WO2011074380A1 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
WO2011074380A1
WO2011074380A1 PCT/JP2010/070759 JP2010070759W WO2011074380A1 WO 2011074380 A1 WO2011074380 A1 WO 2011074380A1 JP 2010070759 W JP2010070759 W JP 2010070759W WO 2011074380 A1 WO2011074380 A1 WO 2011074380A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
ethylenedioxythiophene
layer
monomer
solid electrolytic
Prior art date
Application number
PCT/JP2010/070759
Other languages
English (en)
French (fr)
Inventor
良介 杉原
雄平 鶴元
一都 藤原
Original Assignee
テイカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社 filed Critical テイカ株式会社
Priority to KR1020117018624A priority Critical patent/KR101152478B1/ko
Priority to US13/387,019 priority patent/US8684576B2/en
Priority to CN2010800164603A priority patent/CN102396040B/zh
Publication of WO2011074380A1 publication Critical patent/WO2011074380A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.
  • the conductive polymer is used as a solid electrolyte of a solid electrolytic capacitor such as a tantalum solid electrolytic capacitor, an aluminum solid electrolytic capacitor, or a niobium solid electrolytic capacitor because of its high conductivity.
  • a solid electrolytic capacitor such as a tantalum solid electrolytic capacitor, an aluminum solid electrolytic capacitor, or a niobium solid electrolytic capacitor because of its high conductivity.
  • conductive polymer in this application for example, those obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of thiophene or a derivative thereof are used.
  • organic sulfonic acid is mainly used as a dopant when performing chemical oxidative polymerization of the above thiophene or a derivative thereof.
  • aromatic sulfonic acid is said to be suitable, and transition metal is a transition metal.
  • ferric iron is said to be suitable, and usually a ferric salt of aromatic sulfonic acid is used as an oxidizing agent and a dopant in chemical oxidative polymerization of thiophene or a derivative thereof.
  • Patent Documents 1 and 2 As the thiophene or derivatives thereof, 3,4-ethylenedioxythiophene has been widely used so far because the conductivity and heat resistance of the resulting conductive polymer are balanced and highly useful.
  • Patent Document 3 3,4-alkylenedioxythiophene obtained by modifying 3,4-ethylenedioxythiophene with an alkyl group in order to increase the conductivity.
  • Patent Document 3 3,4-alkylenedioxythiophene is used, the heat resistance is greatly reduced, and when used as a solid electrolyte of a solid electrolytic capacitor, the reliability of the obtained solid electrolytic capacitor under high temperature conditions is reduced.
  • ESR equivalent series resistance
  • an object of the present invention is to provide a solid electrolytic capacitor having low ESR and high reliability under high temperature conditions.
  • the present invention provides a first conductive material synthesized by oxidative polymerization using 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin as a monomer on a dielectric layer of a capacitor element.
  • a second conductive polymer layer synthesized by oxidative polymerization using a mixture of dioxin and 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin as a monomer.
  • the ESR is low, the heat resistance is excellent, and the reliability under high temperature conditions is high.
  • solid electrolytic capacitors can be obtained, and It has been completed on the basis of.
  • the present invention provides a solid electrolyte made of a conductive polymer on a dielectric layer of a capacitor element having a porous body of valve metal such as tantalum, aluminum, niobium and the like and a dielectric layer made of an oxide film of the valve metal.
  • a solid electrolytic capacitor having The solid electrolyte comprises a first conductive polymer layer synthesized by oxidative polymerization using 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin as a monomer, and 2 2,3-dihydro-thieno [3,4-b] [1,4] dioxin or 2,3-dihydro-thieno [3,4-b] [1,4] dioxin and 2-alkyl-2,3-dihydro -A first conductive polymer layer synthesized by oxidative polymerization using a mixture of thieno [3,4-b] [1,4] dioxin as a monomer and alternately laminating at least one layer, The conductive polymer and the second conductive polymer, and one of the first conductive polymer layers is formed on the dielectric layer of the capacitor element. It relates to a solid electrolytic capacitor.
  • the present invention also provides a solid electrolyte made of a conductive polymer on a dielectric layer of a capacitor element having a porous body of valve metal such as tantalum, aluminum, niobium and the like and a dielectric layer made of an oxide film of the valve metal.
  • a solid electrolytic capacitor having The solid electrolyte includes, as a dopant, an aromatic sulfonic acid synthesized by oxidative polymerization using 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin as a monomer as a dopant.
  • Second conductivity A solid electrolytic capacitor comprising a molecule and a third conductive polymer, wherein one layer of the first conductive polymer is formed on a dielectric layer of a capacitor element It is.
  • the solid electrolytic capacitor of the present invention has low ESR, excellent heat resistance, and high reliability when used under high temperature conditions.
  • the solid electrolytic capacitor of the present invention has the above-described characteristics because, in the synthesis of the conductive polymer constituting the solid electrolyte, 2-alkyl-2,3-dihydro-thieno [3,4-b] as a monomer is used.
  • a highly conductive first conductive polymer was obtained, and its 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4
  • the adverse effects caused by the first conductive polymer based on dioxin alone can be reduced to 2,3-dihydro-thieno [3,4-b] [1,4] dioxin or 2,3-dihydro-thieno [3,4-b.
  • the monomer used as the raw material for the first conductive polymer and the second conductive polymer constituting the solid electrolyte of the solid electrolytic capacitor of the present invention corresponds to the compound represented by the following general formula (1).
  • R is hydrogen or an alkyl group
  • R in the general formula (1) is hydrogen
  • IUPAC name “2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2,3-Dihydro).
  • -Thieno [3,4-b] [1,4] dioxine) this compound is often represented by the generic name“ ethylenedioxythiophene ”rather than by the IUPAC name. Therefore, in this document, this “2,3-dihydro-thieno [3,4-b] [1,4] dioxin” is hereinafter referred to as “ethylenedioxythiophene”.
  • the “ethylenedioxythiophene” is the same as the “3,4-ethylenedioxythiophene” described above.
  • R in the general formula (1) is an alkyl group
  • the alkyl group is preferably one having 1 to 4 carbon atoms, that is, a methyl group, an ethyl group, a propyl group, or a butyl group.
  • a compound in which R in the general formula (1) is a methyl group is represented by the name IUPAC “2-methyl-2,3-dihydro-thieno [3,4-b] [1,4 Dioxin (2-Methyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine) ”, which will be simplified and represented as“ methylated ethylenedioxythiophene ”hereinafter. To do.
  • a compound in which R in the general formula (1) is an ethyl group is represented by IUPAC name, “2-ethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2-Ethyl). -2,3-dihydro-thieno [3,4-b] [1,4] dioxine) ”, this will be simplified and represented as“ ethylated ethylenedioxythiophene ”.
  • a compound in which R in the general formula (1) is a propyl group is represented by the name IUPAC, “2-propyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2-Propyl).
  • R in the general formula (1) is a butyl group
  • R in the general formula (1) is a butyl group
  • IUPAC name “2-butyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • 2,Butyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine) which will be simplified and represented as“ butylated ethylenedioxythiophene ”.
  • alkylated ethylenedioxythiophene 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • alkylated ethylenedioxythiophene methylated ethylenedioxythiophene, ethylated ethylenedioxythiophene, propylated ethylenedioxythiophene, and butylated ethylenedioxythiophene are preferable, and in particular ethylated ethylenedioxythiophene. Propylated ethylenedioxythiophene is preferred.
  • the monomer used as the raw material for the first conductive polymer is the alkylated ethylenedioxythiophene as described above, and the monomer used as the raw material for the second conductive polymer is ethylenedioxythiophene or ethylenedioxythiophene. And alkylated ethylenedioxythiophene.
  • a conductive polymer constituting the solid electrolyte is synthesized in advance, and water,
  • the dispersion of the conductive polymer is made into a dispersion with an aqueous liquid or an organic solvent, and the dispersion of the conductive polymer is used for the production of a solid electrolytic capacitor, the conductive polymer is synthesized at the time of production of the solid electrolytic capacitor, and the solid is then solidified.
  • the first conductive polymer and the second conductive polymer synthesize the conductive polymer at the time of manufacturing the solid electrolytic capacitor.
  • adopts the method which uses the conductive polymer obtained by drying the dispersion liquid of the conductive polymer previously synthesize
  • the first conductive polymer is synthesized by “in-situ polymerization”, that is, the case of synthesizing the solid electrolytic capacitor at the time of producing a solid electrolytic capacitor will be described.
  • Capacitor elements having a dielectric layer made of an oxide film of the valve metal formed on the surface are dipped in a liquid containing alkylated ethylenedioxythiophene, taken out, and then into a liquid containing a dopant and an oxidizing agent.
  • the first conductive polymer layer is formed by dipping, taking out and polymerizing, and then dipping in water, taking out and drying.
  • the thickness of the conductive polymer layer to be formed is extremely thin by performing the above process only once.
  • the above operation is repeated up to four times to form the conductive polymer layer. It is good also as a layer of the 1st conductive polymer. That is, according to the study by the present inventors, if the first conductive polymer layer is formed by repeating the above operation up to 4 times, the ESR does not become so large, but if it is repeated more than that, the ESR is increased. Turned out to be large.
  • the conductive polymer obtained by polymerizing alkylated ethylenedioxythiophene has high conductivity, but the conductivity synthesized by “in situ polymerization” using only this alkylated ethylenedioxythiophene as a monomer. Contrary to the expectation that the ESR will be reduced when a solid electrolytic capacitor is produced using a polymer as the solid electrolyte, the ESR becomes very large (bad). The reason for this is not necessarily clear at present, but when a solid electrolyte is formed by a conductive polymer using alkylated ethylenedioxythiophene as a monomer by laminating the conductive polymer many times. It is considered that the contact resistance between the conductive polymers is increased during the lamination, which causes the ESR to increase.
  • ethylenedioxythiophene is a conductive polymer
  • the conductivity is lower than that of alkylated ethylenedioxythiophene, but the layer of the conductive polymer is made of alkylated ethylenedioxythiophene as a monomer.
  • the layer of the conductive polymer is made of alkylated ethylenedioxythiophene as a monomer.
  • the conductivity of the conductive polymer is excellent, when the solid electrolytic capacitor is formed, the first highly conductive polymer having an alkylated ethylenedioxythiophene as a monomer that increases ESR. Disadvantages of molecules are eliminated by laminating a second conductive polymer layer using ethylenedioxythiophene as a monomer, and the conductive polymer using alkylated ethylenedioxythiophene as a monomer is highly conductive. I tried to make it work properly.
  • the second layer containing ethylenedioxythiophene as the monomer is formed on the first conductive polymer layer containing monomer as the alkylated ethylenedioxythiophene formed on the dielectric layer of the capacitor element.
  • a layer of a conductive polymer is laminated, and if necessary, a necessary number of first conductive polymers and second conductive polymers are alternately laminated thereon, and then a solid electrolytic capacitor is obtained.
  • a solid electrolytic capacitor having a low ESR was provided.
  • Reference numeral 20 in FIG. 1 denotes a capacitor element.
  • the capacitor element 20 is formed of a valve metal porous body 21 such as tantalum, aluminum, niobium and the like formed on the surface thereof.
  • a dielectric layer 22 made of an oxide film of a valve metal is formed, and an alkylated ethylenedioxythiophene (that is, 2-alkyl-2,3-dihydro-thieno [
  • a first conductive polymer layer 1 synthesized by oxidative polymerization using 3,4-b] [1,4] dioxin) as a monomer is formed, and the first conductive polymer layer 1 is formed on the first conductive polymer layer 1.
  • Ethylenedioxythiophene ie 2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • a layer 2 of a second conductive polymer synthesized by oxidative polymerization using a mixture with benzene as a monomer is formed by laminating, and the first conductive polymer and the second conductive polymer are solid.
  • An electrolyte 10 is configured.
  • the solid electrolytic capacitor shown in FIG. 1 shows an example in which the solid electrolyte 10 is composed of a first conductive polymer layer 1 and a second conductive polymer layer 2 one by one. However, if necessary, the first conductive polymer layer 1 and the second conductive polymer layer 2 may be alternately laminated in the required number of layers.
  • the first conductive polymer having an alkylated ethylenedioxythiophene as a monomer has poor heat resistance
  • the solid electrolyte is constituted only by the first conductive polymer having the alkylated ethylenedioxythiophene as a monomer.
  • the layer of the second conductive polymer is used as an alkylated ethylenedioxythiophene monomer.
  • the second conductive polymer layer is formed by immersing the capacitor element in which the first conductive polymer layer is formed on the dielectric layer in a liquid containing ethylenedioxythiophene. , Taken out, and then immersed in a liquid containing a dopant and an oxidant, taken out, polymerized, then immersed in water, taken out and dried.
  • alternating lamination means lamination of a first conductive polymer layer containing alkylated ethylenedioxythiophene as a monomer and a second conductive polymer containing ethylenedioxythiophene as a monomer.
  • first conductive polymers when laminated, or when the same second conductive polymers are laminated, they are not called alternately.
  • the synthesis of the first conductive polymer using an alkylated ethylenedioxythiophene as a monomer may be repeated by “in situ polymerization” up to 4 times, or ethylenedioxythiophene as a monomer.
  • the synthesis of the second conductive polymer by “in-situ polymerization” may be repeated any number of times, but is preferably limited to not more than 6 times.
  • the first conductive polymer having the alkylated ethylenedioxythiophene monomer as the monomer is formed on the dielectric layer of the capacitor element in contact with the dielectric layer serving as the current collector and the highly conductive alkylated ethylene. This is because a solid electrolytic capacitor having a low ESR can be obtained by forming the first conductive polymer containing dioxythiophene as a monomer.
  • the expression “on the dielectric layer” is used to mean an open surface of the dielectric layer formed in contact with a porous body of valve metal such as tantalum, aluminum, niobium, etc.
  • the first conductive polymer layer may be formed on the dielectric layer.
  • the first conductive polymer layer is disposed on the dielectric layer. Does not mean that
  • the first conductive polymer layer containing alkylated ethylenedioxythiophene as a monomer is formed on the dielectric of the capacitor element, and the second conductive material using ethylenedioxythiophene as the monomer is formed thereon.
  • a conductive polymer layer is formed, and, if necessary, a necessary number of them are alternately stacked to form a solid electrolyte with the first conductive polymer and the second conductive polymer.
  • a tantalum solid electrolytic capacitor, an aluminum solid electrolytic capacitor, a niobium solid electrolytic capacitor, or the like can be manufactured by covering the electrolyte with a carbon paste or a silver paste and then covering the electrolyte.
  • the mixing ratio of both is 0 for alkylated ethylenedioxythiophene with respect to 1 mol of ethylenedioxythiophene. 0.5 mol or less, particularly preferably 0.25 mol or less. That is, when the ratio of alkylated ethylenedioxythiophene to ethylenedioxythiophene is higher than 0.5 mol with respect to 1 mol of ethylenedioxythiophene, the effect of reducing ESR may not be sufficiently exhibited.
  • the ethylene dioxythiophene and the alkylated ethylenedioxythiophene are used except for the case where the mixture must be ethylene dioxythiophene and alkylated ethylenedioxythiophene.
  • a description will be given by taking oxythiophene as a representative.
  • the dopant for making the polymer of alkylated ethylenedioxythiophene or ethylenedioxythiophene into a conductive polymer is not particularly limited, but for example, benzenesulfonic acid or its derivatives, naphthalene Aromatic sulfonic acids such as sulfonic acid or derivatives thereof, anthraquinone sulfonic acid or derivatives thereof, and polymeric sulfonic acids such as polystyrene sulfonic acid, sulfonated polyester, and phenol sulfonic acid novolak resin are preferably used.
  • Examples of the benzenesulfonic acid derivative in the benzenesulfonic acid or derivative thereof include toluenesulfonic acid, ethylbenzenesulfonic acid, propylbenzenesulfonic acid, butylbenzenesulfonic acid, dodecylbenzenesulfonic acid, methoxybenzenesulfonic acid, ethoxybenzenesulfonic acid, Examples thereof include propoxybenzene sulfonic acid, butoxybenzene sulfonic acid, phenol sulfonic acid, cresol sulfonic acid, and benzene disulfonic acid.
  • naphthalene sulfonic acid derivatives in naphthalene sulfonic acid or its derivatives include naphthalene disulfonic acid and naphthalene trisulfonic acid. , Methyl naphthalene sulfonic acid, ethyl naphthalene sulfonic acid, propyl naphthalene sulfonic acid, butyl naphthalene sulfonic acid, etc.
  • anthraquinone sulfonic acid derivatives in anthraquinone sulfonic acid or its derivatives e.g., anthraquinone disulfonic acid, anthraquinone trisulfonate.
  • aromatic sulfonic acids have a molecular weight of 450 or less.
  • toluenesulfonic acid, methoxybenzenesulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid, and naphthalenetrisulfonic acid are particularly preferable.
  • polystyrene sulfonic acid polystyrene sulfonic acid, sulfonated polyester, phenol sulfonic acid novolak resin, or the like is used, and these polymeric sulfonic acids preferably have a weight average molecular weight of 5,000 or more.
  • the sulfonic acid will be described in detail as follows.
  • the polystyrene sulfonic acid preferably has a weight average molecular weight of 5,000 to 1,000,000, more preferably 10,000 or more, and more preferably 20,000 or more within that range.
  • 40,000 or more is more preferable, 800,000 or less is more preferable, and 300,000 or less is more preferable.
  • the sulfonated polyester is a mixture of dicarboxybenzene sulfonic acid or dicarboxybenzene sulfonic acid diester such as sulfoisophthalic acid or sulfoisophthalic acid ester or sulfoterephthalic acid or sulfoterephthalic acid ester, and alkylene glycol.
  • terephthalic acid or dimethyl terephthalate is added and subjected to condensation polymerization in the presence of a catalyst such as antimony oxide or zinc oxide.
  • the sulfonated polyester has a weight average molecular weight of 5,000 to 300,000. In that range, those having 10,000 or more are more preferable, those having 20,000 or more are more preferable, those having 100,000 or less are more preferable, and those having 80,000 or less are more preferable. .
  • the phenolsulfonic acid novolak resin preferably has a repeating unit represented by the following general formula (2), preferably has a weight average molecular weight of 5,000 to 500,000, and within that range, More preferably 10,000 or more, more preferably 20,000 or more, more preferably 400,000 or less, and still more preferably 80,000 or less.
  • R 1 is hydrogen or a methyl group
  • polymer sulfonic acids function as an excellent dispersant during the synthesis of the conductive polymer, and uniformly disperse the polymerizable monomer and the catalyst added as necessary in water or in an aqueous liquid, In addition, it is considered that it is incorporated as a dopant in the polymer to be synthesized to make the conductive polymer highly conductive, and at the same time, makes the conductive polymer excellent in heat resistance.
  • the alkylated ethylenedioxythiophene used in the synthesis of the first conductive polymer and the ethylenedioxythiophene used in the synthesis of the second conductive polymer are liquid at room temperature, they can be used as they are in the polymerization. However, in order to make the polymerization reaction proceed more smoothly, it is preferable to dilute these monomers with an organic solvent such as methanol, ethanol, propanol, butanol, acetone, acetonitrile or the like and use it as an organic solvent solution.
  • an organic solvent such as methanol, ethanol, propanol, butanol, acetone, acetonitrile or the like
  • the first conductive polymer and the second conductive polymer are synthesized by so-called “in situ polymerization” at the time of manufacturing the solid electrolytic capacitor, chemical oxidation polymerization is adopted for the synthesis.
  • the oxidizing agent used include persulfates and transition metals, and examples of the persulfates include ammonium persulfate, sodium persulfate, potassium persulfate, calcium persulfate, and barium persulfate.
  • ammonium persulfate is preferable, and iron, copper, cerium, chromium, manganese, ruthenium, zinc and the like are used as the transition metal, and iron is particularly preferable.
  • a suitable temperature and time can be selected from a wide range of temperatures and polymerization times according to various situations.
  • the temperature is 0 to 300 ° C., and the time is 1 minute to 72 hours.
  • the third conductive polymer layer a dispersion containing a conductive polymer that has been synthesized in advance is used. Therefore, in the synthesis of the third conductive polymer, chemical oxidation polymerization, electrolytic Any of the oxidative polymerizations can be employed, and the oxidative polymerization is performed in water or an aqueous liquid composed of a mixture of water and a water-miscible solvent.
  • the water-miscible solvent constituting the aqueous liquid include methanol, ethanol, propanol, acetone, acetonitrile, and the like.
  • the mixing ratio of these water-miscible solvents with water is 50 in the entire aqueous liquid. The mass% or less is preferable.
  • the temperature during chemical oxidative polymerization in the synthesis of the third conductive polymer is preferably 5 to 95 ° C., and the polymerization time is preferably 1 to 72 hours.
  • Electrolytic oxidation polymerization is be carried out even at a constant voltage at a constant current, for example, when performing electrolytic oxidation polymerization at a constant current, preferably 0.05mA / cm 2 ⁇ 10mA / cm 2 as the current value, 0.2 mA / cm 2 to 4 mA / cm 2 is more preferable.
  • the voltage is preferably 0.5 V to 10 V, more preferably 1.5 V to 5 V.
  • the temperature during the electrolytic oxidation polymerization is preferably 5 to 95 ° C, particularly preferably 10 to 30 ° C.
  • the polymerization time is preferably 1 hour to 72 hours, more preferably 8 hours to 24 hours.
  • ferrous sulfate or ferric sulfate may be added as a catalyst.
  • the conductive polymer (third conductive polymer) obtained as described above was obtained immediately after polymerization and dispersed in water or an aqueous liquid, and was used as a persulfate as an oxidizing agent or a catalyst. Contains iron sulfate and its decomposition products. Therefore, it is preferable to remove the metal component with a cation exchange resin after dispersing the impurities in an aqueous dispersion of the conductive polymer containing the impurities using a disperser such as an ultrasonic homogenizer or a planetary ball mill.
  • the particle size of the conductive polymer at this time is preferably 100 ⁇ m or less, and particularly preferably 10 ⁇ m or less. Thereafter, it is preferable to remove as much as possible the sulfuric acid produced by the decomposition of the oxidizing agent and the catalyst by an ethanol precipitation method, an ultrafiltration method, an anion exchange resin or the like.
  • the reason why such a third conductive polymer is used is also based on the following reason.
  • the effect of the present invention is that the first conductive polymer layer is formed on the dielectric layer of the capacitor element, and the first conductive polymer layer and the second conductive polymer layer are formed.
  • the “in situ polymerization” is performed. "Must be repeated many times, and as a result, it takes a long time to produce a solid electrolytic capacitor.
  • the layer formation of the conductive polymer can be efficiently performed in a short time compared to the case of “in situ polymerization”. Therefore, in the present invention, the effect of the lamination of the first conductive polymer layer and the second conductive polymer layer as described above can be obtained, and the conductive property is formed on these layers.
  • the time required for the production of the solid electrolytic capacitor was greatly shortened and the cost was reduced.
  • the withstand voltage of the solid electrolytic capacitor can be increased by forming a layer of the conductive polymer using the dispersion liquid containing the conductive polymer. However, the reason is not clear at present.
  • the example which comprises a solid electrolyte also using a 3rd conductive polymer in this invention is demonstrated based on FIG.
  • the first conductive polymer layer 1 is formed on the dielectric layer 22 of the capacitor element 20, and the first conductive high layer is formed.
  • a second conductive polymer layer 2 is laminated on the molecular layer 1.
  • a third conductive polymer layer 3 is formed on the second conductive polymer layer 2, and the first conductive polymer, the second conductive polymer, and the third conductive polymer are formed.
  • the solid electrolyte 10 is composed of a conductive polymer.
  • the first conductive polymer and the second conductive polymer are synthesized using aromatic sulfonic acid as a dopant, and the third conductive polymer is synthesized using polymer sulfonic acid as a dopant. Has been.
  • the example shown in FIG. 2 also shows only the case where the first conductive polymer layer 1 and the second conductive polymer layer 2 are formed one by one.
  • the conductive polymer layer 1 and the second conductive polymer layer 2 may be laminated in a necessary number of layers alternately as necessary.
  • the third conductive polymer layer 3 is It may be formed not only on the second conductive polymer layer 2 but also on the first conductive polymer layer 1.
  • the aromatic sulfonic acid is used as the dopant for the first conductive polymer or the second conductive polymer.
  • the use of a polymer sulfonic acid as a dopant for the third conductive polymer is as follows: This is because, as described above, it also acts as an excellent dispersant during the synthesis of the conductive polymer, making the conductive polymer highly conductive and having excellent heat resistance.
  • alkylated ethylenedioxythiophene used in the examples and the like that is, ethylated ethylenedioxythiophene, propylated ethylenedioxythiophene, butylated ethylenedioxythiophene and methylated ethylenedioxy
  • Synthesis examples of thiophene are shown in Synthesis Examples 1 to 4, and as test examples, ethylated ethylenedioxythiophene, propylated ethylenedioxythiophene, butylated ethylenedioxythiophene and methylated ethylenedidiene used in these examples and the like Compare the conductivity of conductive polymers containing oxythiophene as a monomer and the retention of conductivity at high temperature storage (which is an indicator of heat resistance) with those of conductive polymers containing ethylenedioxythiophene as monomers. Show.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • 1.25 kg of methanol was added to the reaction vessel and stirred, and the black-red oily matter obtained as described above was added dropwise to the reaction vessel and stirred, and the precipitated white solid was collected by filtration.
  • the white solid was washed with a small amount of methanol and dried to obtain 12.05 kg of butane-1,2-diyl-bis (4-methylbenzenesulfonate) as a product.
  • the yield in terms of solid content was 82%.
  • the reaction-terminated liquid was concentrated, and 1.8 kg of 5% sodium hydrogen carbonate (NaHCO 3 ) aqueous solution was added to the remaining brown solid, stirred at room temperature for 15 minutes, and the brown solid was collected by filtration.
  • NaHCO 3 sodium hydrogen carbonate
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • a mixture of water and methanol in a mass ratio of 1: 2 was added to the reaction vessel and stirred.
  • the black solid obtained as described above was added dropwise and stirred to precipitate a white solid. It was collected by filtration.
  • the white solid was washed with a small amount of methanol and then dried to obtain 3.77 kg of pentane-1,2-diyl-bis (4-methylbenzenesulfonate) as a product.
  • the yield in terms of solid content was 60%.
  • reaction-terminated liquid was concentrated, 5 kg of 5% aqueous sodium hydrogen carbonate solution was added to the remaining brown solid, and the mixture was stirred at room temperature for 15 minutes, and the brown solid was collected by filtration.
  • Concentrate dimethylformamide add 700 g of ethylene glycol, and distill the mixture at an internal pressure of 20 hpa while gradually raising the temperature to distill water and the first distillate, to distill 900 g of the main distillate containing ethylene glycol. It was.
  • the solution separated into two layers was separated, and 180 g of the lower yellow transparent liquid was obtained as the target product, propylated ethylenedioxythiophene.
  • the yield was 24%.
  • the reaction completed liquid was cooled to room temperature, 3 kg of water was added and stirred, and then allowed to stand.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • the reaction-terminated liquid was concentrated, 5 kg of 5% aqueous sodium hydrogen carbonate solution was added to the remaining brown solid, stirred at room temperature for 15 minutes, and the brown solid was collected by filtration. A brown solid collected by filtration and 5.32 kg of a 7% aqueous sodium hydroxide solution were added to the reaction vessel, and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C.
  • the vessel was cooled to room temperature, 759 g of 98% sulfuric acid was carefully added dropwise to the reaction-finished solution while keeping the temperature in the vessel not exceeding 30 ° C., and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C. .
  • the above dimethylformamide is concentrated, 700 g of ethylene glycol is added, and the reaction mixture is distilled while gradually increasing the temperature at an internal pressure of 20 hpa to distill water and the first fraction, and 900 g of the main fraction containing ethylene glycol. Was distilled.
  • a 10% aqueous sodium hydroxide solution was added to the obtained main distillate, and the mixture was stirred for 2 hours while keeping the temperature in the container at 100 ° C., and then allowed to stand.
  • the reaction finished solution was cooled to room temperature, 4 kg of water was added and stirred, and then allowed to stand.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • the reaction-terminated liquid was concentrated, 3.7 kg of 5% aqueous sodium hydrogen carbonate solution was added to the remaining brown solid, stirred for 15 minutes at room temperature, and the brown solid was collected by filtration. A brown solid collected by filtration and 2.47 kg of a 7% aqueous sodium hydroxide solution were added to the reaction vessel, and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C.
  • the vessel was cooled to room temperature, 759 g of 98% sulfuric acid was carefully added dropwise to the reaction-finished solution while keeping the temperature in the vessel not exceeding 30 ° C., and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C. .
  • Test Example Conducted polymers were synthesized (manufactured) using ethylated ethylenedioxythiophene, propylated ethylenedioxythiophene, butylated ethylenedioxythiophene, methylated ethylenedioxythiophene and ethylenedioxythiophene as monomers, respectively. The characteristics were compared.
  • a para-toluenesulfonic acid iron n-butanol solution having a concentration of 40% manufactured by Teika Co., Ltd., the molar ratio of paratoluenesulfonic acid to iron in the iron paratoluenesulfonic acid is 2.8: 1
  • the conductive polymer sheet on the ceramic plate is left to stand for 5 minutes while applying a load of 1.5 tons to equalize the pressure applied to the sheet, and then the conductivity of the conductive polymer is searched for four times. Measurement was performed with a needle type measuring instrument (MCP-T600 manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
  • each conductive polymer sheet after the above conductivity measurement was stored in a static temperature bath at 150 ° C., and the conductivity after 48 hours was measured to obtain the conductivity retention.
  • Table 1 the monomer used in the synthesis of the conductive polymer is also shown, in order to indicate the type, “ethylated ethylenedioxythiophene” is simply expressed in terms of space.
  • EDOT “Ethylated EDOT”
  • Propylated ethylenedioxythiophene” is “Propylated EDOT”
  • butylated ethylenedioxythiophene is “Butylated EDOT”
  • Methodhylated ethylenedioxythiophene is “Methylated” In “EDOT”
  • ethylenedioxythiophene is indicated by “EDOT”.
  • the conductivity retention is obtained by dividing the conductivity after the lapse of time by the initial conductivity (conductivity measured before storage in a thermostatic bath at 150 ° C.) and expressing it as a percentage (%). This can be expressed as follows. The higher the retention rate, the lower the conductivity with respect to heat, and the better the heat resistance.
  • Example 1 In Example 1 and subsequent Examples 2 to 6, a tantalum solid electrolytic capacitor is manufactured and its characteristics are evaluated. First, production of a tantalum solid electrolytic capacitor will be described.
  • the capacitor element was immersed in an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, taken out after 1 minute, and left for 5 minutes. Thereafter, a 60% concentration of 2-methylimidazole phenolsulfonate aqueous solution (pH 5), a concentration of 40% ammonium persulfate aqueous solution, and a concentration of 20% dodecylamine oxide aqueous solution, in which the capacitor element is prepared in advance, are 200: It is immersed in an oxidizer / dopant solution containing an emulsifier composed of a mixture mixed at a mass ratio of 200: 1, taken out after 30 seconds, left at room temperature for 10 minutes, and then heated at 70 ° C.
  • ethanol solution ethylated ethylenedioxythiophene solution having a concentration of 35 v / v%, taken out after 1 minute, and left for 5 minutes.
  • the emulsifier in the oxidant / dopant solution containing the emulsifier is dodecylamine oxide, the oxidant is ammonium persulfate, and the dopant is phenolsulfonic acid.
  • the capacitor element in which the first conductive polymer layer is formed on the dielectric layer is immersed in an ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, and is taken out after 1 minute. Left for 5 minutes. Thereafter, the capacitor element is immersed in an oxidant / dopant solution containing the same emulsifier as described above, taken out after 30 seconds, allowed to stand at room temperature for 10 minutes, heated at 70 ° C. for 10 minutes, and then polymerized. After being immersed in pure water and allowed to stand for 30 minutes, it was taken out and dried at 70 ° C. for 30 seconds. This operation was repeated once more to form a second conductive polymer layer.
  • ethanol solution ethylenedioxythiophene solution
  • the first conductive polymer layer and the second conductive polymer layer are alternately formed three times each to form the first conductive polymer layer and the second conductive polymer layer.
  • the solid electrolyte was covered with a carbon paste and a silver paste, and was covered with an exterior material to produce a tantalum solid electrolytic capacitor.
  • the synthesis of the first conductive polymer by “in situ polymerization” is performed 6 times, and the synthesis of the second conductive polymer is performed 6 times, for a total of 12 “in situ polymerization”. Went.
  • a layer of a second conductive polymer using ethylenedioxythiophene as a monomer (“in situ polymerization” twice), a layer of a first conductive polymer using ethylated ethylenedioxythiophene as a monomer (" In-situ polymerization "conducted twice), second conductive polymer layer containing ethylenedioxythiophene as monomer (“ in-situ polymerization "conducted twice), first polymerized using ethylated ethylenedioxythiophene as monomer
  • a conductive polymer layer (“in situ polymerization” twice) and a second conductive polymer layer using ethylenedioxythiophene as a monomer (“in situ polymerization” twice) are sequentially formed. It has been a solid electrolyte between their first conductive polymer and second conductive polymer is formed.
  • Example 2 In the synthesis of the first conductive polymer, instead of the ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, a propylene ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v% was produced.
  • the layer of the first conductive polymer using “propylated ethylenedioxythiophene” as a monomer from the dielectric layer side of the capacitor element (executed twice in-situ polymerization).
  • a layer of a second conductive polymer containing ethylenedioxythiophene as a monomer (executed twice in-situ polymerization), a layer of a first conductive polymer containing monomer of propylene ethylenedioxythiophene (“ In-situ polymerization "conducted twice), second conductive polymer layer containing ethylenedioxythiophene as monomer (“ in-situ polymerization "conducted twice), first propylene-ethylenedioxythiophene monomer Conductive polymer layer ("in-situ polymerization” twice), followed by second conductive polymer layer using ethylenedioxythiophene as monomer (“in-situ polymerization” twice) Made is optionally, the solid electrolyte and their first conductive polymer and second conductive polymer is formed.
  • Example 3 The first conductive polymer was synthesized by “in situ polymerization” (however, once) by using ethylated ethylenedioxythiophene as a monomer in the same manner as in Example 1. Then, on the first conductive polymer layer, ethylene dioxythiophene is used as a monomer, and “situ polymerization” (however, once) is performed in the same manner as in Example 1. The second conductive polymer is synthesized to form a second conductive polymer layer. Thereafter, the first conductive polymer layer formation and the second conductive polymer layer formation are performed. The solid electrolyte is composed of the first conductive polymer and the second conductive polymer by repeating each of them five times alternately. Thereafter, the same operation as in Example 1 is performed to obtain a tantalum solid electrolytic capacitor. Produced.
  • the first conductive polymer layer containing ethylated ethylenedioxythiophene as the monomer and the second layer containing ethylenedioxythiophene as the monomer from the dielectric side of the capacitor element Six layers of conductive polymers are alternately stacked, and the first conductive polymer and the second conductive polymer constitute a solid electrolyte.
  • Example 4 The same “in situ polymerization” as in Example 1 was repeated twice using ethylated ethylenedioxythiophene as a monomer to form a first conductive polymer layer, and the first conductive polymer layer On the layer, the same “in-situ polymerization” as in Example 1 was repeated twice using ethylenedioxythiophene as a monomer to form a second conductive polymer layer. On the conductive polymer layer, the synthesis of the first conductive polymer by “in-situ polymerization” similar to the above is repeated twice to form the second first conductive polymer layer.
  • the synthesis of the second conductive polymer by the “in-situ polymerization” similar to the above is repeated 6 times to obtain the second conductive property of the second layer.
  • a polymer layer is formed, and the solid electrolyte is composed of the first conductive polymer and the second conductive polymer. And, thereafter, by performing the same operation as in Example 1 to prepare a tantalum solid electrolytic capacitor.
  • the layer of the first conductive polymer using ethylated ethylenedioxythiophene as a monomer (executed twice in-situ polymerization) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer using ethylenedioxythiophene as a monomer (“in situ polymerization” twice), a layer of a first conductive polymer using ethylated ethylenedioxythiophene as a monomer (“ In-situ polymerization ”was conducted twice), and a second conductive polymer layer containing ethylenedioxythiophene as a monomer (“ in-situ polymerization ”conducted 6 times) was sequentially formed.
  • a solid electrolyte is composed of the molecule and the second conductive polymer.
  • Example 5 In a state where the tantalum sintered body is immersed in a phosphoric acid solution having a concentration of 0.1%, chemical conversion treatment is performed by applying a voltage of 20 V to the tantalum sintered body, and the surface of the tantalum sintered body is oxidized with tantalum. A dielectric layer made of a film was formed to obtain a capacitor element.
  • the capacitor element is immersed in an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 25 v / v%, taken out after 1 minute, allowed to stand for 5 minutes, and then the concentration prepared in advance is 40%. Immerse it in an ethanol solution of para-toluenesulfonic acid, take it out after 30 seconds, leave it at room temperature for 80 minutes, synthesize the first conductive polymer by “in situ polymerization”, and then put the capacitor element in ethanol. It was immersed and allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. This operation was repeated once more to form a first conductive polymer layer.
  • ethanol solution ethylated ethylenedioxythiophene solution
  • the capacitor element in which the first conductive polymer layer is formed on the dielectric layer as described above is immersed in an ethylenedioxythiophene solution (ethanol solution) having a concentration of 25 v / v%, Take out after 1 minute, let stand for 5 minutes, then immerse in 40% concentration para-toluenesulfonic acid iron ethanol solution, take out after 30 seconds and leave at room temperature for 80 minutes.
  • ethanol solution ethylenedioxythiophene solution
  • a conductive polymer was synthesized, and then the capacitor element was immersed in ethanol, allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. This operation was repeated once more to form a second conductive polymer layer.
  • first conductive polymer layer and the formation of the second conductive polymer layer are alternately repeated twice, respectively, so that the first conductive polymer and the second conductive polymer are formed.
  • a solid electrolyte was constituted with the conductive polymer, and thereafter, the same operation as in Example 1 was performed to produce a tantalum solid electrolytic capacitor.
  • the layer of the first conductive polymer using ethylated ethylenedioxythiophene as a monomer (executed twice in-situ polymerization) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer using ethylenedioxythiophene as a monomer (“in situ polymerization” twice), a layer of a first conductive polymer using ethylated ethylenedioxythiophene as a monomer (" In-situ polymerization "conducted twice), second conductive polymer layer containing ethylenedioxythiophene as monomer (“ in-situ polymerization "conducted twice), first polymerized using ethylated ethylenedioxythiophene as monomer
  • a conductive polymer layer (“in situ polymerization” twice) and a second conductive polymer layer using ethylenedioxythiophene as a monomer (“in situ polymerization” twice) are sequentially formed. It has been a solid electrolyte between their first conductive polymer and second conductive polymer is formed.
  • Example 6 In the synthesis of the first conductive polymer, instead of the ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, the methylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v% was produced.
  • the layer of the first conductive polymer using methylated ethylenedioxythiophene as a monomer (executed twice in-situ polymerization) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer containing ethylenedioxythiophene as a monomer (“in situ polymerization” twice), a layer of a first conductive polymer containing methylated ethylenedioxythiophene as a monomer (“ In-situ polymerization "conducted twice), second conductive polymer layer containing ethylenedioxythiophene as monomer (“ in-situ polymerization "conducted twice), first polymerized using methylated ethylenedioxythiophene as monomer
  • a conductive polymer layer (“in situ polymerization” twice) and a second conductive polymer layer using ethylenedioxythiophene as a monomer (“in situ polymerization” twice) are sequentially formed. It has been a solid electrolyte between their first conductive polymer and second conductive polymer is formed.
  • ethylenedioxythiophene is polymerized 12 times by “in situ polymerization”, and the solid electrolyte is the second conductive polymer having ethylenedioxythiophene as a monomer. It consists of
  • Comparative Example 2 All the same operations as in Example 1 were performed except that the polymerization was performed 12 times by “in situ polymerization” using only an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, and tantalum was obtained. A solid electrolytic capacitor was produced.
  • all of the solid electrolyte is composed of the first conductive polymer having ethylated ethylenedioxythiophene as a monomer.
  • Comparative Example 3 All the same operations as in Example 1 were performed except that the polymerization was performed 12 times by “in situ polymerization” using only a propylene-ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, and tantalum was obtained. A solid electrolytic capacitor was produced.
  • all of the solid electrolyte is composed of the first conductive polymer having propylene ethylenedioxythiophene as a monomer.
  • Comparative Example 4 Instead of an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 25 v / v%, an ethylenedioxythiophene solution (ethanol solution) having a concentration of 25 v / v% was used to perform 12 times by “in situ polymerization”. A tantalum solid electrolytic capacitor was produced in the same manner as in Example 5 except that the polymerization was performed.
  • all of the solid electrolyte is composed of the first conductive polymer having ethylenedioxythiophene as a monomer.
  • the tantalum solid electrolytic capacitor of Comparative Example 4 and the tantalum solid electrolytic capacitor of Comparative Example 1 are both composed of only the second conductive polymer whose solid electrolyte is ethylenedioxythiophene as a monomer.
  • ethylenedioxythiophene was oxidatively polymerized using phenolsulfonic acid as a dopant and ammonium persulfate as an oxidant
  • Comparative Example 4 The tantalum solid electrolytic capacitor is different in that ethylenedioxythiophene is oxidatively polymerized using paratoluenesulfonic acid as a dopant and iron as an oxidizing agent.
  • Comparative Example 5 All the same operations as in Example 5 were performed except that the polymerization was performed 12 times by “in-situ polymerization” using only a propylene-ethylenedioxythiophene solution (ethanol solution) having a concentration of 25 v / v%. A solid electrolytic capacitor was produced.
  • all of the solid electrolyte is composed of the first conductive polymer having propylene ethylenedioxythiophene as a monomer.
  • the tantalum solid electrolytic capacitor of Comparative Example 5 and the tantalum solid electrolytic capacitor of Comparative Example 3 are both only the first conductive polymer whose solid electrolyte is a propylene ethylenedioxythiophene monomer.
  • propylene ethylenedioxythiophene is oxidatively polymerized using phenolsulfonic acid as a dopant and ammonium persulfate as an oxidizing agent.
  • the tantalum solid electrolytic capacitor of Comparative Example 5 is different in that propylene ethylenedioxythiophene is oxidatively polymerized using paratoluenesulfonic acid as a dopant and iron as an oxidizing agent.
  • Comparative Example 6 All the same operations as in Example 1 were performed except that the polymerization was performed 12 times by “in situ polymerization” using only a methylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, and tantalum was obtained. A solid electrolytic capacitor was produced.
  • the tantalum solid electrolytic capacitor of Comparative Example 6 all of the solid electrolyte is composed of the first conductive polymer having methylated ethylenedioxythiophene as a monomer.
  • ESR and capacitance of the tantalum solid electrolytic capacitors of Examples 1 to 6 and Comparative Examples 1 to 6 produced as described above were measured. The results are shown in Table 2.
  • the measuring method of ESR and an electrostatic capacitance is as showing below.
  • ESR ESR
  • HEWREWTT PACKARD LCR meter (4284A) was used, and ESR was measured at 25 ° C. and 100 kHz
  • electrostatic capacity HEWLEWTT PACKARD LCR meter (4284A) was used, and 25 ° C.
  • the electrostatic capacity was measured at 120 Hz. The measurement is performed for 10 samples for each sample, and the ESR value and capacitance value shown in Table 1 are obtained by averaging the 10 values, and ESR is rounded off to the second decimal place. The capacity is rounded off to the nearest decimal point.
  • leakage currents were measured for the tantalum solid electrolytic capacitors of Examples 1 to 6 and Comparative Examples 1 to 6, and occurrence of defective leakage current was examined. The results are also shown in Table 2.
  • a method for measuring leakage current and a method for evaluating occurrence of defective leakage current are as follows.
  • Leak current After applying a rated voltage of 16 V to a tantalum solid electrolytic capacitor at 25 ° C. for 60 seconds, the leakage current was measured with a digital oscilloscope. Occurrence of leakage current failure: In the measurement of the leakage current, it was determined that a leakage current failure occurred when the leakage current was 100 ⁇ A or more.
  • tantalum solid electrolytic capacitors of Examples 1 to 6 and Comparative Examples 1 to 6 after the above characteristic measurement (hereinafter referred to as “Tantalum solid electrolytic capacitors” of Examples 1 to 6 and Comparative Examples 1 to 6) are simplified.
  • the capacitor ” was stored in a static bath at 150 ° C., and after 100 hours, ESR and capacitance were measured in the same manner as described above. The results are shown in Table 3.
  • the capacitors of Examples 1 to 6 had lower ESR and superior capacitor characteristics as compared with the capacitor of Comparative Example 1. That is, a first conductive polymer layer synthesized using alkylated ethylenedioxythiophene (that is, 2-alkyl-2,3-dihydrothieno [3,4-b] [1,4] dioxin) as a monomer And a second conductive polymer layer synthesized using ethylenedioxythiophene (that is, 2,3-dihydrothieno [3,4-b] [1,4] dioxin) as a monomer.
  • alkylated ethylenedioxythiophene that is, 2-alkyl-2,3-dihydrothieno [3,4-b] [1,4] dioxin
  • a second conductive polymer layer synthesized using ethylenedioxythiophene that is, 2,3-dihydrothieno [3,4-b] [1,4] dioxin
  • the capacitors of Examples 1 to 6 that constituted the solid electrolyte had ESR as compared with the capacitor of Comparative Example 1 that constituted the solid electrolyte only with the second conductive polymer synthesized using ethylenedioxythiophene as the monomer.
  • the capacitor of Comparative Example 4 in which the solid electrolyte is composed only of the second conductive polymer layer synthesized using ethylenedioxythiophene as a monomer is different from Comparative Example 1 in terms of dopant and Although the oxidizing agent was changed, the ESR was still higher (larger) than the capacitors of Examples 1 to 6.
  • the conductive polymer which uses the ethylated ethylenedioxythiophene used as a monomer for the capacitor of Comparative Example 2 as a monomer, and the propylene ethylenedioxythiophene used for the capacitors of Comparative Examples 3 and 5 as monomers Conductive polymer containing methylated ethylenedioxythiophene as a monomer used for the conductive polymer and the capacitor of Comparative Example 6 (these conductive polymers correspond to the first conductive polymer. As shown in Table 1, a conductive polymer containing ethylenedioxythiophene as a monomer used in the capacitors of Comparative Example 1 and Comparative Example 4 (this conductive polymer is a second conductive material).
  • the capacitors of Comparative Examples 2 to 3 and Comparative Examples 5 to 6 are shown in Table 2 in spite of their superior conductivity. To, from the capacitor of Comparative Example 1 and Comparative Example 4, ESR is large. This is a stage where many layers of conductive polymers are laminated in the production of the capacitor. The capacitors of Comparative Examples 2 to 3 and Comparative Examples 5 to 6 are compared with the capacitors of Comparative Example 1 and Comparative Example 4. This is probably because the contact resistance between the conductive polymers was increased when the conductive polymer layer was laminated.
  • the capacitors of Examples 1 to 6 have less increase in ESR due to storage at high temperature and excellent heat resistance than the capacitors of Comparative Examples 2 to 3 and Comparative Examples 5 to 6. It was. Furthermore, as shown in Table 2, there was no leakage current failure in the capacitors of Examples 1 to 6, but the solid electrolyte was composed only of the second conductive polymer having ethylenedioxythiophene as a monomer. In the capacitors of Comparative Examples 1 and 4, leakage current failure occurred, and in the capacitor of Comparative Example 4 using iron as the oxidizing agent, leakage current failure occurred more frequently than the capacitor of Comparative Example 1.
  • Example 7 In Examples 1 to 6 so far, only the conductive polymer obtained by alternately laminating the first conductive polymer layer and the second conductive polymer layer synthesized by “in situ polymerization” is used as the solid electrolyte.
  • a tantalum solid electrolytic capacitor has been used as the first and second conductive polymer layers in Example 7 and subsequent Examples 8 to 11. Are formed on the conductive polymer layer alternately laminated with each other, that is, a third conductive polymer layer is formed, and the first, second and third conductive high layers are formed.
  • a tantalum solid electrolytic capacitor is fabricated by constituting a solid electrolyte with molecules, and its characteristics are evaluated.
  • a dispersion containing a conductive polymer for preparing the third conductive polymer layer in Example 7 and subsequent Examples 8 to 11 was prepared as follows.
  • Polystyrene sulfonic acid and sulfonated polyester were used as the polymer sulfonic acid serving as a dopant.
  • the mixture was stirred with a stainless steel stirring blade, an anode was attached to the container, a cathode was attached to the base of the stirring blade, and electrolytic oxidation polymerization was performed at a constant current of 1 mA / cm 2 for 18 hours.
  • electrolytic oxidation polymerization it was diluted 4 times with water, and then subjected to a dispersion treatment with an ultrasonic homogenizer [manufactured by Nippon Seiki Co., Ltd., US-T300 (trade name)] for 30 minutes. Thereafter, 100 g of Cation Exchange Resin Amberlite 120B (trade name) manufactured by Organo Corporation was added and stirred with a stirrer for 1 hour. Subsequently, filter paper No. manufactured by Toyo Filter Paper Co., Ltd. The mixture was filtered through 131, and the treatment with the cation exchange resin and subsequent filtration were repeated three times to remove all cation components such as iron ions in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment is diluted with water to adjust the concentration to 3%, 4 g of dimethyl sulfoxide as a high boiling point solvent is added to 40 g of the 3% liquid, and a conductive polymer using polystyrene sulfonic acid as a dopant. A dispersion A containing was obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • the mixture was diluted 4 times with water, and then subjected to a dispersion treatment for 30 minutes with an ultrasonic homogenizer [manufactured by Nippon Seiki Co., Ltd., US-T300 (trade name)]. Thereafter, 100 g of Organo cation exchange resin Amberlite 120B (trade name) was added and stirred with a stirrer for 1 hour. The mixture was filtered through 131, and the treatment with this cation exchange resin and filtration were repeated three times to remove all cation components in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment is diluted with water to adjust the concentration to 3%, and 4 g of dimethyl sulfoxide as a high boiling point solvent is added to 40 g of the 3% liquid, and stirred to conduct using the sulfonated polyester as a dopant.
  • Dispersion B containing a functional polymer was obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • the dispersion A and the dispersion B were mixed at a mass ratio of 1: 1 to obtain a dispersion containing a conductive polymer.
  • a chemical conversion treatment is performed by applying a voltage of 50 V to the tantalum sintered body, and the surface of the tantalum sintered body is subjected to tantalum.
  • a capacitor layer was formed by forming a dielectric layer made of an oxide film.
  • the capacitor element was immersed in an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%, taken out after 1 minute, and left for 5 minutes.
  • a mass of 200: 200: 1 was prepared by preparing a phenolsulfonic acid 2-methylimidazole aqueous solution (pH 5) having a concentration of 60%, an ammonium persulfate aqueous solution having a concentration of 40%, and a dodecylamine oxide aqueous solution having a concentration of 20%.
  • an oxidizer / dopant containing an emulsifier (dodecylamine oxide) consisting of a mixture mixed in a ratio (dopant is phenolsulfonic acid, the molecular weight of this phenolsulfonic acid is 174), taken out after 30 seconds, After standing at room temperature for 10 minutes, polymerization was carried out by heating at 70 ° C. for 10 minutes. Thereafter, the capacitor element was immersed in pure water and allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. This operation was repeated one more time and then dried at 150 ° C. for 1 hour to form a first conductive polymer layer.
  • an emulsifier dodecylamine oxide
  • the capacitor element in which the first conductive polymer layer is formed on the dielectric layer as described above is immersed in an ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v% and taken out after 1 minute. Left for 5 minutes. Thereafter, the capacitor element was immersed in the same emulsifier-containing oxidant / dopant solution as described above, taken out after 30 seconds, allowed to stand at room temperature for 10 minutes, heated at 70 ° C. for 10 minutes, and then polymerized. After being immersed in pure water and allowed to stand for 30 minutes, it was taken out and dried at 70 ° C. for 30 seconds. This operation was repeated four times to form a second conductive polymer layer.
  • ethanol solution ethylenedioxythiophene solution
  • the capacitor element in which the first conductive polymer layer and the second conductive polymer layer are alternately laminated as described above is made into a polymer sulfonic acid (weight average molecular weight of 100, 000 polystyrene sulfonic acid and a sulfonated polyester having a weight average molecular weight of 27,000) are immersed in a dispersion containing a conductive polymer, left for 1 minute, taken out, taken out at 50 ° C. for 10 minutes, and 150 ° C. The operation of drying for 10 minutes was repeated twice to form a third conductive polymer layer.
  • a polymer sulfonic acid weight average molecular weight of 100, 000 polystyrene sulfonic acid and a sulfonated polyester having a weight average molecular weight of 27,000
  • a tantalum solid electrolytic capacitor was produced by exterior packaging.
  • the layer of the first conductive polymer using ethylated ethylenedioxythiophene as a monomer (executed twice in-situ polymerization) from the dielectric layer side of the capacitor element.
  • the layers of the first conductive polymer, the second conductive polymer, and the third conductive polymer constitute a solid electrolyte. ing.
  • Example 8 Example 7 was used except that a 35 v / v% ethylated ethylenedioxythiophene solution (ethanol solution) was used instead of a 35 v / v% ethylated ethylenedioxythiophene solution (ethanol solution).
  • a tantalum solid electrolytic capacitor was produced by performing the same operation as described above.
  • the layer of the first conductive polymer using “propylated ethylenedioxythiophene” as a monomer from the dielectric layer side of the capacitor element (executed twice in-situ polymerization).
  • a layer of a second conductive polymer having ethylenedioxythiophene as a monomer ("in situ polymerization" four times) and a third conductive polymer having the same polymer sulfonic acid as in Example 7 as a dopant are sequentially formed, and the first conductive polymer, the second conductive polymer, and the third conductive polymer constitute a solid electrolyte.
  • Example 9 In Example 7, instead of performing “in situ polymerization” with ethylated ethylenedioxythiophene as a monomer twice and “in situ polymerization” with ethylenedioxythiophene as a monomer four times, ethylated ethylene Except that the "in situ polymerization” using dioxythiophene as a monomer was performed three times and the “in situ polymerization” using ethylenedioxythiophene as a monomer was performed three times, the same operation as in Example 7 was performed, and tantalum was obtained. A solid electrolytic capacitor was produced.
  • the layer of the first conductive polymer using ethylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” three times) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer having ethylenedioxythiophene as a monomer (“in situ polymerization” three times) and a third conductive polymer having the same polymer sulfonic acid as in Example 7 as a dopant
  • Example 10 In Example 7, instead of performing “in situ polymerization” with ethylated ethylenedioxythiophene as a monomer twice and “in situ polymerization” with ethylenedioxythiophene as a monomer four times, ethylated ethylene Except that the "in situ polymerization” using dioxythiophene as a monomer was performed 4 times and the “in situ polymerization” using ethylenedioxythiophene as a monomer was performed twice, the same operation as in Example 7 was performed, and tantalum was obtained. A solid electrolytic capacitor was produced.
  • the layer of the first conductive polymer containing ethylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” four times) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer having ethylenedioxythiophene as a monomer (“in situ polymerization" twice) and a third conductive polymer having the same polymer sulfonic acid as in Example 7 as a dopant
  • Example 11 Example 9 was used except that a 35 v / v% butylated ethylenedioxythiophene solution (ethanol solution) was used instead of an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%.
  • a tantalum solid electrolytic capacitor was produced by performing the same operation as described above.
  • the layer of the first conductive polymer using butylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” three times) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer having ethylenedioxythiophene as a monomer (“in situ polymerization” three times) and a third conductive polymer having the same polymer sulfonic acid as in Example 7 as a dopant
  • the second conductive polymer (using “in-situ polymerization” 6 times) layer containing ethylenedioxythiophene as a monomer is implemented from the dielectric layer side of the capacitor element.
  • the third conductive polymer layer having the same polymer sulfonic acid as the dopant as in Example 7 is sequentially formed, and the solid electrolyte is formed by the second conductive polymer and the third conductive polymer. Is configured.
  • the layer of the first conductive polymer using ethylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” 6 times) from the dielectric layer side of the capacitor element.
  • a third conductive polymer layer having the same polymer sulfonic acid as that of Example 7 as a dopant are sequentially formed.
  • the first conductive polymer and the third conductive polymer are A solid electrolyte is constructed.
  • the layer of the first conductive polymer containing propylene-ethylenedioxythiophene as a monomer is sequentially formed.
  • the first conductive polymer and the third conductive polymer are A solid electrolyte is constructed.
  • the layer of the first conductive polymer containing “butylated ethylenedioxythiophene” as a monomer from the dielectric layer side of the capacitor element (executed six times in-situ polymerization).
  • a third conductive polymer layer having the same polymer sulfonic acid as that of Example 7 as a dopant are sequentially formed.
  • the first conductive polymer and the third conductive polymer are A solid electrolyte is constructed.
  • the capacitors of Examples 7 to 11 have lower ESR than the capacitors of Comparative Examples 7 to 10, and the breakdown voltage is higher than that of the capacitor of Comparative Example 7. The characteristics were excellent.
  • Example 12 In Examples 1 to 11 so far, a tantalum solid electrolytic capacitor was produced and its characteristics were evaluated, but in this Example 12 and subsequent Examples 13 to 14, an aluminum solid electrolytic capacitor was produced, Evaluate its properties.
  • a 4 mm portion (4 mm ⁇ 3.3 mm) from the other end in the longitudinal direction of the foil is immersed in an aqueous solution of ammonium adipate having a concentration of 10%, and a chemical conversion treatment is performed by applying a voltage of 13 V to obtain aluminum.
  • a capacitor layer was formed by forming a dielectric layer made of the oxide film.
  • this capacitor element was immersed in an ethanol solution of ethylated ethylenedioxythiophene having a concentration of 35 v / v% prepared in advance until the location where the polyimide solution was applied, taken out after 1 minute, and taken for 5 minutes at room temperature.
  • 1 part is immersed in an oxidizing agent / dopant solution containing an emulsifier composed of a mixture mixed at a mass ratio, taken out after 30 seconds, taken out after 30 seconds, allowed to stand for 60 minutes at room temperature, and then polymerized.
  • the capacitor element is immersed in pure water, left for 30 minutes, then taken out, and then removed at 70 ° C. for 30 minutes. It was ⁇ .
  • the above series of steps from when the capacitor element is immersed in an ethanol solution of ethylated ethylenedioxythiophene having a concentration of 35 v / v% until the polyimide solution is applied to drying at 70 ° C. for 30 minutes is further performed. Once, a first conductive polymer layer was formed on the dielectric layer of the capacitor element.
  • the capacitor element is immersed in a dispersion containing a conductive polymer having a polymer sulfonic acid similar to that used in Example 7 as a dopant until the location where the polyimide solution is applied, and left for 1 minute.
  • the operation of taking out and drying at 50 ° C. for 10 minutes and 150 ° C. for 10 minutes was repeated twice to form a third conductive polymer layer.
  • the capacitor element in which the layers of the first conductive polymer, the second conductive polymer, and the third conductive polymer are sequentially formed is dried at 150 ° C. for 60 minutes, and then the carbon paste
  • An aluminum solid electrolytic capacitor by covering the solid electrolyte made of the above conductive polymer with silver paste, attaching a silver wire as a cathode at a position 3 mm from the end in the vertical direction, further covering with a epoxy resin, and performing an aging treatment was made.
  • the first conductive polymer containing ethylated ethylenedioxythiophene as a monomer (executed twice in-situ polymerization) from the dielectric layer side of the capacitor element.
  • Layer, layer of second conductive polymer containing ethylenedioxythiophene as a monomer ("in-situ polymerization" four times), and third conductive high polymer having the same polymer sulfonic acid as in Example 7 as a dopant Layers of molecules (two immersions in a dispersion containing a conductive polymer) are sequentially formed, the first conductive polymer, the second conductive polymer and the third conductive high A solid electrolyte is composed of molecules.
  • Example 13 In Example 12, instead of performing “in situ polymerization” with ethylated ethylenedioxythiophene as a monomer twice and “in situ polymerization” with ethylenedioxythiophene as a monomer four times, ethylated ethylene Except that the "in situ polymerization” using dioxythiophene as a monomer was performed 3 times and the “in situ polymerization” using ethylenedioxythiophene as a monomer was performed 3 times, the same operation as in Example 12 was carried out to obtain aluminum. A solid electrolytic capacitor was produced.
  • the layer of the first conductive polymer containing ethylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” three times) from the dielectric layer side of the capacitor element.
  • a layer of a second conductive polymer having ethylenedioxythiophene as a monomer (“in situ polymerization” three times) and a third conductive polymer having the same polymer sulfonic acid as in Example 12 as a dopant
  • Example 14 Capacitor in which a dielectric layer made of an oxide film of aluminum is formed on an aluminum etched foil in the same manner as in Example 12 in a solution prepared by diluting ethylated ethylenedioxythiophene with ethanol and adjusting the concentration to 25 v / v% The element was immersed, taken out after 1 minute, and left for 5 minutes. Thereafter, it was dipped in an ethanol solution prepared in advance with an iron paratoluenesulfonate having a concentration of 40% (molar ratio of paratoluenesulfonic acid and iron is 2.8: 1), taken out after 30 seconds, and at 80 ° C. at room temperature. Polymerization was carried out by standing for a minute. Thereafter, the capacitor element was immersed in ethanol and allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. The above series of operations was performed once more to form a first conductive polymer layer on the dielectric of the capacitor element.
  • the capacitor element was immersed in a dispersion containing a conductive polymer having a polymer sulfonic acid similar to that used in Example 12 as a dopant in the same manner as in Example 12, left for 1 minute, and then taken out.
  • the operation of drying at 50 ° C. for 10 minutes and 150 ° C. for 10 minutes was repeated twice to form a third conductive polymer layer.
  • the capacitor element in which the first conductive polymer, the second conductive polymer, and the third conductive polymer are sequentially formed is dried at 150 ° C. for 60 minutes, and then the carbon paste and the silver Cover the solid electrolyte made of the above conductive polymer with paste, attach silver wire as cathode at 3mm from the end in the vertical direction, coat with epoxy resin, and perform aging treatment to obtain an aluminum solid electrolytic capacitor It was.
  • Layer, layer of the second conductive polymer having ethylenedioxythiophene as a monomer ("in situ polymerization" four times), and third conductive polymer having the same polymer sulfonic acid as in Example 12 as a dopant Molecular layers are sequentially formed, and the first conductive polymer, the second conductive polymer, and the third conductive polymer constitute a solid electrolyte.
  • Comparative Example 11 The same as Example 12 except that an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v% was used instead of an ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%. The operation was performed to produce an aluminum solid electrolytic capacitor.
  • An electrolyte is configured.
  • Example 12 Example 12 except that ethylene dioxythiophene was not used as a monomer and “in-situ polymerization” was carried out 6 times using only an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 35 v / v%.
  • An aluminum solid electrolytic capacitor was produced by performing the same operation as described above.
  • the first conductive polymer containing ethylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” six times) from the dielectric layer side of the capacitor element.
  • a solid electrolyte is formed.
  • Example 14 Example 14 except that ethylene dioxythiophene was used as a monomer and “in-situ polymerization” was carried out 6 times using only an ethylated ethylenedioxythiophene solution (ethanol solution) having a concentration of 25 v / v%.
  • An aluminum solid electrolytic capacitor was produced by performing the same operation as described above.
  • the first conductive polymer containing ethylated ethylenedioxythiophene as a monomer (implemented “in situ polymerization” six times) from the dielectric layer side of the capacitor element.
  • a solid electrolyte is formed.
  • the aluminum solid electrolytic capacitors of Examples 12 to 14 (hereinafter simply referred to as “capacitors” for the “aluminum solid electrolytic capacitors”) have lower ESR than the capacitors of Comparative Examples 11 to 14. The characteristics as a capacitor were excellent. In addition, although the leakage current failure occurred in the capacitors of Comparative Examples 11 and 13, the leakage current failure did not occur in the capacitors of Examples 12-14.
  • the capacitors of Examples 12 to 14 had less increase in ESR due to storage at high temperature and excellent heat resistance than the capacitors of Comparative Examples 12 and 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

【課題】 ESRが低く、かつ耐熱性が優れていて、高温条件下の使用での信頼性が高い固体電解コンデンサを提供する。 【解決手段】 コンデンサ素子の誘電体層上に、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンをモノマーとして酸化重合により合成された第1の導電性高分子の層を形成し、その上に2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして酸化重合により合成された第2の導電性高分子の層を形成し、それら第1の導電性高分子の層形成と第2の導電性高分子の層形成を交互に必要数繰り返し、その第1の導電性高分子と第2の導電性高分子とで固体電解質を構成して、固体電解コンデンサを作製する。

Description

固体電解コンデンサ
 本発明は、導電性高分子を固体電解質として用いた固体電解コンデンサに関する。
 導電性高分子は、その高い導電性により、例えば、タンタル固体電解コンデンサ、アルミニウム固体電解コンデンサ、ニオブ固体電解コンデンサなどの固体電解コンデンサの固体電解質として用いられている。
 この用途における導電性高分子としては、例えば、チオフェンまたはその誘導体などを化学酸化重合または電解酸化重合することによって得られたものが用いられている。
 上記チオフェンまたはその誘導体などの化学酸化重合を行う際のドーパントとしては、主として有機スルホン酸が用いられ、その中でも、芳香族スルホン酸が適しているといわれており、酸化剤としては、遷移金属が用いられ、その中でも第二鉄が適しているといわれていて、通常、芳香族スルホン酸の第二鉄塩がチオフェンまたはその誘導体などの化学酸化重合にあたって酸化剤兼ドーパントとして用いられている。
 上記チオフェンまたはその誘導体としては、これまで、得られる導電性高分子の導電性および耐熱性のバランスがとれていて有用性が高いという理由から、3,4-エチレンジオキシチオフェンが多用されてきた(特許文献1~2)。
 しかしながら、導電性高分子を固体電解質として用いる固体電解コンデンサの技術革新は日進月歩であり、さらなる特性の向上が要望されている。
 そこで、導電性を高めるべく、3,4-エチレンジオキシチオフェンをアルキル基で修飾した3,4-アルキレンジオキシチオフェンを用いることが提案されている(特許文献3)。しかしながら、3,4-アルキレンジオキシチオフェンを用いた場合には、耐熱性の低下が大きく、固体電解コンデンサの固体電解質として用いたときに、得られる固体電解コンデンサの高温条件下における信頼性が低下する上に、ESR(等価直列抵抗)が大きくなり、その結果、消費電力が大きくなり、ノイズの低減効果が低下するなどの問題があった。
特開2003-160647号公報 特開2004-265927号公報 特表2004-525946号公報
 本発明は、上記のような事情に鑑み、ESRが低く、かつ高温条件下における信頼性が高い固体電解コンデンサを提供することを目的とする。
 本発明は、コンデンサ素子の誘電体層上に、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンをモノマーとして酸化重合により合成された第1の導電性高分子の層を形成し、その上に2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして酸化重合により合成された第2の導電性高分子の層を形成して、その第1の導電性高分子と第2の導電性高分子とで固体電解質を構成することによって、ESRが低く、かつ耐熱性が優れていて、高温条件下における信頼性が高い固体電解コンデンサが得られることを見出し、それに基づいて完成したものである。
 すなわち、本発明は、タンタル、アルミニウム、ニオブなどの弁金属の多孔体と上記弁金属の酸化皮膜からなる誘電体層とを有するコンデンサ素子の誘電体層上に、導電性高分子からなる固体電解質を有する固体電解コンデンサであって、
 上記固体電解質が、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンをモノマーとして酸化重合により合成された第1の導電性高分子の層と、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして酸化重合により合成された第2の導電性高分子の層とを、それぞれ交互に少なくとも1層積層した、第1の導電性高分子と第2の導電性高分子とで構成され、上記第1の導電性高分子の層のうちの1層が上記コンデンサ素子の誘電体層上に形成されていることを特徴とする固体電解コンデンサに関するものである。
 また、本発明は、タンタル、アルミニウム、ニオブなどの弁金属の多孔体と上記弁金属の酸化皮膜からなる誘電体層とを有するコンデンサ素子の誘電体層上に、導電性高分子からなる固体電解質を有する固体電解コンデンサであって、
 上記固体電解質が、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンをモノマーとして酸化重合により合成された芳香族系スルホン酸をドーパントとして含む第1の導電性高分子の層と、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして酸化重合により合成された芳香族系スルホン酸をドーパントとして含む第2の導電性高分子の層とを、それぞれ交互に少なくとも1層積層し、さらに、その上に高分子スルホン酸をドーパントとして含む第3の導電性高分子の層を積層した、第1の導電性高分子と第2の導電性高分子と第3の導電性高分子とで構成され、上記第1の導電性高分子のうちの1層がコンデンサ素子の誘電体層上に形成されていることを特徴とする固体電解コンデンサに関するものである。
 本発明の固体電解コンデンサは、ESRが低く、かつ耐熱性が優れていて、高温条件下の使用での信頼性が高い。
 本発明の固体電解コンデンサが上記のような特性を有するのは、固体電解質を構成する導電性高分子の合成にあたって、モノマーとして2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンを用い、導電性の高い第1の導電性高分子を得たこと、および、その2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンに基づく第1の導電性高分子だけによる弊害を、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして合成した第2の導電性高分子によって解消させたことに基づいている。この理由については、後記の[発明を実施するための形態]の項で固体電解コンデンサの作製方法の説明とともに、詳しく説明する。
本発明の固体電解コンデンサの要部(固体電解質とその周辺)の一例を模式的に断面表示で示す図である。 本発明の固体電解コンデンサの要部の他例を模式的に断面表示で示す図である。
 本発明の固体電解コンデンサの固体電解質を構成する第1の導電性高分子と第2の導電性高分子の原料となるモノマーは、下記の一般式(1)で表される化合物に該当する。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素またはアルキル基である)
 そして、上記一般式(1)中のRが水素の化合物は、IUPAC名称で表示すると、「2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2,3-Dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、この化合物は、IUPAC名称で表示されるよりも、一般名称の「エチレンジオキシチオフェン」で表示されることが多いので、本書では、以下、この「2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン」を「エチレンジオキシチオフェン」と表示する。なお、この「エチレンジオキシチオフェン」は前出の「3,4-エチレンジオキシチオフェン」と同じものである。そして、上記一般式(1)中のRがアルキル基の場合、該アルキル基としては、炭素数が1~4のもの、つまり、メチル基、エチル基、プロピル基、ブチル基が好ましく、それらを具体的に例示すると、一般式(1)中のRがメチル基の化合物は、IUPAC名称で表示すると、「2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Methyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「メチル化エチレンジオキシチオフェン」と表示する。一般式(1)中のRがエチル基の化合物は、IUPAC名称で表示すると、「2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Ethyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「エチル化エチレンジオキシチオフェン」と表示する。一般式(1)中のRがプロピル基の化合物は、IUPAC名称で表示すると、「2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Propyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「プロピル化エチレンジオキシチオフェン」と表示する。そして、一般式(1)中のRがブチル基の化合物は、IUPAC名称で表示すると、「2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Butyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「ブチル化エチレンジオキシチオフェン」と表示する。また、「2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン」を、以下、簡略化して「アルキル化エチレンジオキシチオフェン」で表わす。そして、これらのアルキル化エチレンジオキシチオフェンの中でも、メチル化エチレンジオキシチオフェン、エチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェン、ブチル化エチレンジオキシチオフェンが好ましく、特にエチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェンが好ましい。
 第1の導電性高分子の原料となるモノマーは、上記のようなアルキル化エチレンジオキシチオフェンであり、第2の導電性高分子の原料となるモノマーは、エチレンジオキシチオフェンまたはエチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの混合物である。
 ここで、タンタル固体電解コンデンサ、アルミニウム固体電解コンデンサ、ニオブ固体電解コンデンサなどの固体電解コンデンサの作製について説明すると、その固体電解質を構成する導電性高分子を、あらかじめ合成しておき、それを水、水性液または有機溶剤で分散液の状態にし、その導電性高分子の分散液を固体電解コンデンサの作製に供する場合と、固体電解コンデンサの作製時に、導電性高分子を合成して、それを固体電解質とする場合の2つの方法があるが、本発明では、第1の導電性高分子と第2の導電性高分子は、固体電解コンデンサの作製時に導電性高分子を合成する、いわゆる「その場重合」と呼ばれる方法によって合成し、それを固体電解質とする。そして、第3の導電性高分子は、あらかじめ合成しておいた導電性高分子の分散液を乾燥して得た導電性高分子を固体電解質とする方法を採用する。
 そこで、まず、第1の導電性高分子を「その場重合」、つまり、固体電解コンデンサの作製時に合成する場合について説明していくと、タンタル、アルミニウム、ニオブなどの弁金属の多孔体と、その表面に形成された上記の弁金属の酸化皮膜からなる誘電体層を有するコンデンサ素子を、アルキル化エチレンジオキシチオフェンを含む液中に浸漬し、取り出し、その後、ドーパントと酸化剤を含む液に浸漬し、取り出し、重合を行い、その後、水に浸漬し、取り出し、乾燥して、第1の導電性高分子の層を形成する。ただし、上記の工程を1回行うだけでは、形成される導電性高分子の層の厚みが極めて薄いので、上記の操作を4回まで繰り返して導電性高分子の層を形成して、それを第1の導電性高分子の層としてもよい。すなわち、本発明者らの研究によれば、この第1の導電性高分子の層を上記操作を4回まで繰り返して形成するのであれば、ESRはそれほど大きくならないものの、それより多く繰り返すとESRが大きくなることが判明した。
 つまり、アルキル化エチレンジオキシチオフェンを重合して得られる導電性高分子は、導電性が高いにもかかわらず、このアルキル化エチレンジオキシチオフェンのみをモノマーとして「その場重合」により合成した導電性高分子を固体電解質として固体電解コンデンサの作製をすると、ESRが小さくなるだろうという予想に反して、ESRが非常に大きく(悪く)なる。この原因は、現在のところ必ずしも明確ではないが、モノマーとしてアルキル化エチレンジオキシチオフェンを用いた導電性高分子による固体電解質の形成を、該導電性高分子を何回も積層することによって行うと、その積層の際に導電性高分子間の接触抵抗が高くなり、それがESRを大きくさせる原因になるものと考えられる。
 これに対して、エチレンジオキシチオフェンは、導電性高分子としたときに、導電性はアルキル化エチレンジオキシチオフェンより低いものの、その導電性高分子の層をアルキル化エチレンジオキシチオフェンをモノマーとして合成した導電性高分子の層上に積層すると、該アルキル化エチレンジオキシチオフェンをモノマーとして合成した導電性高分子を何回も積層した場合に生じる大きなESRを低減(小さく)させることができることも判明した。
 そこで、本発明では、導電性高分子の導電性は優れているものの、固体電解コンデンサにしたときに、ESRを増大させることになるアルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の欠点を、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層の積層によって解消し、アルキル化エチレンジオキシチオフェンをモノマーとする導電性高分子の導電性が高いという長所を適切に発揮させるようにしたのである。
 つまり、本発明では、コンデンサ素子の誘電体層上に形成されたアルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層上に、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層を積層し、必要に応じ、さらにその上に、第1の導電性高分子と第2の導電性高分子とを必要数交互に積層することを経て、固体電解コンデンサの作製をすることにより、ESRが低い固体電解コンデンサを提供したのである。
 これを図1に基づいて説明すると、図1中の20はコンデンサ素子を示しており、このコンデンサ素子20は、タンタル、アルミニウム、ニオブなどの弁金属の多孔体21とその表面に形成された上記弁金属の酸化皮膜からなる誘電体層22を有して構成され、そのコンデンサ素子20の誘電体層22上にアルキル化エチレンジオキシチオフェン(つまり、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)をモノマーとして酸化重合により合成された第1の導電性高分子の層1が形成され、その第1の導電性高分子の層1の上にエチレンジオキシチオフェン(つまり、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)またはエチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの混合物をモノマーとして酸化重合により合成された第2の導電性高分子の層2が積層して形成され、その第1の導電性高分子と第2の導電性高分子とで固体電解質10が構成されている。
 なお、この図1に示す固体電解コンデンサでは、第1の導電性高分子の層1と第2の導電性高分子の層2とが1層ずつで固体電解質10を構成した例を示しているが、上記第1の導電性高分子の層1と第2の導電性高分子の層2とは、必要に応じ、さらに、それぞれ交互に必要層数積層してもよい。
 また、アルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子は、耐熱性が悪く、そのアルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子のみで固体電解質を構成して、コンデンサを作製すると、該コンデンサは、耐熱性が悪く、高温条件下の使用での信頼性が低くなる。
 これに対し、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子は、耐熱性が優れているので、この第2の導電性高分子の層をアルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層に積層することによって、第1の導電性高分子に基づく耐熱性の悪さも改善することができる。
 第2の導電性高分子の層の形成は、前記のように、第1の導電性高分子の層を誘電体層上に形成したコンデンサ素子を、エチレンジオキシチオフェンを含む液中に浸漬し、取り出し、その後、ドーパントと酸化剤を含む液に浸漬し、取り出し、重合を行い、その後、水に浸漬し、取り出して、乾燥することによって行われる。
 本発明において、交互に積層とは、アルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層とエチレンジオキシチオフェンをモノマーとする第2の導電性高分子との積層を意味し、同じ第1の導電性高分子同士を積層したり、同じ第2の導電性高分子同士を積層した場合には、交互に積層とは言わない。前記したように、アルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の「その場重合」による合成は4回以下で繰り返し行ってもよいし、また、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の「その場重合」による合成は、何回繰り返し行ってもよいが、6回以下の繰り返しにとどめるのが好ましい。
 そして、アルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子をコンデンサ素子の誘導体層上に形成するのは、集電体となる誘電体層に接して導電性の高いアルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子を形成することによってESRの低い固体電解コンデンサが得られるからである。
 なお、誘電体層上にという表現を使っているが、これはタンタル、アルミニウム、ニオブなどの弁金属の多孔体に接して形成されている誘電体層の開放面という意味であって、いずれかの状態で誘電体層の上に第1の導電性高分子の層が形成されていればよく、いずれの状態においても、誘電体層の上に第1の導電性高分子の層が配置していることを意味するものではない。
 上記のように、コンデンサ素子の誘電体上にアルキル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層を形成し、その上にエチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層を形成し、必要に応じ、それらを交互に必要数積層して、それらの第1の導電性高分子と第2の導電性高分子とで固体電解質を構成し、その固体電解質をカーボンペースト、銀ペーストで覆った後、外装することによって、タンタル固体電解コンデンサ、アルミニウム固体電解コンデンサ、ニオブ固体電解コンデンサなどを作製することができる。
 ここまでの具体的説明では、第2の導電性高分子の原料モノマーとしてエチレンジオキシチオフェンのみを用いた場合について説明してきたが、エチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとを混合したモノマー混合物をエチレンジオキシチオフェンに代えて用い、それによって、第2の導電性高分子の層を形成して、エチレンジオキシチオフェンを単独で用いて形成した第2の導電性高分子とほぼ同様の効果を奏させることができる。
 このようにエチレンジオキシチオフェンに代えて用いるエチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの混合物における両者の混合比率は、エチレンジオキシチオフェン1モルに対して、アルキル化エチレンジオキシチオフェンが0.5モル以下、特に0.25モル以下であることが好ましい。すなわち、エチレンジオキシチオフェンに対するアルキル化エチレンジオキシチオフェンの比率が、エチレンジオキシチオフェン1モルに対して0.5モルより高くなると、ESRを低下させる効果が充分に発現できなくなるおそれがある。なお、以下においても、第2の導電性高分子の合成やそれからなる固体電解質の構成にあたっては、特にエチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの混合物でなければならない場合を除き、エチレンジオキシチオフェンを代表させて説明する。
 アルキル化エチレンジオキシチオフェンやエチレンジオキシチオフェンの重合体を導電性高分子とするためのドーパントとしては、特に特定のものに限定されることはないが、例えば、ベンゼンスルホン酸またはその誘導体、ナフタレンスルホン酸またはその誘導体、アントラキノンスルホン酸またはその誘導体などの芳香族系スルホン酸や、ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂などの高分子スルホン酸が好適に用いられる。
 上記ベンゼンスルホン酸またはその誘導体におけるベンゼンスルホン酸誘導体としては、例えば、トルエンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、メトキシベンゼンスルホン酸、エトキシベンゼンスルホン酸、プロポキシベンゼンスルホン酸、ブトキシベンゼンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸、ベンゼンジスルホン酸などが挙げられ、ナフタレンスルホン酸またはその誘導体におけるナフタレンスルホン酸誘導体としては、例えば、ナフタレンジスルホン酸、ナフタレントリスルホン酸、メチルナフタレンスルホン酸、エチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などが挙げられ、アントラキノンスルホン酸またはその誘導体におけるアントラキノンスルホン酸誘導体としては、例えば、アントラキノンジスルホン酸、アントラキノントリスルホン酸などが挙げられる。これらの芳香族系スルホン酸は、分子量が450以下であるが、それらの中でも、特に、トルエンスルホン酸、メトキシベンゼンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸、ナフタレントリスルホン酸が好ましい。
 高分子スルホン酸としては、ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂などが用いられ、これらの高分子スルホン酸はその重量平均分子量が5,000以上のものが好ましく、それらの高分子スルホン酸について詳細に説明すると、以下の通りである。
 まず、ポリスチレンスルホン酸としては、その重量平均分子量が5,000~1,000,000のものが好ましく、その範囲内で、10,000以上のものがより好ましく、20,000以上のものがより好ましく、40,000以上のものがさらに好ましく、また、800,000以下のものがより好ましく、300,000以下のものがさらに好ましい。
 上記スルホン化ポリエステルは、スルホイソフタル酸またはスルホイソフタル酸エステルやスルホテレフタル酸またはスルホテレフタル酸エステルなどのジカルボキシベンゼンスルホン酸やジカルボキシベンゼンスルホン酸ジエステルと、アルキレングリコールとの混合物、場合によっては、それらにテレフタル酸またはテレフタル酸ジメチルを加え、酸化アンチモンや酸化亜鉛などの触媒の存在下で縮重合させたものであり、このスルホン化ポリエステルとしては、その重量平均分子量が5,000~300,000のものが好ましく、その範囲内で、10,000以上のものがより好ましく、20,000以上のものがさらに好ましく、また、100,000以下のものがより好ましく、80,000以下のものがさらに好ましい。
 上記フェノールスルホン酸ノボラック樹脂としては、下記の一般式(2)で表される繰り返し単位を有するものが好ましく、その重量平均分子量が5,000~500,000のものが好ましく、その範囲内で、10,000以上のものがより好ましく、20,000以上のものがさらに好ましく、また、400,000以下のものがより好ましく、80,000以下のものがさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中のRは水素またはメチル基である)
 これらの高分子スルホン酸は、導電性高分子の合成時、優れた分散剤としても機能し、重合性モノマーや必要に応じて添加される触媒などを水中または水性液中を均一に分散させ、かつ合成されるポリマー中にドーパントとして取り込まれ、導電性高分子を高い導電性を有するものにさせるとともに、耐熱性が優れた導電性高分子にする要因になるものと考えられる。
 第1の導電性高分子の合成にあたって用いるアルキル化エチレンジオキシチオフェンや第2の導電性高分子の合成にあたって用いるエチレンジオキシチオフェンは、常温で液状なので、重合に際して、それらをそのまま用いることができるが、重合反応をよりスムーズに進行させるために、それらのモノマーを、例えば、メタノール、エタノール、プロパノール、ブタノール、アセトン、アセトニトリルなどの有機溶剤で希釈して有機溶剤溶液として用いることが好ましい。また、第1の導電性高分子や第2の導電性高分子は、固体電解コンデンサの作製時に、いわゆる「その場重合」により合成するので、その合成にあたっては、化学酸化重合が採用され、その際の酸化剤としては、例えば、過硫酸塩や遷移金属などが用いられ、その過硫酸塩としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過硫酸カルシウム、過硫酸バリウムなどが用いられるが、特に過硫酸アンモニウムが好ましく、また、遷移金属としては、鉄、銅、セリウム、クロム、マンガン、ルテニウム、亜鉛などが用いられるが、特に鉄が好ましい。
 「その場重合」による化学酸化重合時の温度や重合時間に関しては、種々の状況に応じ、幅広い温度、重合時間の中から適した温度、時間が選ばれるので、それを範囲で示すと、一般に、温度は0~300℃、時間は1分~72時間となる。
 第3の導電性高分子の層の形成には、あらかじめ合成しておいた導電性高分子を含む分散液を用いるので、この第3の導電性高分子の合成にあたっては、化学酸化重合、電解酸化重合のいずれも採用することができ、それらの酸化重合は、水中または水と水混和性溶剤との混合物からなる水性液中で行われる。上記水性液を構成する水混和性溶剤としては、例えば、メタノール、エタノール、プロパノール、アセトン、アセトニトリルなどが挙げられ、これらの水混和性溶剤の水との混合割合としては、水性液全体中の50質量%以下が好ましい。
 そして、この第3の導電性高分子の合成にあたっての化学酸化重合時の温度は、5~95℃が好ましく、重合時間は、1時間~72時間が好ましい。
 電解酸化重合は、定電流でも定電圧でも行い得るが、例えば、定電流で電解酸化重合を行う場合、電流値としては0.05mA/cm~10mA/cmが好ましく、0.2mA/cm~4mA/cmがより好ましく、定電圧で電解酸化重合を行う場合は、電圧としては0.5V~10Vが好ましく、1.5V~5Vがより好ましい。電解酸化重合時の温度としては、5~95℃が好ましく、特に10~30℃が好ましい。また、重合時間としては、1時間~72時間が好ましく、8時間~24時間がより好ましい。なお、電解酸化重合にあたっては、触媒として硫酸第一鉄または硫酸第二鉄を添加してもよい。
 上記のようにして得られる導電性高分子(第3の導電性高分子)は、重合直後、水中または水性液中に分散した状態で得られ、酸化剤としての過硫酸塩や触媒として用いた硫酸鉄塩やその分解物などを含んでいる。そこで、その不純物を含んでいる導電性高分子の水分散液を超音波ホモジナイザーや遊星ボールミルなどの分散機にかけて不純物を分散させた後、カチオン交換樹脂で金属成分を除去することが好ましい。このときの導電性高分子の粒径としては、100μm以下が好ましく、特に10μm以下が好ましい。その後、エタノール沈殿法、限外濾過法、陰イオン交換樹脂などにより、酸化剤や触媒の分解により生成した硫酸などをできるかぎり除去するのが好ましい。
 本発明において、このような第3の導電性高分子を用いる態様も採用しているのは、次の理由に基づいている。
 すなわち、本発明の効果は、第1の導電性高分子の層をコンデンサ素子の誘電体層上に形成することと、上記第1の導電性高分子の層と第2の導電性高分子層とを交互に積層することによって奏されるものの、「その場重合」による第1の導電性高分子と第2の導電性高分子だけで固体電解質を構成するには、それらの「その場重合」を多数回繰り返さなければならず、その結果、固体電解コンデンサの作製に長時間を要することになる。
 ところが、あらかじめ合成しておいた導電性高分子を含む分散液を利用すれば、「その場重合」による場合に比べて、導電性高分子の層形成を短時間で効率よく行うことができる。そこで、本発明では、上記のような第1の導電性高分子の層と第2の導電性高分子の層との積層による効果が奏し得るようにした上で、それらの層上に導電性高分子を含む分散液を利用して第3の導電性高分子の層を形成することにより、固体電解コンデンサの作製に要する時間を大幅に短縮し、コストの削減を達成したのである。また、上記のように、導電性高分子を含む分散液を利用して導電性高分子の層形成をすることにより、固体電解コンデンサの耐電圧を高めることができる。ただし、その理由については、現在のところ明確ではない。
 ここで、本発明において第3の導電性高分子をも用いて固体電解質を構成する例を図2に基づいて説明する。
 まず、前記の図1で示した例と同様に、この例においても、コンデンサ素子20の誘電体層22上に第1の導電性高分子の層1が形成され、その第1の導電性高分子の層1上に第2の導電性高分子の層2が積層して形成されている。そして、その第2の導電性高分子の層2上に第3の導電性高分子の層3が形成され、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質10が構成されている。
 そして、上記第1の導電性高分子と第2の導電性高分子はドーパントとして芳香族系スルホン酸を用いて合成され、第3の導電性高分子はドーパントとして高分子スルホン酸を用いて合成されている。
 なお、この図2に示す例においても、第1の導電性高分子の層1と第2の導電性高分子の層2をそれぞれ1層ずつ形成した場合しか示していないが、これら第1の導電性高分子の層1や第2の導電性高分子の層2は、必要に応じ、さらに、それぞれ交互に必要層数積層してもよい。
 そして、上記のように、第1の導電性高分子の層1と第2の導電性高分子の層2をそれぞれ複数層ずつ形成する場合においては、第3の導電性高分子の層3は、第2の導電性高分子の層2上のみならず、第1の導電性高分子の層1上に形成される場合もあり得る。
 上記のように、第3の導電性高分子をも用いる態様において、第1の導電性高分子や第2の導電性高分子のドーパントとして芳香族系スルホン酸を用いるのは、芳香族系スルホン酸が「その場重合」に適することと、導電性の高い導電性高分子が得られやすいことに基づくものであり、第3の導電性高分子のドーパントとして高分子スルホン酸を用いるのは、前記のように、導電性高分子の合成時に、優れた分散剤としても作用し、導電性高分子を高い導電性を有するものにするとともに、耐熱性の優れたものにできるからである。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例に例示のもののみに限定されることはない。なお、溶液や分散液などの濃度を示す%や純度を示す%は、特にその基準を付記しない限り質量基準による%である。また、実施例の説明に先立って、実施例などで用いるアルキル化エチレンジオキシチオフェン、つまり、エチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェン、ブチル化エチレンジオキシチオフェンおよびメチル化エチレンジオキシチオフェンの合成例を合成例1~4で示し、また、試験例として、それら実施例などで用いるエチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェン、ブチル化エチレンジオキシチオフェンおよびメチル化エチレンジオキシチオフェンをそれぞれモノマーとする導電性高分子の導電率および高温貯蔵での導電率の保持率(耐熱性を示す指標になる)をエチレンジオキシチオフェンをモノマーとする導電性高分子のそれらと対比して示す。
合成例1 エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の1-(1)~1-(3)の工程を経てエチル化エチレンジオキシチオフェンを合成した。
1-(1) ブタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)〔Butane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド14.25kg(73.28モル)と1,2-ジクロロエタン16kgを入れ、容器内の温度が10℃になるまで攪拌し、その中にトリエチルアミン9.36kg(91.6モル)を滴下した。
 上記の混合物を攪拌しながら、その混合物に容器内の温度が40℃を超えないようにしつつ1,2-ブタンジオール3.36kg(36.64モル)を60分間かけて注意深く滴下し、容器内の温度を40℃に保ちながら混合物を6時間攪拌した。反応終了液を室温まで冷却し、水5kgを加えて攪拌し、その後、静置した。
 反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。氷冷下、反応容器にメタノール1.25kgを入れて攪拌し、そこに上記のようにして得た黒赤色オイル状物を滴下しながら攪拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄した後、乾燥し、生成物としてブタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を12.05kg得た。固形分換算での収率は82%であった。
1-(2) 2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Ethyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic acid〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート〔Disodium-2,5-bis(alkoxycarbonyl)thiophene-3,4-diolate〕250g(0.9モル)と、上記1-(1)のようにして得たブタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)725g(1.82モル)と、炭酸カリウム29g(0.27モル)と、ジメチルアセトアミド1kgとを入れ、容器内の温度を125℃に保ちながら混合物を4時間攪拌した、
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム(NaHCO)水溶液1.8kgを入れ、室温で15分攪拌して茶色固体を濾取した。
 反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液1.25kgを入れて、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで冷却した後、容器内の温度が30℃を超えないようにしつつ反応終了液に98%硫酸455gを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥し、生成物として2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを128g得た。固形分換算での収率は54%であった。
1-(3) エチル化エチレンジオキシチオフェンの合成
 上記1-(2)のようにして得た2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド500g(1.94モル)を反応容器内でジメチルホルムアミド1kgに溶解し、そこへ酸化銅102gを加え、容器内の温度を125℃に保ちながら混合物を5.5時間攪拌した。
 ジメチルホルムアミドを濃縮し、エチレングリコール1.7kgを入れて、混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、エチレングリコールを含有する本留1.82kgを留出させた。
 得られた本留に10%水酸化ナトリウム水溶液1kgを加え、容器内の温度を100℃に保ちながら2時間攪拌し、2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を目的物のエチル化エチレンジオキシチオフェンとして130g得た。収率は39%であった。
合成例2 プロピル化エチレンジオキシチオフェン(すなわち、2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の2-(1)~2-(3)の工程を経てプロピル化エチレンジオキシチオフェンを合成した。
2-(1) ペンタン-1,2-ジイル-ビス(4-メチルベルゼンスルホネート)〔Pentane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド5.89kg(30モル)と1,2-ジクロロエタン7.30kgを入れ、容器内の温度が10℃になるまで撹拌し、その中にトリエチルアミン3.83kg(37.5モル)を滴下した。
 上記の混合物を撹拌しながら、容器内の温度が40℃を超えないようにしつつ、1、2-ペンタンジオール1.56kg(15モル)を60分かけて注意深く滴下した。容器内の温度を40℃に保ちながら混合物を6時間撹拌した。反応終了液を室温まで冷却し、水3kgを加えて撹拌し、その後、静置した。
 反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。氷冷下、反応容器に水とメタノールとの質量比1:2の混合物550gを入れて撹拌し、上記のようにして得た黒赤色オイル状物を滴下しながら撹拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄し、ついで乾燥して、生成物としてペンタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を3.77kg得た。固形分換算での収率は60%であった。
2-(2) 2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Propyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic acid〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート1.18kg(3.88モル)と、上記2-(1)のようにして得たペンタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)2.80kg(6.79モル)と、炭酸カリウム107g(0.77モル)と、ジメチルホルムアミド5kgとを入れ、容器内の温度を120℃に保ちながら混合物を4時間撹拌した。
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム水溶液5kgを入れ、室温で15分間撹拌して茶色固体を濾取した。
 反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液5.32kgを入れて、容器内の温度を80℃に保ちながら2時間撹拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしながら、反応終了液に98%硫酸1.94kgを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥して、生成物として2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを727g得た。固形分換算での収率は68%であった。
2-(3) プロピル化エチレンジオキシチオフェンの合成
 上記2-(2)のようにして得た2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド1.12kg(4.1モル)を反応容器内でジメチルホルムアミド1.2kgに溶解し、その中に酸化銅227gを加え、容器内の温度を125℃に保ちながら混合物を5.5時間攪拌した。
 ジメチルホルムアミドを濃縮して、エチレングリコール700gを入れて、混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、エチレングリコールを含有する本留900gを留出させた。
 得られた本留に10%水酸化ナトリウム水溶液1kgを加え、容器内の温度を100℃に保ちながら2時間攪拌した後、静置した。
 2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を目的物のプロピル化エチレンジオキシチオフェンとして180g得た。収率は24%であった。
合成例3 ブチル化エチレンジオキシチオフェン(すなわち、2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の3-(1)~3-(3)の工程を経てブチル化エチレンジオキシチオフェンを合成した。
3-(1) ペンタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)〔Pentane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド5.89kg(30モル)と1,2-ジクロロエタン7.3kgを入れ、容器内の温度が10℃になるまで攪拌し、その中にトリエチルアミン3.83kg(37.5モル)を滴下した。
 上記の混合物を攪拌しながら、その混合物に容器内の温度が40℃を超えないようにしつつ1,2-ヘキサンジオール1.77kg(15モル)を60分かけて注意深く滴下し、容器内の温度を40℃に保ちながら混合物を6時間攪拌した。
 反応終了液を室温まで冷却し、水3kgを加えて攪拌し、その後、静置した。反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。
 氷冷下、反応容器に水とメタノールとの質量比1:2の混合液550gを入れて攪拌し、そこに上記のようにして得た黒赤色オイル状物を滴下しながら攪拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄した後、乾燥して、生成物としてヘキサン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を3.52kg得た。固形分換算での収率は55%であった。
3-(2) 2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Butyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic acid〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート1.18kg(3.88モル)と、上記3-(1)のようにして得たヘキサン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)2.9kg(6.79モル)と、炭酸カリウム107g(0.77モル)と、ジメチルホルムアミド5kgとを入れ、容器内の温度を120℃に保ちながら混合物を4時間攪拌した。
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム水溶液5kgを入れ、室温で15分間攪拌して茶色固体を濾取した。反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液5.32kgを入れて、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしつつ反応終了液に98%硫酸759gを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥して、生成物として2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを689g得た。固形分換算での収率は62%であった。
3-(3) ブチル化エチレンジオキシチオフェンの合成
 上記3-(2)のようにして得た2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド1.18kg(4.11モル)を反応容器内で1.2kgのジメチルホルムアミドに溶解し、酸化銅227gを加え、容器内の温度を125℃に保ちながら、混合物を5.5時間攪拌した。
 次に、上記ジメチルホルムアミドを濃縮し、エチレングリコール700gを入れて、反応混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、エチレングリコールを含有する本留900gを留出させた。
 得られた本留に10%水酸化ナトリウム水溶液を加え、容器内の温度を100℃に保ちながら2時間攪拌し、その後、静置した。
 2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を生成物のブチル化エチレンジオキシチオフェンとして130g得た。収率は16%であった。
合成例4 メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の4-(1)~4-(3)の工程を経てメチル化エチレンジオキシチオフェンを合成した。
4-(1) プロパン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)〔Propane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド7.86kg(40モル)と1,2-ジクロロエタン7kgを入れ、容器内の温度が10℃になるまで攪拌し、その中にトリエチルアミン5.11kg(50モル)を滴下した。
 上記の混合物を攪拌しながら、その混合物に容器内の温度が40℃を超えないようにしつつ1,2-プロパンジオール1.55kg(20モル)を60分かけて注意深く滴下し、容器内の温度を40℃に保ちながら混合物を6時間攪拌した。
 反応終了液を室温まで冷却し、水4kgを加えて攪拌し、その後、静置した。反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。
 氷冷下、反応容器にメタノール500gを入れて攪拌し、そこに上記のようにして得た黒赤色オイル状物を滴下しながら攪拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄した後、乾燥して、生成物としてプロパン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を3.87kg得た。固形分換算での収率は50%であった。
4-(2) 2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Methyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic aced〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート508g(1.67モル)と、上記4-(1)のようにして得たプロパン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)960g(2.5モル)と、炭酸カリウム46g(0.33モル)と、ジメチルホルムアミド2.5kgとを入れ、容器内の温度を120℃に保ちながら混合物を4時間攪拌した。
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム水溶液3.7kgを入れ、室温で15分間攪拌して茶色固体を濾取した。反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液2.47kgを入れて、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしつつ反応終了液に98%硫酸759gを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥して、生成物として2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを310g得た。固形分換算での収率は76%であった。
4-(3) メチル化エチレンジオキシチオフェン(2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 上記4-(2)のようにして得た2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド880g(3.6モル)を反応容器内で3kgのポリエチレングリコール300(林純薬工業社製)に溶解し、酸化銅176gを加え、混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、ポリエチレングリコール300を含有する本留に水400gを加えて攪拌し、静置した。
 2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を生成物のメチル化エチレンジオキシチオフェンとして343g得た。収率は60%であった。
試験例
 エチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェン、ブチル化エチレンジオキシチオフェン、メチル化エチレンジオキシチオフェンおよびエチレンジオキシチオフェンをそれぞれモノマーとして導電性高分子を合成(製造)して、その特性を比較した。
 酸化剤兼ドーパントとしては、濃度が40%のパラトルエンスルホン酸鉄n-ブタノール溶液(テイカ社製、上記パラトルエンスルホン酸鉄におけるパラトルエンスルホン酸と鉄とのモル比は2.8:1である)を用い、上記エチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェン、ブチル化エチレンジオキシチオフェン、メチル化エチレンジオキシチオフェンおよびエチレンジオキシチオフェンのそれぞれ60μlに、上記40%パラトルエンスルホン酸鉄n-ブタノール溶液をそれぞれ500μlずつ添加し、充分かき混ぜることにより、上記モノマーの化学酸化重合を開始させ、それらを直ちに、3cm×5cmのセラミックプレート上に180μl滴下し、相対湿度60%、温度25℃で3時間重合させた後、上記セラミックプレートを水中に浸漬して洗浄し、次いで、150℃で24時間乾燥してセラミックプレート上にドーパントとしてパラトルエンスルホン酸を含む導電性高分子をシート状に形成した。
 次に上記セラミックプレート上の導電性高分子シートに1.5トンの荷重をかけたまま5分間静置してシートにかかる圧力を均等にした後、該導電性高分子の導電率を4探針方式の測定器(三菱化学社製MCP-T600)により測定した。その結果を表1に示す。
 また、上記導電率測定後の各導電性高分子シートを150℃の恒温槽中に静置状態で貯蔵し、48時間経過後の導電率を測定し、導電率の保持率を求めた。その結果も表1に示す。なお、表1には、導電性高分子の合成にあたって用いたモノマーも示しているが、その種類を示すにあたっては、スペース上の関係で、簡略化して、「エチル化エチレンジオキシチオフェン」は「エチル化EDOT」で、「プロピル化エチレンジオキシチオフェン」は「プロピル化EDOT」で、「ブチル化エチレンジオキシチオフェン」は「ブチル化EDOT」で、「メチル化エチレンジオキシチオフェン」は「メチル化EDOT」で、「エチレンジオキシチオフェン」は「EDOT」で示している。
 なお、導電率の保持率は、経時後の導電率を初期導電率(150℃の恒温槽中での貯蔵前に測定した導電率)で割り、パーセント(%)表示したものである。これを式で表すと、次のようになる。保持率の高い方が、熱に対する導電率の低下が起こりにくいことになり、耐熱性が優れていることを示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、モノマーとしてエチル化EDOT(つまり、エチル化エチレンジオキシチオフェン)、プロピル化EDOT(つまり、プロピル化エチレンジオキシチオフェン)、ブチル化EDOT(つまり、ブチル化エチレンジオキシチオフェン)およびメチル化EDOT(つまり、メチル化エチレンジオキシチオフェン)を用いて合成した各導電性高分子は、モノマーとしてEDOT(つまり、エチレンジオキシチオフェン)を用いて合成した導電性高分子に比べて、導電率が高く、導電性が優れている。ただし、それらアルキル化エチレンジオキシチオフェンをモノマーとして用いて合成した導電性高分子は、いずれも、エチレンジオキシチオフェンをモノマーとして用いて合成した導電性高分子に比べて導電率の保持率が低く、耐熱性が悪かった。
〔タンタル固体電解コンデンサでの評価〕
実施例1
 この実施例1やそれに続く実施例2~6では、タンタル固体電解コンデンサを作製して、その特性を評価する。まず、タンタル固体電解コンデンサの作製について示す。
 タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、該タンタル焼結体に20Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面にタンタルの酸化皮膜からなる誘電体層を形成してコンデンサ素子とした。
 次に、上記コンデンサ素子を濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に上記コンデンサ素子を浸漬し、1分後に取り出し、5分間放置した。その後、上記コンデンサ素子をあらかじめ用意しておいた濃度が60%のフェノールスルホン酸2-メチルイミダゾール水溶液(pH5)と濃度が40%の過硫酸アンモニウム水溶液と濃度が20%のドデシルアミンオキサイド水溶液を200:200:1の質量比で混合した混合物からなる乳化剤入りの酸化剤兼ドーパント溶液中に浸漬し、30秒後に取り出し、室温で10分間放置した後、70℃で10分間加熱して、重合を行い、その後、純水中に浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。そして、この操作をさらにもう1回繰り返して、第1の導電性高分子の層を形成した。なお、上記の乳化剤入りの酸化剤兼ドーパント溶液における乳化剤はドデシルアミンオキサイドであり、酸化剤は過硫酸アンモニウムで、ドーパントはフェノールスルホン酸である。
 次に、上記第1の導電性高分子の層を誘電体層上に形成したコンデンサ素子を、濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)に浸漬し、1分後に取り出し、5分間放置した。その後、上記コンデンサ素子を、前記と同様の乳化剤入りの酸化剤兼ドーパント溶液に浸漬し、30秒後に取り出し、室温で10分間放置した後、70℃で10分間加熱して、重合を行い、その後、純水中に浸漬し、30分間放置した後、取り出して70℃で30秒間乾燥した。そして、この操作をさらにもう1回繰り返して、第2の導電性高分子の層を形成した。
 上記のような第1の導電性高分子の層形成と第2の導電性高分子の層形成をそれぞれ交互に3回ずつ行って、第1の導電性高分子と第2の導電性高分子とで固体電解質を構成した後、カーボンペースト、銀ペーストで上記固体電解質を覆い、外装材で外装して、タンタル固体電解コンデンサを作製した。なお、上記固体電解質の構成にあたり、「その場重合」による第1の導電性高分子の合成は6回、第2の導電性高分子の合成は6回、計12回の「その場重合」を行った。
 つまり、この実施例1の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」2回実施)の層、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)が順次形成されていて、それら第1の導電性高分子と第2の導電性高分子とで固体電解質が構成されている。
実施例2
 第1の導電性高分子の合成にあたり、濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35v/v%のプロピル化エチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例2の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、プロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」2回実施)の層、プロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)、プロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)が順次形成されていて、それら第1の導電性高分子と第2の導電性高分子とで固体電解質が構成されている。
実施例3
 モノマーとしてエチル化エチレンジオキシチオフェンを用いて実施例1と同様に「その場重合」(ただし、1回実施)による第1の導電性高分子の合成を行って、第1の導電性高分子の層を形成し、その第1の導電性高分子の層の上に、モノマーとしてエチレンジオキシチオフンを用いて実施例1と同様に「その場重合」(ただし、1回実施)による第2の導電性高分子の合成を行って、第2の導電性高分子の層を形成し、以後、その第1の導電性高分子の層形成と第2の導電性高分子の層形成をそれぞれ交互に5回ずつ繰り返して、第1の導電性高分子と第2の導電性高分子とで固体電解質を構成し、以後、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例3の固体電解コンデンサでは、コンデンサ素子の誘電体側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層とエチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層がそれぞれ交互に6層ずつ積層され、それら第1の導電性高分子と第2の導電性高分子とで固体電解質が構成されている。
実施例4
 モノマーとしてエチル化エチレンジオキシチオフェンを用いて実施例1と同様の「その場重合」を2回繰り返して、第1の導電性高分子の層を形成し、その第1の導電性高分子の層の上に、モノマーとしてエチレンジオキシチオフェンを用いて実施例1と同様の「その場重合」を2回繰り返して、第2の導電性高分子の層を形成し、さらに、その第2の導電性高分子の層の上に、上記と同様の「その場重合」による第1の導電性高分子の合成を2回繰り返して、2層目の第1の導電性高分子の層を形成し、その第1の導電性高分子の層の上に、上記と同様の「その場重合」による第2の導電性高分子の合成を6回繰り返して、2層目の第2の導電性高分子の層を形成し、それらの第1の導電性高分子と第2の導電性高分子とで固体電解質を構成し、以後、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例4の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」2回実施)の層、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」6回実施)が順次形成されていて、それら第1の導電性高分子と第2の導電性高分子とで固体電解質が構成されている。
実施例5
 タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、該タンタル焼結体に20Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面にタンタルの酸化皮膜からなる誘電体層を形成して、コンデンサ素子とした。
 上記コンデンサ素子を、濃度が25v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に浸漬し、1分後に取り出し、5分間放置し、その後、あらかじめ用意しておいた濃度が40%のパラトルエンスルホン酸鉄エタノール溶液に浸漬し、30秒間後に取り出し、室温で80分間放置して、「その場重合」により第1の導電性高分子を合成し、その後、エタノール中に上記コンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作をさらにもう1回繰り返して、第1の導電性高分子の層を形成した。
 次に、上記のようにして、誘電体層上に第1の導電性高分子の層を形成したコンデンサ素子を、濃度が25v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)に浸漬し、1分後に取り出し、5分間放置し、その後、濃度が40%のパラトルエンスルホン酸鉄エタノール溶液に浸漬し、30秒間後に取り出し、室温で80分間放置して、「その場重合」により第2の導電性高分子を合成し、その後、エタノールに上記コンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作をさらにもう1回繰り返して、第2の導電性高分子の層を形成した。
 そして、上記第1の導電性高分子の層の形成と第2の導電性高分子の層の形成をそれぞれ交互に2回ずつ繰り返して、それらの第1の導電性高分子と第2の導電性高分子とで固体電解質を構成し、以後、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例5の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」2回実施)の層、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)が順次形成されていて、それら第1の導電性高分子と第2の導電性高分子とで固体電解質が構成されている。
実施例6
 第1の導電性高分子の合成にあたり、濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35v/v%のメチル化エチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例6の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、メチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」2回実施)の層、メチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)、メチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子の層(「その場重合」2回実施)、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子の層(「その場重合」2回実施)が順次形成されていて、それら第1の導電性高分子と第2の導電性高分子とで固体電解質が構成されている。
比較例1
 濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例1と同様の操作を行ってタンタル固体電解コンデンサを作製した。
 つまり、この比較例1のタンタル固体電解コンデンサでは、エチレンジオキシチオフェンを「その場重合」により12回重合していて、固体電解質はすべてエチレンジオキシチオフェンをモノマーとする第2の導電性高分子で構成されている。
比較例2
 濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」により12回重合を行った以外は、すべて実施例1と同様の操作を行ってタンタル固体電解コンデンサを作製した。
 つまり、この比較例2のタンタル固体電解コンデンサでは、固体電解質はすべてエチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子で構成されている。
比較例3
 濃度が35v/v%のプロピル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」により12回重合を行った以外は、すべて実施例1と同様の操作を行ってタンタル固体電解コンデンサを作製した。
 つまり、この比較例3のタンタル固体電解コンデンサでは、固体電解質はすべてプロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子で構成されている。
比較例4
 濃度が25v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が25v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いて、「その場重合」により12回重合を行った以外は、すべて実施例5と同様の操作を行ってタンタル固体電解コンデンサを作製した。
 つまり、この比較例4のタンタル固体電解コンデンサでは、固体電解質はすべてエチレンジオキシチオフェンをモノマーとする第1の導電性高分子で構成されている。
 そして、この比較例4のタンタル固体電解コンデンサと前記の比較例1のタンタル固体電解コンデンサとは、いずれも、固体電解質をエチレンジオキシチオフェンをモノマーとする第2の導電性高分子のみで構成しているが、比較例1のタンタル固体電解コンデンサでは、ドーパントとしてフェノールスルホン酸を用い、酸化剤として過硫酸アンモニウムを用いて、エチレンジオキシチオフェンを酸化重合しているのに対し、この比較例4のタンタル固体電解コンデンサでは、ドーパントとしてパラトルエンスルホン酸を用い、酸化剤として鉄を用いて、エチレンジオキシチオフェンを酸化重合している点が相違している。
比較例5
 濃度が25v/v%のプロピル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」により12回重合を行った以外は、すべて実施例5と同様の操作を行ってタンタル固体電解コンデンサを作製した。
 つまり、この比較例5のタンタル固体電解コンデンサでは、固体電解質はすべてプロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子で構成されている。
 そして、この比較例5のタンタル固体電解コンデンサと前記の比較例3のタンタル固体電解コンデンサとは、いずれも、固体電解質をプロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子のみで構成しているが、比較例3のタンタル固体電解コンデンサでは、ドーパントとしてフェノールスルホン酸を用い、酸化剤として過硫酸アンモニウムを用いて、プロピル化エチレンジオキシチオフェンを酸化重合しているのに対し、この比較例5のタンタル固体電解コンデンサでは、ドーパントとしてパラトルエンスルホン酸を用い、酸化剤として鉄を用いて、プロピル化エチレンジオキシチオフェンを酸化重合している点が相違している。
比較例6
 濃度が35v/v%のメチル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」により12回重合を行った以外は、すべて実施例1と同様の操作を行ってタンタル固体電解コンデンサを作製した。
 つまり、この比較例6のタンタル固体電解コンデンサでは、固体電解質はすべてメチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子で構成されている。
 上記のように作製した実施例1~6および比較例1~6のタンタル固体電解コンデンサについて、そのESRおよび静電容量を測定した。その結果を表2に示す。なお、ESRおよび静電容量の測定方法は以下に示す通りである。ESRの測定にはHEWLEWTT PACKARD社製のLCRメーター(4284A)を用い、25℃、100kHzでESRを測定し、静電容量の測定にはHEWLEWTT PACKARD社製のLCRメーター(4284A)を用い、25℃、120Hzで静電容量を測定した。それらの測定は、各試料とも、10個ずつについて行い、表1に示すESR値および静電容量値は、それら10個の平均値を求め、ESRに関しては小数点第2位を四捨五入し、静電容量に関しては小数点以下を四捨五入して示したものである。
 また、上記実施例1~6および比較例1~6のタンタル固体電解コンデンサについて、漏れ電流を測定し、漏れ電流不良の発生を調べた。その結果も表2に示す。なお、漏れ電流の測定方法および漏れ電流不良発生の評価方法は次の通りである。
漏れ電流:
 タンタル固体電解コンデンサに、25℃で16Vの定格電圧を60秒間印加した後、デジタルオシロスコープにて漏れ電流を測定した。
漏れ電流不良の発生:
 上記漏れ電流の測定において、漏れ電流が100μA以上のものは漏れ電流不良が発生していると判断した。
 なお、この漏れ電流不良の発生の有無を調べた結果の表2への表示にあたっては、試験に供した全コンデンサ個数を分母に示し、漏れ電流不良の発生があったコンデンサ個数を分子に示す態様で「漏れ電流不良発生個数」として表示している。
Figure JPOXMLDOC01-appb-T000005
 また、上記特性測定後の実施例1~6および比較例1~6のタンタル固体電解コンデンサ(以下、これら実施例1~6および比較例1~6の「タンタル固体電解コンデンサ」に関して簡略化して「コンデンサ」という)を150℃の恒温槽中に静置状態で貯蔵し、100時間後に、前記と同様に、ESRおよび静電容量の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、実施例1~6のコンデンサは、比較例1のコンデンサに比べて、ESRが低く、コンデンサとしての特性が優れていた。すなわち、モノマーとしてアルキル化エチレンジオキシチオフェン(つまり、2-アルキル-2,3-ジヒドロチエノ〔3,4-b〕〔1,4〕ジオキシン)を用いて合成した第1の導電性高分子の層とモノマーとしてエチレンジオキシチオフェン(つまり、2,3-ジヒドロチエノ〔3,4-b〕〔1,4〕ジオキシン)を用いて合成した第2の導電性高分子の層とを交互に積層して固体電解質を構成した実施例1~6のコンデンサは、モノマーとしてエチレンジオキシチオフェンを用いて合成した第2の導電性高分子のみで固体電解質を構成した比較例1のコンデンサに比べて、ESRが低く、コンデンサとしての特性が優れていた。これは、実施例1~6のコンデンサの固体電解質の一部を構成する第1の導電性高分子が、比較例1のコンデンサの固体電解質として用いられている第2の導電性高分子に比べて、導電率が高いことに基づくものと考えられる。
 また、比較例1と同様に、モノマーとしてエチレンジオキシチオフェンを用いて合成した第2の導電性高分子の層のみで固体電解質を構成した比較例4のコンデンサも、比較例1とはドーパントや酸化剤を変えているものの、やはり、実施例1~6のコンデンサに比べて、ESRが高(大き)かった。
 なお、比較例2のコンデンサに用いられているエチル化エチレンジオキシチオフェンをモノマーとする導電性高分子、比較例3と比較例5のコンデンサに用いられているプロピル化エチレンジオキシチオフェンをモノマーとする導電性高分子や比較例6のコンデンサに用いられているメチル化エチレンジオキシチオフェンをモノマーとする導電性高分子(これらの導電性高分子は第1の導電性高分子に該当するものである)は、前記表1に示すように、比較例1や比較例4のコンデンサに用いられているエチレンジオキシチオフェンをモノマーとする導電性高分子(この導電性高分子は第2の導電性高分子に該当するものである)より導電性が優れているにもかかわらず、これら比較例2~3や比較例5~6のコンデンサは、表2に示すように、比較例1や比較例4のコンデンサより、ESRが大きくなっていた。これは、コンデンサの作製にあたって、導電性高分子を何層も積層していく段階で、比較例2~3や比較例5~6のコンデンサは、比較例1や比較例4のコンデンサに比べて、その導電性高分子層の積層時に導電性高分子間の接触抵抗が高くなったことによるものと考えられる。
 また、表3に示すように、実施例1~6のコンデンサは、比較例2~3や比較例5~6のコンデンサに比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていた。さらに、表2に示すように、実施例1~6のコンデンサには漏れ電流不良の発生がなかったが、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子のみで固体電解質を構成した比較例1や比較例4のコンデンサでは、漏れ電流不良の発生があり、酸化剤として鉄を用いた比較例4のコンデンサでは、比較例1のコンデンサより、漏れ電流不良の発生が多かった。
実施例7
 これまでの実施例1~6では、「その場重合」により合成した第1の導電性高分子の層と第2の導電性高分子の層との交互積層による導電性高分子のみを固体電解質として用いてタンタル固体電解コンデンサを作製してきたが、この実施例7やそれに続く実施例8~11では、上記のような第1の導電性高分子の層と第2の導電性高分子の層とを交互に積層した導電性高分子層上にさらに他の導電性高分子、つまり、第3の導電性高分子の層を形成して、それら第1、第2および第3の導電性高分子で固体電解質を構成して、タンタル固体電解コンデンサを作製し、その特性を評価する。
 まず、この実施例7やそれに続く実施例8~11で第3の導電性高分子の層を作製するための導電性高分子を含む分散液を次に示すようにして調製した。
 ドーパントとなる高分子スルホン酸としては、ポリスチレンスルホン酸とスルホン化ポリエステルを用いた。
 以下、導電性高分子を含む分散液の調製を具体的に示すと、まず、ポリスチレンスルホン酸(テイカ社製、重量平均分子量100,000)の4%水溶液600gを内容積1Lのステンレス鋼製容器に入れ、硫酸第一鉄・7水和物を0.3g添加して溶解し、その中にエチレンジオキシチオフェン4mLをゆっくり滴下した。ステンレス鋼製の攪拌翼で攪拌し、容器に陽極を取り付け、攪拌翼の付け根に陰極を取り付け、1mA/cmの定電流で18時間電解酸化重合を行った。上記電解酸化重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、オルガノ社製のカチオン交換樹脂アンバーライト120B(商品名)を100g添加し、1時間攪拌機で攪拌した。次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理およびそれに続く濾過を3回繰り返して、液中の鉄イオンなどのカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてのジメチルスルホキシドを4g添加し、ポリスチレンスルホン酸をドーパントとする導電性高分子を含む分散液Aを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 上記とは別に、スルホン化ポリエステル〔互応化学工業社製プラスコートZ-561(商品名)、重量平均分子量27,000〕の3%水溶液200gを内容積1Lの容器に入れ、酸化剤として過硫酸アンモニウムを2g添加した後、攪拌機で攪拌して溶解した。次いで、硫酸第二鉄の40%水溶液を0.4g添加し、攪拌しながら、その中にエチレンジオキシチオフェン3mLをゆっくり滴下し、24時間かけて、エチレンジオキシチオフェンの重合を行った。
 上記重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、オルガノ社のカチオン交換樹脂アンバーライト120B(商品名)を100g添加して、1時間攪拌機で攪拌し、次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理と濾過を3回繰り返して、液中のカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてジメチルスルホキシドを4g添加し、攪拌して、スルホン化ポリエステルをドーパントとする導電性高分子を含む分散液Bを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 そして、上記分散液Aと分散液Bとを質量比1:1の比率で混合して、導電性高分子を含む分散液を得た。
 次にタンタル固体電解コンデンサの作製を具体的に示す。まず、タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、該タンタル焼結体に50Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面にタンタルの酸化皮膜からなる誘電体層を形成してコンデンサ素子とした。次に、濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に上記コンデンサ素子を浸漬し、1分後に取り出し、5分間放置した。
 その後、あらかじめ用意したおいた濃度が60%のフェノールスルホン酸2-メチルイミダゾール水溶液(pH5)と濃度が40%の過硫酸アンモニウム水溶液と濃度が20%のドデシルアミンオキサイド水溶液を200:200:1の質量比で混合した混合物からなる乳化剤(ドデシルアミンオキサイド)入りの酸化剤兼ドーパント(ドーパントはフェノールスルホン酸であり、このフェノールスルホン酸の分子量は174である)溶液中に浸漬し、30秒間後に取り出し、室温で10分間放置した後、70℃で10分間加熱して、重合を行った。その後、純水中に上記コンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作をさらにもう1回繰り返した後、150℃で1時間乾燥して、第1の導電性高分子の層を形成した。
 上記のようにして誘電体層上に第1の導電性高分子の層を形成したコンデンサ素子を、濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)に浸漬し、1分後に取り出し、5分間放置した。その後、上記コンデンサ素子を、上記と同様の乳化剤入り酸化剤兼ドーパント溶液に浸漬し、30秒後に取り出し、室温で10分間放置した後、70℃で10分間加熱して、重合を行い、その後、純水中に浸漬し、30分間放置した後、取り出して70℃で30秒間乾燥した。そして、この操作を4回繰り返して、第2の導電性高分子の層を形成した。
 次に上記のように第1の導電性高分子の層と第2の導電性高分子の層とを交互に積層したコンデンサ素子を、前記のように高分子スルホン酸(重量平均分子量が100,000のポリスチレンスルホン酸と重量平均分子量が27,000のスルホン化ポリエステル)をドーパントとする導電性高分子を含む分散液に浸漬し、1分間放置した後、取り出し、50℃で10分、150℃で10分間乾燥する操作を2回繰り返して、第3の導電性高分子の層を形成した。
 上記のようにして、第1の導電性高分子と第2の導電性高分子と第3の導電性高分子とで固体電解質を構成した後、該固体電解質をカーボンペースト、銀ペーストで覆い、外装材で外装してタンタル固体電解コンデンサを作製した。
 つまり、この実施例7の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」4回実施)の層および高分子スルホン酸をドーパントとする第3の導電性高分子(導電性高分子を含む分散液への浸漬を2回実施)の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
実施例8
 濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35v/v%のプロピル化エチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例8の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、プロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」4回実施)の層および実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
実施例9
 実施例7において、エチル化エチレンジオキシチオフェンをモノマーとする「その場重合」を2回、エチレンジオキシチオフェンをモノマーとする「その場重合」を4回実施したのに代えて、エチル化エチレンジオキシチオフェンをモノマーとする「その場重合」を3回、エチレンジオキシチオフェンをモノマーとする「その場重合」を3回実施した以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例9の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」3回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」3回実施)の層および実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
実施例10
 実施例7において、エチル化エチレンジオキシチオフェンをモノマーとする「その場重合」を2回、エチレンジオキシチオフェンをモノマーとする「その場重合」を4回実施したのに代えて、エチル化エチレンジオキシチオフェンをモノマーとする「その場重合」を4回、エチレンジオキシチオフェンをモノマーとする「その場重合」を2回実施した以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例10の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」4回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」2回実施)の層および実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
実施例11
 濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35v/v%のブチル化エチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例9と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この実施例11の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、ブチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」3回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」3回実施)の層および実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
比較例7
 濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この比較例7の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」6回実施)の層と実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第2の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
比較例8
 濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いることなく、濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」を6回繰り返し行った以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この比較例8の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」6回実施)の層と実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第1の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
比較例9
 濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いることなく、濃度が35v/v%のプロピル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」を6回繰り返し行った以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この比較例9の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、プロピル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」6回実施)の層と実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第1の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
比較例10
 濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いることなく、濃度が35v/v%のブチル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて、「その場重合」を6回繰り返し行った以外は、すべて実施例7と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 つまり、この比較例10の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、ブチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」6回実施)の層と実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第1の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
 上記のようにして作製した実施例7~11および比較例7~10のタンタル固体電解コンデンサについて、前記実施例1と同様に、ESRおよび静電容量を測定し、かつ、破壊電圧試験を行って、破壊電圧を調べた。その結果を表4に示す。なお、破壊電圧試験の方法は、それぞれのタンタル固体電解コンデンサに対し、1V/秒の速度で、電圧をかけていき、電流が0.5Aを超えたところの数値を読み取って、破壊電圧とした。表4に示す試験結果は、それぞれ5個の平均値を求め、小数点以下を四捨五入して示したものである。なお、この破壊電圧試験は、上記実施例7~11および比較例7~10のタンタル固体電解コンデンサのうち、実施例7~11および比較例7のタンタル固体電解コンデンサについてのみ行った。これは、後記の表4に示すように、比較例8~10のタンタル固体電解コンデンサは、ESRが大きく、実用性に欠くため、破壊電圧試験を行う意味がなかったことによるものである。
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、実施例7~11のコンデンサは、比較例7~10のコンデンサに比べて、 ESRが低く、また、比較例7のコンデンサに比べて、破壊電圧が高く、コンデンサとしての特性が優れていた。
実施例12
 これまでの実施例1~11では、タンタル固体電解コンデンサを作製して、その特性を評価してきたが、この実施例12やそれに続く実施例13~14では、アルミニウム固体電解コンデンサを作製して、その特性を評価する。
 縦10mm×横3.3mmのアルミニウムエッチド箔について、縦方向の片端から5mmの部分と、他端から4mmの部分とに分けるように、上記アルミニウムエッチド箔の横方向に幅1mmでポリイミド溶液を塗布し、乾燥した。次に、上記箔の縦方向の片端から5mmの部分における該片端から2mmの箇所に、陽極として銀線を取り付けた。また、上記箔の縦方向の他端から4mmの部分(4mm×3.3mm)を、濃度が10%のアジピン酸アンモニウム水溶液に漬け、13Vの電圧を印加することにより化成処理を行って、アルミニウムの酸化皮膜からなる誘電体層を形成して、コンデンサ素子を作製した。
 次に、このコンデンサ素子を、あらかじめ用意しておいた濃度が35v/v%のエチル化エチレンジオキシチオフェンのエタノール溶液に、ポリイミド溶液を塗布した箇所まで浸漬し、1分後に取り出し、5分間室温で放置後、あらかじめ用意しておいた濃度が70%のナフタレントリスルホン酸2-メチルイミダゾール水溶液(pH5)と濃度が40%の過硫酸アンモニウム水溶液と濃度が20%のドデシルアミンオキサイド水溶液を200:200:1の質量比で混合した混合物からなる乳化剤入りの酸化剤兼ドーパント溶液中にポリイミド溶液を塗布した箇所まで浸漬し、30秒間後に取り出し、室温で60分間放置して重合を行い、その後、上記コンデンサ素子を純水に浸漬し、30分間放置した後に取り出し、70℃で30分間乾燥した。このコンデンサ素子を、濃度が35v/v%のエチル化エチレンジオキシチオフェンのエタノール溶液に、ポリイミド溶液を塗布した箇所まで浸漬するところから70℃で30分間乾燥するまでの上記の一連工程をさらにもう1回行って、第1の導電性高分子の層をコンデンサ素子の誘電体層上に形成した。
 次に、上記の濃度が35v/v%のエチル化エチレンジオキシチオフェンのエタノール溶液に代えて、濃度が35v/v%のエチレンジオキシチオフェンのエタノール溶液を用いた以外は、上記と同様の操作を4回繰り返し行って、上記の第1の導電性高分子の層上に、第2の導電性高分子の層を形成した。
 次に、上記コンデンサ素子を、実施例7で用いたものと同様の高分子スルホン酸をドーパントとする導電性高分子を含む分散液に、ポリイミド溶液を塗布した箇所まで浸漬し、1分間放置後、取り出し、50℃で10分間、150℃で10分間乾燥する操作を2回繰り返して、第3の導電性高分子の層を形成した。
 上記のように、第1の導電性高分子、第2の導電性高分子および第3の導電性高分子の層を順次形成したコンデンサ素子を、150℃で60分間乾燥し、その後、カーボンペーストおよび銀ペーストで上記導電性高分子からなる固体電解質を覆い、縦方向の端部から3mmの箇所に陰極としての銀線を取り付け、さらにエポキシ樹脂で外装し、エージング処理を行ってアルミニウム固体電解コンデンサを作製した。
 つまり、この実施例12のアルミニウム固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」4回実施)の層および実施例7と同様の高分子スルホン酸をドーパントとする第3の導電性高分子(導電性高分子を含む分散液への浸漬を2回実施)の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
実施例13
 実施例12において、エチル化エチレンジオキシチオフェンをモノマーとする「その場重合」を2回、エチレンジオキシチオフェンをモノマーとする「その場重合」を4回実施したのに代えて、エチル化エチレンジオキシチオフェンをモノマーとする「その場重合」を3回、エチレンジオキシチオフェンをモノマーとする「その場重合」を3回実施した以外は、すべて実施例12と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
 つまり、この実施例13の固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」3回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」3回実施)の層および実施例12と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
実施例14
 エチル化エチレンジオキシチオフェンをエタノールで希釈し、濃度を25v/v%に調整した溶液に、実施例12と同様の操作でアルミニウムエッチド箔にアルミニウムの酸化皮膜からなる誘電体層を形成したコンデンサ素子を浸漬し、1分後に取り出し、5分間放置した。その後、あらかじめ用意しておいた濃度が40%のパラトルエンスルホン酸鉄(パラトルエンスルホン酸と鉄とのモル比は2.8:1)エタノール溶液に浸漬し、30秒間後に取り出し、室温で80分間放置して重合を行った。その後、エタノール中に上記コンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。上記一連の操作をさらにもう1回行って、コンデンサ素子の誘電体上に第1の導電性高分子の層を形成した。
 次に、上記の濃度が25v/v%のエチル化エチレンジオキシチオフェン溶液に代えて、濃度が25v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、上記と同様の操作を4回繰り返して、上記第1の導電性高分子の層上に第2の導電性高分子の層を形成した。
 さらに、上記コンデンサ素子を、実施例12で用いたものと同様の高分子スルホン酸をドーパントとする導電性高分子を含む分散液に実施例12と同様に浸漬し、1分間放置後、取り出し、50℃で10分間、150℃で10分間乾燥する操作を2回繰り返して、第3の導電性高分子の層を形成した。
 上記のように、第1の導電性高分子、第2の導電性高分子および第3の導電性高分子を順次形成したコンデンサ素子を、150℃で60分間乾燥し、その後、カーボンペーストおよび銀ペーストで上記導電性高分子からなる固体電解質を覆い、縦方向の端部から3mmの箇所に陰極としての銀線を取り付け、さらにエポキシ樹脂で外装し、エージング処理を行ってアルミニウム固体電解コンデンサを得た。
 つまり、この実施例14のアルミニウム固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」2回実施)の層、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」4回実施)の層および実施例12と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層が順次形成されていて、それら第1の導電性高分子、第2の導電性高分子および第3の導電性高分子で固体電解質が構成されている。
比較例11
 濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が35v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外、すべて実施例12と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
 つまり、この比較例11のアルミニウム固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」6回実施)の層と実施例12と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第2の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
比較例12
 モノマーとしてエチレンジオキシチオフェンを用いることなく、濃度が35v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて「その場重合」を6回行った以外は、すべて実施例12と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
 つまり、この比較例12のアルミニウム固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」6回実施)の層と実施例12と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第1の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
比較例13
 濃度が25v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)に代えて、濃度が25v/v%のエチレンジオキシチオフェン溶液(エタノール溶液)を用いた以外は、すべて実施例14と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
 つまり、この比較例13のアルミニウム固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチレンジオキシチオフェンをモノマーとする第2の導電性高分子(「その場重合」6回実施)の層と実施例12と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第2の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
比較例14
 モノマーとしてエチレンジオキシチオフェンを用いることなく、濃度が25v/v%のエチル化エチレンジオキシチオフェン溶液(エタノール溶液)のみを用いて「その場重合」を6回行った以外は、すべて実施例14と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
 つまり、この比較例14のアルミニウム固体電解コンデンサでは、コンデンサ素子の誘電体層側から、エチル化エチレンジオキシチオフェンをモノマーとする第1の導電性高分子(「その場重合」6回実施)の層と実施例12と同様の高分子スルホン酸をドーパントとする第3の導電性高分子の層とが順次形成されていて、それら第1の導電性高分子と第3の導電性高分子とで固体電解質が構成されている。
 上記のようにして作製した実施例12~14および比較例11~14のアルミニウム固体電解コンデンサについて、前記実施例1と同様に、ESRおよび静電容量を測定し、かつ、漏れ電流を測定し、漏れ電流不良の発生を調べた。その結果を表5に示す。
 なお、測定は、各試料とも、10個ずつについて行い、ESRおよび静電容量に関して表5に示す数値は、その10個の平均値を求め、小数点第2位を四捨五入して示したものである。また、この漏れ電流不良の発生の有無を調べた結果の表5への表示にあたっては、試験に供した全コンデンサ個数を分母に示し、漏れ電流不良の発生があったコンデンサ個数を分子に示す態様で「漏れ電流不良発生個数」として表示している。
 また、上記特性測定後の実施例12~14および比較例11~14のアルミニウム固体電解コンデンサを150℃の恒温槽中に静置状態で貯蔵し、100時間後に、前記と同様に、ESRおよび静電容量の測定を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表5に示すように、実施例12~14のアルミニウム固体電解コンデンサ(以下「アルミニウム固体電解コンデンサ」に関して簡略化して「コンデンサ」という)は、比較例11~14のコンデンサに比べて、ESRが低く、コンデンサとしての特性が優れていた。また、比較例11や比較例13のコンデンサでは、漏れ電流不良が発生したが、実施例12~14のコンデンサには、そのような漏れ電流不良の発生がなかった。
 そして、表6に示すように、実施例12~14のコンデンサは、比較例12や比較例14のコンデンサに比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていた。
 本発明によれば、ESRが低く、かつ耐熱性が優れていて、高温条件下での使用の信頼性が高い固体電解コンデンサを提供することができる。
1 第1の導電性高分子の層
2 第2の導電性高分子の層
3 第3の導電性高分子の層
10 固体電解質
20 コンデンサ素子
21 弁金属の多孔体
22 誘電体層

Claims (3)

  1.  タンタル、アルミニウム、ニオブなどの弁金属の多孔体と上記弁金属の酸化皮膜からなる誘電体層とを有するコンデンサ素子の誘電体層上に、導電性高分子からなる固体電解質を有する固体電解コンデンサであって、
     上記固体電解質が、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンをモノマーとして酸化重合により合成された第1の導電性高分子の層と、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして酸化重合により合成された第2の導電性高分子の層とを、それぞれ交互に少なくとも1層積層した、第1の導電性高分子と第2の導電性高分子とで構成され、上記第1の導電性高分子の層のうちの1層が上記コンデンサ素子の誘電体層上に形成されていることを特徴とする固体電解コンデンサ。
  2.  タンタル、アルミニウム、ニオブなどの弁金属の多孔体と上記弁金属の酸化皮膜からなる誘電体層とを有するコンデンサ素子の誘電体層上に、導電性高分子からなる固体電解質を有する固体電解コンデンサであって、
     上記固体電解質が、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンをモノマーとして酸化重合により合成された芳香族系スルホン酸をドーパントとして含む第1の導電性高分子の層と、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンまたは2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとの混合物をモノマーとして酸化重合により合成された芳香族系スルホン酸をドーパントとして含む第2の導電性高分子の層とを、それぞれ交互に少なくとも1層積層し、さらに、その上に高分子スルホン酸をドーパントとして含む第3の導電性高分子の層を積層した、第1の導電性高分子と第2の導電性高分子と第3の導電性高分子とで構成され、上記第1の導電性高分子のうちの1層がコンデンサ素子の誘電体層上に形成されていることを特徴とする固体電解コンデンサ。
  3.  2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンが、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン、2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンおよび2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンよりなる群から選ばれる少なくとも1種である請求項1または2に記載の固体電解コンデンサ。
PCT/JP2010/070759 2009-12-18 2010-11-22 固体電解コンデンサ WO2011074380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117018624A KR101152478B1 (ko) 2009-12-18 2010-11-22 고체 전해 콘덴서
US13/387,019 US8684576B2 (en) 2009-12-18 2010-11-22 Solid electrolytic capacitor
CN2010800164603A CN102396040B (zh) 2009-12-18 2010-11-22 固体电解电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-287047 2009-12-18
JP2009287047 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074380A1 true WO2011074380A1 (ja) 2011-06-23

Family

ID=44167143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070759 WO2011074380A1 (ja) 2009-12-18 2010-11-22 固体電解コンデンサ

Country Status (6)

Country Link
US (1) US8684576B2 (ja)
JP (1) JP4803850B2 (ja)
KR (1) KR101152478B1 (ja)
CN (1) CN102396040B (ja)
TW (1) TWI362997B (ja)
WO (1) WO2011074380A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022529801A (ja) * 2019-05-09 2022-06-24 シェンズェン カプチェム テクノロジー カンパニー リミテッド 導電性ポリマー、コンデンサ及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508547B1 (en) * 2009-12-04 2015-04-08 Tayca Corporation Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
US10643796B2 (en) * 2012-02-27 2020-05-05 Kemet Electronics Corporation Conductive polymer dispersion with enhanced coverage
WO2016086836A1 (zh) * 2014-12-05 2016-06-09 中国石油天然气股份有限公司 一种二元磺酸酯化合物与烯烃聚合催化剂组分和烯烃聚合催化剂
WO2016174817A1 (ja) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 電解コンデンサ
JP6970873B2 (ja) * 2015-04-28 2021-11-24 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
US9672989B2 (en) * 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
CN111785524A (zh) * 2020-07-15 2020-10-16 常州华威电子有限公司 一种耐高温的高分子铝固体电容器
CN111892698B (zh) * 2020-08-07 2022-12-20 万裕三信电子(东莞)有限公司 氧化液的制备方法以及固态铝电解电容器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525946A (ja) * 2001-03-29 2004-08-26 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ チオフェン類およびそれらから誘導される重合体
JP2005039276A (ja) * 2003-07-14 2005-02-10 Hc Starck Gmbh 電解コンデンサ中のアルキレンオキシチアチオフェン単位を有するポリチオフェン
JP2005123630A (ja) * 2003-10-17 2005-05-12 Hc Starck Gmbh ポリマー外層を有する電解コンデンサ
JP2006137940A (ja) * 2004-10-13 2006-06-01 Showa Denko Kk 導電性重合体の製造方法
JP2007027767A (ja) * 2005-07-20 2007-02-01 Hc Starck Gmbh ポリマー外層を有する電解コンデンサおよびその製造方法
WO2009047059A1 (de) * 2007-10-08 2009-04-16 H.C. Starck Gmbh Verfahren zur herstellung von elektrolytkondensatoren mit polymerer zwischenschicht
JP2010275548A (ja) * 2009-05-28 2010-12-09 Showa Denko Kk 高い導電率を有するポリ(3,4−アルキレンジオキシチオフェン)の製造方法
JP2011009314A (ja) * 2009-06-24 2011-01-13 Japan Carlit Co Ltd:The 固体電解コンデンサ及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812367A (en) * 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
JP3451177B2 (ja) 1997-05-09 2003-09-29 松下電器産業株式会社 導電性組成物の製造方法
JP2000068152A (ja) 1998-08-19 2000-03-03 Nichicon Corp 固体電解コンデンサおよびその製造方法
CN1226760C (zh) * 2001-02-08 2005-11-09 松下电器产业株式会社 固体电解电容的制造方法及固体电解电容
JP4688125B2 (ja) 2001-11-27 2011-05-25 テイカ株式会社 導電性高分子およびそれを用いた固体電解コンデンサ
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
JP2004265927A (ja) 2003-02-13 2004-09-24 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525946A (ja) * 2001-03-29 2004-08-26 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ チオフェン類およびそれらから誘導される重合体
JP2005039276A (ja) * 2003-07-14 2005-02-10 Hc Starck Gmbh 電解コンデンサ中のアルキレンオキシチアチオフェン単位を有するポリチオフェン
JP2005123630A (ja) * 2003-10-17 2005-05-12 Hc Starck Gmbh ポリマー外層を有する電解コンデンサ
JP2006137940A (ja) * 2004-10-13 2006-06-01 Showa Denko Kk 導電性重合体の製造方法
JP2007027767A (ja) * 2005-07-20 2007-02-01 Hc Starck Gmbh ポリマー外層を有する電解コンデンサおよびその製造方法
WO2009047059A1 (de) * 2007-10-08 2009-04-16 H.C. Starck Gmbh Verfahren zur herstellung von elektrolytkondensatoren mit polymerer zwischenschicht
JP2010275548A (ja) * 2009-05-28 2010-12-09 Showa Denko Kk 高い導電率を有するポリ(3,4−アルキレンジオキシチオフェン)の製造方法
JP2011009314A (ja) * 2009-06-24 2011-01-13 Japan Carlit Co Ltd:The 固体電解コンデンサ及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022529801A (ja) * 2019-05-09 2022-06-24 シェンズェン カプチェム テクノロジー カンパニー リミテッド 導電性ポリマー、コンデンサ及びその製造方法

Also Published As

Publication number Publication date
KR20110102951A (ko) 2011-09-19
JP2011146693A (ja) 2011-07-28
JP4803850B2 (ja) 2011-10-26
CN102396040B (zh) 2013-01-16
US8684576B2 (en) 2014-04-01
TWI362997B (en) 2012-05-01
TW201129468A (en) 2011-09-01
US20120127634A1 (en) 2012-05-24
CN102396040A (zh) 2012-03-28
KR101152478B1 (ko) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5093915B2 (ja) 固体電解コンデンサ
JP4803850B2 (ja) 固体電解コンデンサ
JP4454041B2 (ja) 導電性組成物の分散液、導電性組成物およびその用途
US9362055B2 (en) Method for manufacturing solid electrolytic capacitor
JP5807997B2 (ja) 固体電解コンデンサの製造方法
TWI607033B (zh) Monomer liquid for manufacturing conductive polymer and method for manufacturing electrolytic capacitor using the same
EP2154197A1 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP5745881B2 (ja) 固体電解コンデンサ
JP5892535B2 (ja) 導電性高分子製造用酸化剤兼ドーパント、導電性高分子製造用酸化剤兼ドーパント溶液、導電性高分子および固体電解コンデンサ
US20130100585A1 (en) Electroconductive polymer suspension and method for producing the same, electroconductive polymer material, and solid electrolytic capacitor and method for producing the same
JP2010132873A (ja) 導電性高分子の分散液の製造方法、導電性高分子の分散液、導電性高分子およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016460.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117018624

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837409

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13387019

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837409

Country of ref document: EP

Kind code of ref document: A1