WO2011077564A1 - リチウムイオン二次電池の製造方法 - Google Patents
リチウムイオン二次電池の製造方法 Download PDFInfo
- Publication number
- WO2011077564A1 WO2011077564A1 PCT/JP2009/071658 JP2009071658W WO2011077564A1 WO 2011077564 A1 WO2011077564 A1 WO 2011077564A1 JP 2009071658 W JP2009071658 W JP 2009071658W WO 2011077564 A1 WO2011077564 A1 WO 2011077564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load
- sheet
- speed
- sec
- lithium ion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49004—Electrical device making including measuring or testing of device or component part
Definitions
- the present invention relates to a method for manufacturing a lithium ion secondary battery.
- Lithium ion secondary batteries that are charged and discharged by moving lithium ions back and forth between the positive electrode and the negative electrode are light and high energy density can be obtained. Is becoming increasingly important.
- Patent Documents 1 to 4 are listed as technical documents related to lithium ion secondary batteries.
- Patent Document 1 describes a technique for improving cycle characteristics by defining characteristics related to the displacement of a separator.
- Patent Document 2 describes a technique for suppressing the deterioration of battery performance by suppressing the deformation of the electrode assembly caused by the expansion of the separator by setting the elastic coefficient of the separator to a predetermined value or less.
- Patent Document 3 describes a technique for improving cycle characteristics by defining a thickness change rate of a separator.
- the lithium ion secondary battery as a vehicle-mounted power source is used not only at a low rate but also at a high rate (for example, high output of 5C or more) (charge / discharge).
- charge / discharge a high rate
- reversible insertion and extraction typically insertion and removal
- rapid volume change expansion and contraction
- loading and unloading may be repeatedly performed on the positive electrode and the negative electrode itself.
- the separator interposed between the positive electrode and the negative electrode is pressed by the volume change of the positive electrode and the negative electrode, and the separator itself can repeat abrupt volume change.
- each electrode body constituent member of the positive electrode, the negative electrode, and the separator does not have sufficient load resistance (durability against load) with respect to each rapid volume change during high rate charge / discharge, each electrode body constituent member Can be deformed. As a result, there is a risk that the battery performance may be deteriorated due to partial shortage of the electrolyte (so-called “withering phenomenon”) and non-uniform reaction between lithium ions and electrons in the positive and negative electrodes. For this reason, each electrode body component member is required to have the ability to withstand repeated high-rate charge / discharge.
- the present invention was created to solve the above-described conventional problems, and its purpose is to improve the durability of each electrode body constituent member (positive electrode, negative electrode, and separator) against repeated use of high-rate charge / discharge. It is to provide a method for manufacturing a lithium ion secondary battery in consideration.
- the present invention provides a method for producing a lithium ion secondary battery having an electrode body in which positive and negative electrode sheets are superposed via a separator sheet.
- the manufacturing method disclosed herein includes selecting a positive electrode sheet, a negative electrode sheet, and a separator sheet (hereinafter, these may be collectively referred to as “electrode body constituent members”), and the selected positive electrode sheet and negative electrode sheet. And constructing an electrode body by superimposing separator sheets, and housing the electrode body together with an electrolytic solution in a battery case.
- At least one of the positive electrode sheet, the negative electrode sheet, and the separator sheet includes the following (1) and (2): (1) A process of applying a load up to a predetermined load F1 [mN] at a speed of A [mN / sec] and a process of removing a load up to a predetermined load F2 [mN] at a speed of A [mN / sec] are included.
- the transition of the sheet thickness of the 1st to nth cycles at the load F1 and the transition of the thickness of the sheet of the 1st to nth cycles at the load F2 are extrapolated, respectively.
- the number of times of loading is obtained, the inclination of a straight line connecting the thickness of the sheet before the start of the test (that is, the thickness of the sheet at the 0th cycle) and the intersection point is obtained, and the inclination obtained based on the condition (1) is defined as a
- the slope obtained based on the condition (2) is b, it is selected so as to satisfy 0.8 ⁇ a / b ⁇ 1.5.
- the “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by movement of lithium ions between the positive and negative electrodes.
- “high-speed load-unload cycle” means an electrode body configuration at the time of charge / discharge of a lithium ion secondary battery at a high rate (for example, 5C to 50C, preferably 10C to 30C) during normal use of the battery. A cycle that simulates a change in load applied to a member.
- low-speed load-unloading cycle means an electrode body at the time of charge / discharge of a lithium ion secondary battery at a low rate (for example, 1C to 5C, preferably 2C to 3C) during normal use of the battery.
- a cycle that simulates a change in load applied to a component.
- At least one of the positive electrode sheet, the negative electrode sheet, and the separator sheet has a straight line obtained from a high speed load-unload cycle and a low speed load-unload cycle.
- the ratio a / b of the slope a and the slope b is selected so as to satisfy 0.8 ⁇ a / b ⁇ 1.5.
- the electrode body constituting member in which a / b is in the above range has a small difference between the behavior (response) with respect to the load change during the low rate charge / discharge and the behavior with respect to the load change during the high rate charge / discharge.
- the electrode body constituent member that satisfies the above conditions exhibits stable performance (for example, load resistance) at various charge / discharge rates including high rate charge / discharge.
- the capacity deterioration of the battery can be effectively suppressed even when the battery is used in an aspect including repetition of high rate charge / discharge. Therefore, it becomes possible to produce a lithium ion secondary battery having more excellent cycle characteristics by using an electrode body constituent member that satisfies the above conditions.
- each of the load F1 and the load F2 is applied to the sheet within a range of SOC (State of Charge) assumed in normal use of the lithium ion secondary battery. These are the upper and lower limits of such load.
- SOC State of Charge
- the load (pressure) applied to each electrode body constituent member is assumed in the SOC range (for example, approximately 20% to 90%) during normal use of the battery, the electrode body during normal use of the battery is assumed.
- At least one of the constituent members has sufficient load resistance, and the use of the electrode body constituent member makes it possible to produce a lithium ion secondary battery having excellent cycle characteristics.
- the load F1 for example, a load applied to the sheet when the SOC is 80% can be adopted.
- the load F2 a load applied to the sheet when the SOC is 30% can be employed.
- the condition (1) is that a load is applied at a speed of 23.5 [mN / sec] until the upper limit load 235 [mN] is reached. For 10 seconds, the load is removed at a speed of 23.5 [mN / sec] until the lower limit load is reached 23.5 [mN], and the lower limit load is maintained for 10 seconds.
- the condition (2) is that a load is applied at a speed of 2.35 [mN / sec] until the upper limit load 235 [mN] is reached, and then a lower limit load 23 at a speed of 2.35 [mN / sec]. It may be a condition to remove the load until reaching 5 [mN].
- any of the positive electrode sheet, the negative electrode sheet, and the separator sheet that satisfies 0.8 ⁇ a / b ⁇ 1.5 is selected.
- the battery performance is reduced with respect to use in a mode including repeated high-rate charge / discharge. It is possible to produce a lithium ion secondary battery that is better suppressed and excellent in cycle characteristics.
- this invention provides the lithium ion secondary battery provided with the electrode body of the form with which the positive / negative electrode sheet was piled up via the separator sheet as another side surface.
- at least one of the positive electrode sheet, the negative electrode sheet, and the separator sheet includes the following (1) and (2): (1) A process of applying a load up to a predetermined load F1 [mN] at a speed of A [mN / sec] and a process of removing a load up to a predetermined load F2 [mN] at a speed of A [mN / sec] are included.
- the load F1 and the load F2 are applied to the sheet in a range of SOC assumed in normal use of the lithium ion secondary battery, respectively.
- Upper and lower limits of load since the load (pressure) applied to each electrode body constituent member is assumed in the SOC range (for example, approximately 20% to 90%) during normal use of the battery, the electrode body during normal use of the battery is assumed.
- At least one of the constituent members has sufficient load resistance, and it is possible to provide a lithium ion secondary battery excellent in cycle characteristics having the electrode body constituent member.
- the load F1 for example, a load applied to the sheet when the SOC is 80% can be adopted.
- the load F2 a load applied to the sheet when the SOC is 30% can be employed.
- the condition of (1) is such that a load is applied at a speed of 23.5 [mN / sec] until the upper limit load 235 [mN] is reached, After holding the upper limit load for 10 seconds, the load may be removed at a speed of 23.5 [mN / sec] until the lower limit load reaches 23.5 [mN], and the lower limit load may be held for 10 seconds.
- the condition (2) is that a load is applied at a speed of 2.35 [mN / sec] until the upper limit load 235 [mN] is reached, and then a lower limit load 23 at a speed of 2.35 [mN / sec]. It may be a condition to remove the load until reaching 5 [mN].
- all of the positive electrode sheet, the negative electrode sheet, and the separator sheet satisfy 0.8 ⁇ a / b ⁇ 1.5.
- all of the electrode body constituting members satisfy 0.8 ⁇ a / b ⁇ 1.5, a decrease in battery performance is better suppressed with respect to use in a mode including repeated high-rate charge / discharge.
- a lithium ion secondary battery having excellent cycle characteristics can be provided.
- a vehicle including a lithium ion secondary battery manufactured by any of the methods disclosed herein or any lithium ion secondary battery disclosed herein.
- the lithium ion secondary battery provided by the present invention may exhibit characteristics suitable as a lithium ion secondary battery mounted on a vehicle (for example, excellent cycle characteristics). Therefore, the lithium ion secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.
- the present invention provides, as another aspect, at least one of a positive electrode sheet, a negative electrode sheet, and a separator sheet used for a lithium ion secondary battery including an electrode body in which positive and negative electrode sheets are stacked with a separator sheet interposed therebetween.
- a method for evaluating durability of a member with respect to charge and discharge for each member include the following (1) and (2): (1) A process of applying a load up to a predetermined load F1 [mN] at a speed of A [mN / sec] and a process of removing a load up to a predetermined load F2 [mN] at a speed of A [mN / sec] are included.
- lithium ions that are assumed to be used in a charge / discharge cycle including a high rate discharge of 50 A or more (for example, 50 A to 250 A), or even 100 A or more (for example, 100 A to 200 A).
- Secondary battery Large capacity type with a theoretical capacity of 1Ah or more (more than 3Ah) and used in charge / discharge cycle including high rate discharge of 5C or more (eg 5C-50C) and 20C or more (eg 20C-40C) And lithium ion secondary batteries that are assumed to be used.
- a preferable application target of the technology disclosed herein is a lithium ion secondary battery in which an electrode body is housed in a battery case having a square shape (typically a flat rectangular parallelepiped shape). Further, as a more preferable embodiment, a plurality of the above-mentioned square-shaped lithium ion secondary batteries are arranged with their flat surfaces facing each other, and are constrained in the arrangement direction (unit cell). An example is a lithium ion secondary battery.
- FIG. 6 is a graph showing a change in resistance ratio in a charge / discharge cycle test of lithium ion secondary batteries according to Examples 13 to 20.
- FIG. 10 is a graph showing resistance ratios in charge / discharge cycle tests (4000th cycle) of lithium ion secondary batteries according to Examples 13 to 20. It is a side view which shows typically the vehicle (automobile) provided with the battery which concerns on this invention.
- the ratio (a / b) between the inclination a and the inclination b is within a predetermined range for at least one member of the positive electrode sheet, the negative electrode sheet, and the separator sheet.
- the SOC range assumed in normal use of the lithium ion secondary battery to which the technology disclosed herein is applied for example, a range of approximately 20% to 90%, a range of approximately 20% to 80%, approximately In the range of 30% to 80%, etc.
- high rate conditions for example, 10C to 30C
- the pressure value P [MPa] is measured.
- an assembled battery (typically, a plurality of lithium ion secondary batteries (unit cells) are arranged in a predetermined direction and restrained so that a predetermined restraining force is applied) is constructed.
- a measurement is performed by inserting a commercially available pressure sensor into the electrode body of the unit cell.
- a load (test force) F [mN] to be applied to the electrode body constituting member is determined from the pressure change (approximately 0.5 MPa to 12 MPa, for example, 1 MPa to 10 MPa).
- the pressure applied to the electrode body constituting member is typically the largest at the upper limit of the SOC assumed in normal use and the smallest at the lower limit of the SOC. Therefore, normally, the pressure values at the upper and lower limits of the SOC can be adopted as P1 and P2.
- the load applied to the electrode body constituent member is defined as load F1
- the load corresponding to the minimum pressure value P2 applied to the electrode body is defined as load F2
- the load applied to the electrode body constituent member is preferably in the range of F2 ⁇ F ⁇ F1.
- a load is applied to the electrode member constituting member at the load speed A [mN / sec] of the fast cycle up to the load F1 [mN] (the load F1 may be held as necessary), and then the load A cycle of removing the load up to the load F2 [mN] at a speed A [mN / sec] (the load F2 may be held as necessary) n times (where n ⁇ 3, for example, n is 3 to 10 times) , Preferably 3 times.) Repeat (fast load-unload cycle).
- one cycle a process of applying a load up to the load F1
- one unloading a process of removing the load up to the load F2 on the electrode body constituting member are defined as one cycle.
- a load is applied to the electrode body component at the load speed B [mN / sec] of the slow cycle up to the load F1 [mN] (the load F1 may be held as necessary), and then the above-mentioned A cycle of removing the load up to the load F2 [mN] at the load speed B [mN / sec] (the load F2 may be held as necessary) n times (where n ⁇ 3, for example, n is 3 to 10) Times, preferably 3 times) (low load-unload cycle).
- FIG. 4 is a graph showing a pattern of a load cycle applied to the battery constituent member in an example described later.
- a load F1 [mN] here, a load speed A [mN / sec] (here 23.5 [mN / sec]) is applied to the electrode body constituent member. 235 [mN]) and hold the load F1 for 10 seconds, and then remove the load up to the load F2 [mN] (here, 23.5 [mN]) at the load speed A, and reduce the load F2 to 10
- the cycle of holding for 2 seconds is repeated 3 times.
- a load F1 [mN] (here, 235 [mN]) is applied to the electrode body constituent member at a load speed B [mN / second] (here, 2.35 [mN / second]).
- the cycle of removing the load up to the load F2 [mN] (here 23.5 [mN]) at the load speed B is repeated three times. In this way, it is possible to simulate the difference in the cycle change pattern of the load applied to the electrode body constituting member and the load to be removed resulting from the difference in charge / discharge rate (fast cycle (high rate) and slow cycle (low rate)).
- the thickness (compressibility) of the electrode body constituent member when a load is applied to the electrode body constituent member up to the load F1 [mN] at the load speed A [mN / sec] of the fast cycle Thereafter, the thickness (recovery rate) of the electrode body constituting member when the load is removed up to the load F2 [mN] at the load speed A [mN / sec] is obtained, and a test is repeated n times.
- the thickness (sheet thickness) of the electrode body constituting member before the above test is performed on the electrode body constituting member is 100 (%), the sheet thickness (%) is the vertical axis, and load-unloading frequency.
- the thickness (compression rate) of the electrode body constituent member when a load is applied up to the load F1 is expressed as a percentage with respect to the thickness of the electrode body constituent member before the start of the test.
- the thickness (recovery rate) of the electrode body constituent member when the load is removed up to the load F2 is expressed as a percentage with respect to the thickness of the electrode body constituent member before the start of the test.
- the method of evaluating the durability against charge / discharge of the electrode body constituting member disclosed herein is the ratio of the slope a / b of the fast cycle straight line a and the slow cycle straight line b obtained in the above test.
- An electrode body constituting member including a step of determining a non-defective product when the inclination ratio a / b satisfies a predetermined numerical range and determining a defective product when not satisfying the predetermined numerical range.
- the predetermined numerical range is preferably 0.8 ⁇ a / b ⁇ 1.5.
- a / b is more than 1.5, there is a large difference between the change in the thickness of the fast cycle sheet and the change in the thickness of the slow cycle sheet, and not only the low rate charge / discharge but also the high rate charge / discharge. In such a usage mode involving the battery, the sheet (typically the electrode body) may be deformed, and the battery performance may be deteriorated.
- the predetermined numerical range is more preferably 0.8 ⁇ a / b ⁇ 1.2.
- the following methods etc. can be mentioned as a method of adjusting inclination ratio a / b to a predetermined numerical range (for example, the range of 0.8 ⁇ a / b ⁇ 1.5).
- the electrode body constituent member is a separator sheet (typically, a porous resin sheet is used)
- the change in the material of the separator sheet, the change in the thickness (film thickness) of the separator examples include changing the porosity and changing the air permeability of the separator sheet.
- the electrode body constituting member is a positive electrode sheet, the property of the positive electrode active material (for example, particle size, shape, etc.) is changed, and the composition of the positive electrode active material (for example, the type and amount of binder used).
- Examples of the method include a method of changing the density of the positive electrode active material layer by changing the degree of press during production of the positive electrode sheet.
- the “positive electrode active material” is an active material on the positive electrode side capable of reversibly occluding and releasing (typically inserting and removing) chemical species (here, lithium ions) that serve as charge carriers in the secondary battery.
- the electrode body constituting member is a negative electrode sheet
- the density of the negative electrode active material layer can be increased by changing the properties of the negative electrode active material (for example, particle size, shape, etc.) and changing the degree of pressing during the preparation of the negative electrode sheet.
- a method such as a changing method may be mentioned.
- the “negative electrode active material” refers to an active material on the negative electrode side capable of reversibly occluding and releasing (typically inserting and releasing) chemical species (here, lithium ions) that serve as charge carriers in the secondary battery.
- chemical species here, lithium ions
- the above test can be carried out by using an appropriate apparatus such as a dynamic ultra micro hardness tester (DUH-W201; manufactured by Shimadzu Corporation).
- the electrode body provided in the lithium ion secondary battery disclosed herein A configuration similar to the conventional one can be taken.
- the positive electrode sheet (positive electrode) disclosed herein is a positive electrode for a lithium ion secondary battery including a positive electrode current collector and a positive electrode active material layer formed on the current collector.
- a positive electrode current collector constituting such a positive electrode a metal current collector made of the same material as the current collector used for the positive electrode of a conventional lithium ion secondary battery can be used.
- an aluminum material or an alloy material mainly composed of aluminum is preferable as a constituent material of the positive electrode current collector of this type of battery.
- the shape of the positive electrode current collector is preferably a sheet shape. In this case, the thickness is preferably set within a range of about 10 ⁇ m to 30 ⁇ m, for example.
- the positive electrode active material contained in the positive electrode active material layer of the positive electrode sheet disclosed herein is not particularly limited in composition and shape as long as it is a positive electrode active material having a property capable of realizing the object of the present invention.
- a typical positive electrode active material includes a composite oxide containing lithium and at least one transition metal element.
- cobalt lithium composite oxide (LiCoO 2 ), nickel lithium composite oxide (LiNiO 2 ), manganese lithium composite oxide (LiMn 2 O 4 ), or nickel / cobalt-based LiNi x Co 1-x O 2 ( 0 ⁇ x ⁇ 1), cobalt / manganese-based LiCo x Mn 1-x O 2 (0 ⁇ x ⁇ 1), nickel / manganese-based LiNi x Mn 1-x O 2 (0 ⁇ x ⁇ 1) and LiNi x Mn 2-x O 4 (0 ⁇ x ⁇ 2), so-called binary lithium-containing composite oxide containing two kinds of transition metal elements, or nickel, cobalt, containing three kinds of transition metal elements
- a ternary lithium-containing composite oxide such as manganese may be used.
- the positive electrode active material has a general formula of LiMAO 4 (where M is at least one metal element selected from the group consisting of Fe, Co, Ni and Mn, and A is P, Si, S and A polyanionic compound represented by the following formula is also preferably used: an element selected from the group consisting of V.
- A is P and / or Si (for example, LiFePO 4 , LiFeSiO 4 , LiCoPO 4 , LiCoSiO 4 , LiFe 0.5 Co 0.5 PO 4 , LiFe 0.5 Co 0.5 SiO 4 given as LiMnPO 4, LiMnSiO 4, LiNiPO 4 , LiNiSiO 4) is particularly preferred polyanionic compound.
- the positive electrode active material disclosed herein preferably has, for example, a tap density in the range of about 1.2 to 1.7 g / cm 3 (g / cc).
- a tap density in the range of about 1.2 to 1.7 g / cm 3 (g / cc).
- the value measured based on JISZ2512 is employable.
- a compound constituting such a positive electrode active material can be prepared and provided by, for example, a conventionally known method.
- the oxide can be prepared by mixing several raw material compounds appropriately selected according to the atomic composition at a predetermined molar ratio and firing the mixture at a predetermined temperature by an appropriate means. Further, the fired product is pulverized, granulated and classified by an appropriate means to obtain a granular positive electrode active material powder substantially composed of secondary particles having a desired average particle size and / or particle size distribution. be able to.
- the preparation method itself of a positive electrode active material does not characterize this invention at all.
- the conductive material contained in the positive electrode active material layer formed on the positive electrode sheet (positive electrode) disclosed herein may be any conductive material that has been conventionally used in this type of secondary battery. It is not limited to.
- carbon materials such as carbon powder and carbon fiber can be used.
- As the carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black), graphite powder, and the like can be used. Among these, you may use together 1 type, or 2 or more types.
- an aqueous liquid composition as a composition for forming the positive electrode active material layer.
- a polymer material that is dissolved or dispersed in water can be preferably used.
- Cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), etc .; polyvinyl alcohol (PVA) And the like are exemplified.
- polymer materials that can be dispersed in water (water-dispersible) include fluorine-based resins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA); vinyl acetate copolymer Combined; rubbers such as styrene butadiene rubber (SBR) are exemplified.
- fluorine-based resins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA); vinyl acetate copolymer Combined; rubbers such as styrene butadiene rubber (SBR) are exemplified.
- a solvent-based liquid composition when a solvent-based liquid composition is used as the composition for forming the positive electrode active material layer, it dissolves in an organic solvent (non-aqueous solvent) such as polyvinylidene fluoride (P
- the “aqueous liquid composition” is a concept indicating a composition using water or a mixed solvent mainly composed of water (aqueous solvent) as a dispersion medium of the active material.
- aqueous solvent aqueous solvent
- one or more organic solvents lower alcohol, lower ketone, etc.
- the “solvent-based liquid composition” is a concept indicating a composition in which a dispersion medium of an active material is mainly an organic solvent (non-aqueous solvent).
- the organic solvent for example, N-methylpyrrolidone (NMP) can be used.
- the positive electrode sheet (positive electrode) disclosed herein can be suitably manufactured, for example, generally by the following procedure.
- a positive electrode active material layer forming paste is prepared by dispersing the above-described positive electrode active material, conductive material, binder material soluble in an organic solvent, and the like in an organic solvent.
- the prepared paste is applied to a sheet-like positive electrode current collector, dried, and then compressed (pressed) to form a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
- a positive electrode sheet can be produced.
- the negative electrode sheet disclosed here is a negative electrode sheet for a lithium ion secondary battery including a negative electrode current collector and a negative electrode active material layer formed on the current collector.
- a negative electrode current collector constituting such a negative electrode sheet for example, a copper material, a nickel material, or an alloy material mainly composed thereof is preferably used.
- the shape of the negative electrode current collector is preferably a sheet.
- the thickness is preferably set within a range of about 6 ⁇ m to 30 ⁇ m, for example.
- a negative electrode active material contained in the negative electrode active material layer formed in the negative electrode sheet (negative electrode) disclosed here one kind or two or more kinds conventionally used for lithium ion secondary batteries are used without any particular limitation. be able to.
- carbon materials such as graphite (graphite), oxide materials such as lithium titanium oxide (Li 4 Ti 5 O 12 ), alloys such as tin, aluminum (Al), zinc (Zn), silicon (Si), etc.
- a typical example is a powdery carbon material made of graphite or the like.
- graphite particles can be preferably used.
- the negative electrode active material disclosed here preferably has, for example, a tap density in the range of about 0.7 to 1.0 g / cm 3 (g / cc).
- a value of tap density the value measured based on JISZ2512 is employable.
- the negative electrode active material layer formed in the negative electrode sheet (negative electrode) disclosed herein may contain one or more materials that can be blended in the positive electrode active material layer in addition to the negative electrode active material. It can be included. As such a material, various materials that can function as a binder as listed as a constituent material of the positive electrode active material layer can be similarly used.
- the negative electrode sheet (negative electrode) disclosed herein can be produced by the same method as the positive electrode sheet (positive electrode).
- a paste-like or slurry-like composition (hereinafter referred to as a negative electrode active material layer forming paste) is prepared by dispersing a negative electrode active material layer and a binder in an appropriate solvent.
- the prepared paste is applied to a negative electrode current collector, dried, and then compressed (pressed) to form a negative electrode sheet including a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector. Can be produced.
- a separator sheet similar to the conventional one can be used.
- a porous sheet made of resin a microporous resin sheet
- polyolefin resins such as polyethylene (PE), polypropylene (PP), and polystyrene are preferable.
- a porous structure such as a PE sheet, a PP sheet, a two-layer structure sheet in which a PE layer and a PP layer are laminated, and a three-layer structure sheet in which one PE layer is sandwiched between two PP layers.
- a polyolefin sheet can be suitably used.
- the thickness of the separator sheet is preferably, for example, in the range of about 10 ⁇ m to 30 ⁇ m, more preferably in the range of about 15 ⁇ m to 25 ⁇ m, considering use in an aspect including repeated high-rate charge / discharge. .
- the air permeability of the separator sheet is preferably in the range of, for example, about 200 to 500 seconds / 100 cc, and more preferably in the range of about 300 to 400 seconds / 100 cc.
- a separator sheet (for example, a porous polyolefin sheet) having a thickness and / or air permeability within the above range tends to satisfy the preferable a / b disclosed herein.
- the air permeability a value measured according to JIS P8117 is adopted.
- a nonaqueous electrolytic solution in which a lithium salt that can function as an electrolyte is dissolved in a nonaqueous solvent (organic solvent) can be used.
- a lithium salt conventionally used in lithium ion secondary batteries can be appropriately selected and used.
- the lithium salt include LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 , LiCF 3 SO 3 and the like.
- Such electrolytes can be used alone or in combination of two or more.
- a particularly preferred example is LiPF 6 .
- non-aqueous solvent examples include carbonates such as ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and propylene carbonate (PC).
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- PC propylene carbonate
- Such non-aqueous solvents can be used alone or in combination of two or more.
- the at least one member of the positive electrode sheet, the negative electrode sheet, and the separator sheet constituting the electrode body a member that passes the evaluation method (evaluation test) of the electrode body constituent member (that is, judged to be a non-defective product) was used.
- the method for producing a lithium ion secondary battery will be described in detail by taking, as an example, a lithium ion secondary battery having a configuration in which an electrode body and a nonaqueous electrolytic solution are housed in a battery case, but the present invention is limited to such an embodiment. Is not intended.
- the shape (outer shape and size) of the lithium ion secondary battery to be constructed is not particularly limited.
- the outer case may be a thin sheet type constituted by a laminate film or the like, and the battery outer case may have a square shape, a cylindrical shape, or a small button shape.
- a particularly preferable application target is a battery case having a square shape (typically a flat rectangular parallelepiped shape).
- symbol is attached
- the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.
- FIG. 1 is a perspective view schematically showing a lithium ion secondary battery according to an embodiment.
- FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
- the lithium ion secondary battery 10 includes at least one of a positive electrode, a negative electrode, and a separator that are determined to be non-defective products in the above-described electrode body component evaluation method (evaluation test).
- a wound electrode body 50 hereinafter sometimes abbreviated as “electrode body 50”
- electrode body 50 a square shape (typically flat) that accommodates the electrode body 50 and a suitable nonaqueous electrolyte.
- the case 15 includes a box-shaped case main body 30 in which one of the narrow surfaces in the flat rectangular parallelepiped shape is an opening 20, and the opening 20 is attached (for example, welded) to the opening 20. And a lid 25 for closing.
- a material constituting the case 15 the same material as that used in a general lithium ion secondary battery can be used as appropriate, and there is no particular limitation.
- a metal (for example, aluminum, steel, etc.) container, a synthetic resin (for example, a polyolefin resin, a high melting point resin such as a polyamide resin, etc.), or the like can be preferably used.
- the case 15 according to the present embodiment is made of, for example, aluminum.
- the lid body 25 is formed in a rectangular shape that matches the shape of the opening 20 of the case body 30. Further, the lid body 25 is provided with a positive electrode terminal 60 and a negative electrode terminal 70 for external connection, respectively, and a part of these terminals 60, 70 protrudes from the lid body 25 toward the outside of the case 15. It is formed to do. Similarly to the case of the conventional lithium ion secondary battery, the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the case 15 to the outside of the case 15 when the battery is abnormal. .
- the safety valve 40 can be used without particular limitation as long as the safety valve 40 has a mechanism that opens and discharges gas to the outside of the case 15 when the pressure inside the case 15 rises above a predetermined level.
- the lithium ion secondary battery 10 includes a wound electrode body 50 in the same manner as a normal lithium ion secondary battery.
- the electrode body 50 is accommodated in the case main body 30 in a posture in which the winding axis is laid down (that is, in the direction in which the opening 20 is positioned in the lateral direction with respect to the winding axis).
- the electrode body 50 includes a positive electrode sheet (positive electrode) 66 having a positive electrode active material layer 64 formed on the surface of a long sheet-like positive electrode current collector 62 and a negative electrode active material on the surface of a long sheet-like negative electrode current collector 72.
- the negative electrode sheet (negative electrode) 76 on which the material layer 74 is formed is overlapped with the two long separator sheets 80 and wound, and the obtained electrode body 50 is flattened by crushing and ablating from the side surface direction. It is formed into a shape.
- the positive electrode current collector 62 is exposed without forming the positive electrode active material layer 64 at one end portion along the longitudinal direction, while the negative electrode is wound.
- the negative electrode current collector 72 is exposed at one end portion along the longitudinal direction without forming the negative electrode active material layer 74.
- a positive electrode terminal 60 is joined to the exposed end of the positive electrode current collector 62, and is electrically connected to the positive electrode sheet 66 of the wound electrode body 50 formed in the flat shape.
- the negative electrode terminal 70 is joined to the exposed end portion of the negative electrode current collector 72 and is electrically connected to the negative electrode sheet 76.
- the positive and negative electrode terminals 60 and 70 and the positive and negative electrode current collectors 62 and 72 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
- At least one of the positive electrode sheet, the negative electrode sheet, and the separator sheet, which is determined to be a non-defective product by the evaluation method (evaluation test) of the electrode body constituent member, is adopted as the material and the member itself constituting the wound electrode body 50 having the above configuration. As long as it does, it may be the same as the electrode body of the conventional lithium ion secondary battery, and there is no particular limitation.
- the positive electrode sheet 66 is produced by forming a positive electrode active material layer 64 on a long positive electrode current collector (for example, a long aluminum foil) 62.
- a positive electrode active material layer formed by dispersing a positive electrode active material (for example, LiCoO 2 ), a conductive material (for example, graphite), and a binder (for example, PVDF) that is soluble in an organic solvent in an organic solvent (for example, NMP).
- a positive electrode active material for example, LiCoO 2
- a conductive material for example, graphite
- a binder for example, PVDF
- an organic solvent for example, NMP
- the paste can be suitably applied to the positive electrode current collector 62 by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
- an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
- conventionally known compression methods such as a roll press method and a flat plate press method can be employed.
- the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress a plurality of times until a desired thickness is obtained.
- the negative electrode sheet 76 is produced by forming a negative electrode active material layer 74 on a long negative electrode current collector (for example, a long copper foil) 72. That is, a negative electrode active material layer forming paste is prepared by dispersing a negative electrode active material (eg, graphite) and a binder (eg, PVDF) that is soluble in an organic solvent in an organic solvent (eg, NMP). The prepared paste is applied to the negative electrode current collector 72, dried, and then compressed (pressed) to form the negative electrode active material layer 74. Since the formation method itself of the negative electrode active material layer 74 is the same as that of the positive electrode sheet, detailed description is omitted.
- a negative electrode active material layer forming paste is prepared by dispersing a negative electrode active material (eg, graphite) and a binder (eg, PVDF) that is soluble in an organic solvent in an organic solvent (eg, NMP).
- a negative electrode active material eg, graphite
- a binder e
- the prepared positive electrode sheet 66 and negative electrode sheet 76 are stacked together with two separator sheets (for example, porous polyolefin resin) 80 and wound, and the wound electrode body 50 obtained is wound around the case body 30 with a winding shaft. It is accommodated so as to lie down, and a non-supporting solvent such as a mixed solvent of EC and DMC (for example, a mass ratio of 1: 1) containing an appropriate amount (for example, a concentration of 1M) of an appropriate supporting salt (for example, a lithium salt such as LiPF 6 ).
- a non-supporting solvent such as a mixed solvent of EC and DMC (for example, a mass ratio of 1: 1) containing an appropriate amount (for example, a concentration of 1M) of an appropriate supporting salt (for example, a lithium salt such as LiPF 6 ).
- the lithium ion secondary battery 10 of the present embodiment can be constructed by mounting the lid 25 on the opening 20 and sealing (for example, laser welding).
- the manufacturing method of the lithium ion secondary battery disclosed here includes, in advance, a member that satisfies the above a / b as at least one of the electrode body constituent members (that is, the positive electrode sheet, the negative electrode sheet, and the separator sheet). It can be selected (for example, by conducting a preliminary experiment) and implemented using the selected member (a member manufactured under specific conditions, a commercially available material of a predetermined product number, etc.). That is, in carrying out the present invention, it is not necessary to confirm that the above-mentioned member actually satisfies a / b each time.
- this assembled battery 100 includes a plurality of (typically 10 or more, preferably about 10 to 30, for example, 20) lithium ion secondary batteries (unit cells) 10 respectively.
- the positive surfaces 60 and the negative electrodes 70 are inverted one by one so as to be alternately arranged, and the wide surfaces of the case 15 are arranged in the facing direction (stacking direction).
- a cooling plate 110 having a predetermined shape is sandwiched between the arranged cells 10.
- the cooling plate 110 functions as a heat dissipating member for efficiently dissipating the heat generated in each unit cell 10 during use, and preferably a cooling fluid (typically air) between the unit cells 10. ) (For example, a shape in which a plurality of parallel grooves extending vertically from one side of the rectangular cooling plate to the opposite side are provided on the surface).
- a cooling plate made of metal having good thermal conductivity or lightweight and hard polypropylene or other synthetic resin is suitable.
- a pair of end plates (constraint plates) 120 and 120 are disposed at both ends of the unit cell 10 and the cooling plate 110 arranged as described above.
- One or more sheet-like spacer members 150 as length adjusting means may be sandwiched between the cooling plate 110 and the end plate 120.
- the cell 10, the cooling plate 110 and the spacer member 150 arranged in the above manner are applied with a predetermined restraining pressure in the stacking direction by a fastening restraint band 130 attached so as to bridge between both end plates. It is restrained. More specifically, as shown in FIG.
- the unit cell or the like is applied with a predetermined restraining pressure in the arrangement direction. It is restrained by. Thereby, restraint pressure is also applied to the wound electrode body 50 housed in the battery case 15 of each unit cell 10.
- one positive terminal 60 and the other negative terminal 70 are electrically connected by a connecting member (bus bar) 140.
- the assembled battery 100 of the desired voltage is constructed
- ⁇ Positive electrode sheet A> Weigh so that the mass ratio of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, acetylene black as the conductive material and PVDF as the binder is 85: 10: 5. These materials were dispersed in a solvent NMP to prepare a positive electrode active material layer forming paste. At this time, LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder having a tap density of 1.4 g / cc was used. The paste was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m so that the total coating amount on both sides was 13.8 mg / cm 2 (based on solid content), dried, and then pressed to produce positive electrode sheet A did.
- ⁇ Positive electrode sheet B> Weigh so that the mass ratio of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, acetylene black as the conductive material and PVDF as the binder is 85: 10: 5. These materials were dispersed in a solvent NMP to prepare a positive electrode active material layer forming paste. At this time, LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder having a tap density of 1.8 g / cc was used.
- a negative electrode active material layer forming paste was prepared by weighing the graphite as the negative electrode active material and SBR as the binder to a mass ratio of 95: 5 and dispersing these materials in solvent ion-exchanged water.
- a graphite powder having a tap density of 0.8 g / cc was used.
- the paste was applied to both sides of a copper foil having a thickness of 10 ⁇ m so that the total coating amount on both sides was 5 mg / cm 2 (based on solid content), dried, and then pressed to prepare a negative electrode sheet A.
- ⁇ Negative electrode sheet B> A negative electrode active material layer forming paste was prepared by weighing the graphite as the negative electrode active material and SBR as the binder to a mass ratio of 95: 5 and dispersing these materials in solvent ion-exchanged water. A graphite powder having a tap density of 1.1 g / cc was used. A negative electrode sheet B was produced in the same manner as the negative electrode sheet A except that the paste was used.
- Test load 23.5 mN (2.4 gf) to 235 mN (24 gf)
- Load speed Fast cycle; 23.5 mN / sec, holding time 10 sec: Slow cycle; 2.35 mN / sec, holding time 0 sec
- Test temperature (25 ° C)
- FIG. 4 is a graph showing changes in the load applied to the sheet during a fast cycle and a slow cycle.
- a load up to a maximum load of 235 mN is applied to each sheet with a truncated cone-shaped indenter at the load speed of the above fast cycle, and after reaching 235 mN, the load is held for 10 seconds. The thickness (compression rate) of the sheet was obtained.
- the load is removed to the minimum load of 23.5 mN at the load speed of the above fast cycle, and after reaching 23.5 mN, the load is maintained for 10 seconds, and the thickness (recovery rate) of the sheet at that time is obtained three times. Repeated.
- FIG. 4 is a graph showing changes in the load applied to the sheet during a fast cycle and a slow cycle.
- a load up to a maximum load of 235 mN is applied to each sheet with a truncated cone-shaped indenter at the load speed of the slow cycle, and after reaching 235 mN, the thickness of the sheet at that time ( Compression ratio). Then, the load was removed to the minimum load of 23.5 mN at the load speed of the fast cycle, and after reaching 23.5 mN, the cycle of obtaining the sheet thickness (recovery rate) at that time was repeated three times.
- a 18650 type lithium ion secondary battery was produced as follows. LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and PVDF are weighed so that the mass ratio is 85: 10: 5, and these materials are dispersed in NMP. Thus, a positive electrode active material layer forming paste was prepared. The paste was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m so that the total coating amount on both sides was 10 mg / cm 2 (solid content basis), dried, and then pressed to form a positive electrode sheet (hereinafter referred to as “positive electrode”). Sheet C ”) was prepared.
- Example 8 A lithium ion secondary battery according to Example 8 was produced in the same manner as in Example 7 except that the separator sheet B was used instead of the separator sheet A.
- Example 9> the positive electrode sheet A was used in place of the positive electrode sheet C according to Example 7.
- separator sheet C a PE single layer film having a thickness of 20 ⁇ m and an air permeability of 290 seconds / 100 cc was used.
- separator sheet C a PE single layer film having a thickness of 20 ⁇ m and an air permeability of 290 seconds / 100 cc was used.
- Other points were the same as in Example 7, and a lithium ion secondary battery according to Example 9 was produced.
- Example 10> A lithium ion secondary battery according to Example 10 was produced in the same manner as in Example 9, except that the positive electrode sheet B was used instead of the positive electrode sheet A.
- Example 11> In this example, the negative electrode sheet A was used in place of the negative electrode sheet C in Example 7. Moreover, the separator sheet C was used as a separator sheet. Other points were the same as in Example 7, and a lithium ion secondary battery according to Example 11 was produced. ⁇ Example 12> A lithium ion secondary battery according to Example 12 was produced in the same manner as in Example 11 except that the negative electrode sheet B was used instead of the negative electrode sheet A.
- each battery adjusted to a SOC of 60%, and then the resistance increase rate of each lithium ion secondary battery was measured.
- discharging for 10 seconds at a rate of 20 C, resting for 5 seconds, then charging for 100 seconds at a rate of 2 C, and then resting for 145 seconds is defined as one cycle, which is 4000 cycles. went.
- each battery after 4000 cycles was discharged at a constant current of 10 C for 10 seconds, the open circuit voltage before discharge and the voltage after 10 seconds of discharge were measured, and the voltage drop that was the difference between the two was obtained, and this was calculated as the discharge current.
- the internal resistance (the internal resistance after the cycle test) was determined by dividing by.
- the resistance increase rate (%) after 4000 cycles was determined by the following formula ⁇ (internal resistance after cycle test) ⁇ (initial internal resistance) ⁇ / (initial internal resistance) ⁇ 100; The obtained results are shown in Table 2. Further, for each battery adjusted to a SOC of 60% after measuring the internal resistance, 4000 cycles of charge and discharge were repeated at a temperature of ⁇ 15 ° C., and then the resistance increase rate of each lithium ion secondary battery was measured. That is, as one cycle, an operation of discharging at a temperature of ⁇ 15 ° C. for 10 seconds at a rate of 20 C and resting for 5 seconds, then charging for 100 seconds at a rate of 2 C and then resting for 145 seconds is defined as one cycle. This was performed 4000 cycles. The resistance increase rate (%) after 4000 cycles was determined in the same manner as described above. The obtained results are shown in Table 2.
- the battery includes electrode body constituent members (separator sheet, positive electrode sheet and negative electrode sheet) in which the ratio X of the gradient of the fast cycle and the gradient of the slow cycle is in the range of 0.8 ⁇ X ⁇ 1.5. 7, 9 and 11 are 13% or less at 25 ° C. and 21% or less at ⁇ 15 ° C. compared to batteries 8, 10 and 12 including the electrode body constituting member where X is outside the above range.
- the resistance increase rate was low. In particular, a significant difference was observed in the resistance increase rate at ⁇ 15 ° C.
- Example 13> A lithium ion secondary battery according to Example 13 was produced in the same manner as in Example 7 except that a wound electrode body including the separator sheet A, the positive electrode sheet A, and the negative electrode sheet A was used.
- Example 14> A lithium ion secondary battery according to Example 14 was produced in the same manner as Example 13 except that the separator sheet B, the positive electrode sheet B, and the negative electrode sheet B were used.
- Example 15> A lithium ion secondary battery according to Example 15 was produced in the same manner as Example 13 except that the negative electrode sheet B was used instead of the negative electrode sheet A.
- Example 16> A lithium ion secondary battery according to Example 16 was produced in the same manner as Example 13 except that the positive electrode sheet B was used instead of the positive electrode sheet A.
- Example 17> A lithium ion secondary battery according to Example 17 was produced in the same manner as Example 13 except that the separator sheet B was used instead of the separator sheet A.
- Example 18> instead of the separator sheet A, a separator sheet B was used. Further, a negative electrode sheet B was used in place of the negative electrode sheet A. Otherwise in the same manner as Example 13, a lithium ion secondary battery according to Example 18 was produced.
- Example 19> Instead of the positive electrode sheet A, a positive electrode sheet B was used.
- Example 20 Instead of the separator sheet A, a separator sheet B was used. Further, a positive electrode sheet B was used in place of the positive electrode sheet A. Other points were the same as in Example 13, and a lithium ion secondary battery according to Example 20 was produced.
- the resistance ratio of the battery of Example 13 that satisfies 0.8 ⁇ X ⁇ 1.5 is the smallest among all the electrode body constituent members of the separator sheet, the positive electrode sheet, and the negative electrode sheet, and is almost after 4000 cycles. It was confirmed that the internal resistance did not change. Subsequently, the resistance ratio of the batteries (Examples 15, 16 and 17) including two of the electrode body constituent members having X in the above range was small. On the other hand, it was confirmed that the resistance ratio of the battery of Example 14 in which X was out of the above range for all battery constituent members was the highest and the resistance increase was the largest. From the above, it was shown that a lithium ion secondary battery having excellent cycle characteristics can be produced by appropriately combining electrode body constituent members in which X satisfies 0.8 ⁇ X ⁇ 1.5.
- the lithium ion secondary battery according to the present invention can output a large current and is excellent in cycle characteristics as described above. Therefore, the lithium ion secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 14, the present invention provides a vehicle (typically) including such a lithium ion secondary battery 10 (typically, a battery pack 100 formed by connecting a plurality of the batteries 10 in series) as a power source. Is provided with an automobile, in particular, an automobile equipped with an electric motor such as a hybrid automobile, an electric automobile, and a fuel automobile.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
(1)A[mN/秒]の速度で所定の荷重F1[mN]まで荷重を加える過程と、A[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む高速負荷-除荷サイクルをn回(ただしn≧3、例えばnは3~10回、好ましくは3回。)繰り返すこと;および、
(2)B[mN/秒](ただし、B≦0.2A)の速度で所定の荷重F1[mN]まで荷重を加える過程と、B[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む低速負荷-除荷サイクルをn回(ただしn≧3、例えばnは3~10回、好ましくは3回。)繰り返すこと;
の各条件下における試験において、試験開始前(即ち、シート状の電極体構成部材に荷重を加える前)におけるシートの厚みを100%とし、シートの厚みを縦軸、負荷‐除荷回数を横軸として、荷重F1における1~nサイクル目のシートの厚みの推移および荷重F2における1~nサイクル目のシートの厚みの推移をそれぞれ外挿してそれらの交点に相当するシートの厚みおよび負荷‐除荷回数を求めて、試験開始前のシートの厚み(即ち0サイクル目のシートの厚み)と上記交点とを結ぶ直線の傾きを求めて、前記(1)の条件に基づいて求めた傾きをaとし、前記(2)の条件に基づいて求めた傾きをbとした場合に、0.8<a/b<1.5を満たすように選択される。
また、本明細書において「高速負荷-除荷サイクル」とは、電池の通常使用時におけるリチウムイオン二次電池のハイレート(例えば、5C~50C、好ましくは10C~30C)充放電時における電極体構成部材にかかる荷重の変化を模擬したサイクルをいう。
さらにまた、本明細書において「低速負荷-除荷サイクル」とは、電池の通常使用時におけるリチウムイオン二次電池のローレート(例えば、1C~5C、好ましくは2C~3C)充放電時における電極体構成部材にかかる荷重の変化を模擬したサイクルをいう。
a/bが上記範囲にある電極体構成部材は、ローレート充放電時の荷重変化に対する挙動(応答)と、ハイレート充放電時の荷重変化に対する挙動との差が小さい。すなわち、上記条件を満たす電極体構成部材は、ハイレート充放電を含む種々の充放電レートにおいて安定した性能(例えば耐荷重性)を示す。かかる部材を用いて構成された電極体を備える電池によると、ハイレート充放電の繰り返しを含む態様での使用に対しても、電池の容量劣化を効果的に抑制することができる。したがって、上記の条件を満たす電極体構成部材を用いることにより、よりサイクル特性に優れたリチウムイオン二次電池を作製することが可能となる。
(1)A[mN/秒]の速度で所定の荷重F1[mN]まで荷重を加える過程と、A[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む高速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;および、
(2)B[mN/秒](ただし、B≦0.2A)の速度で所定の荷重F1[mN]まで荷重を加える過程と、B[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む低速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;
の各条件下における試験において、
試験開始前におけるシートの厚みを100%とし、シートの厚みを縦軸、負荷‐除荷回数を横軸として、荷重F1における1~nサイクル目のシートの厚みの推移および荷重F2における1~nサイクル目のシートの厚みの推移をそれぞれ外挿してそれらの交点に相当するシートの厚みおよび負荷‐除荷回数を求めて、試験開始前のシートの厚みと上記交点とを結ぶ直線の傾きを求めて、前記(1)の条件に基づいて求めた傾きをaとし、前記(2)の条件に基づいて求めた傾きをbとした場合に、0.8<a/b<1.5を満たしている。これにより、ハイレート充放電を含む種々の充放電レートにおいて安定した性能(例えば耐荷重性)を示し、ハイレート充放電の繰り返しを含む態様での使用に対しても、電池の容量劣化を効果的に抑制することができる。この結果、よりサイクル特性に優れたリチウムイオン二次電池を提供することができる。
(1)A[mN/秒]の速度で所定の荷重F1[mN]まで荷重を加える過程と、A[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む高速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;および、
(2)B[mN/秒](ただし、B≦0.2A)の速度で所定の荷重F1[mN]まで荷重を加える過程と、B[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む低速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;
の各条件下における試験において、
試験開始前におけるシートの厚みを100%とし、シートの厚みを縦軸、負荷‐除荷回数を横軸として、荷重F1における1~nサイクル目のシートの厚みの推移および荷重F2における1~nサイクル目のシートの厚みの推移をそれぞれ外挿してそれらの交点に相当するシートの厚みおよび負荷‐除荷回数を求める工程と、試験開始前のシートの厚みと上記交点とを結ぶ直線の傾きを求める工程と、
前記(1)の条件に基づいて求めた傾きをaとし、前記(2)の条件に基づいて求めた傾きをbとした場合に、0.8<a/b<1.5を満たす場合には良品と判断し、満たさない場合には不良品と判断する工程とを包含する。
本発明によって提供される評価方法によると、ハイレート充放電の繰り返しを含む態様での使用に対しても電池性能に優れるリチウムイオン二次電池の構築に適した電極体構成部材を選択することができる。
また、ここで開示される技術の好ましい適用対象として、角型形状(典型的には扁平な直方体形状)の電池ケースに電極体が収容された形態のリチウムイオン二次電池が挙げられる。
また、さらに好ましい形態として、複数個の上記角型形状のリチウムイオン二次電池を、それらの扁平面を対向させて配列し、その配列方向に拘束してなる組電池の構成要素(単電池)たるリチウムイオン二次電池が挙げられる。
まず、ここに開示される技術の適用対象たるリチウムイオン二次電池の通常の使用において想定されるSOCの範囲(例えば、凡そ20%~90%の範囲、凡そ20%~80%の範囲、凡そ30%~80%の範囲、等であり得る。)において、ハイレート条件下(例えば、10C~30C。)で電極体(即ち、電極体構成部材である正極シート、負極シートおよびセパレータシート)に加わる圧力値P[MPa]を測定する。具体的には、例えば、組電池(典型的には、複数のリチウムイオン二次電池(単電池)が所定方向に配列されて所定の拘束力が加わるように拘束されている。)が構築された状態を想定して、単電池に拘束力を加えた状態(単電池を外から締め付けた状態)で単電池の電極体に市販の圧力センサを挟み込んで測定する。
このときの圧力変化(凡そ0.5MPa~12MPa、例えば1MPa~10MPa。)から電極体構成部材に加える荷重(試験力)F[mN]を求める。荷重Fは、電極体構成部材と該電極体構成部材に荷重を加える圧子とが接触する部分の面積S[mm2]とから、F=P/Sによって求まる。
ここで、電極体構成部材に加わる圧力は、典型的には、通常の使用において想定されるSOCの上限において最も大きく、SOCの下限において最も小さい。従って、通常は、上記SOCの上限および下限における圧力値をP1およびP2として採用することができる。さらに、電極体構成部材に加わる最大の圧力値P1に対応する荷重を荷重F1とし、電極体に加わる最小の圧力値P2に対応する荷重を荷重F2とすると、電極体構成部材に加える荷重(試験力)FはF2≦F≦F1の範囲内であることが好ましい。
このとき、電極体構成部材に対して上記試験を行う前におけるその電極体構成部材の厚み(シートの厚み)を100(%)とし、シートの厚み(%)を縦軸、負荷‐除荷回数を横軸とする(奇数回目は負荷を表し、偶数回目は除荷を表しており、1回の負荷と1回の除荷を1サイクルとする。)。なお、上記荷重F1まで荷重を加えたときの電極体構成部材の厚み(圧縮率)は、上記試験開始前の電極体構成部材の厚みに対する百分率で表す。同様に、上記荷重F2まで荷重を取り除いたときの電極体構成部材の厚み(回復率)は、上記試験開始前の電極体構成部材の厚みに対する百分率で表す。
そして、図5に示すように、荷重F1における1~nサイクル目のシートの厚み(圧縮率)の推移および荷重F2における1~nサイクル目のシートの厚み(回復率)の推移をそれぞれ外挿して(このとき圧縮率と回復率はそれぞれ負荷‐除荷回数(サイクル数)と比例関係にあると仮定する)、それらの交点(収束点)におけるシートの厚み(%)と負荷‐除荷回数とを求め、上記交点(収束点)と試験開始前のシートの厚みを表す点(即ち、0サイクル目(負荷‐除荷回数が0回)でシートの厚みが100%を示す点)とを結ぶ直線の傾きaを求める。同様に、上記遅いサイクルの負荷速度B[mN/秒]の条件下の試験で求めた直線の傾きをbとする。このようにしてa,bを求めることができる。
ここで、上記所定の数値範囲を0.8<a/b<1.5とすることが好ましい。この場合、0.8<a/b<1.5を満たす場合には良品と判断して、a/b≦0.8またはa/b≧1.5を満たす場合には不良品と判断する。上記a/bが1.5よりも大きすぎると、速いサイクルのシートの厚みの変化の推移と遅いサイクルのシートの厚みの変化の推移との差が大きく、ローレート充放電のみならずハイレート充放電を伴うような使用態様ではシート(典型的には電極体)に変形が生じてしまい電池性能が低下する虞がある。上記所定の数値範囲を0.8<a/b<1.2とすることがより好ましい。
なお、傾きの比a/bを所定の数値範囲(例えば即ち、0.8<a/b<1.5の範囲)に調整する方法としては、以下の方法等が挙げられ得る。例えば、電極体構成部材がセパレータシート(典型的には、多孔質の樹脂シートが用いられる。)の場合には、セパレータシートの材質の変更、セパレータの厚み(膜厚)の変更、セパレータシートの気孔率の変更、セパレータシートの透気度の変更等の方法が挙げられる。
また、電極体構成部材が正極シートの場合には、正極活物質の性状(例えば、粒径や形状等)の変更、正極活物質の組成(例えば、結着材の種類や使用量等)の変更、正極シート作製時のプレスの程度を変更して正極活物質層の密度を変更する方法等の方法が挙げられ得る。ここで、「正極活物質」とは、二次電池において電荷担体となる化学種(ここではリチウムイオン)を可逆的に吸蔵および放出(典型的には挿入および離脱)可能な正極側の活物質をいう。
さらに、電極体構成部材が負極シートの場合には、負極活物質の性状(例えば、粒径や形状等)の変更、負極シート作製時のプレスの程度を変更して負極活物質層の密度を変更する方法等の方法が挙げられ得る。ここで、「負極活物質」とは、二次電池において電荷担体となる化学種(ここではリチウムイオン)を可逆的に吸蔵および放出(典型的には挿入および離脱)可能な負極側の活物質をいう。
なお、上記試験はダイナミック超微小硬度計(DUH-W201;株式会社島津製作所製)等の適当な装置を使用することにより実施することができる。
ここで開示される正極活物質は、例えば、タップ密度が凡そ1.2~1.7g/cm3(g/cc)の範囲にあるものが好ましい。なお、タップ密度の値としては、JIS Z2512に準拠して測定される値を採用することができる。
ここで開示される負極活物質は、例えば、タップ密度が凡そ0.7~1.0g/cm3(g/cc)の範囲にあるものが好ましい。なお、タップ密度の値としては、JIS Z2512に準拠して測定される値を採用することができる。
なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。
図1および図2に示すように、本実施形態に係るリチウムイオン二次電池10は、上記の電極体構成部材の評価方法(評価試験)において良品と判断された正極、負極およびセパレータの少なくとも一つを具備する捲回電極体50(以下「電極体50」と略称する場合がある。)と、該電極体50および適当な非水電解液を収容する角型形状(典型的には扁平な直方体形状)の電池ケース15とを備える。
正極シート66は、長尺状の正極集電体(例えば長尺状のアルミニウム箔)62の上に正極活物質層64を形成することによって作製される。即ち、正極活物質(例えばLiCoO2)、導電材(例えばグラファイト)および有機溶媒に対して可溶性である結着材(例えばPVDF)を有機溶媒(例えばNMP)に分散させてなる正極活物質層形成用ペーストを調製する。調製した該ペーストを正極集電体62に塗布し、乾燥させた後、圧縮(プレス)することによって正極活物質層64が形成される。
ここで、正極集電体62に上記ペーストを塗付する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター、コンマコーター等の適当な塗付装置を使用することにより、正極集電体62に該ペーストを好適に塗付することができる。また、圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。かかる厚さを調整するにあたり、膜厚測定器で該厚みを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。
なお、ここで開示されるリチウムイオン二次電池の製造方法は、電極体構成部材(即ち、正極シート、負極シートおよびセパレータシート)のうち少なくとも一つとして、上記a/bを満たす部材を事前に(例えば、予備実験を行うことにより)選定しておき、その選定した部材(特定の条件で製造された部材、所定の品番の市販材料等であり得る。)を用いて実施することができる。すなわち、本発明の実施にあたって、その都度上記部材が実際にa/bを満たすことの確認を必要とするものではない。
そして、隣接する単電池10間において、一方の正極端子60と他方の負極端子70とが、接続部材(バスバー)140によって電気的に接続されている。このように各単電池10を直列に接続することにより、所望する電圧の組電池100が構築されている。
<セパレータシートA>
透気度300秒/100cc、厚さ20μmのポリプロピレン/ポリエチレン/ポリプロピレン三層多孔質シートを使用した。
<セパレータシートB>
透気度400秒/100cc、厚さ20μmのポリプロピレン/ポリエチレン/ポリプロピレン三層多孔質シートを使用した。
正極活物質としてのLiNi1/3Co1/3Mn1/3O2と、導電材としてのアセチレンブラックと結着材としてのPVDFとの質量比が85:10:5となるように秤量し、これら材料を溶媒NMPに分散させて正極活物質層形成用ペーストを調製した。このとき、タップ密度が1.4g/ccであるLiNi1/3Co1/3Mn1/3O2粉末を使用した。該ペーストを厚さ15μmのアルミニウム箔の両面に、それら両面の合計塗布量が13.8mg/cm2(固形分基準)となるように塗布して乾燥した後、プレスして正極シートAを作製した。
<正極シートB>
正極活物質としてのLiNi1/3Co1/3Mn1/3O2と、導電材としてのアセチレンブラックと結着材としてのPVDFとの質量比が85:10:5となるように秤量し、これら材料を溶媒NMPに分散させて正極活物質層形成用ペーストを調製した。このとき、タップ密度が1.8g/ccであるLiNi1/3Co1/3Mn1/3O2粉末を使用した。該ペーストを用いた他は正極シートAと同様にして正極シートBを作製した。
負極活物質としての黒鉛と結着材としてのSBRとの質量比が95:5となるように秤量し、これら材料を溶媒イオン交換水に分散させて負極活物質層形成用ペーストを調製した。タップ密度が0.8g/ccである黒鉛粉末を使用した。該ペーストを厚さ10μmの銅箔の両面に、それら両面の合計塗布量が5mg/cm2(固形分基準)となるように塗布して乾燥した後、プレスして負極シートAを作製した。
<負極シートB>
負極活物質としての黒鉛と結着材としてのSBRとの質量比が95:5となるように秤量し、これら材料を溶媒イオン交換水に分散させて負極活物質層形成用ペーストを調製した。タップ密度が1.1g/ccである黒鉛粉末を使用した。該ペーストを用いた他は負極シートAと同様にして負極シートBを作製した。
上記各電極体構成部材につき、以下の試験を行った。
上記各シートを試料とし、ダイナミック超微小硬度計(DUH-W201;株式会社島津製作所製)を用いて、負荷-除荷繰り返し試験(MODE3)によって充放電時にシートに加わる荷重に対する各シートの耐久性を評価した。試験条件を以下に示す。
<試験条件>
試験荷重 :23.5mN(2.4gf)~235mN(24gf)
負荷速度 :速いサイクル;23.5mN/秒、保持時間10秒
:遅いサイクル;2.35mN/秒、保持時間0秒
サイクル数:3回
圧子 :円錐台圧子(120°)、直径500μm
試験温度 :(25℃)
なお、試験荷重は、リチウムイオン二次電池の通常の使用において想定されるSOC範囲(ここでは、20%~80%)における圧力値を測定し、それに応じて次式(試験荷重=圧力/0.0509)により求めた。
まず、図4のように最大荷重235mNまでの負荷を上記速いサイクルの負荷速度で、先端が円錐台状の円錐台圧子で各シートに与え、235mNに到達後、10秒間荷重を保持し、そのときのシートの厚み(圧縮率)を求めた。そして、上記速いサイクルの負荷速度で最小荷重23.5mNまで荷重を取り除き、23.5mNに到達後、10秒間荷重を保持し、そのときのシートの厚み(回復率)を求めるというサイクルを3回繰り返した。同様に、図4のように最大荷重235mNまでの負荷を上記遅いサイクルの負荷速度で、先端が円錐台状の円錐台圧子で各シートに与え、235mNに到達後、そのときのシートの厚み(圧縮率)を求めた。そして、上記速いサイクルの負荷速度で最小荷重23.5mNまで荷重を取り除き、23.5mNに到達後、そのときのシートの厚み(回復率)を求めるというサイクルを3回繰り返した。
そして、各シートの各サイクルにおける圧縮率と回復率の推移をそれぞれ外挿して、それらの交点(収束点)におけるシートの厚みと負荷‐除荷回数を求め、上記交点(収束点)と試験開始前のシートの厚みを表す点(負荷‐除荷回数が0回でシートの厚みが100%を表す点)とを結ぶ直線の傾きを求めた。そして、速いサイクルの傾きと遅いサイクルの傾きから傾きの比Xを求めた。ここで、X=(速いサイクルの傾き)/(遅いサイクルの傾き)。その結果を表1に示すと共に図6から図11に示す。
<例7>
セパレータシートAを用いて、18650型のリチウムイオン二次電池を以下のとおり作製した。
正極活物質としてのLiNi1/3Co1/3Mn1/3O2と、アセチレンブラックと、PVDFとの質量比が85:10:5となるように秤量し、これら材料をNMPに分散させて正極活物質層形成用ペーストを調製した。該ペーストを厚さ15μmのアルミニウム箔の両面に、それら両面の合計塗布量が10mg/cm2(固形分基準)となるように塗布して乾燥した後、プレスして正極シート(以下、「正極シートC」ともいう。)を作製した。
負極活物質としての天然黒鉛と、CMCと、SBRとの質量比が99:0.5:0.5となるように秤量し、これら材料をイオン交換水に分散させて負極活物質層形成用ペーストを調製した。該ペーストを厚さ10μmの銅箔の両面に、それら両面の合計塗布量が5mg/cm2(固形分基準)となるように塗布して乾燥した後、プレスして負極シート(以下、「負極シートC」ともいう。)を作製した。
非水電解液には、ECとDMCとEMCとの体積比3:5:2の混合溶媒に1mol/LのLiPF6を溶解させたものを用いた。
得られた正極シートと負極シートとを、二枚のセパレータシートAと共に重ね合わせて捲回し、得られた捲回電極体を扁平形状に押しつぶし、上記電解液とともに円筒型の容器に収容して例7に係るリチウムイオン二次電池を作製した。
<例8>
セパレータシートAに代えてセパレータシートBを用いた他は例7と同様にして、例8に係るリチウムイオン二次電池を作製した。
本例では、例7に係る正極シートCに代えて、正極シートAを用いた。また、セパレータシートとしては、厚さ20μm、透気度290秒/100ccのPE単層フィルム(以下、「セパレータシートC」ともいう。)を用いた。その他の点については例7と同様にして、例9に係るリチウムイオン二次電池を作製した。
<例10>
正極シートAに代えて正極シートBを用いた他は例9と同様にして、例10に係るリチウムイオン二次電池を作製した。
本例では、例7における負極シートCに代えて、負極シートAを用いた。また、セパレータシートとしては、セパレータシートCを用いた。その他の点については例7と同様にして、例11に係るリチウムイオン二次電池を作製した。
<例12>
負極シートAに代えて負極シートBを用いた他は例11と同様にして、例12に係るリチウムイオン二次電池を作製した。
例7~例12の各電池につき、以下の試験を行った。
上記各電池を、10Cの定電流で3.25Vまで充電し、続いて定電圧で充電することにより(CC-CV充電)、SOC60%の充電状態に調整した。そして、このように調整された電池の内部抵抗(初期内部抵抗)を測定した。具体的には、25℃の温度下、各電池を10Cの定電流で10秒間放電し、放電前の開回路電圧と放電10秒後の電圧を測定し、両者の差である電圧降下を求め、これを放電電流で除して初期内部抵抗を求めた。
内部抵抗測定後SOC60%の状態に調整した各電池に対し、25℃の温度下において充放電を4000サイクル繰り返した後、各リチウムイオン二次電池の抵抗増加率を測定した。すなわち、25℃の温度下、20Cのレートで10秒間放電を行った後5秒間休止し、その後2Cのレートで100秒間充電を行った後145秒間休止する操作を1サイクルとし、これを4000サイクル行った。
そして、4000サイクル後の各電池を10Cの定電流で10秒間放電し、放電前の開回路電圧と放電10秒後の電圧を測定し、両者の差である電圧降下を求め、これを放電電流で除して内部抵抗(サイクル試験後内部抵抗)を求めた。次式{(サイクル試験後内部抵抗)-(初期内部抵抗)}/(初期内部抵抗)×100;により、4000サイクル後の抵抗増加率(%)を求めた。得られた結果を表2に示す。
また、内部抵抗測定後SOC60%の状態に調整した各電池に対し、-15℃の温度下において充放電を4000サイクル繰り返した後、各リチウムイオン二次電池の抵抗増加率を測定した。すなわち、1サイクルとして、-15℃の温度下、20Cのレートで10秒間放電を行った後5秒間休止し、その後2Cのレートで100秒間充電を行った後145秒間休止する操作を1サイクルとし、これを4000サイクル行った。4000サイクル後の抵抗増加率(%)は上記と同様にして求めた。得られた結果を表2に示す。
<例13>
セパレータシートAと正極シートAと負極シートAとを含む捲回電極体を用いた他は例7と同様にして、例13に係るリチウムイオン二次電池を作製した。
<例14>
セパレータシートBと正極シートBと負極シートBを用いた他は例13と同様にして、例14に係るリチウムイオン二次電池を作製した。
<例15>
負極シートAに代えて負極シートBを用いた他は例13と同様にして、例15に係るリチウムイオン二次電池を作製した。
<例16>
正極シートAに代えて正極シートBを用いた他は例13と同様にして、例16に係るリチウムイオン二次電池を作製した。
<例17>
セパレータシートAに代えてセパレータシートBを用いた他は例13と同様にして、例17に係るリチウムイオン二次電池を作製した。
<例18>
セパレータシートAに代えてセパレータシートBを用いた。また、負極シートAに代えて負極シートBを用いた。その他の点については例13と同様にして、例18に係るリチウムイオン二次電池を作製した。
<例19>
正極シートAに代えて正極シートBを用いた。また、負極シートAに代えて負極シートBを用いた。その他の点については例13と同様にして、例19に係るリチウムイオン二次電池を作製した。
<例20>
セパレータシートAに代えてセパレータシートBを用いた。また、正極シートAに代えて正極シートBを用いた。その他の点については例13と同様にして、例20に係るリチウムイオン二次電池を作製した。
例13~例20の各電池につき、上記例7~例12の各電池に対して行った充放電サイクル試験と同一の条件下(測定温度25℃)で充放電サイクル試験を行った。そして、各電池について、初期内部抵抗に対する4000サイクル後の内部抵抗の比である抵抗比を求めた。得られた結果を表3に示すと共に図12および図13に示す。
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
50 電極体
60 正極端子
62 正極集電体
64 正極活物質層
66 正極シート
70 負極端子
72 負極集電体
74 負極活物質層
76 負極シート
80 セパレータシート
100 組電池
110 冷却板
120 エンドプレート
130 拘束バンド
140 接続部材(バスバー)
150 スペーサ部材
155 ビス
200 車両
Claims (12)
- 正負の電極シートがセパレータシートを介して重ね合わされた形態の電極体を備えたリチウムイオン二次電池を製造する方法であって、
正極シート、負極シートおよびセパレータシートを選択すること、
前記選択した正極シート、負極シートおよびセパレータシートを重ね合わせて電極体を構築すること、および、
前記電極体を電解液とともに電池ケースに収容すること、
を包含し、
ここで、前記正極シート、負極シートおよびセパレータシートのうち少なくとも一つは、以下の(1)および(2):
(1)A[mN/秒]の速度で所定の荷重F1[mN]まで荷重を加える過程と、A[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む高速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;および、
(2)B[mN/秒](ただし、B≦0.2A)の速度で所定の荷重F1[mN]まで荷重を加える過程と、B[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む低速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;の各条件下における試験において、
試験開始前におけるシートの厚みを100%とし、シートの厚みを縦軸、負荷‐除荷回数を横軸として、荷重F1における1~nサイクル目のシートの厚みの推移および荷重F2における1~nサイクル目のシートの厚みの推移をそれぞれ外挿してそれらの交点に相当するシートの厚みおよび負荷‐除荷回数を求めて、試験開始前のシートの厚みと上記交点とを結ぶ直線の傾きを求めて、
前記(1)の条件に基づいて求めた傾きをaとし、前記(2)の条件に基づいて求めた傾きをbとした場合に、0.8<a/b<1.5を満たすように選択される、リチウムイオン二次電池の製造方法。 - 前記荷重F1および前記荷重F2は、それぞれ、電池の通常の使用において想定されるSOCの範囲において、前記シートにかかる荷重の上限および下限であることを特徴とする請求項1に記載の製造方法。
- 前記荷重F1は、前記電池のSOCが80%のときに前記シートにかかる荷重であり、前記荷重F2は、前記電池のSOCが30%のときに前記シートにかかる荷重であることを特徴とする請求項1または2に記載の製造方法。
- 前記(1)の条件は、23.5[mN/秒]の速度で上限荷重235[mN]に達するまで荷重を加え、該上限荷重を10秒間保持した後、23.5[mN/秒]の速度で下限荷重23.5[mN]に達するまで荷重を取り除き、該下限荷重を10秒間保持する条件であり、
前記(2)の条件は、2.35[mN/秒]の速度で上限荷重235[mN]に達するまで荷重を加えた後、続いて2.35[mN/秒]の速度で下限荷重23.5[mN]に達するまで荷重を取り除く条件であることを特徴とする請求項1または2に記載の製造方法。 - 前記正極シート、負極シートおよびセパレータシートのすべては、0.8<a/b<1.5を満たすように選択されることを特徴とする請求項1から4のいずれかに記載の製造方法。
- 正負の電極シートがセパレータシートを介して重ね合わされた形態の電極体を備えたリチウムイオン二次電池であって、
前記正極シート、負極シートおよびセパレータシートのうち少なくとも一つは、以下の(1)および(2):
(1)A[mN/秒]の速度で所定の荷重F1[mN]まで荷重を加える過程と、A[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む高速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;および、
(2)B[mN/秒](ただし、B≦0.2A)の速度で所定の荷重F1[mN]まで荷重を加える過程と、B[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む低速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;
の各条件下における試験において、
試験開始前におけるシートの厚みを100%とし、シートの厚みを縦軸、負荷‐除荷回数を横軸として、荷重F1における1~nサイクル目のシートの厚みの推移および荷重F2における1~nサイクル目のシートの厚みの推移をそれぞれ外挿してそれらの交点に相当するシートの厚みおよび負荷‐除荷回数を求めて、試験開始前のシートの厚みと上記交点とを結ぶ直線の傾きを求めて、
前記(1)の条件に基づいて求めた傾きをaとし、前記(2)の条件に基づいて求めた傾きをbとした場合に、0.8<a/b<1.5を満たすことを特徴とするリチウムイオン二次電池。 - 前記荷重F1および前記荷重F2は、それぞれ、電池の通常の使用において想定されるSOCの範囲において、前記シートにかかる荷重の上限および下限であることを特徴とする請求項6に記載のリチウムイオン二次電池。
- 前記荷重F1は、前記電池のSOCが80%のときに前記シートにかかる荷重であり、前記荷重F2は、前記電池のSOCが30%のときに前記シートにかかる荷重であることを特徴とする請求項6または7に記載のリチウムイオン二次電池。
- 前記(1)の条件は、23.5[mN/秒]の速度で上限荷重235[mN]に達するまで荷重を加え、該上限荷重を10秒間保持した後、23.5[mN/秒]の速度で下限荷重23.5[mN]に達するまで荷重を取り除き、該下限荷重を10秒間保持する条件であり、
前記(2)の条件は、2.35[mN/秒]の速度で上限荷重235[mN]に達するまで荷重を加えた後、続いて2.35[mN/秒]の速度で下限荷重23.5[mN]に達するまで荷重を取り除く条件であることを特徴とする請求項6または7に記載のリチウムイオン二次電池。 - 前記正極シート、負極シートおよびセパレータシートのすべては、0.8<a/b<1.5を満たすことを特徴とする請求項6から9のいずれかに記載のリチウムイオン二次電池。
- 請求項1から5のいずれかに記載の製造方法により得られたリチウムイオン二次電池または請求項6から10のいずれかに記載のリチウムイオン二次電池を備える車両。
- 正負の電極シートがセパレータシートを介して重ね合わされた形態の電極体を備えたリチウムイオン二次電池に用いられる正極シート、負極シートおよびセパレータシートのうち少なくとも一つの部材につき該部材の充放電に対する耐久性を評価する方法であって、
以下の(1)および(2):
(1)A[mN/秒]の速度で所定の荷重F1[mN]まで荷重を加える過程と、A[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む高速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;および、
(2)B[mN/秒](ただし、B≦0.2A)の速度で所定の荷重F1[mN]まで荷重を加える過程と、B[mN/秒]の速度で所定の荷重F2[mN]まで荷重を取り除く過程とを含む低速負荷-除荷サイクルをn回(ただしn≧3)繰り返すこと;の各条件下における試験において、
試験開始前におけるシートの厚みを100%とし、シートの厚みを縦軸、負荷‐除荷回数を横軸として、荷重F1における1~nサイクル目のシートの厚みの推移および荷重F2における1~nサイクル目のシートの厚みの推移をそれぞれ外挿してそれらの交点に相当するシートの厚みおよび負荷‐除荷回数を求める工程と、試験開始前のシートの厚みと上記交点とを結ぶ直線の傾きを求める工程と、
前記(1)の条件に基づいて求めた傾きをaとし、前記(2)の条件に基づいて求めた傾きをbとした場合に、0.8<a/b<1.5を満たす場合には良品と判断し、満たさない場合には不良品と判断する工程と、
を包含することを特徴とする評価方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09852579.3A EP2518811B1 (en) | 2009-12-25 | 2009-12-25 | Process for production of lithium ion secondary battery |
PCT/JP2009/071658 WO2011077564A1 (ja) | 2009-12-25 | 2009-12-25 | リチウムイオン二次電池の製造方法 |
US13/515,900 US8877387B2 (en) | 2009-12-25 | 2009-12-25 | Method for producing lithium ion secondary battery |
CN200980163130.4A CN102668223B (zh) | 2009-12-25 | 2009-12-25 | 锂离子二次电池的制造方法 |
JP2011547173A JP5472760B2 (ja) | 2009-12-25 | 2009-12-25 | リチウムイオン二次電池の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/071658 WO2011077564A1 (ja) | 2009-12-25 | 2009-12-25 | リチウムイオン二次電池の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011077564A1 true WO2011077564A1 (ja) | 2011-06-30 |
Family
ID=44195124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/071658 WO2011077564A1 (ja) | 2009-12-25 | 2009-12-25 | リチウムイオン二次電池の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8877387B2 (ja) |
EP (1) | EP2518811B1 (ja) |
JP (1) | JP5472760B2 (ja) |
CN (1) | CN102668223B (ja) |
WO (1) | WO2011077564A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077384A1 (ja) | 2012-11-19 | 2014-05-22 | 古河電気工業株式会社 | 集電体、電極、二次電池およびキャパシタ |
JP2017084550A (ja) * | 2015-10-27 | 2017-05-18 | トヨタ自動車株式会社 | 組電池 |
US9793526B2 (en) | 2013-03-29 | 2017-10-17 | Gs Yuasa International Ltd. | Electric storage device and electric storage apparatus |
JP2018147886A (ja) * | 2017-03-03 | 2018-09-20 | 住友化学株式会社 | 非水電解液二次電池用セパレータ |
JP2018181848A (ja) * | 2017-04-14 | 2018-11-15 | 住友化学株式会社 | 非水電解液二次電池用絶縁性多孔質層 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10177364B2 (en) * | 2015-07-16 | 2019-01-08 | Johnson Controls Technology Company | System and method of overmolded terminal posts of a battery module |
JP6965827B2 (ja) * | 2018-05-11 | 2021-11-10 | トヨタ自動車株式会社 | リチウムイオン電池の診断方法およびリチウムイオン電池の診断装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134091A (ja) | 2000-10-30 | 2002-05-10 | Nitto Denko Corp | 非水電解液電池用セパレータ及び非水電解液電池 |
JP2004039492A (ja) | 2002-07-04 | 2004-02-05 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2004214190A (ja) | 2002-12-27 | 2004-07-29 | Samsung Sdi Co Ltd | リチウム電池用セパレータ及びそれを採用したリチウム電池 |
JP2005032593A (ja) * | 2003-07-07 | 2005-02-03 | Matsushita Battery Industrial Co Ltd | 非水電解液二次電池 |
JP2005142047A (ja) * | 2003-11-07 | 2005-06-02 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2007188864A (ja) * | 2005-12-13 | 2007-07-26 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極とそれを用いた非水電解質二次電池 |
JP2008293997A (ja) * | 2002-03-01 | 2008-12-04 | Panasonic Corp | 正極活物質および非水電解質二次電池 |
JP2009009947A (ja) | 1998-05-20 | 2009-01-15 | Osaka Gas Co Ltd | 非水系二次電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW439309B (en) * | 1999-01-22 | 2001-06-07 | Toshiba Corp | Nonaquous electrolyte secondary battery |
JP2006032246A (ja) * | 2004-07-21 | 2006-02-02 | Sanyo Electric Co Ltd | 非水電解質電池用セパレータ及び非水電解質電池 |
JP4977079B2 (ja) | 2007-05-21 | 2012-07-18 | パナソニック株式会社 | リチウムイオン二次電池の製造方法 |
US8323821B2 (en) * | 2007-11-09 | 2012-12-04 | Toray Battery Separator Film Co., Ltd. | Multi-layer microporous membrane, battery separator and battery |
EP2065887A1 (en) * | 2007-11-30 | 2009-06-03 | Hitachi Global Storage Technologies Netherlands B.V. | Method for manufacturing magnetic disk unit |
-
2009
- 2009-12-25 WO PCT/JP2009/071658 patent/WO2011077564A1/ja active Application Filing
- 2009-12-25 EP EP09852579.3A patent/EP2518811B1/en active Active
- 2009-12-25 US US13/515,900 patent/US8877387B2/en active Active
- 2009-12-25 JP JP2011547173A patent/JP5472760B2/ja active Active
- 2009-12-25 CN CN200980163130.4A patent/CN102668223B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009009947A (ja) | 1998-05-20 | 2009-01-15 | Osaka Gas Co Ltd | 非水系二次電池 |
JP2002134091A (ja) | 2000-10-30 | 2002-05-10 | Nitto Denko Corp | 非水電解液電池用セパレータ及び非水電解液電池 |
JP2008293997A (ja) * | 2002-03-01 | 2008-12-04 | Panasonic Corp | 正極活物質および非水電解質二次電池 |
JP2004039492A (ja) | 2002-07-04 | 2004-02-05 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2004214190A (ja) | 2002-12-27 | 2004-07-29 | Samsung Sdi Co Ltd | リチウム電池用セパレータ及びそれを採用したリチウム電池 |
JP2005032593A (ja) * | 2003-07-07 | 2005-02-03 | Matsushita Battery Industrial Co Ltd | 非水電解液二次電池 |
JP2005142047A (ja) * | 2003-11-07 | 2005-06-02 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2007188864A (ja) * | 2005-12-13 | 2007-07-26 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極とそれを用いた非水電解質二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2518811A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077384A1 (ja) | 2012-11-19 | 2014-05-22 | 古河電気工業株式会社 | 集電体、電極、二次電池およびキャパシタ |
US9793526B2 (en) | 2013-03-29 | 2017-10-17 | Gs Yuasa International Ltd. | Electric storage device and electric storage apparatus |
JP2017084550A (ja) * | 2015-10-27 | 2017-05-18 | トヨタ自動車株式会社 | 組電池 |
JP2018147886A (ja) * | 2017-03-03 | 2018-09-20 | 住友化学株式会社 | 非水電解液二次電池用セパレータ |
US10978767B2 (en) | 2017-03-03 | 2021-04-13 | Sumitomo Chemical Company, Limited | Method for producing nonaqueous electrolyte secondary battery separator |
JP2018181848A (ja) * | 2017-04-14 | 2018-11-15 | 住友化学株式会社 | 非水電解液二次電池用絶縁性多孔質層 |
US10553902B2 (en) | 2017-04-14 | 2020-02-04 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery insulating porous layer |
JP7100481B2 (ja) | 2017-04-14 | 2022-07-13 | 住友化学株式会社 | 非水電解液二次電池用絶縁性多孔質層 |
Also Published As
Publication number | Publication date |
---|---|
US20120295164A1 (en) | 2012-11-22 |
US8877387B2 (en) | 2014-11-04 |
EP2518811B1 (en) | 2018-07-25 |
JPWO2011077564A1 (ja) | 2013-05-02 |
CN102668223A (zh) | 2012-09-12 |
JP5472760B2 (ja) | 2014-04-16 |
EP2518811A1 (en) | 2012-10-31 |
EP2518811A4 (en) | 2016-08-31 |
CN102668223B (zh) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5664937B2 (ja) | 二次電池及び組電池 | |
US9531033B2 (en) | Lithium secondary battery and manufacturing method therefor | |
KR101627013B1 (ko) | 리튬 2차 전지, 리튬 2차 전지의 제조 방법, 및 리튬 2차 전지를 구비하는 차량 | |
KR101580731B1 (ko) | 비수 전해질 2차 전지 | |
KR101621646B1 (ko) | 리튬 2차 전지, 리튬 2차 전지의 제조 방법, 및 리튬 2차 전지를 구비하는 차량 | |
WO2010053157A1 (ja) | リチウム二次電池とその利用 | |
JP5257700B2 (ja) | リチウム二次電池 | |
KR101944443B1 (ko) | 비수 전해질 이차 전지, 상기 비수 전해질 이차 전지에 사용되는 전극체, 및 상기 전극체의 제조방법 | |
JP5472760B2 (ja) | リチウムイオン二次電池の製造方法 | |
JP6692123B2 (ja) | リチウムイオン二次電池 | |
KR101721300B1 (ko) | 비수 전해질 2차 전지 | |
KR101488576B1 (ko) | 정극 활물질의 평가 방법 | |
WO2012169030A1 (ja) | リチウムイオン二次電池 | |
JP5725362B2 (ja) | リチウム二次電池とその製造方法 | |
JP5757329B2 (ja) | 二次電池の製造方法 | |
JP5765574B2 (ja) | 二次電池及びその製造方法ならびに該電池に用いられる負極シートの製造方法 | |
JP5812336B2 (ja) | 二次電池 | |
JP2010102873A (ja) | 電池の製造方法 | |
JP2017111940A (ja) | 非水電解質二次電池の製造方法 | |
JP2013069579A (ja) | リチウムイオン二次電池とその製造方法 | |
JP2016072110A (ja) | 非水電解液二次電池および組電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980163130.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09852579 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009852579 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13515900 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011547173 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |