-21)面と(-101-7)面及び(-1017)面における原子配置を示す図面である。 図24は、(20-21)面と(-101-8)面及び(-1018)面における原子配置を示す図面である。
 本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、III族窒化物半導体レーザ素子、及びIII族窒化物半導体レーザ素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
 図1は、本実施の形態に係るIII族窒化物半導体レーザ素子の構造を概略的に示す図面である。III族窒化物半導体レーザ素子11は、利得ガイド型の構造を有するけれども、本実施の形態は、利得ガイド型の構造に限定されるものではない。III族窒化物半導体レーザ素子11は、レーザ構造体13及び電極15を備える。レーザ構造体13は、支持基体17及び半導体領域19を含む。支持基体17は、六方晶系III族窒化物半導体からなり、また半極性主面17a及び裏面17bを有する。半導体領域19は、支持基体17の半極性主面17a上に設けられている。電極15は、レーザ構造体13の半導体領域19上に設けられる。半導体領域19は、第1のクラッド層21と、第2のクラッド層23と、活性層25とを含む。第1のクラッド層21は、第1導電型の窒化ガリウム系半導体からなり、例えばn型AlGaN、n型InAlGaN等からなる。第2のクラッド層23は、第2導電型の窒化ガリウム系半導体からなり、例えばp型AlGaN、p型InAlGaN等からなる。活性層25は、第1のクラッド層21と第2のクラッド層23との間に設けられる。活性層25は窒化ガリウム系半導体層を含み、この窒化ガリウム系半導体層は例えば井戸層25aである。活性層25は窒化ガリウム系半導体からなる障壁層25bを含み、井戸層25a及び障壁層25bは交互に配列されている。井戸層25aは、例えばInGaN等からなり、障壁層25bは例えばGaN、InGaN等からなる。活性層25は、波長360nm以上600nm以下の光を発生するように設けられた量子井戸構造を含むことができる。半極性面の利用により、波長430nm以上550nm以下の光の発生に良い。第1のクラッド層21、第2のクラッド層23及び活性層25は、半極性主面17aの法線軸NXに沿って配列されている。III族窒化物半導体レーザ素子11では、レーザ構造体13は、六方晶系III族窒化物半導体のm軸及び法線軸NXによって規定されるm-n面に交差する第1の割断面27及び第2の割断面29を含む。
 図1を参照すると、直交座標系S及び結晶座標系CRが描かれている。法線軸NXは、直交座標系SのZ軸の方向に向く。半極性主面17aは、直交座標系SのX軸及びY軸により規定される所定の平面に平行に延在する。また、図1には、代表的なc面Scが描かれている。支持基体17の六方晶系III族窒化物半導体のc軸は、六方晶系III族窒化物半導体のm軸の方向に法線軸NXに対して有限な角度CALPHAで傾斜している。
 III族窒化物半導体レーザ素子11は、絶縁膜31を更に備える。絶縁膜31はレーザ構造体13の半導体領域19の表面19aを覆っており、半導体領域19は絶縁膜31と支持基体17との間に位置する。支持基体17は六方晶系III族窒化物半導体からなる。絶縁膜31は開口31aを有し、開口31aは半導体領域19の表面19aと上記のm-n面との交差線LIXの方向に延在し、例えばストライプ形状を成す。電極15は、開口31aを介して半導体領域19の表面19a(例えば第2導電型のコンタクト層33)に接触を成しており、上記の交差線LIXの方向に延在する。III族窒化物半導体レーザ素子11では、レーザ導波路は、第1のクラッド層21、第2のクラッド層23及び活性層25を含み、また上記の交差線LIXの方向に延在する。例えば、ゲインガイド型レーザでは、絶縁膜31の開口31aは例えばストライプ形状を有しており、レーザ導波路の向きは、このストライプ開口の延在方向に向く。また、リッジ型レーザでは、レーザ構造体13の半導体領域19はリッジ構造を有しており、レーザ導波路の向きは、このリッジ構造の延在方向に向く。導波路ベクトルLGVはレーザ導波路の向きを示す。
 III族窒化物半導体レーザ素子11では、第1の割断面27及び第2の割断面29は、六方晶系III族窒化物半導体のm軸及び法線軸NXによって規定されるm-n面に交差する。III族窒化物半導体レーザ素子11のレーザ共振器は第1及び第2の割断面27、29を含み、第1の割断面27及び第2の割断面29の一方から他方に、レーザ導波路が延在している。レーザ構造体13は第1の面13a及び第2の面13bを含み、第1の面13aは第2の面13bの反対側の面である。第1及び第2の割断面27、29は、第1の面13aのエッジ13cから第2の面13bのエッジ13dまで延在する。第1及び第2の割断面27、29は、c面、m面又はa面といったこれまでのへき開面とは異なる。図1では、図面を煩雑にすることを避けるために割断面27の形状を単純化して描いている。
 このIII族窒化物半導体レーザ素子11によれば、レーザ共振器を構成する第1及び第2の割断面27、29がm-n面に交差する。これ故に、m-n面と半極性面17aとの交差線の方向に延在するレーザ導波路を設けることができる。これ故に、III族窒化物半導体レーザ素子11は、低しきい値電流を可能にするレーザ共振器を有することになる。
 このIII族窒化物半導体レーザ素子11では、法線軸NXと六方晶系III族窒化物半導体のc軸との成す角度CALPHAは、45度以上80度以下又は100度以上135度以下の範囲であり、レーザ構造体13は、支持基体17の半極性主面17a上に延在するレーザ導波路を含む。このレーザ導波路は、第1及び第2の割断面27、29の一方から他方への方向に向く導波路ベクトルLGVの方向に延在する。
 図2は、割断面の形状の一例を示す図面である。図2において、図面を複雑にすることを避けるために、スクライブ跡は描かれていない。また、角度α、βの大きさの関係を示すために、図2の(a)部~図2の(c)部に示された断面において割断面を示す線は直線として描かれているが、実際の割断面では直線とはかぎらない。図2の(a)部は、III族窒化物半導体レーザ素子11を示す断面図である。図2の(b)部は、III族窒化物半導体レーザ素子11の活性層を示す断面図である。図2の(c)部は、III族窒化物半導体レーザ素子11の裏面を示す平面図である。図2の(a)部の断面図は、図2の(c)部に示されたII-II線に沿ってとられている。図2の(b)部の断面図は、図2の(a)部に示されたI-I線に沿ってとられている。図2の(a)部を参照すると、割断面27はa-n面に対して角度θで傾斜している。図2の(b)部を参照すると、割断面27はa-n面に対して角度αで傾斜している。図2の(c)部を参照すると、割断面27はa-n面に対して角度βで傾斜している。図2に示されるように、割断面は傾斜している。角度α及び角度βは同じ符号を有する。第1の割断面27はへき開面と異なる面であるので、この割断面27は支持基体17の端面上において角度βで傾斜すると共に、活性層の端面上において角度αで傾斜する。また、割断面27は、全体としてはa-n面に対して傾斜している。また、割断面27は、平面に近い面というよりも角度αと角度βとの差が0.1度以上であるような曲面である。割断面27は、上記の基準面内において規定される角度α、βに関して傾斜するので、この割断面27は、割断面(例えば活性層端面及び基板端面)に入射する戻り光による撹乱の影響を低減できる。角度αは、例えば0度より大きく、また角度αは、例えば0.5度以下である。角度βは、例えば0度より大きく、また角度βは、例えば5度以下である。
 再び図1を参照すると、レーザ構造体13の支持基体17は、一方の割断面(例えば第1の割断面27)に設けられた凹部を有する。図1には、例示としての形状を有する凹部28、30が表されている。凹部28、30は支持基体17の裏面17bから延在する。凹部28、30は、第1の面13aのエッジ13cの一部分に設けられる。そして、凹部28、30の終端28a、30aは第2の面13bのエッジ13dから隔置されている。
 凹部28、30は、六方晶系III族窒化物半導体のa軸及び法線軸NXによって規定されるa-n面に沿って延在する。これ故に、より優れた平坦性が、割断面27に露出される活性層端面に提供される。凹部28、30は、割断前のスクライブ溝に対応しており、これ故にスクライブ跡である。凹部28は、側面20bからa-n面に沿って延在する。凹部28は側面20bにおける一端に位置する。凹部30は、側面20aからa-n面に沿って延在する。凹部30は側面20aにおける一端に位置する。このように支持基体17の裏面17bにスクライブ跡が設けられているので、スクライブ溝は基板裏面17bに設けられる。基板裏面と反対側の薄膜側へのブレードの押圧によりブレイクを引き起こすことが可能になる。このように設けられる割断面は、光共振器のための端面として利用可能な程度に優れた平坦性、垂直性を有する。
 凹部28、30はスクライブ溝に関連する。共振器のための割断面をレーザ構造体13に提供するために、スクライブ溝は、割断が進行する向きをガイドするために役立つ。スクライブ溝が基板(支持基体17)の裏面に形成されると共にレーザ構造体13の第2の面13bに押圧が行われる。割断のための押圧力が、スクライブ溝の配列に合わせて第2の面(エピ面)13bに加えられるので、第2の面13bのエッジ13dは、第1の面13aのエッジ13cに比べて、スクライブ溝の配列ライン及びa-n面の近くに形成され、配列ライン(a-n面)からのズレは小さい。一方、第1の面13aのエッジ13cも、同様に、スクライブ溝の配列ラインに沿って形成されるが、このエッジ13cは、第2の面13bのエッジ13cに比べて、配列ライン(a-n面)からのズレが大きい。割断面27は、エッジ13c、13d及び凹部28、30のエッジを繋ぐ面を含む。エッジ13dと凹部28のエッジとの間に割断面の一部分が延在する。エッジ13dと凹部30のエッジの間に割断面の一部分が延在する。凹部28、30のエッジの間に割断面の一部分が延在する。
 割断面27とm-n面との交差線(割断面27上において第2の面13bのエッジ13dの一点から第1の面13aのエッジ13cの一点まで主面17aに直交するように規定されるライン)とa-n面との間隔(X軸方向に規定される距離)は、エッジ13dからエッジ13cの方向に増加する。換言すれば、エッジ13c上の一点(例えばあるY座標Y1)とエッジ13d上の一点(Y座標Y1)を結ぶ線分はa-n面に対して傾斜している。この線分上の一点と該一点からa-n面への垂線の足との距離(垂線の長さ)は、Z軸の負の方向に向けて増加する。また、上記のY座標Y1が、スクライブ跡28の側縁28b近傍の位置、スクライブ跡30の側縁30b近傍の位置、及び側縁28bと側縁30bとのセンタの位置にあるとき、3本の線分が規定される。これらの線分は平行ではなく、エッジ13d上において、これら3線分における上記の距離(垂線の長さ)は、例えば側面20a及び側面20bの一方から他方に向けて増加する。また、エッジ13c上において、これら3点における上記の距離(垂線の長さ)は、同一のZ座標において、例えば側面20a及び側面20bの一方から他方に向けて増加する。この増加の方向が割断の進行方向に対応する。
 凹部28、30の側縁28b、30bは、絶縁膜31の開口31a及び活性層25の発光領域を通過すると共に法線軸NXの方向に規定される基準面から隔置されている。
 本実施例では、レーザ構造体13の支持基体17は、他方の割断面(例えば第2の割断面29)に設けられスクライブ溝に対応する凹部32を有することができる。凹部32は、例えばIII族窒化物半導体レーザ素子11の側面20aに沿って延在する。凹部32も凹部30と同様にスクライブ跡を含む。凹部32も、例えば凹部30と同様の形状を有することができる。凹部32も、凹部30と同様にa-n面に沿って延在する。
 スクライブ溝は、割断が進行する向きをガイドするために役立つ。例えば支持基体17の厚さがスクライブ溝の深さに比べて薄い場合には、凹部30、32は半導体領域19に到達することがある。割断面29も、割断面27と同様の形状を有することができる。
 III族窒化物半導体レーザ素子11は、n側光ガイド層35及びp側光ガイド層37を含む。n側光ガイド層35は、第1の部分35a及び第2の部分35bを含み、n側光ガイド層35は例えばGaN、InGaN等からなる。p側光ガイド層37は、第1の部分37a及び第2の部分37bを含み、p側光ガイド層37は例えばGaN、InGaN等からなる。キャリアブロック層39は、例えば第1の部分37aと第2の部分37bとの間に設けられる。支持基体17の裏面17bには別の電極41が設けられ、電極41は例えば支持基体17の裏面17bを覆っている。
 図3は、III族窒化物半導体レーザ素子における活性層におけるバンド構造を示す図面である。図4は、III族窒化物半導体レーザ素子11の活性層25における発光の偏光を示す図面である。図5は、c軸及びm軸によって規定される断面を模式的に示す図面である。図3の(a)部を参照すると、バンド構造BANDのΓ点近傍では、伝導帯と価電子帯との間の可能な遷移は、3つある。Aバンド及びBバンドは比較的小さいエネルギ差である。伝導帯とAバンドとの遷移Eaによる発光はa軸方向に偏光しており、伝導帯とBバンドとの遷移Ebによる発光はc軸を主面に投影した方向に偏光している。レーザ発振に関して、遷移Eaのしきい値は遷移Ebのしきい値よりも小さい。
 図3の(b)部を参照すると、III族窒化物半導体レーザ素子11におけるLEDモードにおける光のスペクトルが示されている。LEDモードにおける光は、六方晶系III族窒化物半導体のa軸の方向の偏光成分I1と、六方晶系III族窒化物半導体のc軸を主面に投影した方向の偏光成分I2を含み、偏光成分I1は偏光成分I2よりも大きい。偏光度ρは(I1-I2)/(I1+I2)によって規定される。このIII族窒化物半導体レーザ素子11のレーザ共振器を用いて、LEDモードにおいて大きな発光強度のモードの光をレーザ発振させることができる。
 図4に示されるように、第1及び第2の割断面27、29の少なくとも一方、又はそれぞれに設けられた誘電体多層膜43a、43bを更に備えることができる。破断面27、29にも端面コートを適用できる。端面コートにより反射率を調整できる。
 図4の(b)部に示されるように、活性層25からのレーザ光Lは六方晶系III族窒化物半導体のa軸の方向に偏光している。このIII族窒化物半導体レーザ素子11において、低しきい値電流を実現できるバンド遷移は偏光性を有する。レーザ共振器のための第1及び第2の割断面27、29は、c面、m面又はa面といったこれまでのへき開面とは異なる。しかしながら、第1及び第2の割断面27、29は共振器のための,ミラーとしての平坦性、垂直性を有する。これ故に、第1及び第2の割断面27、29とこれらの割断面27、29間に延在するレーザ導波路とを用いて、図4の(b)部に示されるように、c軸を主面に投影した方向に偏光する遷移Ebの発光よりも強い遷移Eaの発光を利用して低しきい値のレーザ発振が可能になる。
 III族窒化物半導体レーザ素子11では、第1及び第2の割断面27、29の各々には、支持基体17の端面17c及び半導体領域19の端面19cが現れており、端面17c及び端面19cは誘電体多層膜43aで覆われている。支持基体17の端面17c及び活性層25における端面25cの法線ベクトルNAと活性層25のm軸ベクトルMAとの成す角度GAMMAは、III族窒化物半導体のc軸及びm軸によって規定される平面S1において規定される成分(GAMMA)と、平面S1及び法線軸NXに直交する平面S2において規定される成分(GAMMA)とによって規定される。成分(GAMMA)は、III族窒化物半導体のc軸及びm軸によって規定される平面S1において(CALPHA-5)度以上(CALPHA+5)度以下の範囲であることが良い。この角度範囲は、図5において、代表的なm面Sと参照面Fとの成す角度として示されている。代表的なm面Sが、理解を容易にするために、図5において、レーザ構造体の内側から外側にわたって描かれている。参照面Fは、活性層25の端面25cに沿って延在する。このIII族窒化物半導体レーザ素子11は、c軸及びm軸の一方から他方に取られる角度GAMMAに関して、上記の垂直性を満たす端面を有する。また、成分(GAMMA)は平面S2において-5度以上+5度以下の範囲であることが良い。ここで、GAMMA=(GAMMA) +(GAMMA) である。このとき、III族窒化物半導体レーザ素子11の端面27、29は、半極性面17aの法線軸NXに垂直な面において規定される角度に関して上記の垂直性を満たす。
 再び図1を参照すると、III族窒化物半導体レーザ素子11では、支持基体17の厚さDSUBは400μm以下であることが良い。このIII族窒化物半導体レーザ素子では、レーザ共振器のための良質な割断面を得るために良好である。III族窒化物半導体レーザ素子11では、支持基体17の厚さDSUBは50μm以上100μm以下であることが更に良い。このIII族窒化物半導体レーザ素子11では、レーザ共振器のための良質な割断面を得るために更に良好である。また、ハンドリングが容易になり、生産歩留まりを向上させることができる。
 III族窒化物半導体レーザ素子11では、法線軸NXと六方晶系III族窒化物半導体のc軸との成す角度CALPHAは45度以上であることが良く、また80度以下であることが良い。また、角度CALPHAは100度以上であることが良く、また135度以下であることが良い。45度未満及び135度を越える角度では、押圧により形成される端面がm面からなる可能性が高くなる。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られないおそれがある。
 III族窒化物半導体レーザ素子11では、更に、法線軸NXと六方晶系III族窒化物半導体のc軸との成す角度CALPHAは63度以上であることが良く、また80度以下であることが良い。また、角度CALPHAは100度以上であることが良く、また117度以下であることが良い。63度未満及び117度を越える角度では、押圧により形成される端面の一部に、m面が出現する可能性がある。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られないおそれがある。
 半極性主面17aは、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかであることができる。更に、これらの面から-4度以上+4度以下の範囲で微傾斜した面も前記主面として良好である。これら典型的な半極性面17aにおいて、当該III族窒化物半導体レーザ素子11のレーザ共振器を構成できる程度の十分な平坦性及び垂直性の第1及び第2の端面27、29を提供できる。また、これらの典型的な面方位にわたる角度の範囲において、十分な平坦性及び垂直性を示す端面が得られる。
 III族窒化物半導体レーザ素子11では、支持基体17の積層欠陥密度は1×10cm-1以下であることができる。積層欠陥密度が1×10cm-1以下であるので、偶発的な事情により割断面の平坦性及び/又は垂直性が乱れる可能性が低い。また、支持基体17は、GaN、AlN、AlGaN、InGaN及びInAlGaNのいずれかからなることができる。これらの窒化ガリウム系半導体からなる基板を用いるとき、共振器として利用可能な端面27、29を得ることができる。AlN又はAlGaN基板を用いるとき、偏光度を大きくでき、また低屈折率により光閉じ込めを強化できる。InGaN基板を用いるとき、基板と発光層との格子不整合率を小さくでき、結晶品質を向上できる。
 図6は、本実施の形態に係るIII族窒化物半導体レーザ素子を作製する方法の主要な工程を示す図面である。図7の(a)部を参照すると、基板51が示されている。工程S101では、III族窒化物半導体レーザ素子の作製のための基板51を準備する。基板51の六方晶系III族窒化物半導体のc軸(ベクトルVC)は、六方晶系III族窒化物半導体のm軸方向(ベクトルVM)に法線軸NXに対して有限な角度CALPHAで傾斜している。これ故に、基板51は、六方晶系III族窒化物半導体からなる半極性主面51aを有する。
 工程S102では、基板生産物SPを形成する。図7の(a)部では、基板生産物SPはほぼ円板形の部材として描かれているけれども、基板生産物SPの形状はこれに限定されるものではない。基板生産物SPを得るために、まず、工程S103では、レーザ構造体55を形成する。レーザ構造体55は、半導体領域53及び基板51とを含んでおり、工程S103では、半導体領域53は半極性主面51a上に形成される。半導体領域53を形成するために、半極性主面51a上に、第1導電型の窒化ガリウム系半導体領域57、発光層59、及び第2導電型の窒化ガリウム系半導体領域61を順に成長する。窒化ガリウム系半導体領域57は例えばn型クラッド層を含み、窒化ガリウム系半導体領域61は例えばp型クラッド層を含むことができる。発光層59は窒化ガリウム系半導体領域57と窒化ガリウム系半導体領域61との間に設けられ、また活性層、光ガイド層及び電子ブロック層等を含むことができる。窒化ガリウム系半導体領域57、発光層59、及び第2導電型の窒化ガリウム系半導体領域61は、半極性主面51aの法線軸NXに沿って配列されている。これらの半導体層はエピタキシャル成長される。半導体領域53上は、絶縁膜54で覆われている。絶縁膜54は例えばシリコン酸化物からなる。絶縁膜54の開口54aを有する。開口54aは例えばストライプ形状を成す。
 工程S104では、レーザ構造体55上に、アノード電極58a及びカソード電極58bが形成される。また、基板51の裏面に電極を形成する前に、結晶成長に用いた基板の裏面を研磨して、所望の厚さDSUBの基板生産物SPを形成する。電極の形成では、例えばアノード電極58aが半導体領域53上に形成されると共に、カソード電極58bが基板51の裏面(研磨面)51b上に形成される。アノード電極58aはX軸方向に延在し、カソード電極58bは裏面51bの全面を覆っている。これらの工程により、基板生産物SPが形成される。基板生産物SPは、第1の面63aと、これに反対側に位置する第2の面63bとを含む。半導体領域53は第2の面63bと基板51との間に位置する。
 工程S105では、図7の(b)部に示されるように、基板生産物SPの第1の面63aをスクライブする。このスクライブは、レーザスクライバ10aを用いて行われる。スクライブによりスクライブ溝65aが形成される。図7の(b)部では、5つのスクライブ溝が既に形成されており、レーザビームLBを用いてスクライブ溝65bの形成が進められている。スクライブ溝65aの長さは、六方晶系III族窒化物半導体のa軸及び法線軸NXによって規定されるa-n面と第1の面63aとの交差線AISの長さよりも短く、交差線AISの一部分にレーザビームLBの照射が行われる。レーザビームLBの照射により、特定の方向に延在し半導体領域に到達する溝が第1の面63aに形成される。スクライブ溝65aは例えば基板生産物SPの一エッジに形成されることができる。また、交差線AISに沿って配列された複数のスクライブ溝を形成することができる。個々のスクライブ溝の形成のために、第1の面63aにほぼ垂直にレーザビームLBが入射する。
 スクライブ溝65aは、割断が進行する向きをガイドするために役立つ。スクライブ溝65aは、深さ(Z軸方向の値)、幅(Y軸方向の値)及び長さ(X軸方向の値)を有しており、また、深さ及び長さ方向に関してa-n面に沿って延在する。共振器のための割断面をレーザ構造体55に提供するために、スクライブ溝65aは、割断が進行する向きをガイドするために役立ち、また基板(支持基体17)51の裏面51aに形成されると共にレーザ構造体55の第2の面65bに押圧が行われる。割断は、スクライブ溝65aを起点として第1の面63aから第2の面63bへの方向に進行すると共に、これに交差する方向にも進行する。
 工程S106では、図7の(c)部に示されるように、基板生産物SPの第2の面63bへの押圧により基板生産物SPの分離を行って、基板生産物SP1及びレーザバーLB1を形成する。押圧は、例えばブレード69といったブレイキング装置を用いて行われる。ブレード69は、一方向に延在するエッジ69aと、エッジ69aを規定する少なくとも2つのブレード面69b、69cを含む。また、基板生産物SP1の押圧は支持装置70上において行われる。支持装置70は、支持面70aと凹部70bとを含み、凹部70bは一方向に延在する。凹部70bは、支持面70aに形成されている。基板生産物SP1のスクライブ溝65aの向き及び位置を支持装置70の凹部70bの延在方向に合わせて、基板生産物SP1を支持装置70上において凹部70bに位置決めする。凹部70bの延在方向にブレイキング装置のエッジの向きを合わせて、第2の面63bに交差する方向からブレイキング装置のエッジを基板生産物SP1に押し当てる。交差方向は第2の面63bにほぼ垂直方向であることが良い。これによって、基板生産物SPの分離を行って、基板生産物SP1及びレーザバーLB1を形成する。押し当てにより、第1及び第2の端面67a、67bを有するレーザバーLB1が形成され、これらの端面67a、67bは少なくとも発光層の一部は半導体レーザの共振ミラーに適用可能な程度の垂直性及び平坦性を有する。
 割断が進行する向きをガイドするように、スクライブ溝の配列が基板51の裏面51bに形成されると共に、レーザ構造体55の第2の面63bに押圧が行われる。割断は、スクライブ溝を起点として第1の面63aから第2の面63bへの方向(例えばZ軸方向)に進行すると共に、これに交差する方向(例えばY軸方向)にも進行する。
 a軸及び法線軸により規定される平面に沿って基板裏面にスクライブ溝及びその配列を形成すると共に薄膜側へのブレードの押圧によりブレイクするとき、レーザ共振器に適用可能な平坦性及び垂直性を保ちながら、割断面に僅かな傾斜を提供でき、半極性面上の半導体レーザにおいて戻り光に対する耐性を向上できる。
 基板生産物SP1をスクライブする工程では、III族窒化物半導体レーザ素子の素子幅に等しいピッチでスクライブ溝を形成することができる。素子幅のピッチでスクライブ溝が形成されているので、Y軸方向の割断に進行において、素子毎の距離で割断の案内が行われる。これ故に、確実な案内が割断の生成方向に関して期待できる。素子幅に等しいピッチで配列されるスクライブ溝は割断の進行の向きを案内して、割断面のための僅かな傾斜を制御するために役立つ。また、これらのスクライブ溝間に位置するレーザストライプの端面の品質を良好にできる。
 形成されたレーザバーLB1は、上記の分離により形成された第1及び第2の端面67a、67bを有し、端面67a、67bの各々は、第1の面63aから第2の面63bにまで延在する。これ故に、端面67a、67bは、当該III族窒化物半導体レーザ素子のレーザ共振器を構成し、XZ面に交差する。このXZ面は、六方晶系III族窒化物半導体のm軸及び法線軸NXによって規定されるm-n面に対応する。
 この方法によれば、六方晶系III族窒化物半導体のa軸の方向に基板生産物SPの第1の面63aをスクライブした後に、基板生産物SPの第2の面63bへの押圧により基板生産物SPの分離を行って、新たな基板生産物SP1及びレーザバーLB1を形成する。これ故に、m-n面に交差するように、レーザバーLB1に第1及び第2の端面67a、67bが形成される。この端面形成によれば、第1及び第2の端面67a、67bに当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性及び垂直性が提供される。
 また、この方法では、形成されたレーザ導波路は、六方晶系III族窒化物のc軸の傾斜の方向に延在している。ドライエッチング面を用いずに、このレーザ導波路を提供できる共振器ミラー端面を形成している。
 この方法によれば、基板生産物SP1の割断により、新たな基板生産物SP1及びレーザバーLB1が形成される。工程S107では、押圧による分離を繰り返して、多数のレーザバーを作製する。この割断は、レーザバーLB1の割断線BREAKに比べて短いスクライブ溝65aを用いて引き起こされる。
 工程S108では、レーザバーLB1の端面67a、67bに誘電体多層膜を形成して、レーザバー生産物を形成する。工程S109では、このレーザバー生産物を個々の半導体レーザのチップに分離する。半導体レーザのチップには、当該半導体レーザのための一対の側面が形成される。
 本実施の形態に係る製造方法では、角度CALPHAは、45度以上80度以下及び100度以上135度以下の範囲であることができる。45度未満及び135度を越える角度では、押圧により形成される端面がm面からなる可能性が高くなる。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られないおそれがある。角度CALPHAは、63度以上80度以下及び100度以上117度以下の範囲であること良い。45度未満及び135度を越える角度では、押圧により形成される端面の一部に、m面が出現する可能性がある。また、80度を越え100度未満の角度では、所望の平坦性及び垂直性が得られないおそれがある。半極性主面51aは、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかであることができる。更に、これらの面から-4度以上+4度以下の範囲で微傾斜した面も前記主面として良好である。これら典型的な半極性面において、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性及び垂直性でレーザ共振器のための端面を提供できる。
 また、基板51は、GaN、AlN、AlGaN、InGaN及びInAlGaNのいずれかからなることができる。これらの窒化ガリウム系半導体からなる基板を用いるとき、レーザ共振器として利用可能な端面を得ることができる。基板51はGaNからなることが良い。
 基板生産物SPを形成する工程S104において、結晶成長に使用された半導体基板は、基板厚が400μm以下になるようにスライス又は研削といった加工が施され、第2の面63bが研磨により形成された加工面であることができる。この基板厚では、当該III族窒化物半導体レーザ素子のレーザ共振器を構成できる程度の十分な平坦性、垂直性又はイオンダメージの無い端面67a、67bを歩留まりよく形成できる。第2の面63bが研磨により形成された研磨面であり、研磨されて基板厚が100μm以下であれば更に良い。また、基板生産物SPを比較的容易に取り扱うためには、基板厚が50μm以上であることが良い。
 本実施の形態に係るレーザ端面の製造方法では、レーザバーLB1においても、図4を参照しながら説明された角度GAMMAが規定される。レーザバーLB1では、角度GAMMAの成分(GAMMA)は、III族窒化物半導体のc軸及びm軸によって規定される第1平面(図4を参照した説明における平面S1に対応する面)において(CALPHA-5)度以上(CALPHA+5)度以下の範囲であることが良い。レーザバーLB1の端面67a、67bは、c軸及びm軸の一方から他方に取られる角度GAMMAの角度成分に関して上記の垂直性を満たす。また、角度GAMMAの成分(GAMMA)は、第2平面(図4に示された第2平面S2に対応する面)において-5度以上+5度以下の範囲であることが良い。このとき、レーザバーLB1の端面67a、67bは、半極性面51aの法線軸NXに垂直な面において規定される角度GAMMAの角度成分に関して上記の垂直性を満たす。
 端面67a、67bは、半極性面51a上にエピタキシャルに成長された複数の窒化ガリウム系半導体層への押圧によるブレイクによって形成される。半極性面51a上へのエピタキシャル膜であるが故に、端面67a、67bは、これまで共振器ミラーとして用いられてきたc面、m面、又はa面といった低面指数のへき開面ではない。しかしながら、半極性面51a上へのエピタキシャル膜の積層のブレイクにおいて、端面67a、67bは、共振器ミラーとして適用可能な平坦性及び垂直性を有する。
 (実施例1)
以下の通り、半極性面GaN基板を準備し、割断面の垂直性を観察した。基板には、HVPE法で厚く成長した(0001)GaNインゴットからm軸方向に75度の角度で切り出した{20-21}面GaN基板を用いた。GaN基板の主面は鏡面仕上げであり、裏面は研削仕上げされた梨地状態であった。基板の厚さは370μmであった。
 梨地状態の裏面側に、ダイヤモンドペンを用いて、c軸を基板主面に投影した方向に垂直にケガキ線を入れた後、押圧して基板を割断した。得られた割断面の垂直性を観察するため、走査型電子顕微鏡を用いてa面方向から基板を観察した。
 図8の(a)部は、割断面をa面方向から観察した走査型電子顕微鏡(SEM)像であり、右側の端面が割断面である。この割断面は、このSEMサンプルの断面において平坦性及び垂直性を有する。
 (実施例2)
実施例1では、半極性{20-21}面を有するGaN基板において、c軸を基板主面に投影した方向に垂直にケガキ線を入れて押圧して得た割断面は、基板主面に対して平坦性及び垂直性を有することがわかった。そこでこの割断面をレーザの共振器としての有用性を調べるため、以下の通り、図9に示されるレーザーダイオードを有機金属気相成長法により成長した。原料にはトリメチルガリウム(TMGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)、アンモニア(NH)、シラン(SiH)を用いた。基板71を準備した。基板71には、HVPE法で厚く成長した(0001)GaNインゴットからm軸方向に0度から90度の範囲の角度でウェハスライス装置を用いて切り出し、m軸方向へのc軸の傾斜角度CALPHAが、0度から90度の範囲の所望のオフ角を有するGaN基板を作製した。例えば、75度の角度で切り出したとき、{20-21}面GaN基板が得られ、図8の(b)部に示される六方晶系の結晶格子において参照符号71aによって示されている。
 成長前に、基板の積層欠陥密度を調べるため、カソードルミネッセンス法によって、基板を観察した。カソードルミネッセンスでは、電子線によって励起されたキャリアの発光過程を観察するが、積層欠陥が存在すると、その近傍ではキャリアが非発光再結合するので、暗線状に観察される。その暗線の単位長さあたりの密度(線密度)を求め、積層欠陥密度と定義した。ここでは、積層欠陥密度を調べるために、非破壊測定のカソードルミネッセンス法を用いたが、破壊測定の透過型電子顕微鏡を用いてもよい。透過型電子顕微鏡では、a軸方向から試料断面を観察したとき、基板から試料表面に向かってm軸方向に伸びる欠陥が、支持基体に含まれる積層欠陥であり、カソードルミネッセンス法の場合と同様に、積層欠陥の線密度を求めることができる。
 この基板71を反応炉内のサセプタ上に配置した後に、以下の成長手順でエピタキシャル層を成長した。まず、厚さ1000nmのn型GaN72を成長した。次に、厚さ1200nmのn型InAlGaNクラッド層73を成長した。引き続き、厚さ200nmのn型GaNガイド層74a及び厚さ65nmのアンドープInGaNガイド層74bを成長した後に、GaN厚さ15nm/InGaN厚さ3nmから構成される3周期MQW75を成長した。続いて、厚さ65nmのアンドープInGaNガイド層76a、厚さ20nmのp型AlGaNブロック層77a及び厚さ200nmのp型GaNガイド層76bを成長した。次に、厚さ400nmのp型InAlGaNクラッド層77bを成長した。最後に、厚さ50nmのp型GaNコンタクト層78を成長した。
 SiOの絶縁膜79をコンタクト層78上に成膜した後に、フォトリソグラフィを用いて幅10μmのストライプ窓をウェットエッチングにより形成した。ここで、以下の2通りにストライプ方向のコンタクト窓を形成した。レーザストライプが(1)M方向(コンタクト窓がc軸及びm軸によって規定される所定の面に沿った方向)のものと、(2)A方向:<11-20>方向、のものである。
 ストライプ窓を形成した後に、Ni/Auから成るp側電極80aとTi/Alから成るパッド電極を蒸着した。次いで、GaN基板(GaNウエハ)の裏面をダイヤモンドスラリーを用いて研磨し、裏面がミラー状態の基板生産物を作製した。このとき、接触式膜厚計を用いて基板生産物の厚みを測定した。厚みの測定には、試料断面からの顕微鏡によっても行っても良い。顕微鏡には、光学顕微鏡や、走査型電子顕微鏡を用いることができる。GaN基板(GaNウエハ)の裏面(研磨面)にはTi/Al/Ti/Auから成るn側電極80bを蒸着により形成した。
 これら2種類のレーザストライプに対する共振器ミラーの作製には、波長355nmのYAGレーザを用いるレーザスクライバを用いた。レーザスクライバを用いてブレイクした場合には、ダイヤモンドスクライブを用いた場合と比較して、発振チップ歩留まりを向上させることが可能である。スクライブ溝の形成条件として以下のものを用いた:レーザ光出力100mW;走査速度は5mm/s。形成されたスクライブ溝は、えば、長さ30μm、幅10μm、深さ40μmの溝であった。800μmピッチで基板の絶縁膜開口箇所を通してエピ表面に直接レーザ光を照射することによって、スクライブ溝を形成した。共振器長は600μmとした。
 ブレードを用いて、共振ミラーを割断により作製した。基板裏側に押圧によりブレイクすることによって、レーザバーを作製した。より具体的に、{20-21}面のGaN基板について、結晶方位と割断面との関係を示したものが、図8の(b)部と図8の(c)部である。図8の(b)部はレーザストライプを(1)M方向に設けた場合であり、半極性面71aと共にレーザ共振器のための端面81a、81bが示される。端面81a、81bは半極性面71aにほぼ直交しているが、従来のc面、m面又はa面等のこれまでのへき開面とは異なる。図8の(c)部はレーザストライプを(2)<11-20>方向に設けた場合であり、半極性面71aと共にレーザ共振器のための端面81c、81dが示される。端面81c、81dは半極性面71aにほぼ直交しており、a面から構成される。
 ブレイクによって形成された割断面を走査型電子顕微鏡で観察した結果、(1)および(2)のそれぞれにおいて、顕著な凹凸は観察されなかった。このことから、割断面の平坦性(凹凸の大きさ)は、20nm以下と推定される。更に、割断面の試料表面に対する垂直性は、±5度の範囲内であった。
 レーザバーの端面に真空蒸着法によって誘電体多層膜をコーティングした。誘電体多層膜は、SiOとTiOを交互に積層して構成した。膜厚はそれぞれ、50~100nmの範囲で調整して、反射率の中心波長が500~530nmの範囲になるように設計した。片側の反射面を10周期とし、反射率の設計値を約95%に設計し、もう片側の反射面を6周期とし、反射率の設計値を約80%とした。
 通電による評価を室温にて行った。電源には、パルス幅500ns、デューティ比0.1%のパルス電源を用い、表面電極に針を落として通電した。光出力測定の際には、レーザバー端面からの発光をフォトダイオードによって検出して、電流-光出力特性(I-L特性)を調べた。発光波長を測定する際には、レーザバー端面からの発光を光ファイバに通し、検出器にスペクトルアナライザを用いてスペクトル測定を行った。偏光状態を調べる際には、レーザバーからの発光に偏光板を通して回転させることで、偏光状態を調べた。LEDモード光を観測する際には、光ファイバをレーザバー表面側に配置することで、表面から放出される光を測定した。
 全てのレーザで発振後の偏光状態を確認した結果、a軸方向に偏光していることがわかった。発振波長は500~530nmであった。
 全てのレーザでLEDモード(自然放出光)の偏光状態を測定した。a軸の方向の偏光成分をI1、m軸を主面に投影した方向の偏光成分をI2とし、(I1-I2)/(I1+I2)を偏光度ρと定義した。こうして、求めた偏光度ρとしきい値電流密度の最小値の関係を調べた結果、図10が得られた。図10から、偏光度が正の場合に、(1)レーザストライプM方向のレーザでは、しきい値電流密度が大きく低下することがわかる。すなわち、偏光度が正(I1>I2)で、かつオフ方向に導波路を設けた場合に、しきい値電流密度が大幅に低下することがわかる。
図10に示されたデータは以下のものである。
     しきい値電流、    しきい値電流。
偏光度、(M方向ストライプ)、(<11-20>ストライプ)。
0.08、   64、          20。
0.05、   18、          42。
0.15、   9、           48。
0.276、   7、          52。
0.4 、   6。
 GaN基板のm軸方向へのc軸の傾斜角と発振歩留まりとの関係を調べた結果、図11が得られた。本実施例では、発振歩留まりについては、(発振チップ数)/(測定チップ数)と定義した。また、図11は、基板の積層欠陥密度が1×10(cm-1)以下の基板であり、かつレーザストライプが(1)M方向のレーザにおいて、プロットしたものである。図11から、オフ角が45度以下では、発振歩留まりが極めて低いことがわかる。端面状態を光学顕微鏡で観察した結果、45度より小さい角度では、ほとんどのチップでm面が出現し、垂直性が得られないことがわかった。また、オフ角が63度以上80度以下の範囲では、垂直性が向上し、発振歩留まりが50%以上に増加することがわかる。これらの事実から、GaN基板のオフ角度の範囲は、63度以上80度以下が最適である。なお、この結晶的に等価な端面を有することになる角度範囲である、100度以上117度以下の範囲でも、同様の結果が得られる。
図11に示されたデータは以下のものである。
傾斜角、歩留まり。
10、   0.1。
43、   0.2。
58、   50。
63、   65。
66、   80。
71、   85。
75、   80。
79、   75。
85、   45。
90、   35。
 積層欠陥密度と発振歩留まりとの関係を調べた結果、図12が得られた。発振歩留まりの定義については、上記と同様である。図12から、積層欠陥密度が1×10(cm-1)を超えると急激に発振歩留まりが低下することがわかる。また、端面状態を光学顕微鏡で観察した結果、発振歩留まりが低下したサンプルでは、端面の凹凸が激しく平坦な割断面が得られていないことがわかった。積層欠陥の存在によって、割れ易さに違いが出たことが原因と考えられる。このことから、基板に含まれる積層欠陥密度が1×10(cm-1)以下である必要がある。
図12に示されたデータは以下のものである。
積層欠陥密度(cm-1)、歩留まり。
500、          80。
1000、          75。
4000、          70。
8000、          65。
10000、         20。
50000、          2。
 基板厚みと発振歩留まりとの関係を調べた結果、図13が得られた。発振歩留まりの定義については、上記と同様である。また、図13では、基板の積層欠陥密度1×10(cm-1)以下であり、かつレーザストライプが(1)M方向のレーザにおいて、プロットした。図13から、基板厚みが100μmよりも薄く50μmよりも厚いときに、発振歩留まりが高い。これは、基板厚みが100μmよりも厚いと、割断面の垂直性が悪化することによる。また、50μmよりも薄いと、ハンドリングが困難で、チップが破壊され易くなることによる。これらのことから、基板の厚みは、50μm以上100μm以下が最適である。
図13に示されたデータは以下のものである。
基板厚、歩留まり。
48、   10。
80、   65。
90、   70。
110、  45。
150、  48。
200、  30。
400、  20。
 (実施例3)
実施例2では、{20-21}面を有するGaN基板上に、半導体レーザのための複数のエピタキシャル膜を成長した。上記のように、スクライブ溝の形成と押圧とによって光共振器用の端面が形成された。これらの端面の候補を見いだすために、(20-21)面に90度近傍の角度を成し、a面とは異なる面方位を計算により求めた。図14を参照すると、以下の角度及び面方位が、(20-21)面に対して90度近傍の角度を有する。
具体的な面指数、{20-21}面に対する角度。
(-1016): 92.46度。
(-1017): 90.10度。
(-1018): 88.29度。
 (実施例4)
 半極性{20-21}面を有するGaN基板において、c軸を基板主面に投影した方向に垂直にケガキ線を入れて押圧して得た割断面は、基板主面に対して平坦性及び垂直性を有することが示された。この割断面をレーザの共振器としての有用性を調べるために、以下の通り、レーザーダイオードを有機金属気相成長法により成長した。原料にはトリメチルガリウム(TMGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)、アンモニア(NH)、シラン(SiH)を用いた。基板には、HVPE法で成長した{20-21}面GaN基板を用いた。
 この基板を反応炉内のサセプタ上に配置した後に、以下の成長手順で、エピタキシャル基板を成長した。このエピタキシャル基板は、図15に示されるエピタキシャル層を含む。まず、厚さ1000nmのn型GaN層を成長した。次に、厚さ1200nmのn型InAlGaNクラッド層を成長した。引き続き、厚さ200nmのn型GaNガイド層及び厚さ115nmのアンドープInGaNガイド層を成長した後に、量子井戸構造を成長した。この量子井戸構造は、GaN障壁層(厚さ15nm)/InGaN井戸層(厚さ3nm)から構成される2周期MQWを含む。続いて、厚さ65nmのアンドープInGaNガイド層、厚さ20nmのp型AlGaNブロック層、厚さ50nmのp型InGaNガイド層、及び厚さ200nmのp型GaNガイド層を成長した。次に、厚さ400nmのp型InAlGaNクラッド層を成長した。最後に、厚さ50nmのp型GaNコンタクト層を成長した。
 幅2μmのリッジ構造を作製するために、フォトリソグラフィによって、幅2μmのポジ型レジストによってマスクを設けた。レーザ導波路方向は、c軸を主面に投影した投影成分の方向に平行になるように向き付けした。Clを用いたドライエッチングによって、リッジ構造を作製した。エッチング深さは、0.7μmとし、AlGaNブロック層が露出するまでエピタキシャル基板の半導体領域のエッチングを行った。エッチングの後に、レジストマスクを除去した。フォトリソグラフィを用いて約幅2μmのストライプマスクをリッジ構造上に残した。ストライプマスクの向きはリッジ構造の向きに合わせた。この後に、リッジ側面にSiOを真空蒸着法を用いて蒸着した。絶縁膜の蒸着の後に、リフトオフ法によってリッジ上のSiOを除去して、ストライプ状開口部を有する絶縁膜を形成した。次いで、アノード電極及びカソード電極を形成して、基板生産物を作製した。
 ストライプ窓を形成した後に、Ni/Auから成るp側電極ANDとTi/Auから成るパッド電極を蒸着した。次いで、ダイヤモンドスラリーを用いてGaN基板(GaNウエハ)の裏面を研磨し、裏面がミラー状態の基板生産物を作製した。GaN基板(GaNウエハ)の裏面(研磨面)にはTi/Al/Ti/Auから成るn側電極CTDを蒸着により形成した。
 これらのレーザストライプに対する共振器ミラーの作製には、波長355nmのYAGレーザを用いるレーザスクライバを用いた。レーザスクライバを用いてスクライブ溝を形成してブレイクした場合には、ダイヤモンドスクライブを用いた場合と比較して、発振チップ歩留まりを向上させることが可能である。スクライブ溝の形成条件として以下のものを用いた。
レーザ光出力100mW。
走査速度は5mm/s。
この条件で形成されたスクライブ溝は、例えば、長さ30μm、幅10μm、深さ40μmの溝であった。400μm間隔で基板の表面に電極の開口部と通して直接レーザ光を照射することによって、スクライブ溝を周期的に形成した。共振器長は600μmとした。
 図16の(a)部に示されるように、ブレードを用いて、共振ミラーを割断により作製した。図16の(a)部において、破線で示されるLN1は、{20-21}面に対して垂直な面である{10-1-7}から数度傾いた面、例えば{10-1-6}といった面を示し、破線LN2はスクライブ溝の配列線を示す。破線LN2は例えばa軸の方向に延在しており、またスクライブ溝は、基板の主面の法線軸と基板のa軸とによって規定されるa-n面に沿って延在する。基板裏面側の端部に押圧によりブレイクすることによって、レーザバーを作製した。図16の(b)部には、割断面が模式的に示されている。半極性面上でc軸を主面に投影した方向に平行に設けたレーザ導波路に垂直な端面をミラー面とする方法により、レーザ共振器のための割断面CVTが形成される。この割断面CVTは、従来のc面主面やm面主面上のレーザにおいて光共振器のために端面となるm面、a面又はc面のへき開面とは異なる。割断面CVTには、割断により分離されたスクライブ溝の残り(スクライブ跡64a)が現れる。スクライブ溝65aの一端より破線LN2から離れていった割断面が、次のスクライブ溝65aにより破線(スクライブ線の配列線)LN2に戻される。これ故に、割断面が凸状に湾曲した形状に形成される。押圧が基板生産物のエピ面に加えられるので、基板の下端における湾曲は、半導体領域の上端における湾曲より大きい。
 既に説明した方法と同様に、レーザバーの端面に真空蒸着法によって誘電体多層膜をコーティングした。誘電体多層膜は、SiOとTiOを交互に積層して構成した。膜厚を50~100nmの範囲で調整して、反射率の中心波長を500~530nmの波長範囲になるように調整した。片側の反射面を10周期とし、反射率の設計値を約95%に設計し、もう片側の反射面を6周期とし、反射率の設計値を約80%とした。誘電体多層膜の表面は下地の割断面の形状を反映した形状となり、これ故に、既に説明した割断面に関する角度や形状に関する規定が誘電体多層膜の表面にも適用される。
 通電による評価を室温にて行った。電源には、パルス幅500ns、デューティ比0.1%のパルス電源を用い、表面電極に針を落として通電した。光出力測定の際には、レーザバー端面からの発光をフォトダイオードによって検出して、電流-光出力特性(I-L特性)を調べた。発光波長を測定する際には、レーザバー端面からの発光を光ファイバに通し、検出器にスペクトルアナライザを用いてスペクトル測定を行った。発振波長は500~530nmであった。
 窒化物系半導体レーザにおける戻り光の影響を調査した。半導体レーザの電気的特性評価の後に、走査型電子顕微鏡によってレーザバーの主面の端面の成す角度を調べた。導波路ベクトルと基板表面側における活性層端面の法線ベクトルの成す角度αと規定すると共に、導波路ベクトルと基板裏面側における端面の法線ベクトルの成す角度βと規定する。これらの角度と相対雑音強度(RIN)との相関を調べた。その結果、角度αとβが異なることにより、相対雑音強度が改善されることが示された。角度βと角度αの差が0.1度以上のときに、相対雑音強度が良好であることがわかった。更に、角度βが角度αより大きいとき(β>α)、相対雑音強度が良好であった。これらは、戻り光のうち、活性層よりも基板裏面側に近い成分がレーザチップ内に戻って来た際に、導波路とは平行でない方向に散乱されることで、戻り光による悪影響を低減できると考えられる。より良好にするには、半導体レーザの端面と導波路と交差角度αを活性層端面の位置ではほぼ垂直に設定すると共に、基板端面の位置では交差角度αより大きい交差角度βに設定することで、更に改善された相対雑音強度を得ることができる。
 図17を参照しながら戻り光の影響を説明する。図17の(a)部は、特許文献6と同様な方向に傾斜した端面を有する半導体レーザが示されている。レーザ構造体のエピ面にはアノード電極AN1が形成されており、レーザ構造体の基板裏面にはカソード電極CT1が形成されている。活性層AL1が端面CC1から端面CC2まで延在している。互いに異なる位置に入射する3つの戻り光LR1、LR2、LR3が示されている。戻り光LR1はほぼ活性層の端面に入射する。戻り光LR1が直接に活性層に入射するので、この光は導波路において活性層の上下に形成された光閉じこめ構造により全反射しながら導波路を伝搬していく。これを防ぐためには、角度θとして10度以上の値が必要である。しかしながら、角度θが10度以上である端面を光共振器のために用いるとき、大幅な閾値電流の増加になる。活性層端面から離れた端面に入射する戻り光LR2、LR3は基板裏面に反射されて、反射成分が活性層に戻る。
 図17の(b)部は、本件実施例と同様な方向に傾斜した端面を有する半導体レーザが示されている。レーザ構造体のエピ面にはアノード電極AN2が形成されており、レーザ構造体の基板裏面にはカソード電極が形成されている。活性層AL2が端面BC1から端面BC2まで延在している。活性層AL2の高さとほぼ同じであるけれども素子の幅方向に関して互いに異なる位置に入射する3つの戻り光LR4、LR5、LR6が示されている。戻り光LR5はほぼ活性層の端面に入射する。戻り光LR5が直接に活性層に入射するけれども、横方向に関する光閉じ込めされずに、素子内においては光導波路WGの延在方向と異なる方向に伝搬する。これ故に、わずかな傾斜角α、βにより戻り光への比較的大きな耐性を得ることができる。活性層端面から離れた端面に入射する戻り光LR4、LR6も、素子内においては、戻り光LR4と同様に、光導波路WGの延在方向と異なる方向に伝搬する。
 実施の形態で説明した、角度(θ、α(α<β)、β(β1、β2))について傾斜された割断面を有する窒化物系半導体レーザにおける戻り光の影響を説明する。図18の(a)部を参照すると、レーザ構造体のエピ面にはアノード電極AN3が形成されており、レーザ構造体の基板裏面にはカソード電極CT3が形成されている。活性層AL2が端面BC1から端面BC2まで延在している。図17の(a)部及び図17の(b)部と同様に戻り光LR1~LR3が端面に戻る。活性層位置は、押圧されるエピ表面に近いので、これ故に角度αは小さい。したがって、戻り光LR1によるしきい値の上昇は小さい。戻り光の影響は皆無ではないが、ごく表面に戻り光LR1が入射する。図18の(b)部、図18の(c)部及び図18の(d)部を参照すると、戻り光LR2、LR3が入射する位置では、端面の傾き(β1<β2)は比較的大きく、これ故に光の進行方向と導波路方向が異なる。このため、入射した戻り光は導波できない、これ故に、しきい値の上昇に関する影響を与えない。半導体レーザの側面に到達した光のほとんどは反射されずに、散乱しながら減衰する。この窒化物半導体レーザでは、レーザ導波路が現れる端面上をエピ面から基板裏面への方向に延びるライン上において、この方向に該傾斜角が、徐々に大きくなる((α<β1<β2))。
 (実施例5)
断面から見たときの端面の傾斜角度θが0度であるとき、活性層位置での端面の傾斜角度αと、光の共振器内での往復回数の関係を調べた。図19は、端面におけるずれ角度αと戻り光の往復回数との関係を示す図面である。角度αが0.2度以上のときに、光の往復回数が1回以下となる。このことから、角度θ=0度の場合には、角度αが0.2度未満のときに、戻り光に対して弱いけれども、しきい値が低い。角度αが0.2度以上のときに、戻り光に強くなる。角度αが0.5度以下のときに、角度αに起因するしきい値の上昇は、実用的な受け入れ可能な範囲である。
 図18を参照しながら説明した、角度(θ、α、β)について傾斜された割断面を有する窒化物系半導体レーザにおける戻り光の影響を説明する。説明のための窒化物系半導体レーザでは、端面の縦傾斜角度θ、活性層位置における端面の横傾斜角度α、裏面近傍における基板端面の位置での端面の横傾斜角度βがゼロではなく、角度αが角度βと異なる(θ≠0度、α≠β≠0)。基板の厚みT、角度θ、半導体チップの幅Wを与え、角度α及び角度βが取り得る値を調べた。活性層位置における端面の横傾斜角度αが以下のように規定される。
α=arctan(Lα/W)、ここで、Lα=(エピタキシャル膜の厚さ)×tanθ。
基板端面の位置での端面の横傾斜角度βが以下のように規定される。
β=arctan(Lβ/W)、ここで、Lβ=(全厚み=エピタキシャル膜の厚さ+基板刷)×tanθ。
典型的な値である活性層からエピタキシャル膜の表面までの距離L1α=1μm、活性層から基板主面までの距離L2α=2μm、エピタキシャル膜の厚さLα=L1α+L2α、基板厚みDSUB=100μm、チップ幅200μmとしたとき、図20に示すような依存性が得られた。なお、角度θはクラッド層とガイド層の全反射角である約10度以下の範囲で調べた。その結果、角度θ=0.4度の場合に、角度α=0.003度、角度β=0.2度が得られた。したがって、角度θ=0.4度以上の場合に、角度αが0.2度より小さく、角度βが0.2度より大きい。これはほぼ所望の端面を作製できることを示す。この端面を有する窒化物半導体レーザは戻り光に強く、その閾値が低い。
 図21を参照しながら、これらの端面を実現する方法を{20-21}面上に作製された半導体レーザを例示的に説明する。c軸を主面に投影した方向に平行に導波路を設けた窒化物半導体レーザにおいて、基板主面に垂直な面は、c軸の正方向が向く端面において面CP1(例えば{-1017}面)である。しかしながら、{20-21}面上に作製された半導体レーザでは、この面CP1より、面CP1に近い別の面CP2(例えば{-1016}面や{10-1-6}面といった面指数の結晶面)がブレイクの際に出現し易い。基板裏面にスクライブ溝を設けた後に、図21の(a)部に示されるように、ブレードを基板生産物の表面(エピ面)に当てて基板生産物のブレークを行う。破線DLはブレードがエピ面において接触する位置から{10-1-6}面に沿った位置を示す。割断されるときの亀裂BK1は、図21の(b)部に示されるように、スクライブ溝から進行する。面指数{-1017}で示される面よりも面指数{-1016}で示される面で割れ易いので、図21の(c)部に示されるように、割れやすい面を出現させる方向に亀裂BK2が、スクライブ溝65aの配列のラインにから離れて進行する。そして、図21の(d)部に示されるように、隣り合う溝にまで亀裂が近づいていく。亀裂が隣り合う溝にまで亀裂BK3が近づいたとき、図21の(e)部に示されるように、亀裂BK4が溝につながり、基板生産物の割断が完了する。このとき、エピ表面側は、ブレードから押圧の力が加わって割断されるので、割断線は直線に近く、ほぼ一直線状である一方、これに比べて、基板裏面における割断線は湾曲する。これ故に、図21の(f)部に示されるように、本実施の形態において示した端面形状を実現することができる。本実施の形態は、上記の形態の範囲に限定されることはなく、本実施形態に記載された半極性面の傾斜角度において、割断面に所定範囲の傾斜を提供できる。{20-21}面と異なる半極性面上に作製された半導体レーザでは、a-n面に沿って延在するスクライブ溝の列を基板裏面に形成した後に、基板生産物のおもて面(エピ面側)に押圧する。a-n面と基板生産物のおもて面との交差線に近い割れやすい面が出現する。上記と同様に、割れやすい面を出現させる方向に亀裂が湾曲して進展する。
 図22は、(20-21)面と(-101-6)面及び(-1016)面における原子配置を示す図面である。図23は、(20-21)面と(-101-7)面及び(-1017)面における原子配置を示す図面である。図24は、(20-21)面と(-101-8)面及び(-1018)面における原子配置を示す図面である。図22~図24に示されるように、矢印によって示される局所的な原子配置は電荷的に中性な原子の配列を示し、電気的中性の原子配置が周期的に出現している。成長面に対し、比較的垂直な面が得られる理由は、この電荷的に中性な原子配列が周期的に現れることで、割断面の生成が比較的安定となっていることが考えられる可能性がある。
 上記の実施例1~3を含めた様々な実験によって、角度CALPHAは、45度以上80度以下及び100度以上135度以下の範囲であることができる。発振チップ歩留を向上させるためには、角度CALPHAは、63度以上80度以下及び100度以上117度以下の範囲であることができる。典型的な半極性主面、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかであることができる。更に、これらの半極性面からの微傾斜面であることができる。例えば、半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかの面から、m面方向に-4度以上+4度以下の範囲でオフした微傾斜面であることができる。
 好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
 以上説明したように、本実施の形態によれば、六方晶系III族窒化物のc軸がm軸の方向に傾斜した支持基体の半極性面上において、戻り光による撹乱の低減を可能できることに加えて低しきい値電流を可能にするレーザ共振器を有するIII族窒化物半導体レーザ素子が提供される、また、本実施の形態によれば、このIII族窒化物半導体レーザ素子を作製する方法が提供される。
11…III族窒化物半導体レーザ素子、13…レーザ構造体、13a…第1の面、13b…第2の面、13c、13d…エッジ、15…電極、17…支持基体、17a…半極性主面、17b…支持基体裏面、17c…支持基体端面、19…半導体領域、19a…半導体領域表面、19c…半導体領域端面、21…第1のクラッド層、23…第2のクラッド層、25…活性層、25a…井戸層、25b…障壁層、27、29…割断面、CALPHA…角度、Sc…c面、NX…法線軸、31…絶縁膜、31a…絶縁膜開口、35…n側光ガイド層、37…p側光ガイド層、39…キャリアブロック層、41…電極、43a、43b…誘電体多層膜、MA…m軸ベクトル、GAMMA…角度、DSUB…支持基体厚さ、51…基板、51a…半極性主面、SP…基板生産物、57…窒化ガリウム系半導体領域、59…発光層、61…窒化ガリウム系半導体領域、53…半導体領域、54…絶縁膜、54a…絶縁膜開口、55…レーザ構造体、58a…アノード電極、58b…カソード電極、63a…第1の面、63b…第2の面、10a…レーザスクライバ、65a…スクライブ溝、65b…スクライブ溝、LB…レーザビーム、SP1…基板生産物、LB1…レーザバー、69…ブレード、69a…エッジ、69b、69c…ブレード面、70…支持装置、70a…支持面、70b…凹部。

Claims (26)

  1.  III族窒化物半導体レーザ素子であって、
     六方晶系III族窒化物半導体からなり半極性主面を有する支持基体、及び前記支持基体の前記半極性主面上に設けられた半導体領域を含むレーザ構造体と、
     前記レーザ構造体の前記半導体領域上に設けられた電極と、
    を備え、
     前記半導体領域は、第1導電型の窒化ガリウム系半導体からなる第1のクラッド層と、第2導電型の窒化ガリウム系半導体からなる第2のクラッド層と、前記第1のクラッド層と前記第2のクラッド層との間に設けられた活性層とを含み、
     前記第1のクラッド層、前記第2のクラッド層及び前記活性層は、前記半極性主面の法線軸に沿って配列されており、
     前記活性層は窒化ガリウム系半導体層を含み、
     前記支持基体の前記六方晶系III族窒化物半導体のc軸は、前記六方晶系III族窒化物半導体のm軸の方向に前記法線軸に対して角度CALPHAで傾斜しており、
     前記レーザ構造体は、前記六方晶系III族窒化物半導体のm軸及び前記法線軸によって規定されるm-n面に交差する第1及び第2の割断面を含み、
     当該III族窒化物半導体レーザ素子のレーザ共振器は前記第1及び第2の割断面を含み、
     前記レーザ構造体は第1及び第2の面を含み、前記第1の面は前記第2の面の反対側の面であり、
     前記第1及び第2の割断面は、それぞれ前記第1の面のエッジから前記第2の面のエッジまで延在し、
     前記法線軸と前記六方晶系III族窒化物半導体のc軸との成す角度は、45度以上80度以下又は100度以上135度以下の範囲であり、
     前記レーザ構造体は、前記支持基体の前記半極性主面上に延在するレーザ導波路を含み、前記レーザ導波路は、前記第1及び第2の割断面の一方から他方への方向に向く導波路ベクトルの方向に延在し、
     前記第1の割断面は、前記m-n面に直交する第1の平面内において前記導波路ベクトルに直交する基準面に対して角度βで傾斜しており、前記角度βは、前記第1の割断面における前記支持基体の端面上において規定され、
     前記第1の割断面は、前記m-n面に直交する第2の平面内において前記基準面に対して角度αで傾斜しており、前記角度αは、前記第1の割断面における前記活性層の端面上において規定され、
     前記角度αは前記角度βと異なり、前記角度α及び前記角度βは同じ符号を有し、前記角度αと前記角度βとの差が0.1度以上である、III族窒化物半導体レーザ素子。
  2.  前記角度βが前記角度αより大きい、請求項1に記載されたIII族窒化物半導体レーザ素子。
  3.  前記導波路ベクトルは、前記六方晶系III族窒化物半導体のa軸及び前記法線軸によって規定されるa-n面の法線ベクトルと0.1度以上の角度を成している、請求項1又は請求項2に記載されたIII族窒化物半導体レーザ素子。
  4.  前記角度αは0.5度以下である、請求項1~請求項3のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  5.  前記支持基体の厚さは400μm以下である、請求項1~請求項4のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  6.  前記支持基体の厚さは、50μm以上100μm以下である、請求項1~請求項5のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  7.  前記活性層からのレーザ光は、前記六方晶系III族窒化物半導体のa軸の方向に偏光している、請求項1~請求項6のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  8.  当該III族窒化物半導体レーザ素子におけるLEDモードにおける光は、前記六方晶系III族窒化物半導体のa軸の方向に偏光成分I1と、前記六方晶系III族窒化物半導体のc軸を主面に投影した方向に偏光成分I2を含み、
     前記偏光成分I1は前記偏光成分I2よりも大きい、請求項1~請求項7のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  9.  前記法線軸と前記六方晶系III族窒化物半導体のc軸との成す角度は、63度以上80度以下又は100度以上117度以下の範囲である、請求項1~請求項8のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  10.  前記半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかの面から-4度以上+4度以下の範囲でオフした傾斜面である、請求項1~請求項9のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  11.  前記半極性主面は、{20-21}面、{10-11}面、{20-2-1}面、及び{10-1-1}面のいずれかである、請求項1~請求項10のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  12.  前記支持基体の積層欠陥密度は1×10cm-1以下である、請求項1~請求項11のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  13.  前記支持基体は、GaN、AlGaN、AlN、InGaN及びInAlGaNのいずれかからなる、請求項1~請求項12のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  14.  前記第1及び第2の割断面の少なくともいずれか一方に設けられた誘電体多層膜を更に備える、請求項1~請求項13のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  15.  前記活性層は、波長360nm以上600nm以下の光を発生するように設けられた発光領域を含む、請求項1~請求項14のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  16.  前記活性層は、波長430nm以上550nm以下の光を発生するように設けられた量子井戸構造を含む、請求項1~請求項15のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  17.  前記第1及び第2の割断面の各々には、前記支持基体の端面及び前記半導体領域の端面が現れており、
     前記半導体領域の前記活性層における端面と前記六方晶系窒化物半導体からなる支持基体のm軸に直交する基準面との成す角度は、前記III族窒化物半導体のc軸及びm軸によって規定される第1平面において(CALPHA-5)度以上(CALPHA+5)度以下の範囲の角度を成す、請求項1~請求項16のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  18.  前記レーザ構造体はリッジ構造を有する、請求項1~請求項17のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  19.  III族窒化物半導体レーザ素子を作製する方法であって、
     六方晶系III族窒化物半導体からなり半極性主面を有する基板を準備する工程と、
     前記半極性主面上に形成された半導体領域と前記基板とを含むレーザ構造体、アノード電極、及びカソード電極を有する基板生産物を形成する工程と、
     前記六方晶系III族窒化物半導体のa軸の方向に前記基板生産物の第1の面を部分的にスクライブする工程と、
     前記基板生産物の第2の面への押圧により前記基板生産物の分離を行って、別の基板生産物及びレーザバーを形成する工程と、
    を備え、
     前記第1の面は前記第2の面の反対側の面であり、
     前記半導体領域は前記第2の面と前記基板との間に位置し、
     前記レーザバーは、前記第1の面から前記第2の面まで延在し前記分離により形成され前記III族窒化物半導体レーザ素子の第1及び第2の端面を有し、
     前記第1及び第2の端面は当該III族窒化物半導体レーザ素子のレーザ共振器を構成し、
     前記アノード電極及びカソード電極は、前記レーザ構造体上に形成され、
     前記半導体領域は、第1導電型の窒化ガリウム系半導体からなる第1のクラッド層と、第2導電型の窒化ガリウム系半導体からなる第2のクラッド層と、前記第1のクラッド層と前記第2のクラッド層との間に設けられた活性層とを含み、
     前記第1のクラッド層、前記第2のクラッド層及び前記活性層は、前記半極性主面の法線軸に沿って配列されており、
     前記活性層は窒化ガリウム系半導体層を含み、
     前記基板の前記六方晶系III族窒化物半導体のc軸は、前記六方晶系III族窒化物半導体のm軸の方向に前記法線軸に対して角度CALPHAで傾斜しており、
     前記第1及び第2の端面は、前記六方晶系III族窒化物半導体のm軸及び前記法線軸によって規定されるm-n面に交差し、
     前記法線軸と前記六方晶系III族窒化物半導体のc軸との成す角度は、45度以上80度以下又は100度以上135度以下の範囲であり、
     前記レーザ構造体は、前記基板の前記半極性主面上に延在するレーザ導波路を含み、前記レーザ導波路は、前記第1及び第2の端面の一方から他方への方向に向く導波路ベクトルの方向に延在し、
     前記第1の端面は、前記m-n面に直交する第1の平面内において前記導波路ベクトルに直交する基準面に対して角度βで傾斜しており、前記角度βは、前記第1の端面における前記基板の端面上において規定され、
     前記第1の端面は、前記m-n面に直交する第2の平面内において前記基準面に対して角度αで傾斜しており、前記角度αは、前記第1の端面における前記活性層の端面上において規定され、
     前記角度αは前記角度βと異なり、前記角度α及び前記角度βは同じ符号を有し、前記角度αと前記角度βとの差が0.1度以上である、III族窒化物半導体レーザ素子を作製する方法。
  20.  前記角度βが前記角度αより大きい、請求項19に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  21.  前記導波路ベクトルは、前記六方晶系III族窒化物半導体のa軸及び前記法線軸によって規定されるa-n面の法線ベクトルと0.1度以上の角度を成している、請求項19又は請求項20に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  22.  前記角度CALPHAは、63度以上80度以下又は100度以上117度以下の範囲である、請求項19~請求項21のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  23.  前記基板生産物を形成する前記工程において、前記基板は、前記基板の厚さが400μm以下になるようにスライス又は研削といった加工が施され、
     前記第2の面は前記加工により形成された加工面、又は前記加工面の上に形成された電極を含む面である、請求項19~請求項22のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  24.  前記基板生産物を形成する前記工程において、前記基板は、前記基板の厚さが50μm以上100μm以下になるように研磨され、
     前記第2の面は前記研磨により形成された研磨面、又は前記研磨面の上に形成された電極を含む面である、請求項19~請求項23のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  25.  前記第1及び第2の端面の各々における前記活性層の端面は、前記六方晶系窒化物半導体からなる支持基体のm軸に直交する基準面に対して、前記六方晶系III族窒化物半導体のc軸及びm軸によって規定される平面において(CALPHA-5)度以上(CALPHA+5)度以下の範囲の角度を成す、請求項19~請求項24のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  26.  前記基板は、GaN、AlGaN、AlN、InGaN及びInAlGaNのいずれかからなる、請求項19~請求項25のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
PCT/JP2010/070292 2009-12-25 2010-11-15 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法 WO2011077856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10839092.3A EP2518839A4 (en) 2009-12-25 2010-11-15 GROUP III NITRIDE SEMICONDUCTOR LASER ELEMENT AND METHOD FOR PRODUCING A GROUP III NITRIDE SEMICONDUCTOR LASER ELEMENT
CN201080058983.4A CN102668279B (zh) 2009-12-25 2010-11-15 Iii族氮化物半导体激光器元件及制作iii族氮化物半导体激光器元件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295574 2009-12-25
JP2009295574A JP5131266B2 (ja) 2009-12-25 2009-12-25 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法

Publications (1)

Publication Number Publication Date
WO2011077856A1 true WO2011077856A1 (ja) 2011-06-30

Family

ID=44187535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070292 WO2011077856A1 (ja) 2009-12-25 2010-11-15 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法

Country Status (7)

Country Link
US (2) US8265113B2 (ja)
EP (1) EP2518839A4 (ja)
JP (1) JP5131266B2 (ja)
KR (1) KR20120099138A (ja)
CN (1) CN102668279B (ja)
TW (1) TW201143238A (ja)
WO (1) WO2011077856A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038809A1 (ja) * 2011-09-13 2013-03-21 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
WO2013038810A1 (ja) * 2011-09-13 2013-03-21 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
WO2014061328A1 (ja) * 2012-10-16 2014-04-24 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法、iii族窒化物半導体レーザ素子の光共振器のための端面を評価する方法、スクライブ溝を評価する方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556657B2 (ja) * 2008-05-14 2014-07-23 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
US9404197B2 (en) * 2008-07-07 2016-08-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
US9589792B2 (en) 2012-11-26 2017-03-07 Soraa, Inc. High quality group-III metal nitride crystals, methods of making, and methods of use
JP5206699B2 (ja) 2010-01-18 2013-06-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
US7933303B2 (en) * 2009-06-17 2011-04-26 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
JP4924681B2 (ja) * 2009-09-10 2012-04-25 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5387302B2 (ja) * 2009-09-30 2014-01-15 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5397136B2 (ja) * 2009-09-30 2014-01-22 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5131266B2 (ja) * 2009-12-25 2013-01-30 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5201129B2 (ja) * 2009-12-25 2013-06-05 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5494259B2 (ja) * 2010-06-08 2014-05-14 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
JP5252042B2 (ja) * 2011-07-21 2013-07-31 住友電気工業株式会社 Iii族窒化物半導体発光素子、及びiii族窒化物半導体発光素子を作製する方法
JP5451724B2 (ja) * 2011-12-08 2014-03-26 ソニー株式会社 半導体レーザ素子の製造方法
US9275912B1 (en) 2012-08-30 2016-03-01 Soraa, Inc. Method for quantification of extended defects in gallium-containing nitride crystals
WO2014047724A1 (en) 2012-09-26 2014-04-03 Ledtech International Inc. Multilayer optical interference filter
US9299555B1 (en) 2012-09-28 2016-03-29 Soraa, Inc. Ultrapure mineralizers and methods for nitride crystal growth
JP6245239B2 (ja) * 2015-09-11 2017-12-13 日亜化学工業株式会社 半導体レーザ素子の製造方法
WO2018020793A1 (ja) * 2016-07-26 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 半導体発光素子および半導体発光素子の製造方法
US10554010B2 (en) * 2017-05-11 2020-02-04 Sumitomo Electric Industries, Ltd. Method of producing semiconductor laser device and method of producing optical directional coupler
JP6939119B2 (ja) * 2017-06-19 2021-09-22 住友電気工業株式会社 量子カスケード半導体レーザ、発光装置、半導体レーザを作製する方法
WO2019193862A1 (ja) * 2018-04-05 2019-10-10 パナソニックIpマネジメント株式会社 傷形成方法、試料分割方法、半導体素子の製造方法、半導体レーザ素子の製造方法及び半導体レーザ素子
US12087577B2 (en) 2018-05-17 2024-09-10 The Regents Of The University Of California Method for dividing a bar of one or more devices
JP7332623B2 (ja) * 2018-11-30 2023-08-23 ヌヴォトンテクノロジージャパン株式会社 半導体レーザ装置
US11466384B2 (en) 2019-01-08 2022-10-11 Slt Technologies, Inc. Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
EP4064471A4 (en) 2019-11-21 2023-06-21 Sony Group Corporation SEMICONDUCTOR LASER AND METHOD OF MANUFACTURING A SEMICONDUCTOR LASER
US11721549B2 (en) 2020-02-11 2023-08-08 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
US12091771B2 (en) 2020-02-11 2024-09-17 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
US11705322B2 (en) 2020-02-11 2023-07-18 Slt Technologies, Inc. Group III nitride substrate, method of making, and method of use

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230497A (ja) 1999-12-06 2001-08-24 Matsushita Electric Ind Co Ltd 窒化物半導体装置
JP2005353690A (ja) 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd 窒化物半導体発光素子
JP2007184353A (ja) 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd 窒化物系化合物半導体素子の製造方法、および、窒化物系化合物半導体素子
JP2008187044A (ja) * 2007-01-30 2008-08-14 Rohm Co Ltd 半導体レーザ
JP2008235804A (ja) 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子
JP2009071127A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 窒化物半導体レーザ素子
JP2009081336A (ja) 2007-09-27 2009-04-16 Sanyo Electric Co Ltd 窒化物系半導体レーザ素子およびその製造方法
JP2009144442A (ja) 2007-12-14 2009-07-02 Sakato Kosakusho:Kk 鉄骨用切断機
JP2010109331A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP4475357B1 (ja) * 2009-06-17 2010-06-09 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653663B2 (en) 1999-12-06 2003-11-25 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP2003017791A (ja) * 2001-07-03 2003-01-17 Sharp Corp 窒化物半導体素子及びこの窒化物半導体素子の製造方法
US6756562B1 (en) * 2003-01-10 2004-06-29 Kabushiki Kaisha Toshiba Semiconductor wafer dividing apparatus and semiconductor device manufacturing method
US20050023260A1 (en) * 2003-01-10 2005-02-03 Shinya Takyu Semiconductor wafer dividing apparatus and semiconductor device manufacturing method
US7071405B2 (en) * 2004-07-26 2006-07-04 Moore Leslie A Independent power bank system
JP5743127B2 (ja) * 2005-06-01 2015-07-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置
JP4948307B2 (ja) * 2006-07-31 2012-06-06 三洋電機株式会社 半導体レーザ素子およびその製造方法
JP4832221B2 (ja) * 2006-09-01 2011-12-07 パナソニック株式会社 半導体レーザ装置の製造方法
JP2008109066A (ja) * 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
US7924898B2 (en) * 2007-09-28 2011-04-12 Sanyo Electric Co., Ltd. Nitride based semiconductor laser device with oxynitride protective coatings on facets
JP2009099681A (ja) * 2007-10-15 2009-05-07 Shinko Electric Ind Co Ltd 基板の個片化方法
JP2009235804A (ja) 2008-03-27 2009-10-15 Toto Ltd 水洗便器のタンク構造
WO2009124317A2 (en) * 2008-04-04 2009-10-08 The Regents Of The University Of California Mocvd growth technique for planar semipolar (al, in, ga, b)n based light emitting diodes
JP4908453B2 (ja) 2008-04-25 2012-04-04 住友電気工業株式会社 窒化物半導体レーザを作製する方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法
US7933303B2 (en) * 2009-06-17 2011-04-26 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
JP5206699B2 (ja) * 2010-01-18 2013-06-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
US8355418B2 (en) * 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
JP4793489B2 (ja) * 2009-12-01 2011-10-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
JP5201129B2 (ja) * 2009-12-25 2013-06-05 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5327154B2 (ja) * 2009-12-25 2013-10-30 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5131266B2 (ja) 2009-12-25 2013-01-30 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5625355B2 (ja) * 2010-01-07 2014-11-19 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
JP4793494B2 (ja) * 2010-01-18 2011-10-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
JP5206734B2 (ja) * 2010-06-08 2013-06-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
JP5494259B2 (ja) * 2010-06-08 2014-05-14 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230497A (ja) 1999-12-06 2001-08-24 Matsushita Electric Ind Co Ltd 窒化物半導体装置
JP2005353690A (ja) 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd 窒化物半導体発光素子
JP2007184353A (ja) 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd 窒化物系化合物半導体素子の製造方法、および、窒化物系化合物半導体素子
JP2008187044A (ja) * 2007-01-30 2008-08-14 Rohm Co Ltd 半導体レーザ
JP2008235804A (ja) 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子
JP2009071127A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 窒化物半導体レーザ素子
JP2009081336A (ja) 2007-09-27 2009-04-16 Sanyo Electric Co Ltd 窒化物系半導体レーザ素子およびその製造方法
JP2009144442A (ja) 2007-12-14 2009-07-02 Sakato Kosakusho:Kk 鉄骨用切断機
JP2010109331A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP4475357B1 (ja) * 2009-06-17 2010-06-09 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKASAKI ISAMU: "Group III nitride semiconductor", BAIFUUKAN, pages 264
JPN. J. APPL. PHYS., vol. 46, no. 19
See also references of EP2518839A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038809A1 (ja) * 2011-09-13 2013-03-21 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
WO2013038810A1 (ja) * 2011-09-13 2013-03-21 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
JP2013062366A (ja) * 2011-09-13 2013-04-04 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ素子を作製する方法
JP2013062367A (ja) * 2011-09-13 2013-04-04 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ素子を作製する方法
CN103797667A (zh) * 2011-09-13 2014-05-14 住友电气工业株式会社 用于制作iii族氮化物半导体激光器件的方法
CN103828148A (zh) * 2011-09-13 2014-05-28 住友电气工业株式会社 制造iii族氮化物半导体激光器件的方法
US9036671B2 (en) 2011-09-13 2015-05-19 Sumitomo Electric Industries, Ltd. Method for fabricating group-III nitride semiconductor laser device
WO2014061328A1 (ja) * 2012-10-16 2014-04-24 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法、iii族窒化物半導体レーザ素子の光共振器のための端面を評価する方法、スクライブ溝を評価する方法
US9379521B2 (en) 2012-10-16 2016-06-28 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor laser device, method for producing group III nitride semiconductor laser device, method for evaluating end facet for optical cavity of group III nitride semiconductor laser device, and method for evaluating scribe groove

Also Published As

Publication number Publication date
US8265113B2 (en) 2012-09-11
US20120135554A1 (en) 2012-05-31
US8389312B2 (en) 2013-03-05
TW201143238A (en) 2011-12-01
CN102668279B (zh) 2014-09-10
JP5131266B2 (ja) 2013-01-30
EP2518839A1 (en) 2012-10-31
CN102668279A (zh) 2012-09-12
KR20120099138A (ko) 2012-09-06
US20110158275A1 (en) 2011-06-30
EP2518839A4 (en) 2015-03-11
JP2011135016A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5131266B2 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5201129B2 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP4475357B1 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP4793489B2 (ja) Iii族窒化物半導体レーザ素子を作製する方法
JP5327154B2 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5625355B2 (ja) Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
JP4793494B2 (ja) Iii族窒化物半導体レーザ素子を作製する方法
JP5494259B2 (ja) Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
JP5206734B2 (ja) Iii族窒化物半導体レーザ素子を作製する方法
JP5206699B2 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP4924681B2 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5054221B1 (ja) Iii族窒化物半導体レーザ素子
JP2011211244A (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5670040B2 (ja) Iii族窒化物半導体レーザ素子
JP5152391B2 (ja) Iii族窒化物半導体レーザ素子
JP5152392B2 (ja) Iii族窒化物半導体レーザ素子
JP5152393B2 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5365679B2 (ja) Iii族窒化物半導体レーザ素子
JP2011003880A (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP2011216914A (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058983.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019587

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010839092

Country of ref document: EP