WO2011075960A1 - 一种木质型材及其制备方法 - Google Patents

一种木质型材及其制备方法 Download PDF

Info

Publication number
WO2011075960A1
WO2011075960A1 PCT/CN2010/070515 CN2010070515W WO2011075960A1 WO 2011075960 A1 WO2011075960 A1 WO 2011075960A1 CN 2010070515 W CN2010070515 W CN 2010070515W WO 2011075960 A1 WO2011075960 A1 WO 2011075960A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
layer
temperature
slabs
carbonization
Prior art date
Application number
PCT/CN2010/070515
Other languages
English (en)
French (fr)
Inventor
涂登云
潘成锋
倪月中
章昕
于学利
Original Assignee
浙江世友木业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江世友木业有限公司 filed Critical 浙江世友木业有限公司
Priority to EP10838526.1A priority Critical patent/EP2517851B1/en
Priority to JP2011549423A priority patent/JP5467112B2/ja
Priority to KR1020117010253A priority patent/KR101287344B1/ko
Publication of WO2011075960A1 publication Critical patent/WO2011075960A1/zh
Priority to US13/175,970 priority patent/US8153038B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/08Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/02Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K1/00Damping wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/06Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by burning or charring, e.g. cutting with hot wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/02Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board the layer being formed of fibres, chips, or particles, e.g. MDF, HDF, OSB, chipboard, particle board, hardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/13Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board all layers being exclusively wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/0085Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C
    • B27K5/009Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C using a well-defined temperature schedule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/764Insect repellent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/04Tiles for floors or walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • Y10T428/31982Wood or paper

Definitions

  • the invention relates to a wood profile and a preparation method thereof, in particular to a cork material profile and a preparation method thereof, and belongs to the field of wood processing.
  • Plantation wood mainly includes fir, masson pine, larch, poplar, paulownia and other tree species. It has the characteristics of fast growth, high yield and short cutting cycle, due to its fast growth rate, poor material quality, density and surface hardness. Low, non-corrosive, non-resistance, easy to deform and easy to crack and other defects limit its application range.
  • the wood functional improvement method is an effective way to improve the physical and chemical properties of the wood of the plantation.
  • the treated wood density, surface hardness, wear resistance, corrosion resistance and dimensional stability are greatly improved, and can be widely applied to solid wood flooring and solid wood furniture. Industry and other building decoration materials.
  • Poplar, southern pine, and masson pine are common fast-growing tree species. However, due to the loose material and abundance of materials, there are many studies on the functional improvement of these fast-growing materials. There are many successes at home and abroad. experience.
  • Fang Guizhen studied the mechanism of action of Daqingyang and MF crosslinkers.
  • Fang Guizhen and others used different concentrations of PF prepolymer to treat the large poplar wood, and compressed it in the transverse direction during the heating process. The results were as follows: The sample treated with 10% PF prepolymer had an ASE of more than 60% and a MEE of 52%. The water was completely immersed in room temperature or boiling water to maintain its compression set.
  • Fang Guizhen and others used 1,2,3,4-butyryltetradecanoic acid (BKA) as a crosslinking agent, NaH2P02 as a catalyst to treat Populus euphratica, and then compressed at a constant temperature of 1 50 °C.
  • BKA 1,2,3,4-butyryltetradecanoic acid
  • NaH2P02 as a catalyst to treat Populus euphratica
  • Fang Guizhen et al. treated the large poplar wood with low molecular weight PF resin to improve the dimensional stability and mechanical strength of the wood.
  • Fang Guizhen and others made research on wood impregnated low molecular weight low chroma phenolic resin and low molecular weight phenolic resin modified Daqing poplar.
  • the existing surface compression-cured wood is obtained by immersing the surface portion of the dried wood sawn timber in water for a predetermined depth of 5 to 6 hours. After infiltrating a certain amount of water, it is heated by microwave radiation, and then placed in hot pressing. The device is compressed, compacted, and dried to fix the compressed portion.
  • this technique exists. After the surface is soaked with water, the surface water is large. When evaporating in a short time, the surface shrinks rapidly due to evaporation of water, which generates a large internal stress, which makes the surface susceptible to cracking, and Since the surface internal stress of the wood is not sufficiently balanced during the compression drying and solidification process, the surface is not sufficiently plastically cured. It is easy to produce rebound during use.
  • the above method is treated with chemical reagents, which must have exhaust gas or waste water discharge, high noise, environmental pollution, and the dimensional stability of the obtained profile is poor, easy to bend and warp, corrosion resistance and weather resistance are not ideal, short service life, yield rate Not high disadvantages.
  • Chinese patent document CN101603623A discloses a technical patent of "surface-reinforced solid wood profile, floor and manufacturing method thereof", and the manufacturing method thereof comprises (1) drying a log profile; (2) compressing the log profile in a hot press at 210 to 250 °C (3) Insulate the compressed log profiles for 20 ⁇ 60 minutes; (4) Control the moisture content of the log profiles between 6 and 9%.
  • the above solution is prone to shrinkage during the drying process, and is prone to fracturing and bursting in the subsequent compression process.
  • the wood loss is large, the yield is low, about 60-70%, and the treated wood is dark in color.
  • Charcoal taste, the floor obtained by the above process can only be used in dry weather conditions such as the north, but in the south, it will produce large deformation, and its corrosion resistance level can only reach grade III, and the corrosion resistance is poor.
  • Chinese patent document CN101214675A discloses a technical patent of "wood heat-pressing carbonization strengthening method", which comprises (1) drying: according to the density of wood, the moisture content of the wood in the drying kiln is controlled to 3 to 17%; (2) planing: Wood is planed; (3) Hot-pressed carbonization: The planed wood is placed in a hot press at a temperature of 160 to 260 °C for hot pressing and carbonization, and the compression ratio of the wood is controlled at 5 to 50%. Insulation for 10 ⁇ 240 minutes; Cooling: Cool the charred wood to below 80%; (4) Finished product: Put the wood in natural conditions or in a temperature-controlled humidity room, adjust the moisture content of the wood according to the use of the wood. 5 ⁇ 10%.
  • the wood L is easily fractured and the yield is low, about 50-60%.
  • the wood treated by the above scheme has poor corrosion resistance (usually below grade III). It is unstable and has poor dimensional stability.
  • some woods are over-carbonized, with deep color and charred taste.
  • Chinese patent document CN101486212A discloses a technical patent of "manufacturing method of compressed carbonized poplar three-layer solid wood composite floor", and the preparation of the surface layer material disclosed therein: cutting the fast-growing wood poplar saw into a sheet, drying, planing, according to the compression ratio ( Compression rate of 30%, 40%, 50%, 60%) and the thickness of the panel of 2 ⁇ 4mm processed into a poplar sheet with a moisture content of 20 ⁇ 40%, the plate is compressed to the required compression ratio in the press,
  • the compression temperature is 70 ⁇ 110 ° C
  • the applied pressure is determined according to the compression ratio of the thin plate design; the compressed plate is carbonized and fixed under a certain pressure condition or in a special fixture, and the carbonization process is carried out in a hot press.
  • the carbonization temperature is 190 ⁇ 220 ° C
  • the time is 1.5 ⁇ 5 hours
  • the carbonization device is equipped with a venting hole; after the carbonization treatment, the temperature of the poplar sheet is reduced to 40 under a certain pressure condition. ⁇ 60 ° C, remove the poplar sheet, use the wide belt sander to remove the darker outer layer, and the thickness of the poplar sheet is 2 ⁇ 4mm.
  • the moisture content of the poplar is large, and the shrinkage rate of the wood after drying at 70 to 110 ° C under the condition of the fiber saturation point causes the residual stress of the wood to be large, and then at 190 ⁇
  • the wood is easily cracked, and the wood has a large compression ratio, which forms an overall compression, and the wood loss rate is large.
  • the venting holes provided in the carbonization device cause unevenness on the surface of the compressed wood. After sanding, the location of these points will reduce the hardness of this area, and the moisture content adjustment process will not be carried out later, which will cause the wood to be deformed due to moisture absorption during use; such a process cannot be industrialized. Operation.
  • the object of the present invention is to solve the deficiencies of the above background art, and to provide a method for preparing a wood profile, which solves the defects of soft material, low density, easy cracking and the like by the physical wood functional improvement method, and solves the prior art treatment.
  • the compression wood has large rebound, large wood loss, impregnated resin pollution environment, poor dimensional stability, poor corrosion resistance, easy deformation, low yield, and the disadvantages of complicated production process and high energy consumption.
  • the preparation method of the wooden profile is simple and pollution-free, and the wood profile obtained by the preparation method of the wood profile has a yield of 99% or even 100%, and the obtained wood profile has high dimensional stability, corrosion resistance and wear resistance. Strong, high surface hardness and long service life, up to 70 years.
  • Step of material production wood having a dry density of less than or equal to 700 kg/m 3 is passed through a material to be obtained;
  • drying step a step of drying the sheet to reduce the moisture content of the sheet to 6 to 20%;
  • Planing step Planing the dried sheet material into a smooth sheet material
  • Hot pressing step compressing and compacting two surface layers of the plain plate blank by using two hot pressing plates with a temperature of 140 to 200 ° C;
  • Pre-charring step pre-carbonizing the sheet material blank at 160 to 200 ° C;
  • Wood with a dry air density of less than or equal to 700 kg/m 3 is generally referred to as cork, and most of them are fast-growing materials.
  • the material step is to prepare a plate of a desired size from a cork material by a material, such as a floor plate having a length of 600 mm to 2000 mm, a width of 110 mm to 200 mm, and a thickness of 30 mm to 60 mm. Then, stack them well, leave a gap of 15 ⁇ 25mm between the plates when stacking, and then dry.
  • a material such as a floor plate having a length of 600 mm to 2000 mm, a width of 110 mm to 200 mm, and a thickness of 30 mm to 60 mm.
  • the drying step is preferably a high-temperature and high-humidity rapid drying method, and the high-temperature and high-humidity rapid drying method is used to prevent the soft material from shrinking during the drying process.
  • the moisture content of the sheet is reduced to 6 ⁇ 20% through the drying step;
  • the step (2) drying step is: drying the wood indoors for more than 5 days, then drying by heating, and removing the partial moisture by drying to prevent the hot pressing process. Cracking in the middle to achieve energy saving.
  • the drying step is because the difference between the various types of cork is large, and the anisotropy of the cork itself is also large.
  • the high temperature and high humidity drying method is used to dry the wood under high temperature and high humidity conditions to make the wood smaller in the thickness direction.
  • the wood moisture content gradient protects the wood from dry defects such as cracks, internal cracks, and shrinkage, which affect the subsequent hot pressing quality.
  • it is beneficial to inhibit the growth of the bacteria or kill the bacteria and insects, and prevent the mold from being mildewed or blue.
  • the resin-containing sheet is dried to a moisture content of 10 to 16%, and the resin-free wood is dried to 6 to 12%.
  • Water content is too low, If the water content is 3 ⁇ 5%, the plate is easily fractured due to the brittleness of the sheet during the hot pressing and carbonization process, and the yield is low; if the water content is too high, such as when the water content is 20 ⁇ 40%, During the hot pressing and carbonization of the sheet, the water in the sheet will form superheated steam, the water content is high, the partial pressure of the superheated steam in the sheet is large, and the hot pressed and carbonized sheets are usually some The soft material with low density and fast growth speed, so the superheated steam partial pressure is easily larger than the transverse tensile strength between the fibers in the plate, which makes the plate easy to burst and burst, resulting in large loss of wood. It has been proved by practice that the treatment of the board by the above drying method can make the yield
  • the planing step is to perform four-side polishing on both surfaces of the dried plate with a power four-sided planer (model: U23EL), and select two opposite skin layers as the surface layer to be pressed, and make the waiting
  • the polishing direction on the surface layer is parallel to the fiber direction of the sheet material to obtain a plain sheet material having a thickness of 20 mm to 27 mm; and then the polished sheet material blank is sequentially subjected to a hot pressing step, a pre-carbonization step, a carbonization step, and a water content after cooling. Control steps.
  • the speed of the hot plate is 0. 5 ⁇ 6mm / s
  • the hot plate is placed at a speed of 0. 5 ⁇ 6mm / s
  • the step of the hot plate, the pre-charring, the carbonization step is: Closed, the compression ratio of the control element plate blank is 10 ⁇ 30%, and the control pressure is 6 ⁇ 20MPa, then the temperature of the hot plate is controlled to 150 ⁇ 160 °C and the holding pressure is 30min ⁇ 120min; the pre-carbonization step is the above
  • the temperature of the hot plate is raised to 170 ⁇ 180 ° C and the holding pressure is kept for 30 min ⁇ 120 min; the carbonization step is to raise the temperature of the hot plate to 200 ⁇ 225 ° C after the pre-charring step is completed.
  • the hot plate temperature is 150 ⁇ 160 °C and the holding pressure is 30min ⁇ 120min.
  • the process is hot pressing process. In this process, the plain material is compressed to the required The thickness of the sheet material is such that the two opposite sheets to be pressed are only compressed by 1.5 to 10 mm, and the holding pressure is maintained for 30 minutes to 120 minutes, preferably 30 minutes to 90 minutes, and most preferably 45 minutes to 90 minutes. ⁇ 3 ⁇
  • the density of the natural layer density is 1. 3 ⁇ 3 times the density of the natural layer density of the first layer of the compacted layer and the second layer of the compacted layer. .
  • the closing speed of the hot platen is preferably 0.5 to 4 mm/s, the compression ratio is preferably 10 to 25%, and the pressure is preferably 9 to 16 MPa.
  • the temperature of the hot-pressing plate is raised to 170-180 ° C and then kept under the pressure-holding state.
  • the moisture content of the plain plate blank is further reduced, so that the plain plate blank is sufficiently heat-permeable.
  • the partial pressure of the superheated steam is less than the transverse tensile strength between the fibers in the plain material, preventing carbonization defects in the subsequent carbonization step, such as cracking, cracking, uneven color, Problems such as deformation, which greatly improve the yield, and the yield is almost as high as painting.
  • the process of rapidly heating the hot plate to 2GG ⁇ 225 °C and holding for 45 min ⁇ 120 min is carbonization.
  • the billet blanks in the carbonization process produce a series of complex chemical reactions, so the carbonized sheet metal billets have excellent performance, as described below:
  • Moisture resistance enhancement After the carbonized material of the plain billet, the water adsorption mechanism has changed. As the treatment temperature increases, the hemocellulose with strong hygroscopicity degrades during the treatment, which makes the hygroscopicity of the plain sheet material decrease, and the hydrogen bond between the water molecules and the element of the sheet material is reduced, thereby reducing the sheet material blank. Moisture absorption and water absorption, can be carbonized Upper
  • the dimensional stability is improved: the plain material billet is heat treated in a high temperature environment, because the carbonization process reduces the concentration of hydroxyl groups in the billet material composition, reduces the hygroscopicity and internal stress of the plain sheet billet, and makes the carbonized sheet
  • the exchange capacity of the billet with the external water is significantly reduced, thereby greatly reducing the deformation, shrinkage and swelling of the charred wood profile due to moisture changes during use;
  • the carbonization process is purely physical technology. In the process of carbonization of plain billet, only temperature and water vapor are involved, and no chemical is added, so the carbonization process is environmentally friendly and safe. In addition, the carbonization process enables the plain sheet material to have a stable, anti-corrosive and precious wood color, so that the cork can replace part of the precious wood;
  • charcoal wood is consistent inside and outside. According to different tree species and processes, the color of charcoal wood is yellow to dark brown. For light-colored, fast-growing wood such as pine, fir, and poplar, carbonization can make these cheap woods have a color similar to that of tropical precious wood, making the wood look superior and have excellent stability.
  • the steps (4) to (6) are hot pressed, pre-carbonized
  • the carbonization step is: placing the plain billet blank on a hot press, and closing the hot press plate at a speed of 0.5 - 6 mm / s, the compression ratio of the control sheet blank is 10 to 30%, and the control pressure is 6 ⁇ 20 MPa. Then, the temperature of the hot plate is controlled to be 170 ⁇ 200 °C and the pressure is kept for 1 min ⁇ 40 min; the pre-charging step is to reduce the temperature of the hot plate to 160 ⁇ 170 °C and keep the pressure for 30 min after the heat preservation. ⁇ 120min; The carbonization step is to keep the temperature of the hot plate to 200 ⁇ 225 °C after the pre-carbonization step is maintained for 45 min ⁇ 120 min.
  • the hot plate temperature is 170 ⁇ 200 °C
  • it is a hot pressing process.
  • the raw material billet changes rapidly in a short time, which is beneficial to softening the surface layer and ensuring the quality of the product; then entering the pre-carbonization step , that is, the temperature of the hot plate is lowered to 160 ⁇ 170 °C and the holding pressure is maintained to fully release the residual stress inside the billet blank, thereby preventing the cracking and bursting of the sheet material in the subsequent carbonization process; the hot plate
  • the process at temperatures between 200 and 225 °C is a carbonization process. It has been proved that by using the above hot pressing, pre-charring step and carbonization step, the yield can reach 99% or even 100%, and the product quality is excellent.
  • the cooling step is: after the carbonization step, the temperature of the hot platen is lowered to 120 ° C or less in a state of holding pressure.
  • the cooling step is such that the temperature of the plain sheet material after the hot pressing and carbonization step is reduced to below 120 ° C, that is, below the plastic temperature point of the plain sheet blank, so that the sheet after the hot pressing and carbonization step The blank is fixedly formed.
  • the step (7) cooling step is: after the carbonization step is finished, the pressure relief is slowly opened to open the hot press, the raw material billet is quickly taken out and sent to the normal temperature press, and the normal temperature is quickly closed. 2 ⁇ 4MPa ⁇ The pressure of the pressure plate of the normal temperature press is between 0. 2 ⁇ 4MPa.
  • the step (8) moisture content control step is: placing the cooled plain material billet in a temperature-controlled humidity control room for moisture content control, and controlling the temperature in the temperature-controlled humidity control room to be 39-80 ° C, the relative humidity is 75 ⁇ 95% for humidity control, so that the moisture content of the wood is restored to 4 ⁇ 12%.
  • the moisture recovery step allows the resulting wood profile to be adapted to the climatic conditions used.
  • the invention presses the UV resin into the first compressed dense layer or the second compressed dense layer, and can further contact the coating with the wood fiber on the surface of the wooden profile, and the crosslinking curing reaction occurs, and the hardness and flexibility of the paint film can be achieved. , adding various properties of the wood profile.
  • a wood profile obtained according to the above method for preparing a wood profile comprising a compressed compact layer and a natural layer connected to the fiber, the compressed compact layer being a first compacted compact layer and a second layer respectively on opposite sides of the natural layer
  • the compacted layer has a bulk density of 350 to 750 kg/m 3 and a water content of 4 to 12%.
  • the corrosion resistance level is above II and the weight loss is 24%.
  • the wood profile is glue-free, wherein the natural layer is an uncompressed wood structure, but may affect the structure of the natural layer during surface compression, but the above effects are negligible relative to the amount of compression of the compacted layer.
  • the density of the above-mentioned compressed dense layer that is, the density of the first compressed dense layer and the second compressed dense layer is gradually reduced from the corresponding surface layer to the corresponding surface layer thickness of 0.6 to 1 ⁇ 2 m to the natural density of the wood, in the compacted layer.
  • Natural fiber connection to the natural layer unlike existing plywood.
  • the above natural connection is firm and non-polluting, and the manufacturing process is simple.
  • the first compressed dense layer or the second compressed dense The solid surface film hardness can reach 2 ⁇ 6H.
  • the wood profile has a moisture content of 4 to 12%.
  • Moisture content is the percentage of the moisture content of the wood and the weight of the wood after drying, defined as the moisture content of the wood.
  • the moisture-absorbing equilibrium moisture content under atmospheric conditions refers to the moisture-stable stable moisture content or the desorption-stable moisture content of the wood at a certain temperature and humidity state, which is called the equilibrium moisture content of wood.
  • the equilibrium moisture content of wood varies from place to place. For example, the annual average water content in Guangzhou is 15.1%, while that in Beijing is 11.4%. Wood drying to 11% of wood is suitable for use in Beijing. It can be used in Guangzhou to absorb moisture and deform.
  • the final moisture content of the wood should be close to or the same as the equilibrium moisture content of the used land to ensure the stability of the use of the wood.
  • the profile not only improves the surface hardness of the soft material, but also achieves a good fixing effect, and also greatly reduces the hygroscopicity thereof, thereby greatly reducing the temperature and humidity changes of the different seasons of the use.
  • the effect of dimensional stability, improved service life, no need to restore moisture content under different climatic conditions, can adapt to the use of different regional climatic conditions.
  • the above-mentioned wood-like material according to the "GB 1941-91 wood hardness test method", the surface hardness of the profile is more than 1500N, more than 2.0 times its natural layer. At the same time, the moisture content of the material fluctuates little, which greatly improves the dimensional stability.
  • the existing compressed woods of the present invention do not contain the above-mentioned chemical agents of the prior art because the compressed layers need to be sealed and a large amount of chemical agents are used.
  • the above-mentioned wood profiles are excellent in corrosion resistance, and the preferred tree species samples of the present invention are tested according to the GB/T 1 3942. 1-1992 Wood Natural Durability Test Method Laboratory Natural Corrosion Resistance Laboratory Test Method, and the corrosion resistance thereof is The grade is above 11 and the weight loss is 24%.
  • the raw materials of the above wood profiles are fast-growing materials, such as poplar, Chinese fir, masson pine, southern pine, larch, paulownia, etc., when they are untreated, the mechanical properties are poor, the anti-corrosion and moisture-proof performance is not ideal, the stability is poor, and it is easy to be Invasion of fungus, easy to crack and deform.
  • the corrosion resistance level is above one.
  • the thickness of the first compressed dense layer and the second compressed dense layer are both between 1 and 2 mm.
  • the water content is from 6.5 to 10%, more preferably from 7 to 9%.
  • the thickness of the first compressed dense layer and the second compacted compact layer are between 0.6 and 4 mm, and the density of the compacted compact layer is 1. 3 to 3 times the density of the natural layer.
  • the wood material is poplar, the overall density of which is 380-550 kg/m 3 , the water content is 6-12%, and the thickness of the first compacted layer and the second compacted layer are both 0. Between 6 ⁇ 4mm.
  • the raw material of the wood profile is southern pine
  • the overall density is 500 ⁇ 720 kg / m 3
  • the water content is 4 ⁇ 11%
  • the thickness of the first compressed compact layer and the second compacted compact layer are both 0. Between 6 ⁇ 3mm.
  • the wood material is a horsetail material having an overall density of 480 to 680 kg/m 3 and a water content of 5 to 10%, and the thickness of the first compression compact layer and the second compression compact layer are both 0. Between 6 ⁇ 2. 5mm.
  • the raw material of the wood profile is fir
  • the overall density is 350 ⁇ 550kg / m 3
  • the water content is 5 ⁇ 10%
  • the thickness of the first compacted compact layer and the second compacted compact layer are both 0. Between 6 ⁇ 2. 5mm.
  • the thickness density distribution the thickness of the first compressed dense layer and the second compressed dense layer are between 0.6 and 4 mm, and the density of the first compressed dense layer and the second compressed dense layer are both the density of the natural layer. 3 ⁇ 3 times;
  • the present invention has the following beneficial effects:
  • the wood profile can be made of fast-growing material, has abundant resources and low price. After the surface is subjected to hot pressing and carbonization steps, it has the excellent wood micro-environmental properties and physical and mechanical properties of the precious tree species, and the invention is once molded.
  • the composite wood physical functional improvement technology that is, the hot pressing and carbonization technology directly obtains the profile, eliminating the need for multiple components of the gluing impregnation, etc., while saving the cost while enhancing the mechanical properties of the profile and maintaining the natural characteristics of the wood;
  • the wooden profile has small equilibrium moisture content and small fluctuation, high dimensional stability, strong corrosion resistance and weather resistance, small rebound in the direction of compression compaction, and the produced product can be directly applied to each without adjusting the water content.
  • different environmental conditions such as outdoor, geothermal;
  • the compacted layer of the wood profile is connected with the fiber of the natural layer, and there is no technical problem such as gluing and separation between them, and after carbonization, the compacted layer is subjected to high temperature fixation treatment to form two opposite ones.
  • the surface layer is hard and soft. It has a new characteristic of elastic wood. It has unique advantages when used as solid wood flooring. It is made of solid wood flooring, wood grain appears, comfortable feet, no harmful gas emissions, and both visual and tactile. The uniformity of smell, especially suitable for the family floor with the elderly or children, this is now ordinary solid wood Unmatched by the floor;
  • the method of use is simple, and it is advantageous for industrial operation.
  • the key steps involved in the present invention are mainly the drying step, the hot pressing step, and the carbonization step, as long as each step ensures that the equipment is in good condition, the process is suitable, and the process is properly implemented to obtain a product of excellent quality;
  • the UV curable resin is pressed into the surface layer of the compacted compact layer by a pressure coating method to form a permanent solidification, thereby permanently sealing the pores of the compacted compact layer, thereby effectively reducing the moisture absorption of the compacted compact layer.
  • a pressure coating method to form a permanent solidification, thereby permanently sealing the pores of the compacted compact layer, thereby effectively reducing the moisture absorption of the compacted compact layer.
  • the method for improving the functionalization of wood by one-shot molding after high-temperature and high-pressure hot pressing has the advantages of simple process, no chemical agent is added during the carbonization process after hot pressing, no exhaust gas and waste water are discharged, and heat utilization efficiency is high. , energy saving and environmental protection, overcoming the inherent defects of wood, solving the problem of the rebound and environmental protection of the prior art, which is conducive to the implementation of industrialization;
  • the wood profile obtained by the invention has a first first compacted layer and a second compacted layer, so that the wood profile is more widely used than the single-sided compressed profile, and can be applied in addition to the floor.
  • a single-sided compressed profile is used in furniture or office, two After the road profile making process, the two single-sided compressed profiles can be combined for use in furniture or for further advantages, and can be directly used in furniture or office areas without the need for flattening.
  • Example 1 is a cross-sectional SEM photograph of a connection structure between a first compressed dense layer and a natural layer of poplar after the hot pressing and carbonization techniques of Example 1;
  • Figure 2 is a cutaway electron micrograph of the poplar material of Example 1;
  • FIG. 3 is a density distribution diagram of the poplar material in the thickness direction of the embodiment 1;
  • FIG. 4 is a density distribution diagram of the product obtained by the hot pressing and carbonization technology of the poplar material in the thickness direction of the embodiment 1;
  • Figure 1 and Figure 2 show the cut-off electron micrographs of the final product and poplar material. It can be seen from the two figures that the cell structure of Figure 2 is evenly distributed. Figure 1 can be clearly seen from the compressed surface. The density of the first compacted compact layer of about 2 to 3 mm is very obvious (the degree of compaction of the second compacted compact layer is similar to that of the first compacted compact layer), and the original wood hook structure is maintained.
  • Figure 3 and Figure 4 are the density distributions of the material and the final product in the thickness direction. Each experiment has 3 samples. It can be found that the corresponding surface of the product after hot pressing on two opposite surfaces is inwardly 2 ⁇ 3mm. Significantly enhanced.
  • Embodiment 1 A method for manufacturing a poplar floor, which uses a fast-growing poplar as a material, and is sawed into a batch of the same size plate by a method of material production, and after stacking it, the forked wood is used to lift the wood. Stacked in a steam-heated top-type drying kiln, dried by high temperature and high humidity, so that the moisture content of the board is about 12 ⁇ 14%.
  • the surface of the dried sheet is polished with a powerful four-sided planer (model: U23EL), and the opposite two polished surfaces are selected as the surface to be compacted so that the planing direction of the surface to be compacted and the fiber direction of the sheet Parallel, a plain sheet material having a thickness of 25 mm is placed in a three-layer hot press, the closing speed of the hot platen is controlled to be 3 mm/s, and the pressure of the hot press is 20 MPa, and two hot plates are to be pressed.
  • a powerful four-sided planer model: U23EL
  • the temperature is raised to 150 °C and closed, and the thickness of the blank material is 20mm, so that the two hot pressing plates are pressed against the surface to be pressed of the plain sheet material and then kept warm for 50 minutes; then the temperature of the two hot pressing plates is raised to At 170 °C, the pressure of the hot press is still controlled to 20 MPa, and the holding pressure is 8 Om i ⁇ . Finally, the temperature of the two hot plates is raised to 210 °C for 60 min to complete the hot pressing, pre-charging and carbonization.
  • Step then, under the pressure of the hot press and under pressure, the temperature of the two hot platens is lowered to below 120 °C by the heat transfer oil, so that the temperature of the plain plate blank is reduced to plastic Charging below the temperature point
  • the plain plate blank is fixed and formed; then the cooled plain plate blank is placed in the temperature regulating and humidity control room to restore the water content, and the temperature in the temperature control room is controlled to be 65 ° C, and the relative humidity is 90% for humidity control. , to restore the moisture content of wood to 6 ⁇ 12%.
  • Figure 1 shows the hot pressing and carbonization technology of this embodiment.
  • the connection structure of the first compressed dense layer of the poplar and the natural layer is cut into an electron micrograph (the second compacted compact structure is similar to the first compacted compact structure).
  • the fiber gap space can be seen. Almost all of it is compressed, so it has high hardness and can meet the strength requirements of various floors, overcoming the defects of soft materials.
  • the natural layer of the floor has a loose fiber structure, which can better absorb sound and shock, and has a good foot feel, inheriting the advantages of soft materials.
  • the surface coating is coated with a high-pressure roller, and the low-viscosity UV resin is extruded under the pressure of IMpa into the compacted layer of 0.15 mm. After UV curing, the compacted layer is strengthened again. These resin reinforced layers also serve to separate the compressed dense layer from the outside water exchange, re-solidify the compacted layer, and improve wood stability.
  • the hardness of the first compressed dense layer or the second compressed dense layer is 2H ⁇ 6H.
  • Example 2 A method for manufacturing a southern pine floor, using a fast-growing material, southern pine, as a material, and sawing a batch of the same size plate by means of a material, stacking it, and using a forklift to pick up the wood. Stacked in a steam-heated top-type drying kiln, dried by high temperature and high humidity, and controlled to have a moisture content of 10 to 18%. The surface of the dried sheet is polished with a powerful four-sided planer (model: U23EL), and the opposite two polished surfaces are selected as the surface to be compacted so that the planing direction of the surface to be compacted and the fiber of the sheet The direction is parallel, and a plain sheet material having a thickness of 30 , is obtained.
  • a powerful four-sided planer model: U23EL
  • the sheet material blank is placed in a three-layer hot press to control the closing speed of the hot plate to be 4 ⁇ / s, and the pressure in the control hot press is 15 MPa.
  • the temperature of the two hot platens is raised to 180 ° C.
  • the temperature is kept for 30 minutes, and then passed through the compressor's own cooling system.
  • the heat transfer oil cools the two hot plates to 160 ° C and holds the pressure for 45 min.
  • the temperature is raised to 210 for 40 min to complete the hot pressing, pre-charging and carbonization steps. After that, the pressure is slowly released and the hot pressing is turned on.
  • the wood floor is carbonized, its surface is yellow, the color is consistent, its water absorption capacity is significantly reduced, and its equilibrium moisture content is stable at 7 ⁇ 12% when used.
  • the hardness of the first compressed dense layer or the second compressed dense layer is 2H ⁇ 6H.
  • Example 3 The differences from Example 1 are listed in the following table:
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Material Poplar Southern Pine, Pine, Paulownia, Hot Pressing Step, Hot Pressing Plate Temperature 150'C 180'C 200'C 160'C 170'Ca Hot Press Internal pressure 20MPa 15MPa lOMPa Ring Pa 6MPa Hot plate closing speed 3 mm / s 1.5 mm / s 0.5mm / s 2 mm / s 6 mm / s Hot pressing step Insulation holding time 50min 25min 40min 90min lmin Pre-carbonization step heat Platen temperature
  • UV resin penetrates into the compacted layer
  • Second compacted layer The density is similar to the density of the first compacted compact layer.
  • Example 6 A method for preparing a desktop profile of a desk, selecting a fast-growing poplar As a material, it is sawn into a batch of the same size plate by the method of material production, and after stacking it, the weight is added to the top of the plate, and the piled wood is stacked in a steam heating top-type drying kiln by a forklift. The method of drying under high temperature and high humidity finally makes the moisture content of the plate about 15-20%.
  • the surface of the dried sheet is polished with a powerful four-sided planer (model: U23EL), and the opposite two polished surfaces are selected as the surface to be compacted so that the planing direction of the surface to be compacted and the fiber of the sheet
  • the direction of the heat is equal to the thickness of the sheet metal
  • the thickness of the sheet material is 50 mm
  • the sheet material is placed in a three-layer hot press
  • the closing speed of the hot plate is controlled to be 3. 5 mm / s
  • the pressure of the hot press is 12 MPa
  • two pieces The hot plate is heated to 160 °C and closed.
  • the thickness of the blank plate is 40mm.
  • the two hot plates are pressed against the pressed surface of the plain plate and then kept for 45 minutes. Then the two hot plates are pressed.
  • the temperature is raised to 180 °C, the pressure of the hot press is still controlled to 12 MPa, and the temperature is kept for 90 minutes. Finally, the temperature of the two hot plates is raised to 21 0 °C for 80 min to complete the hot pressing and pre-charging.
  • Carbonization step then on the hot press, through the own cooling system, that is, the temperature of the two hot platens is lowered below 100 ° C by the heat transfer oil, so that the temperature of the plain plate blank is lowered below the plastic temperature point, thereby
  • the plain sheet material after the carbonization step is fixed
  • the cooled plain sheet material is placed in a temperature-controlled and humidity-controlled room for moisture recovery, and the temperature in the temperature-controlled and humidity-controlled room is controlled to be 65 ° C, and the relative humidity is 90%, and the moisture content of the wood is restored. 9 ⁇ 12% or so.
  • the surface of the viscous compact layer is reinforced by a high-pressure roller coating technique, and the low-viscosity UV resin is extruded under a pressure of 1. OMpa into a compacted layer of about 0.14 mm. After UV curing, the compacted layer is reinforced again. These resin reinforcement layers also serve to isolate the compacted layer and External water exchange, re-solidification of the compacted layer and improved wood stability.
  • the hardness of the first compressed dense layer or the second compressed dense layer is 2H ⁇ 6H.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Veneer Processing And Manufacture Of Plywood (AREA)

Description

说 明 书
一种木质型材及其制备方法 技术领域
本发明涉及一种木质型材及其制备方法,特别涉及软木素材型材 及其制备方法, 属于木材加工领域。
背景技术
随着天然林资源的枯竭和国家天然林保护工程的实施,人工林木 材将成为今后緩解国内外木材市场供需矛盾的主要材种。人工林木材 主要包括杉木、 马尾松、 落叶松、 杨木、 泡桐等树种, 它具有生长速 度快、 产量高、 釆伐周期短等特点, 由于其生长速度快、 材质较差、 密度及表面硬度低, 不耐腐不耐候、 易变形易开裂等缺陷限制了其应 用范围。
木材功能性改良方法是改善人工林木材理化性能的有效途径,经 过处理后的木材密度、 表面硬度、 耐磨性、 防腐性和尺寸稳定性都大 幅度提高, 可广泛应用于实木地板、 实木家具行业及其他建筑装饰材 料。
有一种途径提高型材的力学性能是釆用压缩的方法。
杨木、南方松、马尾松等是常见的速生树种,但由于其材质疏松, 材质各向异性非常大, 所以对这些速生材进行功能性改良的研究很 多, 国内外都有很多值得借鉴的成功经验。
但是压缩木的回弹严重, 尤其是在有水条件下更为严重。 为了改进压缩木的缺点,常釆用蒸汽或树脂固定压缩木回弹的方 法。 例如, 1996 年方桂珍等使用不同浓度的低分子量三聚氰胺一曱 醛 (MF)树脂为固定木材压缩变形的交联剂浸渍大青杨,处理材 ASE为 47 % , MEE为 36 % , 经浓度为 1 0 %的交联剂处理的试件,压密后室温 下浸水可完全保持其固定变形; 17. 5 %和 25 %浓度的交联剂处理的 试件, 在沸水中也保可持其变形。 1 997 年方桂珍等研究了大青杨与 MF交联剂的作用机理。 1 998年方桂珍等又釆用不同浓度的 PF预聚体 处理大青杨木材, 并在加热过程中作横紋方向的压缩处理。 结果为: 经 10 %的 PF预聚体处理的试材, ASE达 60 %以上, MEE为 52 % , 在 室温或沸水中浸水均可完全保持其压缩变形。 1998年方桂珍等以 1 , 2 , 3 , 4_丁烷基四曱酸(BKA)为交联剂, NaH2P02 为催化剂处理大青 杨, 然后在 1 50 °C下恒温压缩。 方桂珍等人用低分子量 PF树脂处理 大青杨木材, 提高了木材的尺寸稳定性和力学强度。 2000 年方桂珍 等人做了木材浸渍低分子量低色度酚醛树脂的研究以及低分子量酚 醛树脂改性大青杨木研究。
现有的表面压缩固化木材,是将干燥的木材锯材的表面部分浸泡 在水中 5 ~ 6h预定的深度, 当渗入一定的量的水以后, 用微波辐射加 热, 然后将其接放置在热压装置上压缩、 压密, 再经干燥使压缩部分 固定。 但这一技术存在着, 表面浸泡水后, 表面水很大, 当在很短时 间内蒸发时,其表面由于水分的蒸发而快速收缩,产生很大的内应力, 使表面容易产生开裂, 而且由于在压缩干燥固化过程中, 没有使木材 的表面内应力充分地平衡掉, 也没有使表面得到充分的塑性固化, 在 使用过程中很容易产生回弹现象。
上述方法釆用化学试剂处理,其必定有废气或废水排放,噪声大, 污染环境, 而且所得型材的尺寸稳定性差, 易弯曲翘曲变形, 耐腐耐 候性不理想, 使用寿命短, 出材率不高等缺点。
中国专利文献 CN101603623A公开了 "表面强化实木型材、 地板 及其制造方法" 技术专利, 其制造方法包括(1 )干燥原木型材; (2) 将原木型材在 210~ 250°C的热压机中压缩; (3)将压缩后的原木型 材保温 20 ~ 60分钟; (4)控制原木型材的含水率在 6~9%之间。 上 述方案, 在干燥过程中, 容易产生皱缩, 在后续的压缩过程中容易产 生压裂爆裂, 木材损耗大, 出材率低, 约为 60~70%, 而且处理出来 的木材颜色深, 有烧焦味, 上述工艺获得的地板只能在北方等干燥气 候条件下能用, 而在南方使用则会产生较大的变形, 同时其耐腐等级 只能达到 III级, 防腐性能较差。
中国专利文献 CN101214675A公开了 "木材热压炭化强化方法" 技术专利, 其包括(1 )干燥: 根据木材密度, 将木材在干燥窑中把 含水率控制在 3~17%; (2) 刨光: 对木材进行了刨光处理; (3)热 压炭化: 将刨光的木材放入温度为 160~ 260°C的热压机中进行热压 炭化, 木材的压缩比控制在 5 ~ 50%, 保温 10 ~ 240分钟; 冷却: 将 炭化后的木材冷却至 80%以下; (4)成品: 将木材的放在自然条件或 调温调湿房内, 根据木材的用途把木材的含水率调到 5~10%。 上述 方案在压缩炭化过程中, 木材^ L容易被压裂, 出材率低, 约为 50 ~ 60%; 同时上述方案处理得到的木材耐腐性能差(通常在 III级以下) 且不稳定、尺寸稳定性差, 同时也有些木材就会被炭化过度,材色深, 有烧焦味。
中国专利文献 CN101486212A公开了 "压缩炭化杨木三层实木复 合地板的生产方法"技术专利, 其公开的面层材料的制备: 将速生材 杨木锯剖成板材, 经干燥、 刨削、 根据压缩率 (压缩率 30%、 40%、 50%、 60%)和面板的厚度为 2 ~ 4mm加工成含水率为 20 ~ 40%的杨木 薄板,板在压机中被压缩到所需的压缩率,压缩时的温度 70 ~ 110°C, 施加的压力根据薄板设计的压缩率而确定;压缩后的板在一定的压力 条件下或在特制的夹具中进行炭化固定,炭化过程在热压机中进行或 在特制的夹具中进行, 炭化温度为 190 ~ 220°C, 时间 1.5 ~ 5小时, 炭化装置设有排气孔; 炭化处理结束后, 在一定的压力条件下将杨木 薄板温度降至 40~ 60°C, 取出杨木薄板, 用宽带砂光机砂去颜色变 深的外层, 砂光后的杨木薄板厚度在 2 ~ 4mm。 现有技术的上述方案, 杨木的含水率大, 在纤维饱和点左右, 在 70~ 110°C的条件下进行干 燥后木材收缩率很大会导致木材的残余应力也很大,然后在 190 ~ 220 条件下炭化时, 使得木材很容易开裂, 而且木材压缩率大, 形成了 整体压缩, 木材损耗率大, 炭化装置设有的排气孔, 会使得压缩出来 的木材表面出现凹凸不平的点, 经砂光后, 这些点所在的位置会使得 这一区域硬度降低, 而且后期又没有进行含水率调湿处理,会使得木 材在使用过程中因吸湿而产生变形;这样的工艺也不能利于产业化的 运作。
发明内容 本发明的目的是解决上述背景技术的不足,提供一种木质型材的 制备方法, 通过物理木材功能性改良方法, 解决软木的材质软, 密度 小, 容易开裂变形等缺陷, 同时解决现有技术处理压缩木回弹大, 木 材损耗大, 浸渍树脂污染环境, 尺寸稳定性差, 耐腐耐候性差, 易变 形, 出材率低等的缺点, 同时也解决了生产过程复杂,能耗高的缺点; 该木质型材的制备方法工艺简单、无污染且通过实施该木质型材的制 备方法所得木质型材的得材率高达 99%, 甚至达到 100%, 且所制得的 木质型材尺寸稳定性高、 防腐耐磨性强、 表面硬度高、 使用寿命长, 可达 70年以上。
本发明的上述技术目的是通过以下技术方案得以实现的:一种木 质型材的制备方法, 它包括下列步骤:
( 1 )制材步骤: 将气干密度小于或等于 700kg/m3的木材通过制 材得板材;
( 2 )干燥步骤: 对板材进行干燥, 使板材的含水率降低到 6 ~ 20%的步骤;
( 3 ) 刨光步骤: 对干燥过的板材进行刨光得素板材坯料;
( 4 )热压步骤: 用两块温度为 140 ~ 200°C的热压板对素板材坯 料的两个表层进行压缩密实;
( 5 )预炭化步骤: 使素板材坯料在 160 ~ 200°C的条件下进行预 炭化;
( 6 )炭化步骤: 使素板材坯料在 200 ~ 225 °C的条件进行炭化; ( 7 )冷却步骤; ( 8 )含水率控制步骤。
气干密度小于或等于 700kg/m3的木材一般称为软木,多数为速生 材。
所述的步骤(1)制材步骤, 由软木原材通过制材的方法, 制得所 需尺寸的板材, 如长为 600mm ~ 2000mm, 宽为 110mm ~ 200mm, 厚为 30mm ~ 60mm的地板板材,然后堆垛好,堆垛时板材之间的间距留 15 ~ 25mm空隙,然后进行干燥。
作为本发明的优选,所述的步骤(2)干燥步骤的优选是,釆用的是 高温高湿快速干燥方法,釆用高温高湿快速干燥方法有利于防止软材 在干燥过程中产生皱缩, 防止板材霉变或蓝变, 以保证最终产品的质 量, 通过干燥步骤使板材的含水率降到 6 ~ 20%;
作为本发明的另一种优选,所述的步骤(2)干燥步骤是,将木材在 室内晾干 5天以上后再经加热干燥,通过晾干除掉部分水分后可防止 在热压的过程中开裂, 达到节能作用。
设有干燥步骤是因为软木各种间差异性大,软木本身的各向异性 也很大, 釆用高温高湿干燥方法, 在高温高湿条件下干燥木材可以使 木材在厚度方向上形成较小的木材含水率梯度 ,保护木材由于干燥剧 烈而产生表裂、 内裂、皱缩等干燥缺陷, 影响后继的热压质量。 同时, 在高温条件下, 有利于抑制菌虫的生长或杀死菌虫, 防止板材发生霉 变或蓝变。
作为本发明步骤(2)干燥步骤的优选, 对有树脂的板材将其干燥 至含水率为 10 ~ 16% , 对无树脂的木材干燥至 6 ~ 12%。 含水率过低, 如含水率为 3 ~ 5%时, 由于板材变脆, 在热压及炭化过程中, 板材很 容易被压裂, 出材率低; 含水率过高, 如含水率为 20 ~ 40%时, 板材 在热压及炭化过程中, 由于板材里的水分会形成过热水蒸汽, 含水率 高,板材里的过热水蒸汽分压力就很大, 又因所用热压及炭化的板材 通常是一些密度小、生长速度快的软材, 所以过热蒸汽分压力很容易 大于板材里的纤维间的横紋抗拉强度, 使得板材很容易发生爆裂炸 裂, 导致木材损耗大。 经实践证明, 釆用上述干燥方法处理板材, 可 以使得到的产品的得材率高达 99%以上。
所述的步骤(3)刨光步骤是用威力四面刨铣机(型号: U23EL)对干 燥后的板材两表面进行四面抛光, 选择两个相对的表层作为待压表 层, 且使得所述的待压表层上的抛光方向与板材的纤维方向平行,得 厚度为 20mm ~ 27mm的素板材坯料; 然后将抛光后的素板材坯料依次 进行热压步骤、预炭化步骤、炭化步骤、冷却后进行含水率控制步骤。
作为本发明的优选, 所述步骤(4 ) ~ ( 6 )热压、 预炭化、 炭化 步骤是: 把素板材坯料放在热压机上, 使热压板以 0. 5 ~ 6mm/ s的速 度闭合, 控制素板材坯料的压缩率为 10 ~ 30% , 并控制压力为 6 ~ 20MPa , 然后控制热压板温度为 150 ~ 160 °C并保温保压 30min ~ 120min;所述预炭化步骤是上述保温保压结束后再将热压板温度升温 度到 170 ~ 180°C并保温保压 30min ~ 120min;所述炭化步骤是在预炭 化步骤结束后将热压板温度升温到 200 ~ 225 °C条件下保温保压 45min - 120 min。 热压板温度在 150 ~ 160 °C并保温保压 30min ~ 120min 的过程为热压过程, 在这个过程中素板材坯料被压缩至所需 的厚度尺寸,使素板材坯料的两个相对的待压表层仅有 1. 5 ~ 10mm得 到压缩, 并保温保压 30min ~ 120min, 优选 30min ~ 90min, 最为优选 是 45min ~ 90min,使素板材坯料的两个相对的待压表层都形成 0. 6 ~ 4mm的压缩密实层, 即第一压缩密实层与第二压缩密实层, 且压缩密 实层的密度为自然层密度的 1. 3 ~ 3倍。
上述的热压过程中, 热压板闭合速度优选 0. 5 ~ 4mm/ s , 压缩率 优选 10 ~ 25% , 压力优选 9 ~ 16MPa。 之后进入预炭化阶段, 将热压板 的温度升温至 170 ~ 180°C后在保压状态下保温, 在预炭化过程中进 一步降低了素板材坯料的含水率,使素板材坯料充分热透, 进一步使 得过热水蒸汽分压力小于素板材坯料里的纤维间的横紋抗拉强度,防 止在后继的炭化步骤中出现炭化缺陷,如素板材坯料产生内裂、表裂、 颜色不均勾、 变形等问题, 从而大大提高了得材率, 得材率几乎可达 画。
预炭化过程结束后, 将热压板快速升温至 2GG ~ 225 °C并保温保 压 45min ~ 120 min的过程为炭化过程。 炭化过程中素板材坯料产生 了一系列复杂的化学反应, 因此炭化后的素板材坯料具有优异的性 能, 具体描述如下:
1、 防潮性增强: 素板材坯料经炭化处理后, 其水吸附机理发生 了变化。 随着处理温度的升高, 吸湿性能强的半纤维素在处理过程中 降解, 使得素板材坯料的吸湿性下降, 水分子与素板材坯料分子之间 的氢键减少,从而降低了素板材坯料的吸湿性和吸水性, 能让炭化后 上;
2、 尺寸稳定性提高: 素板材坯料在高温环境中进行热处理, 由 于炭化过程降低了素板材坯料组分中羟基的浓度,减小素板材坯料的 吸湿性和内应力,使炭化后的素板材坯料与外界水分的交换能力显著 下降,从而大大减小了炭化过的木质型材在使用中因水分变化引起的 变形、 收缩和湿胀;
3、 耐腐和耐候性显著增强: 素板材坯料组分在炭化过程中发生 了复杂的化学反应, 改变了素板材坯料的某些成分, 减少了素板材坯 料腐朽菌的营养物质 ,从食物链这一环节上抑制菌类在素板材坯料中 的生长。 因此, 炭化后的素板材坯料的耐腐性能和耐候性显著提高, 具有防腐烂、 防白蚁、 防真菌的功效;
4、 环保、 安全: 炭化过程为纯物理技术, 在素板材坯料炭化过 程中只涉及到温度和水蒸汽, 不添加任何化学药剂, 所以炭化过程环 保和安全。 另外, 炭化过程使素板材坯料具有了稳定、 防腐和珍贵木 材的颜色, 使得软木可替代部分珍贵木材;
5、 颜色内外一致: 炭化木颜色内外一致, 根据树种和工艺不同, 炭化木的颜色为黄色至深棕色。 对于松木、 杉木、 杨木之类浅色的速 生木材,炭化后可以使这些廉价木材的颜色具有类似热带珍贵木材的 颜色, 使木材看上去上档次, 并具有优良的稳定性。
经过实践证明釆用上述热压及炭化步骤, 得材率可达 99%, 甚至 达画。
作为本发明的另一种优选, 所述步骤(4 ) ~ ( 6 )热压、预炭化、 炭化步骤是: 把素板材坯料放在热压机上, 使热压板以 0. 5 - 6mm/ s 的速度闭合,控制素板材坯料的压缩率为 10 ~ 30%,并控制压力为 6 ~ 20MPa ,然后控制热压板温度为 170 ~ 200 °C并保温保压 lmin ~ 40min; 所述的预炭化步骤是保温保压结束后将热压板温度降到 160 ~ 170 °C 并保温保压 30min ~ 120min; 所述炭化步骤是在预炭化步骤结束后将 热压板温度升到 200 ~ 225 °C条件下保温保压 45min ~ 120 min。
在热压板温度为 170 ~ 200°C时为热压过程, 在热压过程中由于 素板材坯料在短时间温度变化剧烈, 这有利于表层的软化,保证产品 的质量; 然后进入预炭化步骤, 即将热压板的温度降至 160 ~ 170 °C 并进行保温保压以充分释放该素板材坯料内部的残余应力继而防止 该素板材坯料在后继的炭化过程中发生爆裂炸裂现象;热压板温度在 200 ~ 225 °C之间的过程为炭化过程。 实践证明釆用上述热压、预炭化 步骤及炭化步骤,得材率也可达 99%,甚至 100%,而且产品质量过硬。
作为本发明的优选, 所述步骤( 7 )冷却步骤是: 炭化步骤结束 后在保压的状态下使热压板的温度降到 120°C以下。 冷却步骤的作用 是使得经热压及炭化步骤后的素板材坯料的温度降至 120°C以下, 即 降至素板材坯料的可塑温度点以下,从而使得经热压及炭化步骤后的 素板材坯料固定成形。
作为本发明的另一种优选, 所述步骤( 7 )冷却步骤是: 在炭化 步骤结束后,緩慢泄压打开热压机,迅速取出素板材坯料并送进常温 压机中, 迅速闭合常温压机, 控制常温压机的压板压力在 0. 2 ~ 4MPa 之间。 作为本发明的优选, 所述步骤(8 )含水率控制步骤是: 将冷却 后的素板材坯料放到调温调湿房进行含水率控制,控制调温调湿房内 温度为 39 ~ 80 °C , 相对湿度为 75 ~ 95%进行调湿,使木材的含水率恢 复到 4 ~ 12%。 含水率恢复步骤使制得的木质型材能适应各地气候条 件的使用。
作为本发明方法的优选,它还包括一个在含水率控制步骤后用压 辊涂装的步骤, 所述压辊涂装步骤是将 UV树脂在 0. 5 ~ 1. OMpa的压 力挤压渗透入压缩层 0. 05 ~ 0. 15mm后经 UV固化。 本发明将 UV树脂 压入第一压缩密实层或第二压缩密实层,能进一步将涂料与该木质型 材表面的木纤维接触, 发生交联固化反应, 能达到漆膜硬度与柔韧性 二者兼顾, 增加了该木质型材的各种性能。
根据上述一种木质型材的制备方法所制得的木质型材,它包括压 缩密实层和与之纤维连接的自然层,压缩密实层为分别位于自然层两 相对侧的第一压缩密实层与第二压缩密实层,该种木质型材的整体密 度为 350 ~ 750kg/m3, 含水率为 4 ~ 12% , 其耐腐等级达 I I 以上, 重 量损失 24%。 该木质型材无胶, 其中自然层为未经压缩的木材结构, 但可能在表面压缩的过程中对自然层的结构造成影响,但上述影响相 对于压缩密实层被压缩的量可以忽略不计。 上述压缩密实层的密度, 即第一压缩密实层与第二压缩密实层的密度由相应的表层到距相应 的表层厚度为 0. 6 ~ ½m逐渐减小到木材的自然密度, 在压缩密实层 与自然层之间自然纤维连接, 与现有的胶合板不同。 上述自然连接连 接牢固、 无污染, 制作工序简单。 上述第一压缩密实层或第二压缩密 实层的表面漆膜硬度可达 2 ~ 6H。
该木质型材的含水率为 4 ~ 12%。 含水率是指木材中所含水分的 重量与绝干后木材重量的百分比, 定义为木材含水率。 在大气条件下 的吸湿平衡含水率是指木材在一定的温度湿度状态下,最后所达到的 吸湿稳定含水率或解吸稳定含水率, 叫做木材的平衡含水率。 一般, 木材在不同地方的平衡含水率不同, 例如, 广州地区年平均的平衡含 水率为 15. 1% , 北京地区却为 1 1. 4%。 木材干燥到 1 1%的木材用于北 京是合适的, 可用于广州将会吸湿膨胀, 产生变形。 所以说, 通常木 材的最终含水率要与使用地的平衡含水率接近或相同,才能保证木制 品的使用稳定性。 本型材经过压缩炭化处理后, 不但提高了软材的表 面硬度, 并达到很好的固定作用, 而且也大大降低了其吸湿性, 从而 大大减小了使用地不同季节的温度和湿度变化对其尺寸稳定性的影 响, 提高使用寿命, 在不同的气候条件下无需恢复含水率, 能够适应 于不同地域气候条件的使用。
本发明的上述木质型材, 按照 《GB 1941-91木材硬度试验方法》 测定型材表面硬度大于 1500N以上,是其自然层的 2. 0倍以上。同时, 材的含水率波动小,使尺寸稳定性大大提高。 现有的压缩木由于压缩 层需要被封死, 而釆用了大量的化学试剂, 本发明的上述木质型材不 含现有技术的上述化学试剂。 另外, 上述木质型材防腐性能优异, 按 照 《GB/T 1 3942. 1-1992 木材天然耐久性试验方法 木材天然耐腐性 实验室试验方法》标准, 对本发明优选树种样品进行实验, 其耐腐等 级达 11以上, 重量损失 24%。
上述木质型材的原料是速生材, 例如杨木、 杉木、 马尾松、 南方 松、 落叶松、 泡桐等, 它们未经处理时, 力学性能较差, 防腐防潮性 能不理想,稳定性差, 很容易受到菌虫的侵害, 容易开裂变形。
作为优选, 其耐腐等级达 I以上。
作为优选,第一压缩密实层与第二压缩密实层的厚度都在 1 ~ 2mm 之间。
作为优选, 上述含水率为 6. 5 ~ 10% , 更为优选的是 7 ~ 9%。
作为本发明的优选,第一压缩密实层与第二压缩密实层的厚度都 在 0. 6 ~ 4mm之间, 且压缩密实层的密度为自然层密度的 1. 3 ~ 3倍。
作为本发明的优选, 该木质型材的原料为杨木, 其整体密度为 380 ~ 550kg/m3, 含水率为 6 ~ 12% , 第一压缩密实层与第二压缩密实 层的厚度都在 0. 6 ~ 4mm之间。
作为本发明的优选, 该木质型材的原料为南方松, 其整体密度为 500 ~ 720kg/m3,含水率为 4 ~ 11%,第一压缩密实层与第二压缩密实层 的厚度都在 0. 6 ~ 3mm之间。
作为本发明的优选, 该木质型材的原料为马尾^ 其整体密度为 480 ~ 680kg/m3, 含水率为 5 ~ 10% , 第一压缩密实层与第二压缩密实 层的厚度都在 0. 6 ~ 2. 5mm之间。
作为本发明的优选, 该木质型材的原料为杉木, 其整体密度为 350 ~ 550kg/m3, 含水率为 5 ~ 10% , 第一压缩密实层与第二压缩密实 层的厚度都在 0. 6 ~ 2. 5mm之间。 上述木质型材具有如下优点:
1、 厚度密度分布: 第一压缩密实层与第二压缩密实层的厚度都 在 0. 6 ~ 4mm之间, 且第一压缩密实层与第二压缩密实层的密度都是 自然层密度的 1. 3 ~ 3倍;
2、 吸湿性: 与素材相比, 降低 45%以上;
3、 尺寸稳定性: 与素材相比提高 55%以上。
综上所述, 本发明具有以下有益效果:
1、 该木质型材可釆用速生材, 具有资源丰富, 价格低廉, 表面 经过热压及炭化步骤后 ,具备珍贵树种天然的优良的木材微环境特性 和物理力学性能,同时本发明釆用一次成型复合式木材物理功能性改 良技术, 即热压及炭化技术直接得到型材, 省去了多个组坯胶合浸渍 等环节,在节省成本的同时增强了型材的力学性能和保持木材的天然 特性;
2、 该木质型材的平衡含水率小且波动小, 尺寸稳定性高, 耐腐 耐候性强,压缩密实方向上的回弹小, 生产出来的产品无需再调整含 水率, 就可以直接应用于各种室外、 地热等各种不同的环境条件;
3、 该木质型材压缩密实层与自然层纤维连接, 它们之间不存在 胶合、 分开等技术问题, 而且热压后再经炭化, 对压缩密实层进行高 温固定处理,使其形成两个相对的表层硬中间软这样一种有弹性的木 材新特性, 用做实木地板时具有独特的优势, 做成的实木地板, 木紋 显现, 脚感舒适, 无任何有害气体排放, 兼顾了视感、 触觉、 嗅觉的 统一, 特别适合于有老年人或小孩的家庭用地板, 这是现在普通实木 地板所不能比拟的;
4、 该木质型材的制造方法中, 通过在热压前设置干燥步骤, 可 防止木材发生霉变或蓝变、加强木材的表面美观度, 同时还可以防止 在后续的热压及炭化过程中木材产生开裂或爆裂 ,损伤机器或爆伤工 人, 提高产品的得材率和保证产品的质量;
5、 该木质型材的制造方法中, 釆用的方法简单, 利于实现产业 化运作。 本发明涉及的关键步骤主要是干燥步骤、 热压步骤、 炭化步 骤, 只要这每一步都保证设备完好, 工艺合适, 并保证工艺得到正确 的实施就能得到质量过硬的产品;
6、木材的制造方法中, 在通过压力涂装的方法将 UV固化树脂压 入压缩密实层的表层中, 形成永久的固化,从而永久封住压缩密实层 的紋孔,有效降低压缩密实层吸湿能力, 进一步强化了木材的尺寸稳 定性, 防止回弹;
7、釆用高温高压热压后进行炭化一次成型木材功能性改良方法, 本发明具有工艺简单,在进行热压后进行炭化过程中不添加任何化学 药剂, 不排放废气和废水, 热利用效率高, 节能环保, 克服了木材的 固有缺陷, 解决了现有技术的回弹与环保二者不兼顾的难题, 利于产 业化的实施;
8、 本发明制得的木质型材具有相对的第一压缩密实层与第二压 缩密实层,使得该木质型材适用范围较单面压缩的型材更为广泛, 除 可用于制作地板外,还可应用于家具和办公领域, 如用于制作家用或 办公用桌椅等, 若将单面压缩的型材用于家具或办公领域, 则需要两 道型材制作工艺,之后将两块单面压缩的型材拼合才能用于家具或办 显更为优势, 无需拼合直接可用于家具或办公领域。
附图说明
图 1是实施例 1热压及炭化技术后杨木的第一压缩密实层与自然 层的连接结构剖切电镜照片图;
图 2是实施例 1杨木素材的剖切电镜照片图;
图 3是实施例 1杨木素材在厚度方向上的密度分布图; 图 4是实施例 1由杨木素材经热压及炭化技术后得到的产品在厚 度方向上的密度分布图;
图 1和图 2分别显示了最终产品和杨木素材的剖切电镜照片图, 从两张图明显可以看出, 图 2素材细胞结构分布均匀, 图 1可以明显 的看到, 从压缩表面往里 2 ~ 3mm左右的第一压缩密实层的密实程度 非常明显(第二压缩密实层的密实程度与第一压缩密实层类似), 再 往里就保持原木材均勾结构。
图 3和图 4分别是素材和最终产品的厚度方向上的密度分布图, 每个实验有 3个样品,可以发现经过对两个相对表面热压后的产品的 相应表面向内 2 ~ 3mm密度显著增强。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本具体实施例仅仅是对本发明的解释, 其并不是对本发明的限 制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做 出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到 专利法的保护。
实施例 1 :一种杨木地板的制造方法,选取速生材杨木作为素材, 通过制材的方法锯制成具批量的同规格板材, 将其堆垛好后, 用叉车 把垛好的木材堆放到蒸汽加热顶风型干燥窑中釆用高温高湿的方法 进行干燥, 使板材的含水率在 12 ~ 14 %左右。 用威力四面刨铣机(型 号: U23EL)对干燥后的板材表面进行抛光, 选择相对的两个抛光表面 作为待压实面,使得所述的待压实面的刨光方向与板材的纤维方向平 行, 得厚度为 25mm的素板材坯料, 将该素板材坯料放入三层热压机 中, 控制热压板的闭合速度为 3mm/ s , 热压机压力为 20MPa , 将两块 热压板升温至 150 °C并闭合,压到素板材坯料厚度为 20mm,使两块热 压板紧贴素板材坯料的待压面后进行保温保压 50min; 之后将两块热 压板的温度升至 170 °C ,仍控制热压机压力为 20 MPa ,保温保压 8 Om i η , 最后将两块热压板的温度升至 210 °C保温保压 60min, 以完成热压、 预炭化及炭化步骤; 然后在热压机在并在保压的状态下, 通过自身的 冷却系统, 即通过导热油使两块热压板的温度降低于 120 °C以下, 使 素板材坯料的温度降至可塑温度点以下,从而使得经炭化步骤后的素 板材坯料固定成形;之后将冷却后的素板材坯料放到调温调湿房进行 含水率恢复,控制调温调湿房内温度为 65 °C , 相对湿度为 90%进行调 湿,使木材的含水率恢复到 6 ~ 12%。
然后取出, 在室内陈放一段时间, 再对其进行企口、 表面砂光、 表面涂饰等步骤即可得实木地板。图 1是本实施例热压及炭化技术后 杨木的第一压缩密实层与自然层的连接结构剖切电镜照片图(第二压 缩密实层结构与第一压缩密实层结构类似), 通过与图 2对比, 可以 看出, 其纤维间隙空间几乎被全部压缩, 因此其硬度高、 能够满足各 种地板的强度要求, 克服了软材的缺陷。地板的自然层的纤维结构松 散, 能起到较好的吸音、 防震作用, 脚感好, 继承了软材的优点。
所述的表面涂饰釆用高压辊涂装技术, 使低粘度 UV树脂在 IMpa 的压力下挤压渗透入压缩密实层 0. 15mm左右, 经 UV固化后,使压缩 密实层再次增强。这些树脂增强层还能起到隔离压缩密实层与外界的 水份交换, 再次固化压缩密实层, 并提高木材稳定性。 第一压缩密实 层或第二压缩密实层的漆膜硬度为 2H ~ 6H。
由图 3与图 4对比,可看出上述实木地板被压缩的表面向内 2. 5mm 厚部分硬度显著增强。
实施例 2 : —种南方松地板的制造方法, 选取速生材南方松作为 素材, 通过制材的方法锯制成具批量的同规格板材, 将其堆垛好后, 用叉车把垛好的木材堆放到蒸汽加热顶风型干燥窑中釆用高温高湿 的方法进行干燥, 控使板材的含水率在 10 ~ 18 %左右。 用威力四面 刨铣机(型号: U23EL)对干燥后的板材表面进行抛光, 选择相对的两 个抛光的表面作为待压实面,使得所述的待压实面的刨光方向与板材 的纤维方向平行, 得厚度为 30匪的素板材坯料, 将该素板材坯料放 入三层热压机中, 控制热压板的闭合速度为 4匪 /s , 控制热压机内的 压力为 15MPa将两块热压板的温度升至 180°C , 压到素板材坯料的厚 度为 24mm时保温保压 30min, 然后通过压机自身冷却系统, 即通过 导热油将两块热压板降温到 160°C并保温保压 45min,最后升温到 210 条件下保温保压 60min, 以完成热压、 预炭化及炭化步骤; 之后, 緩慢泄压,打开热压机,立即取出素板材坯料,立即送进常温压机里, 然后立即闭合该常温压机, 将常温压机的压板压至素板材坯料的表 面, 控制压力控制为 2.5MPa, 进行冷却, 使得经炭化步骤后的素板 材坯料的温度降至 120°C以下,即降至素板材坯料的可塑温度点以下, 从而使得经炭化步骤后的素板材坯料固定成形;然后将冷却后的素板 材坯料放到调温调湿房进行含水率恢复, 控制调温调湿房内温度为 60°C, 相对湿度为 95%进行调湿,使木材的含水率恢复到 7~ 12%。
然后取出, 在室内陈放一段时间, 再对其进行企口、 表面砂光、 表面涂饰等步骤即可得实木地板。
木地板经过炭化处理, 其表面呈黄色, 颜色均勾一致, 其吸水能 力显著下降, 在使用时其平衡含水率稳定在 7 ~ 12%。 第一压缩密实 层或第二压缩密实层的漆膜硬度为 2H~ 6H。
实施例 3 ~ 5:与实施例 1的不同之处都列于下表之中:
项目 实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 素材 杨木 南方松 杉木 马 泡桐 热压步骤中热压板温度 150'C 180'C 200'C 160'C 170'Ca 热压机内压力 20MPa 15MPa lOMPa 環 Pa 6MPa 热压板闭合速度 3 mm/ s 1.5 mm/ s 0.5mm/ s 2 mm/ s 6 mm/ s 热压步骤保温保压时间 50min 25min 40min 90min lmin 预炭化步骤中热压板温
170'C 160'C 160'C 180'C 160'C 度
预炭化步骤中保温保压
80min 45min 120min 90min 120min 时间
压缩距离 5 mm 6 mm 4 mm 3 mm 2 mm 第一压缩密实层厚度 2 mm 2.5mm 2 mm 1.2 mm 0.6mm 第二压缩密实层厚度 2.1mm 2.4mm 1.8 mm 1.1mm 0.7mm 炭化步骤中热压板温度 210'C 210'C 225'C 200'C 225'C 炭化步骤中保温保压时
60min 60min 120min 45min 90min 间
含水率 6-12% 4 ~ 12% 5 ~ 10% 5 ~ 10% 7 ~ 9%
UV涂装压力 IMPa IMPa 0.5MPa 0.7MPa 0.8MPa
UV树脂渗入压缩密实层
0.15mm 0.1mm 0.07mm 0.09mm 0.06mm 厚度
表面漆膜硬度 2H-6H 2H-6H 2H-4H 2H-4H 2H-4H
380 ~ 500 ~ 350 ~ 480 ~ 350 ~ 整体密度
550kg/m3 720kg/m3 550kg/m3 680kg/m3 550kg/m3
350 ~ 450 ~ 320 ~ 400 ~ 300 ~ 素材密度
450kg/m3 620kg/m3 420kg/m3 640kg/m3 400kg/m3
480 ~ 550 ~ 400 ~ 550 ~ 400 ~ 第一压缩密实层密度
1200kg/m3 1350kg/m3 1000kg/m3 1300kg/m3 1000kg/m3 耐腐等级 大于 II 大于 II 大于 II 大于 II 大于 II 重量损失 <15 <10 <9 <17 <12 第二压缩密实层的密度与第一压缩密实层的密度类似。
实施例 6: —种办公桌的桌面型材的制备方法, 选取速生材杨木 作为素材, 通过制材的方法锯制成具批量的同规格板材, 将其堆垛好 后, 在板材垛顶加重物, 用叉车把垛好的木材堆放到蒸汽加热顶风型 干燥窑中釆用高温高湿的方法进行干燥,最终使板材的含水率在 15 ~ 20 %左右。 用威力四面刨铣机(型号: U23EL)对干燥后的板材表面进 行抛光, 选择相对的两个抛光的表面作为待压实面,使得所述的待压 实面的刨光方向与板材的纤维方向平行, 得厚度为 50mm的素板材坯 料, 将该素板材坯料放入三层热压机中, 控制热压板的闭合速度为 3. 5mm/ s , 热压机压力为 12MPa , 将两块热压板升温至 160 °C并闭合, 压到素板材坯料厚度为 40mm,使两块热压板紧贴素板材坯料的被压面 后进行保温保压 45min , 之后将两块热压板的温度升至 180 °C , 仍控 制热压机压力为 12 MPa , 保温保压 90min, 最后将两块热压板的温度 升至 21 0 °C保温保压 80min , 以完成热压、 预炭化及炭化步骤; 然后 在热压机上, 通过自身的冷却系统, 即通过导热油使两块热压板的温 度降低于 100 °C以下, 使素板材坯料的温度降至可塑温度点以下, 从 而使得经炭化步骤后的素板材坯料固定成形;之后将冷却后的素板材 坯料放到调温调湿房进行含水率恢复, 控制调温调湿房内温度为 65 °C , 相对湿度为 90%进行调湿,使木材的含水率恢复到 9 ~ 12%左右。
然后取出, 在室内陈放一段时间, 再对其进行表面砂光、 表面涂 饰等步骤即可得桌面型材。
所述的表面涂饰釆用高压辊涂装技术, 使低粘度 UV 树脂在 1. OMpa的压力下挤压渗透入压缩密实层 0. 12mm左右, 经 UV固化后, 使压缩密实层再次增强。这些树脂增强层还能起到隔离压缩密实层与 外界的水份交换, 再次固化压缩密实层, 并提高木材稳定性。 第一压 缩密实层或第二压缩密实层的漆膜硬度为 2H~6H。

Claims

权利要求书
1、 一种木质型材的制备方法, 其特征在于: 它包括下列步骤:
(1 )制材步骤: 将气干密度小于或等于 700kg/m3的木材通过制 材得板材;
(2)干燥步骤: 对板材进行干燥, 使板材的含水率降低到 6~ 20%的步骤;
( 3) 刨光步骤: 对干燥过的板材进行刨光得素板材坯料;
(4)热压步骤: 用两块温度为 140~ 200°C的热压板对素板材坯 料的两个表层进行压缩密实;
( 5 )预炭化步骤: 使素板材坯料在 160 ~ 200°C的条件下进行预 炭化;
( 6 )炭化步骤: 使素板材坯料在 200 ~ 225°C的条件进行炭化;
( 7 )冷却步骤;
(8)含水率控制步骤。
2、 根据权利要求 1所述的一种木质型材的制备方法, 其特征在 于:所述热压步骤是:把素板材坯料放在热压机上,使热压板以 0.5 ~ 6匪 /s的速度闭合, 控制素板材坯料的压缩率为 10~ 30%, 并控制压 力为 6 ~ 20MPa, 然后控制热压板温度为 150 ~ 160°C并保温保压 30min ~ 120min; 所述预炭化步骤是上述保温保压结束后再将热压板 温度升温度到 170~ 180°C并保温保压 30min~ 120min;所述炭化步骤 是在预炭化步骤结束后将热压板温度升温到 200 ~ 225 °C条件下保温 保压 45min - 120 min。
3、 根据权利要求 1所述的一种木质型材的制备方法, 其特征在 于:所述热压步骤是:把素板材坯料放在热压机上,使热压板以 0. 5 ~ 6匪 /s的速度闭合, 控制素板材坯料的压缩率为 10 ~ 30%, 并控制压 力为 6 ~ 20MPa , 然后控制热压板温度为 170 ~ 200 °C并保温保压 lmin ~ 40min; 所述的预炭化步骤是保温保压结束后将热压板温度降 到 160 ~ 170 °C并保温保压 30min ~ 120min;所述炭化步骤是在预炭化 步骤结束后将热压板温度升到 200 ~ 225 °C条件下保温保压 45min ~ 120 min。
4、 根据权利要求 1所述的一种木质型材的制备方法, 其特征在 于: 所述步骤( 7 )冷却步骤是: 炭化步骤结束后在保压的状态下使 热压板的温度降到 120°C以下。
5、 根据权利要求 1所述的一种木质型材的制备方法, 其特征在 于: 所述步骤( 7 )冷却步骤是: 在炭化步骤结束后, 緩慢泄压打开 热压机,迅速取出素板材坯料并送进常温压机中,迅速闭合常温压机, 控制常温压机的压板压力在 0. 2 ~ 4MPa之间。
6、 根据权利要求 1所述的一种木质型材的制备方法, 其特征在 于: 所述步骤( 8 )恢复含水率步骤是: 将冷却后的素板材坯料放到 调温调湿房进行含水率恢复, 控制调温调湿房内温度为 39 ~ 80°C , 相对湿度为 75 ~ 95%进行调湿,使木材的含水率恢复到 4 ~ 12%。
7、根据权利 1 ~ 6所述的一种木质型材的制备方法所制得的木质 型材, 其特征在于: 它包括压缩密实层和与之纤维连接的自然层, 压 缩密实层为分别位于自然层两相对侧的第一压缩密实层与第二压缩 密实层, 该种木质型材的整体密度为 350 ~ 750kg/m3, 含水率为 4 ~ 12%, 其耐腐等级达 I I以上, 重量损失 24%。
8、 根据权利要求 7所述的木质型材, 其特征在于: 第一压缩密 实层与第二压缩密实层的厚度都在 0. 6 ~ 4mm之间, 且压缩密实层的 密度为自然层密度的 1. 3 ~ 3倍。
9、 根据权利要求 7所述的木质型材, 其特征在于: 该木质型材 的原料为杨木, 其整体密度为 380 ~ 550kg/m3, 含水率为 6 ~ 12%, 第 一压缩密实层与第二压缩密实层的厚度都在 0. 6 ~ 4mm之间。
10、 根据权利要求 7所述的木质型材, 其特征在于: 该木质型材 的原料为南方松, 其整体密度为 500 ~ 720kg/m3, 含水率为 4 ~ 11%, 第一压缩密实层与第二压缩密实层的厚度都在 0. 6 ~ 3mm之间。
11、 根据权利要求 7所述的木质型材, 其特征在于: 该木质型材 的原料为马尾松, 其整体密度为 480 ~ 680kg/m3, 含水率为 5 ~ 10%, 第一压缩密实层与第二压缩密实层的厚度都在 0. 6 ~ 2. 5mm之间。
12、 根据权利要求 7所述的木质型材, 其特征在于: 该木质型材 的原料为杉木, 其整体密度为 350 ~ 550kg/m3, 含水率为 5 ~ 10%, 第 一压缩密实层与第二压缩密实层的厚度都在 0. 6 ~ 2. 5mm之间。
PCT/CN2010/070515 2009-12-26 2010-02-04 一种木质型材及其制备方法 WO2011075960A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10838526.1A EP2517851B1 (en) 2009-12-26 2010-02-04 Preparation method for a wood section
JP2011549423A JP5467112B2 (ja) 2009-12-26 2010-02-04 一種の木質型材及びその製造方法
KR1020117010253A KR101287344B1 (ko) 2009-12-26 2010-02-04 목재 성형재의 제조방법
US13/175,970 US8153038B2 (en) 2009-12-26 2011-07-05 Type of wood section material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101569926A CN102107447B (zh) 2009-12-26 2009-12-26 一种木质型材及其制备方法
CN200910156992.6 2009-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/175,970 Continuation US8153038B2 (en) 2009-12-26 2011-07-05 Type of wood section material and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2011075960A1 true WO2011075960A1 (zh) 2011-06-30

Family

ID=44171784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070515 WO2011075960A1 (zh) 2009-12-26 2010-02-04 一种木质型材及其制备方法

Country Status (6)

Country Link
US (1) US8153038B2 (zh)
EP (1) EP2517851B1 (zh)
JP (1) JP5467112B2 (zh)
KR (1) KR101287344B1 (zh)
CN (1) CN102107447B (zh)
WO (1) WO2011075960A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423892A (zh) * 2011-09-23 2012-04-25 浙江未来家木业有限公司 一种地板表面处理方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221894B2 (en) * 2009-07-07 2012-07-17 Zhejiang Shiyou Timber Co., Ltd. Surface reinforced solid wood profiles, flooring and manufacturing method
US8733409B2 (en) * 2010-10-19 2014-05-27 Composite Technology International Inc. Process to manufacture frame using renewable wood product(s)
CN103009448B (zh) * 2011-09-24 2016-08-03 朱林 一种表面阻燃增强实木及其制造方法
CN103009449B (zh) * 2011-09-25 2015-10-28 贵州金鸟木业有限责任公司 一种阻燃压缩实木材及其生产方法
CN102423889B (zh) * 2011-12-09 2014-07-30 南京林业大学 单面压缩木质板材及其生产方法
CN102922585A (zh) * 2012-11-15 2013-02-13 湖州铁佛耐火材料有限公司 一种炭化阻燃压缩型材的制备方法
CN102990752B (zh) * 2012-11-30 2015-07-22 浙江世友木业有限公司 一种薄板炭化方法
CN103171013B (zh) * 2013-03-29 2015-04-29 安徽美源装饰科技有限公司 一种木材深度碳化的工艺
CN103317576B (zh) * 2013-04-23 2015-12-02 浙江林碳木业科技有限公司 一种大幅面炭化板的制造方法
CN103240782B (zh) * 2013-04-25 2015-03-18 浙江国振家具有限公司 一种纳米无机化炭化木的制备方法及其产品和应用
CN103552142B (zh) * 2013-10-29 2015-07-22 内蒙古农业大学 一种木材密实干燥炭化一体化处理方法
CN103753678A (zh) * 2013-12-11 2014-04-30 常熟市鑫磊木业制造厂 纳米微炭化木地板的制备方法
CN103909554B (zh) * 2014-04-01 2015-11-18 梅州市汇胜木制品有限公司 利用次小径材生产实木家具弯曲构件的方法
CN105317197B (zh) * 2014-07-04 2017-09-29 抚顺森隆达木业有限公司 一种废料复合地板的制作工艺
CN104400867B (zh) * 2014-07-09 2017-03-15 江西桐源林业科技有限公司 一种降低泡桐木材压缩回弹的制备方法
CN104369245B (zh) * 2014-09-18 2016-04-13 浙江农林大学 木材超高温热压表面炭化方法
CN104308944A (zh) * 2014-10-13 2015-01-28 苏州东邦家具有限公司 一种防霉抗菌的轻质实木板家具
CN104354201B (zh) * 2014-12-02 2016-03-30 王凯 基于压密技术制成的新型硬木
CN104875266A (zh) * 2015-06-29 2015-09-02 桦甸市惠邦木业有限责任公司 炭化实木复合板及其生产方法
ITUB20153769A1 (it) * 2015-09-07 2017-03-07 Tecnoflex Srl Pannello per anta di tipo perfezionato riproducente sulla sua parte frontale i rilievi e le venature di un'essenza legnosa e suo procedimento produttivo
BE1023232B1 (fr) * 2015-10-29 2017-01-05 Good Deal For You Concept Sprl Procédé de fabrication d'une plaque diffusante en liège, paroi diffusante en liège et conteneur isotherme comprenant une telle paroi.
CN106827153A (zh) * 2015-12-03 2017-06-13 邹界 一种家具制备工艺
JP6685029B2 (ja) * 2016-06-22 2020-04-22 パナソニックIpマネジメント株式会社 板状建材の製造方法
KR101756592B1 (ko) * 2016-09-08 2017-07-11 이건산업 주식회사 목질 판상 소재의 표면처리방법
CN106881756B (zh) * 2017-01-16 2018-12-21 华南农业大学 一种翘曲木材矫正及热压干燥方法
EP4036298A1 (en) * 2017-03-29 2022-08-03 Brock USA, LLC Infill for artificial turf system
US11021842B2 (en) 2017-03-29 2021-06-01 Brock Usa, Llc Infill for artificial turf system
KR102441112B1 (ko) * 2017-05-22 2022-09-07 유한회사 지승 치수안정성이 개선된 압축가공목재 제조방법
CN107511899B (zh) * 2017-08-16 2019-01-25 中国葛洲坝集团电力有限责任公司 一种任意长重组竹型材及其制造方法
CN107584619A (zh) * 2017-09-21 2018-01-16 浙江华凯木业有限公司 一种实木切菜板的制作方法
US20200331164A1 (en) * 2017-12-29 2020-10-22 AHF, LLC d/b/a AHF Products Densified wood including process for preparation
CN108673689A (zh) * 2018-03-29 2018-10-19 华南农业大学 一种单侧表层压缩木及其制备方法
CN108437142A (zh) * 2018-05-22 2018-08-24 天长市双丰文化用品有限公司 一种多层板整体热压工艺
CN108638277B (zh) * 2018-06-11 2023-04-18 南京林业大学 一种具有稳定耐久性木质结构材的制备方法及木质结构材
CN110919803A (zh) * 2018-09-20 2020-03-27 周弘云 一种黑柿木绘画板的制作方法
CN110964293B (zh) * 2019-11-20 2022-04-12 中南林业科技大学 炭塑复合吸波材料及其制备方法
CN111730707A (zh) * 2020-07-16 2020-10-02 广西大学 一种速生杉木压缩密实化的方法
CN112873466A (zh) * 2021-02-07 2021-06-01 湖南省尚竹家居用品有限公司 楠竹炭化烘干制备方法
CN114347202B (zh) * 2021-12-09 2023-03-21 佳米艾家居(广东)股份有限公司 一种层压实木板及其制备工艺
CN114147827A (zh) * 2021-12-14 2022-03-08 黄荣凤 基于水分分布调控的实木层状压缩方法
CN114872160A (zh) * 2022-04-15 2022-08-09 博罗县联合美饰家具装饰有限公司 木材碳化工艺
CN115366214B (zh) * 2022-08-11 2023-10-24 千年舟新材科技集团股份有限公司 一种调湿型刨花板及其制作方法
CN116619506A (zh) * 2023-05-23 2023-08-22 小森新材料科技有限公司 一种桐木数码喷涂饰面加硬工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB139421A (en) 1919-08-30 1920-03-04 William Oswald Harrap Improvements in or connected with sewing machines
GB194191A (en) 1922-04-25 1923-03-08 Harold Edgar Yarrow Improvements in superheaters for water tube boilers
JP2000238015A (ja) * 1999-02-23 2000-09-05 Yamamoto Tekkosho:Kk 木質材のプレス圧縮方法とこの方法に使用するプレス装置
KR20030012322A (ko) * 2001-07-31 2003-02-12 신명수 목공예용 목재 제조방법
CN101214675A (zh) 2008-01-08 2008-07-09 涂登云 木材热压炭化强化方法
CN101486212A (zh) 2009-02-25 2009-07-22 南京林业大学 压缩炭化杨木三层实木复合地板的生产方法
CN201320793Y (zh) * 2008-11-20 2009-10-07 陈兆红 一种加工防水地板的压烫机
CN101570031A (zh) * 2009-05-29 2009-11-04 周发荣 木地板炭化加工方法
CN101603623A (zh) 2009-05-29 2009-12-16 浙江世友木业有限公司 表面强化实木型材、地板及其制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857356B2 (ja) * 1995-02-03 1999-02-17 有限会社ウイズ 木材の内部応力緩和除去及び乾燥処理方法並びにその処理装置
IL119211A0 (en) * 1996-03-22 1996-12-05 Lego Irrigation Ltd Static sprinkler with presettable water discharge pattern
CA2249273A1 (en) * 1996-04-01 1997-10-09 Markus Rettenbacher Shaped body made of impregnated wood
JPH11967A (ja) * 1997-06-11 1999-01-06 Nippon Buroaa Kogyo Kk 炭化皮膜を形成した竹板とその方法
SE9703776D0 (sv) * 1997-10-16 1997-10-16 Lindhe Curt Nytt material och förfarande för dess framställning
JP3397306B2 (ja) * 1999-11-04 2003-04-14 信州大学長 木材の圧縮永久固定処理方法
DE10246401A1 (de) * 2002-10-04 2004-08-05 Georg-August-Universität Göttingen Verfahren zur Verbesserung der Dauerhaftigkeit, Dimensionsstabilität und Oberflächenhärte eines Holzkörpers
US7404422B2 (en) * 2003-02-05 2008-07-29 Eagle Analytical Company, Inc. Viscoelastic thermal compression of wood
JP4085266B2 (ja) * 2003-03-04 2008-05-14 株式会社アミノ 木材の圧縮成形装置及び木材の圧縮成形方法
JP4324521B2 (ja) 2004-07-30 2009-09-02 大建工業株式会社 炭化ボードの製造方法
JP4199176B2 (ja) * 2004-10-22 2008-12-17 オリンパス株式会社 木材の加工方法
JP2006346616A (ja) * 2005-06-17 2006-12-28 Daisho:Kk 木製品の外観表面形成方法
JP4825651B2 (ja) * 2006-12-01 2011-11-30 永大産業株式会社 無垢床材の熱処理方法と無垢床材
DE202006020347U1 (de) * 2006-12-10 2008-05-21 Moralt Tischlerplatten Gmbh & Co.Kg Leichtbauplatte
JP5133605B2 (ja) * 2007-06-04 2013-01-30 英昭 竹内 建築用竹集成材の製造方法及び竹集成材を用いた家屋
TWM335206U (en) * 2008-01-08 2008-07-01 A-Shui Su Bamboo mat composed of carbonized bamboo strips
TWM349836U (en) * 2008-09-11 2009-02-01 Charng Chuen Weave Mat Co Ltd Article made of carbonized bamboo
US7836924B2 (en) * 2009-01-16 2010-11-23 Weyerhaeuser NR Comp½any Methods for enhancing hardness and dimensional stability of a wood element and wood product having enhanced hardness
CN101602623B (zh) 2009-07-14 2012-07-11 武汉诚亿生物制品有限公司 一种微生物有机肥和复混肥及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB139421A (en) 1919-08-30 1920-03-04 William Oswald Harrap Improvements in or connected with sewing machines
GB194191A (en) 1922-04-25 1923-03-08 Harold Edgar Yarrow Improvements in superheaters for water tube boilers
JP2000238015A (ja) * 1999-02-23 2000-09-05 Yamamoto Tekkosho:Kk 木質材のプレス圧縮方法とこの方法に使用するプレス装置
KR20030012322A (ko) * 2001-07-31 2003-02-12 신명수 목공예용 목재 제조방법
CN101214675A (zh) 2008-01-08 2008-07-09 涂登云 木材热压炭化强化方法
CN201320793Y (zh) * 2008-11-20 2009-10-07 陈兆红 一种加工防水地板的压烫机
CN101486212A (zh) 2009-02-25 2009-07-22 南京林业大学 压缩炭化杨木三层实木复合地板的生产方法
CN101570031A (zh) * 2009-05-29 2009-11-04 周发荣 木地板炭化加工方法
CN101603623A (zh) 2009-05-29 2009-12-16 浙江世友木业有限公司 表面强化实木型材、地板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2517851A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423892A (zh) * 2011-09-23 2012-04-25 浙江未来家木业有限公司 一种地板表面处理方法

Also Published As

Publication number Publication date
JP2012517365A (ja) 2012-08-02
CN102107447B (zh) 2013-07-24
EP2517851B1 (en) 2015-11-04
KR101287344B1 (ko) 2013-07-23
US20110262727A1 (en) 2011-10-27
KR20110112277A (ko) 2011-10-12
CN102107447A (zh) 2011-06-29
US8153038B2 (en) 2012-04-10
EP2517851A1 (en) 2012-10-31
JP5467112B2 (ja) 2014-04-09
EP2517851A4 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2011075960A1 (zh) 一种木质型材及其制备方法
WO2011075959A1 (zh) 一种表面增强实木型材及其制造方法
CN102626941B (zh) 一种速生材表面增强制造方法及其型材
EP2255937B1 (en) Manufacturing method for a surface-strengthened solid wood floor board
CN102555005B (zh) 阻燃实木型材、阻燃实木地板及其生产方法
CN102626940B (zh) 一种实木型材改良方法及其型材
CN109591122B (zh) 一种木质材料真空压缩密实化的方法
US8221894B2 (en) Surface reinforced solid wood profiles, flooring and manufacturing method
US20190255731A1 (en) Reconstituted wood panel with natural wood grain and manufacturing method thereof
CN103009449B (zh) 一种阻燃压缩实木材及其生产方法
CN102922583A (zh) 一种压缩阻燃型材
CN110497484B (zh) 一种高强耐候竹质复合材料及其制造方法
CN110281321B (zh) 一种环保稳定型木材及其表层热改性方法
CN110666901B (zh) 环保防潮木板及其制备方法和应用
CN101660342B (zh) 实木地板
CN114407150A (zh) 一种环保功能木材的节能制备方法
CN102303336A (zh) 一种速生材阻燃增强木皮及其生产方法
CN108638229A (zh) 一种利用速生木材单板制备轻型集装箱底板的方法
CN118081929A (zh) 木材软化-压缩-热处理方法及制备的单侧表层压缩木
CN113370338A (zh) 一种油热单面表层压缩密实化纯实木地板的制备方法
CN102248559A (zh) 一种阻燃实木复合型材及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20117010253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011549423

Country of ref document: JP

Ref document number: 2010838526

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE