WO2011074315A1 - 光ファイバ心線 - Google Patents

光ファイバ心線 Download PDF

Info

Publication number
WO2011074315A1
WO2011074315A1 PCT/JP2010/067648 JP2010067648W WO2011074315A1 WO 2011074315 A1 WO2011074315 A1 WO 2011074315A1 JP 2010067648 W JP2010067648 W JP 2010067648W WO 2011074315 A1 WO2011074315 A1 WO 2011074315A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
layer
colored
coating
thermal expansion
Prior art date
Application number
PCT/JP2010/067648
Other languages
English (en)
French (fr)
Inventor
中島 康雄
望月 浩二
広樹 田中
悦宏 新子谷
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to US13/101,377 priority Critical patent/US8571372B2/en
Publication of WO2011074315A1 publication Critical patent/WO2011074315A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure

Definitions

  • the present invention relates to an optical fiber core housed in an optical fiber cable. Specifically, the present invention relates to an optical fiber core wire that suppresses an increase in transmission loss of the optical fiber due to the use environment and aging deterioration, and in particular, the transmission loss does not increase over a long period of time even in a high humidity state or an immersion state. The present invention relates to an optical fiber core wire with reduced transmission loss and excellent water resistance.
  • the optical fiber is coated with a two-layer structure of a soft layer and a hard layer.
  • a soft resin with a relatively low Young's modulus for the inner layer in contact with the quartz glass
  • a buffer layer hereinafter referred to as a primary layer
  • a hard resin with a relatively high Young's modulus is used for the outer layer.
  • a protective layer is used (hereinafter referred to as a secondary layer).
  • a resin having a Young's modulus of 3 MPa or less is used for the primary layer and a Young's modulus of 500 MPa or more is used for the secondary layer.
  • the optical fiber manufacturing method first, a preform mainly composed of quartz glass is heated and melted in a drawing furnace to obtain an optical fiber made of silica glass. Next, a liquid ultraviolet curable resin is applied to the optical fiber made of quartz glass using a coating die, and then the ultraviolet curable resin is cured by irradiating it with ultraviolet rays. In this way, the silica glass optical fiber is coated with the primary layer and the secondary layer, and the optical fiber is manufactured. In this specification, the optical fiber coated with the primary layer and the secondary layer is called an optical fiber. As described above, by immediately covering the outer periphery of the optical fiber made of silica glass with the coating resin after drawing, it is possible to prevent the strength of the obtained optical fiber from being lowered.
  • an optical fiber colored core is manufactured by coating the outer periphery of the obtained optical fiber with a coating layer made of a colored resin or the like.
  • the structure of the optical fiber is shown in FIG.
  • a plurality of colored optical fiber cores arranged in a planar shape and collectively covered with a tape resin is referred to as an optical fiber tape core wire.
  • the optical fiber strand, the optical fiber colored core wire, and the optical fiber tape core wire are collectively referred to as an optical fiber core wire.
  • an ultraviolet curable resin is mainly used as the coating resin for the optical fiber core wire.
  • the ultraviolet curable resin urethane acrylate or epoxy acrylate is used.
  • peeling is observed at the glass optical fiber / primary layer interface in the optical fiber core wire with increased transmission loss.
  • the glass optical fiber / primary layer interface is peeled off when the force to peel off the coating layer exceeds the adhesive force at the interface between the glass optical fiber and the coating layer at the interface between the glass optical fiber and the coating layer. Arise. When peeling occurs at the interface, the force applied to the glass becomes non-uniform, and microbending occurs, resulting in an increase in transmission loss.
  • the mechanism by which the adhesive strength at the interface between the glass optical fiber and the coating layer decreases when immersed in water is presumed as follows.
  • the adhesive force is a hydrogen bond between glass and a functional group in the resin, and a chemical bond by an adhesion promoter. It is made up of.
  • hydrogen bonds are broken when water or the like enters the interface between the glass and the primary layer.
  • optical fiber cables With the recent widespread use of optical fibers, the application range of optical fiber cables has been greatly expanded. This means that the environment in which the optical fiber cable is used has been diversified, and further, a new cable structure has been developed. Therefore, the long-term reliability required for optical fiber cables has become very strict.
  • An object of the present invention is, for example, an optical fiber core in which transmission loss hardly increases when an optical fiber core housed in an optical fiber cable is exposed to a use environment or aged deterioration, particularly water or high humidity. Is to provide a line.
  • an optical fiber colored core of the present invention is an optical fiber having at least two coating layers of a soft layer and a hard layer and a glass optical fiber coated with the multi-layer. And a colored layer covering the optical fiber, the colored layer formed by being applied to the optical fiber, and coloring the optical fiber by the multi-layer and the colored layer Thermal expansion of the coating layer of the optical fiber colored core wire after coating the colored layer with respect to the thermal expansion coefficient of the coating layer of the optical fiber strand before forming the coating layer of the core wire and applying the colored layer
  • the coefficient ratio is 0.87 or more.
  • the optical fiber ribbon of the present invention is an optical fiber ribbon formed by arranging a plurality of colored optical fibers in a planar shape and collectively covering with a tape resin, the coating layer of the optical fiber
  • the ratio of the thermal expansion coefficient of the coating layer of the colored optical fiber core after applying the colored layer to the thermal expansion coefficient is 0.90 or more.
  • an optical fiber core wire having a thermal expansion coefficient ratio of 0.87 or more between a coating layer formed by coating a colored layer on the optical fiber strand and a coating layer of the optical fiber strand is provided.
  • an increase in transmission loss when exposed to water or high humidity can be suppressed.
  • the optical fiber core with a ratio of thermal expansion coefficient of 0.90 or more between the coating layer formed by applying a colored layer to the optical fiber and the coating layer of the optical fiber It is possible to provide an optical fiber core wire in which transmission loss hardly increases when exposed to aging, particularly water or high humidity.
  • FIG. 1 is a sectional view of an embodiment of an optical fiber of the present invention.
  • FIG. 2 is a sectional view of an embodiment of the optical fiber colored core wire of the present invention.
  • FIG. 3 is a cross-sectional view of the optical fiber ribbon of the present invention.
  • FIG. 4 is a graph showing the relationship between temperature and linear expansion coefficient.
  • an optical fiber 14 in which a primary layer 12 and a secondary layer 13 are coated on a glass optical fiber 11 as shown in FIG. 1 is produced, and the optical fiber as shown in FIG. 14 is coated with a colored layer 21 to produce an optical fiber colored core wire 22.
  • An ultraviolet curable resin is used as the resin constituting each coating.
  • a plurality of optical fiber cores can be arranged in parallel on a flat surface and covered with a tape resin made of an ultraviolet curable resin to form an optical fiber tape core.
  • the ultraviolet curable resin used as a coating resin or a colored resin for an optical fiber is mainly composed of an oligomer, a dilution monomer, a photoinitiator, a chain transfer agent, a silane coupling agent, and various additives.
  • the oligomer urethane acrylate, epoxy acrylate, and polyester acrylate are mainly used.
  • a monofunctional acrylate or a polyfunctional acrylate is used as the dilution monomer.
  • the optical fiber colored core wire in the present invention includes a coating layer 20 (primary layer 12, secondary layer 13, and colored layer 21) after applying a colored layer to an optical fiber, and an optical fiber element before applying the colored layer.
  • a coating layer 20 primary layer 12, secondary layer 13, and colored layer 21
  • the ratio of the thermal expansion coefficient between the secondary layer 13) and the secondary layer 13) is preferably 1.05 or less from the viewpoint of mechanical properties.
  • a glass optical fiber 11 made of quartz glass was covered with two coating resin layers of a primary layer 12 and a secondary layer 13 to produce several types of optical fiber wires 14.
  • An ultraviolet curable resin was used as each resin.
  • the ultraviolet curable resin includes an oligomer, a dilution monomer, a photoinitiator, a chain transfer agent, and an additive. By changing the constituent materials, several types of optical fiber wires 14 are produced.
  • the ratio of the thermal expansion coefficient between the coating layer after applying the colored layer to the optical fiber 14 and the coating layer of the optical fiber before applying the colored layer is determined by the skeleton structure and molecular weight of the oligomer, and the dilution monomer to be added Depending on the kind and amount of addition, it can change suitably.
  • the ultraviolet curable resin used for the colored layer has a low ultraviolet transmittance and is hard to be cured because a pigment is added. Therefore, the UV curable resin used for the colored layer has a method of increasing the degree of curing by increasing the polyfunctional monomer content or decreasing the molecular weight of the oligomer compared to the UV curable resin used for the secondary layer. Yes. Therefore, the ultraviolet curable resin used for the colored layer has a high crosslinking density and Young's modulus, and its thermal expansion coefficient tends to be smaller than that of the ultraviolet curable resin used for the secondary layer.
  • the thermal expansion coefficient of the coating layer after coating the colored layer and the coating layer of the optical fiber strand are almost the same. Can be a level. In this case, there is a concern about a decrease in the degree of curing of the ultraviolet curable resin used for the colored layer, but this can be adjusted by changing the type of the photoinitiator or increasing the amount of addition. In this embodiment, 2.5 wt% of Irgacure907 (Ciba Inc.) and 3.3 wt% of Darocur1173 (Ciba Inc.) are added as photoinitiators of the ultraviolet curable resin used for the colored layer.
  • the thermal expansion coefficient can be increased by decreasing the Young's modulus, but it tends to change depending on the molecular structure. For example, when the free rotation of each functional group and the free rotation of the main chain are suppressed, the thermal expansion coefficient does not necessarily increase even if the Young's modulus is decreased.
  • the optical fiber 14 has a primary layer 12 having an outer diameter of 195 ⁇ m on the outer periphery of a glass optical fiber 11 made of quartz glass and having an outer diameter of 125 ⁇ m, and further has a secondary layer 13 having an outer diameter of 245 ⁇ m on the outer periphery.
  • the optical fiber colored cores of Examples 1, 3, 5 and Comparative Example 1 shown in Table 1 were coated with a colored layer 21 in a separate step after an optical fiber was prepared as shown in FIG.
  • an optical fiber colored core wire 22 having an outer diameter of 255 ⁇ m was obtained.
  • optical fiber tape core wire 32 was formed by covering with a tape resin 31 made of a mold resin.
  • the optical fiber ribbons of Examples 2 and 4 are the colored optical fibers of Examples 1 and 3, respectively, and the optical fiber ribbons of Comparative Examples 2 and 3 are the colored of Comparative Examples 1 and 5, respectively. It was prepared using a core wire.
  • thermomechanical analyzer Metal of thermal expansion of optical fiber coating layer
  • a sample consisting only of the coating layer was prepared by peeling only the coating from the optical fiber, and the thermal expansion coefficient was measured in the longitudinal direction of the sample. Since the thermal expansion coefficient of the coating layer changes greatly in the vicinity of the glass transition point of the coating layer, the thermal expansion coefficient is preferably set in a range including the glass transition points of all the coating layers, as shown in FIG. The thermal expansion coefficient was determined from a linear range, that is, a temperature range of ⁇ 50 to 25 ° C.
  • a colored resin is applied to an optical fiber made of a glass optical fiber covered with at least two coating layers of a soft layer and a hard layer.
  • An optical fiber colored core wire further coated from a coating layer made of the above, wherein the ratio of the thermal expansion coefficient between the coating layer after the colored layer is applied to the optical fiber strand and the coating layer of the optical fiber strand is 0 It was confirmed that the transmission loss did not increase even when immersed in hot water at 60 ° C. for 30 days by using an optical fiber colored core wire of .87 or more.
  • the ratio of the thermal expansion coefficient between the coating layer after coating the colored layer on the optical fiber and the coating layer of the optical fiber is 1.00 or more, transmission loss increases even if immersed for 90 days. I confirmed that I did not.
  • a plurality of the above-described optical fiber colored core wires may be arranged in a plane and may be an optical fiber tape core wire that is collectively covered with a tape resin.
  • an optical fiber colored core having a thermal expansion coefficient ratio of 0.90 or more between the coating layer after the colored layer is applied to the optical fiber and the coating layer of the optical fiber.
  • the wire it was confirmed that the transmission loss did not increase even when immersed in warm water of 60 ° C. for 30 days.
  • the ratio of the thermal expansion coefficient between the coating layer after coating the colored layer on the optical fiber and the coating layer of the optical fiber is 1.00 or more, transmission loss increases even if immersed for 90 days. I confirmed that I did not.
  • the reason for the difference in the ratio of the thermal expansion coefficient that does not increase the transmission loss between the optical fiber colored core wire and the optical fiber tape core wire is that the optical fiber tape core wire is further coated with a tape resin on the optical fiber colored core wire. Therefore, if peeling occurs at the interface between the glass and the primary layer, the optical fiber tape core wire is thicker than the optical fiber colored core wire, so the non-uniform force applied to the glass is large. This is presumed to be.
  • the thermal expansion coefficient of the colored layer itself cannot be measured, the thermal expansion coefficient of the coating layer of the optical fiber colored core is smaller than the thermal expansion coefficient of the coating layer of the optical fiber strand. It is suggested that the thermal expansion coefficient is smaller than the thermal expansion coefficient of the coating layer of the optical fiber.
  • the coefficient of thermal expansion generally tends to be small for those having a high elastic modulus, in such a case, it is estimated that the elastic modulus of the colored layer is higher than the elastic modulus of the secondary layer. The This state means that distortion occurs at the contact interface between the secondary layer and the colored layer.
  • a single mode fiber having a normal step index type refractive index profile is used.
  • the present invention is applicable to optical fibers having other profiles. It is.
  • an optical fiber colored core wire and an optical fiber tape core wire in which an increase in transmission loss is suppressed even when exposed to a change in usage environment and diameter, particularly moisture or a high humidity atmosphere. Can do.

Abstract

本発明は、高湿度状態や水浸状態においても伝送ロスが増加しにくい光ファイバ心線を提供する。本発明の一実施形態に係る光ファイバ着色心線(22)は、少なくとも軟質層と硬質層との2層の被覆層により被覆されたガラス光ファイバからなる光ファイバ素線(14)に着色層を塗布してなる光ファイバ着色心線(22)であって、光ファイバ着色心線(22)の着色層を塗布した後の被覆層と着色層を塗布する前の光ファイバ素線(14)の被覆層との熱膨張係数の比が0.87以上である。また、本発明の一実施形態に係る光ファイバテープ心線(32)は、光ファイバ着色心線(22)を複数本平面状に並べ、テープ樹脂により一括被覆してなる光ファイバ心線(32)であって、光ファイバ着色心線(22)の着色層を塗布した後の被覆層と着色層を塗布する前の光ファイバ素線の被覆層との熱膨張係数の比が0.90以上である。

Description

光ファイバ心線
 本発明は、光ファイバケーブル内に収納される光ファイバ心線に関するものである。具体的には、使用環境や経年劣化による光ファイバの伝送ロス増加を抑制した光ファイバ心線に関するものであり、特に、高湿度状態や浸漬状態においても長期に渡り伝送ロスが増加しない、または該伝送ロスを低減した、耐水性に優れた光ファイバ心線に関するものである。
 光ファイバは、様々な外的応力やそれによって発生するマイクロベンドによって伝送ロスが増加する。そのため、そのような外的応力から光ファイバを保護する必要があり、一般的には、光ファイバは軟質層と硬質層との2層構造からなる被覆が施されている。石英ガラスと接触する内層には、比較的ヤング率の低い軟質の樹脂を用いることでバッファ層とし(以下、プライマリ層と呼ぶ)、外層には比較的ヤング率の高い硬質の樹脂を用いることで保護層としている(以下、セカンダリ層と呼ぶ)。一般には、プライマリ層はヤング率3MPa以下、セカンダリ層はヤング率500MPa以上の樹脂が用いられている。
 光ファイバの製造方法においては、まず、石英ガラスを主成分とするプリフォームを線引炉によって、加熱溶融し、石英ガラス製光ファイバとする。次に、この石英ガラス製光ファイバにコーティングダイスを用いて液状の紫外線硬化型樹脂を塗布し、続いてこれに紫外線を照射して紫外線硬化型樹脂を硬化させる。このようにして、石英ガラス製光ファイバにプライマリ層とセカンダリ層とが被覆され、光ファイバが製造される。本明細書においては、このように、プライマリ層とセカンダリ層とが被覆された光ファイバを光ファイバ素線と呼ぶ。このように、線引き後、石英ガラス製光ファイバの外周に直ちに被覆樹脂を被覆することで、得られる光ファイバ素線の強度低下を防ぐことができる。
 さらに、次工程において、得られた光ファイバ素線の外周に着色樹脂等からなる被覆層を被覆することにより、光ファイバ着色心線が製造される。光ファイバ素線の構造を図1に示す。なお、本明細書においては、光ファイバ着色心線を複数本平面状に並べ、テープ樹脂により一括被覆したものを光ファイバテープ心線と称するものとする。また、光ファイバ素線、光ファイバ着色心線および光ファイバテープ心線を包括して光ファイバ心線と称するものとする。
 なお、光ファイバ心線用の被覆樹脂としては、主に紫外線硬化型樹脂が用いられる。紫外線硬化型樹脂としては、ウレタンアクリレート系もしくはエポキシアクリレート系が用いられている。
 このような光ファイバ心線を、水に浸漬すると伝送ロスが増大するケースがある。このように、水に浸漬した状態で長時間使用しても光ファイバの伝送ロスの増大が抑制された信頼性の高い光ファイバ心線とするために、プライマリ層とガラス光ファイバとの間の密着力を改善する等、種々な提案がなされてきている(特許文献1参照)。
 また、伝送ロスが増大した光ファイバ心線には、ガラス光ファイバ/プライマリ層界面に剥離が観察される。ガラス光ファイバ/プライマリ層界面の剥離は、ガラス光ファイバと被覆層との界面において、被覆層を引き剥がそうとする力が、ガラス光ファイバと被覆層との界面の接着力を超えた場合に生じる。界面に剥離を生じるとガラスに加わる力が不均一となり、マイクロベンドを生じるために伝送ロスが増加することになる。
 水に浸漬した際に、ガラス光ファイバと被覆層との界面の接着力が低下するメカニズムは、以下のように推察されている。光ファイバ心線を、水に浸漬したり、高湿度の雰囲気に曝したりすると、水分は被覆層を透過して、ガラス光ファイバとプライマリ層との界面まで到達する。ガラス光ファイバとプライマリ層との界面には、接着力が発生しているが、たとえば、一般的には、接着力はガラスと樹脂中の官能基との水素結合と、接着促進剤による化学結合からなっている。しかし、水素結合は、ガラスとプライマリ層との界面に水等が侵入することによって切断されてしまうと考えられている。このように、水素結合が切断させることでガラス光ファイバとプライマリ層との界面の接着力が低下すると推察される(非特許文献1参照)。
特開平4-268521号公報
N. Akasaka et al., "Design of Optical Fiber Coating", Proc. of 19th Australian Conference on Optical Fibre Technology (ACOFT), p. 375, 1994
 近年の光ファイバの著しい普及によって、光ファイバケーブルはその適用範囲が大きく拡大してきている。これは、光ファイバケーブルが使用されている環境が多様化してきていること、さらには、新規なケーブル構造が開発されてきていることを意味している。そのため、光ファイバケーブルに求められる長期信頼性は非常に厳しいものとなってきている。
 このような状況も手伝い、浸漬状態に曝しても伝送ロスの増加が生じにくい光ファイバ心線の検討がなされてきている。しかしながら、各層界面の接続性のバランスを取りながら、上記のような問題に対処することには限界があり、ケーブル構造やコード、あるいはシース材質の検討も加えることで光ファイバ心線に水分が到達するのを避ける構成や、水分の到達量を減少させる構成を組み合わせて実用化されているのが現状であり、その信頼性は不十分であった。
 本発明の目的は、たとえば、光ファイバケーブルに収納されている光ファイバ心線が、使用環境や経年劣化、特に、水もしくは高湿度下に曝されたときに伝送ロスが増加しにくい光ファイバ心線を提供することである。
上記課題を解決するため、本発明の光ファイバ着色心線は、少なくとも軟質層と硬質層との2層の被覆層と、前記被複層により被覆されたガラス光ファイバとを有する光ファイバ素線と、前記光ファイバ素線を被覆する着色層であって、該光ファイバ素線に塗布されることにより形成される着色層とを備え、前記被複層と前記着色層とにより前記光ファイバ着色心線の被覆層を形成し、前記着色層を塗布する前の前記光ファイバ素線の被覆層の熱膨張係数に対する前記着色層を塗布した後の前記光ファイバ着色心線の被覆層の熱膨張係数の比が0.87以上であることを特徴とする。
 また、本発明の光ファイバテープ心線は、光ファイバ着色心線を複数本平面状に並べ、テープ樹脂により一括被覆してなる光ファイバテープ心線であって、前記光ファイバ素線の被覆層の熱膨張係数に対する前記着色層を塗布した後の前記光ファイバ着色心線の被覆層の熱膨張係数の比が0.90以上であることを特徴とする。
 本発明の光ファイバによれば、光ファイバ素線に着色層を塗布してなる被覆層と光ファイバ素線の被覆層との熱膨張係数の比が0.87以上である光ファイバ心線を用いることで、水もしくは高湿度下に曝された際の伝送ロスの増加を抑制することができる。さらに、光ファイバ素線に着色層を塗布してなる被覆層と光ファイバ素線の被覆層との熱膨張係数の比が0.90以上である光ファイバ心線と用いることで、使用環境や経年劣化、特に、水もしくは高湿度下に曝されたときに伝送ロスが増加しにくい光ファイバ心線を提供することができる。
図1は、本発明の光ファイバ素線の実施例の断面図である。 図2は、本発明の光ファイバ着色心線の実施例の断面図である。 図3は、本発明の光ファイバテープ心線の断面図である。 図4は、温度と線膨張率の関係を示した図である。
 以下、本発明の実施の形態について説明する。本発明を実施する形態としては、図1に示すようなガラス光ファイバ11にプライマリ層12、セカンダリ層13を被覆した光ファイバ素線14を作製し、図2に示すように該光ファイバ素線14を着色層21によって被覆することで光ファイバ着色心線22を作製する。各被覆を構成する樹脂には紫外線硬化型樹脂を用いる。さらに、用途に応じて、この光ファイバ心線を複数本平面上に平行に並べ、紫外線硬化型樹脂からなるテープ樹脂で一括被覆することで光ファイバテープ心線とすることができる。
 なお、光ファイバ素線の被覆樹脂や着色樹脂として用いる紫外線硬化型樹脂は主なものとして、オリゴマー、希釈モノマー、光開始剤、連鎖移動剤、シランカップリング剤、各種添加剤からなる。オリゴマーとしては、ウレタンアクリレート系、エポキシアクリレート系、ポリエステルアクリレート系が主に用いられる。希釈モノマーとしては、単官能アクリレートもしくは多官能アクリレートが用いられる。
 本発明における光ファイバ着色心線は、光ファイバ素線に着色層を塗布した後の被覆層20(プライマリ層12とセカンダリ層13と着色層21)と、着色層を塗布する前の光ファイバ素線の被覆層10(プライマリ層12とセカンダリ層13)との熱膨張係数の比を0.90以上とすることで、水もしくは高湿度下に曝された際の伝送ロスの増加を抑制している。また、光ファイバ素線に着色層を塗布した後の被覆層20(プライマリ層12とセカンダリ層13と着色層21)と着色層を塗布する前の光ファイバ素線の被覆層10(プライマリ層12とセカンダリ層13)との熱膨張係数の比は機械的特性の観点から1.05以下が望ましい。
 図1に示すように石英ガラスからなるガラス光ファイバ11をプライマリ層12、セカンダリ層13の2層の被覆樹脂層により被覆して数種類の光ファイバ素線14を作製した。各樹脂として紫外線硬化型樹脂を用いた。紫外線硬化型樹脂は、オリゴマー、希釈モノマー、光開始剤、連鎖移動剤、添加剤とからなるが、その構成材料を変えることで数種類の光ファイバ素線14を作製している。
 光ファイバ素線14に着色層を塗布した後の被覆層と着色層を塗布する前の光ファバイ素線の被覆層との熱膨張係数に比は、オリゴマーの骨格構造と分子量、添加する希釈モノマーの種類と添加量によって適宜変えることができる。一般的には、着色層に用いる紫外線硬化型樹脂は顔料が添加されているために紫外線の透過率が低く硬化が進みにくい傾向にある。したがって、着色層に用いる紫外線硬化型樹脂はセカンダリ層に用いる紫外線硬化型樹脂に比べて多官能モノマーの含有量を多くしたり、オリゴマーの分子量を小さくすることで硬化度を上げる手法が用いられている。そのため、着色層に用いる紫外線硬化型樹脂は架橋密度もヤング率も高くなり、その熱膨張係数はセカンダリ層に用いる紫外線硬化型樹脂に比べて小さい傾向にある。
 着色層に用いる紫外線硬化型樹脂としてセカンダリ層の被覆樹脂と同等の組成物を適用することによって、着色層を塗布した後の被覆層と光ファイバ素線の被覆層との熱膨張係数をほぼ同レベルとすることができる。この場合、着色層に用いる紫外線硬化型樹脂の硬化度の低下が懸念されるが、これは、光開始剤の種類を変えることや、添加量を増量することで調整可能である。本実施例では、着色層に用いる紫外線硬化樹脂の光開始剤としてはIrgacure907(Ciba Inc.)2.5wt%、Darocur1173(Ciba Inc.)3.3wt%を添加している。
 また、熱膨張係数は、ヤング率を小さくすることでも大きくすることができるが、分子構造によっても変わる傾向がある。たとえば、各官能基の自由回転や主鎖の自由回転が抑制されている場合には、ヤング率を小さくしても熱膨張係数が大きくなるとは限らない。
 なお、光ファイバ素線14は、石英ガラスからなる外径125μmのガラス光ファイバ11の外周に、外径195μmのプライマリ層12を有し、さらにその外周に外径245μmのセカンダリ層13を有する。また、表1に示す実施例1、3、5、比較例1の光ファイバ着色心線は、図2に示すように光ファイバ素線を作製した後、別工程にて、着色層21を被覆して外径255μmの光ファイバ着色心線22とした。
 さらに、表1に示す実施例2、4、比較例2、3の光ファイバテープ心線は、図3に示すように、光ファイバ着色心線22を4本平面状に平行に並べ、紫外線硬化型樹脂からなるテープ樹脂31で一括被覆し、光ファイバテープ心線32とした。なお、実施例2、4の光ファイバテープ心線はそれぞれ実施例1、3の光ファイバ着色心線を、比較例2、3の光ファイバテープ心線はそれぞれ比較例1、実施例5の着色心線を用いて作製した。
 得られた光ファイバ着色心線22および光ファイバテープ心線32について、下記の方法にしたがって、被覆層の熱膨張係数と伝送ロスの測定を行った。その結果を表1に示す。
(光ファイバの被覆層の熱膨張係数) 
 熱機械分析装置(メトラー・トレド(株)TMA40)を用いて光ファイバの被覆層のみの熱膨張量(μm)を測定した。測定条件は、以下の通りである。
測定条件:付加荷重0荷重、温度範囲-100~100℃、昇温速度10℃/min
 光ファイバ素線から被覆のみを剥くことにより、被覆層のみからなるサンプルを作製し、サンプルの長手方向について熱膨張係数を測定した。被覆層の熱膨張係数は、被覆層のガラス転移点近傍で大きく変化するので、熱膨張係数は全ての被覆層のガラス転移点を含む範囲に設定することが好ましく、図4に示すように、直線的な範囲、すなわち-50~25℃の温度範囲から熱膨張係数を求めた。
(伝送ロスの測定方法) 
 長さ約1mの光ファイバ着色心線あるいは光ファイバテープ心線を60℃に加熱した水に浸漬し、30日後の伝送ロスを測定した。伝送ロスの測定は、アンリツ(株)製光パルス試験器MW9060Aを用いて、光後方散乱損失係数(OTDR)法により、波長1.55μmを用いて測定した。そして、60℃の温水に30日間浸漬した後、伝送ロスが0.1dB/km以上増加していると認められた場合には、使用環境に対する耐性がないと判断し、表1には×印で記した。さらに、60℃の温水に30日間浸漬した後、伝送ロスが0.1dB/km以上増加していると認められず、90日間浸漬した後、伝送ロスが0.1dB/km以上増加していると認められた場合には、使用環境に対する耐性を満足していると判断し、表1には○印を記した。さらに、60℃の温水に30日間浸漬した後、伝送ロスが0.1dB/km以上増加していると認められず、90日間浸漬した後も、伝送ロスが0.1dB/km以上増加していると認められない場合には、使用環境に対する耐性を十二分に満足していると判断し、表1には◎印で記した。また、試験後の光ファイバ着色心線あるいは光ファイバテープ心線を光学顕微鏡にて観察することで、より光ファイバ心線のガラスと被覆層との界面で剥離が発生していることを確認した。
Figure JPOXMLDOC01-appb-T000001
 以上の説明から明らかなように、本発明の光ファイバ心線によれば、少なくとも軟質層と硬質層との2層の被覆層により被覆されたガラス光ファイバからなる光ファイバ素線に、着色樹脂からなる被覆層よりさらに被覆してなる光ファイバ着色心線であって、光ファイバ素線に着色層を塗布した後の被覆層と光ファイバ素線の被覆層との熱膨張係数の比が0.87以上である光ファイバ着色心線を用いることによって、60℃の温水に30日間浸漬しても伝送ロスが増大しないことを確認できた。また、光ファイバ素線に着色層を塗布した後の被覆層と光ファイバ素線の被覆層との熱膨張係数の比が1.00以上であれば、90日間浸漬しても伝送ロスが増大しないことを確認できた。
 また、上述の光ファイバ着色心線を複数本平面状に並べ、テープ樹脂により一括被覆した光ファイバテープ心線としてもよい。光ファイバテープ心線の場合には、光ファイバ素線に着色層を塗布した後の被覆層と光ファイバ素線の被覆層との熱膨張係数の比が0.90以上である光ファイバ着色心線を用いることによって、60℃の温水に30日間浸漬しても伝送ロスが増大しないことを確認できた。また、光ファイバ素線に着色層を塗布した後の被覆層と光ファイバ素線の被覆層との熱膨張係数の比が1.00以上であれば、90日間浸漬しても伝送ロスが増大しないことを確認できた。
 なお、光ファイバ着色心線と光ファイバテープ心線で伝送ロスが増大しない熱膨張係数の比が異なる理由としては、光ファイバテープ心線は光ファイバ着色心線の上にさらにテープ樹脂が被覆されているため、仮にガラスとプライマリ層界面に剥離が発生した場合、光ファイバテープ心線の方が、光ファイバ着色心線に比べて被覆層が厚いため、ガラスに与えられる不均一な力が大きくなるためであると推定される。
 一方、比較例1~3の測定結果から、光ファイバ着色心線の場合には、前述光ファイバ素線に着色層を塗布してなる被覆層と光ファイバ素線の被覆層との熱膨張係数の比が0.87未満である場合に、伝送ロスの増加が0.1dB/km以上となることが認められた。また、光ファイバテープ心線の被覆層との熱膨張係数の比が0.90未満である場合に伝送ロスの増加が0.1dB/km以上となることが認められた。
 着色層そのものの熱膨張係数を測定することはできないが、光ファイバ着色心線の被覆層の熱膨張係数が光ファイバ素線の被覆層の熱膨張係数に比べて小さくなるということは、着色層の熱膨張係数が光ファイバ素線の被覆層の熱膨張係数よりも小さくなるということが示唆される。また、一般的に弾性率が高いものは熱膨張係数が小さくなる傾向にあることから、このような場合、着色層の弾性率がセカンダリ層の弾性率よりも高い状態となっていると推定される。このよう状態にあるということは、セカンダリ層と着色層との接触界面には歪が発生しているということである。
 このような歪が発生していると、光ファイバのガラス/被覆層界面に剥離が生じた場合、被覆層に不均一な力を発生させることになり、ガラスに不均一な力を与えることになる。そのため、マイクロベンドロスによる伝送ロスを生じさせる場合がある。
 また、着色層と光ファイバ素線の被覆層において熱膨張率に差がある場合、ヒートサイクル試験のように温度変化が加えられるとセカンダリ層と着色層との接触界面に歪が発生することがある。このような場合にも被覆層に不均一な力を発生させることになり、ガラスに不均一な力を与えることになる。そのため、光ファイバ着色心線の熱膨張係数と光ファイバ素線の熱膨張係数とは等しいことが望ましい。
 本実施例においては、通常のステップインデックス型の屈折率プロファイルを有するシングルモードファイバを使用したが、他のプロファイルを有する光ファイバに対しても本発明が適用可能であることは、当業者にとって明らかである。
 上述したとおり、本発明によれば、使用環境や径時変化、特に水分もしくは高湿度雰囲気に曝されても伝送ロスの増加が抑制された光ファイバ着色心線および光ファイバテープ心線を得ることができる。

Claims (2)

  1.  光ファイバ着色心線であって、
     少なくとも軟質層と硬質層との2層の被覆層と、前記被複層により被覆されたガラス光ファイバとを有する光ファイバ素線と、
     前記光ファイバ素線を被覆する着色層であって、該光ファイバ素線に塗布されることにより形成される着色層とを備え、
     前記被複層と前記着色層とにより前記光ファイバ着色心線の被覆層を形成し、
     前記着色層を塗布する前の前記光ファイバ素線の被覆層の熱膨張係数に対する前記着色層を塗布した後の前記光ファイバ着色心線の被覆層の熱膨張係数の比が0.87以上であることを特徴とする光ファイバ着色心線。
  2.  請求項1記載の光ファイバ着色心線を複数本平面状に並べ、テープ樹脂により一括被覆してなる光ファイバテープ心線であって、
     前記光ファイバ素線の被覆層の熱膨張係数に対する前記着色層を塗布した後の前記光ファイバ着色心線の被覆層の熱膨張係数の比が0.90以上であることを特徴とする光ファイバテープ心線。
PCT/JP2010/067648 2009-12-17 2010-10-07 光ファイバ心線 WO2011074315A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/101,377 US8571372B2 (en) 2009-12-17 2011-05-05 Optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-286824 2009-12-17
JP2009286824A JP5323664B2 (ja) 2009-12-17 2009-12-17 光ファイバ心線

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/101,377 Continuation US8571372B2 (en) 2009-12-17 2011-05-05 Optical fiber

Publications (1)

Publication Number Publication Date
WO2011074315A1 true WO2011074315A1 (ja) 2011-06-23

Family

ID=44167081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067648 WO2011074315A1 (ja) 2009-12-17 2010-10-07 光ファイバ心線

Country Status (3)

Country Link
US (1) US8571372B2 (ja)
JP (1) JP5323664B2 (ja)
WO (1) WO2011074315A1 (ja)

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041450B2 (ja) 2010-11-24 2012-10-03 古河電気工業株式会社 光ファイバ着色心線
JP5531948B2 (ja) * 2010-12-27 2014-06-25 日立金属株式会社 樹脂被覆光ファイバ
US20130011108A1 (en) * 2011-07-06 2013-01-10 Ofs Fitel, Llc UV Curable Acrylate Buffer Coating for Optical Fiber
JP5255690B2 (ja) 2011-12-27 2013-08-07 古河電気工業株式会社 光ファイバ着色心線、光ファイバテープ心線および光ファイバケーブル
JP5465741B2 (ja) * 2012-02-17 2014-04-09 古河電気工業株式会社 光ファイバ心線、光ファイバテープ心線および光ケーブル
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
JP6672584B2 (ja) * 2014-11-13 2020-03-25 住友電気工業株式会社 光ファイバ心線
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
KR102326802B1 (ko) * 2016-09-30 2021-11-15 가부시키가이샤후지쿠라 광섬유 리본, 광섬유 케이블, 및 광섬유 리본의 제조 방법
CN109643000A (zh) * 2016-09-30 2019-04-16 株式会社藤仓 光纤着色芯线、光纤电缆以及光纤着色芯线的制造方法
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
EP3783409A4 (en) 2018-04-16 2022-01-12 Sumitomo Electric Industries, Ltd. OPTICAL FIBER
WO2020040223A1 (ja) * 2018-08-22 2020-02-27 住友電気工業株式会社 光ファイバ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470715A (en) * 1987-09-10 1989-03-16 Furukawa Electric Co Ltd Optical fiber
JP2001199748A (ja) * 2000-01-12 2001-07-24 Dainippon Ink & Chem Inc 光ファイバー被覆用樹脂組成物及び被覆心線
JP2006324133A (ja) * 2005-05-19 2006-11-30 Nitto Denko Corp 電解質膜及び固体高分子型燃料電池
JP2008224744A (ja) * 2007-03-08 2008-09-25 Furukawa Electric Co Ltd:The 光ファイバ心線

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268521A (ja) 1991-02-25 1992-09-24 Sumitomo Electric Ind Ltd 光ファイバ着色心線の製造方法
JP2925099B2 (ja) 1991-07-15 1999-07-26 住友電気工業株式会社 光ファイバ心線およびテープ状光ファイバ心線
US5334421A (en) * 1992-11-05 1994-08-02 Alcatel Na Cable Systems, Inc. Process for color coding an optical fiber
JP2002255590A (ja) 2001-02-28 2002-09-11 Hitachi Cable Ltd 着色光ファイバ
JP4268521B2 (ja) 2001-10-04 2009-05-27 新日本製鐵株式会社 容器用鋼板およびその製造方法
JP2003322775A (ja) 2002-04-30 2003-11-14 Furukawa Electric Co Ltd:The 光ファイバ素線
JP2007272060A (ja) 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The 光ファイバリボン芯線及び光ファイバケーブル
JP2007322893A (ja) * 2006-06-02 2007-12-13 Furukawa Electric Co Ltd:The 光ファイバ心線とその評価方法
WO2008012926A1 (en) 2006-07-28 2008-01-31 The Furukawa Electric Co., Ltd. Optical fiber
CN101228468B (zh) 2006-08-10 2011-06-08 古河电气工业株式会社 光纤
EP2060941B1 (en) 2006-09-08 2019-04-10 The Furukawa Electric Co., Ltd. Optical fiber core and optical fiber tape core
JP2008164773A (ja) 2006-12-27 2008-07-17 Furukawa Electric Co Ltd:The グレーティング光ファイバ及びその製造方法
WO2009025041A1 (ja) 2007-08-22 2009-02-26 The Furukawa Electric Co., Ltd. 光ファイバリボン芯線
JP2009222855A (ja) 2008-03-14 2009-10-01 Furukawa Electric Co Ltd:The 光ファイバ心線
JP2010217800A (ja) 2009-03-19 2010-09-30 Furukawa Electric Co Ltd:The 光ファイバ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470715A (en) * 1987-09-10 1989-03-16 Furukawa Electric Co Ltd Optical fiber
JP2001199748A (ja) * 2000-01-12 2001-07-24 Dainippon Ink & Chem Inc 光ファイバー被覆用樹脂組成物及び被覆心線
JP2006324133A (ja) * 2005-05-19 2006-11-30 Nitto Denko Corp 電解質膜及び固体高分子型燃料電池
JP2008224744A (ja) * 2007-03-08 2008-09-25 Furukawa Electric Co Ltd:The 光ファイバ心線

Also Published As

Publication number Publication date
US20110274396A1 (en) 2011-11-10
JP2011128377A (ja) 2011-06-30
JP5323664B2 (ja) 2013-10-23
US8571372B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
JP5323664B2 (ja) 光ファイバ心線
JP5100125B2 (ja) 光ファイバ心線及び光ファイバテープ心線
US11448842B2 (en) Small diameter fiber optic cables having low-friction cable jackets and optical fibers with reduced cladding and coating diameters
JP2828733B2 (ja) 光伝送媒体
ES2390275T3 (es) Fibra óptica
JP5041450B2 (ja) 光ファイバ着色心線
US7551825B2 (en) Colored optical fiber and evaluation method thereof
WO2013121630A1 (ja) 光ファイバ着色心線、光ファイバテープ心線及び光ファイバケーブル
US20100135625A1 (en) Reduced-Diameter Ribbon Cables with High-Performance Optical Fiber
JPWO2008012926A1 (ja) 光ファイバ
JP5027318B2 (ja) 光ファイバ心線
JP2008224744A (ja) 光ファイバ心線
WO2010107026A1 (ja) 光ファイバ
JP2016210651A (ja) 光ファイバ心線
JP2008046566A (ja) ポリマークラッド光ファイバ心線
JP5983584B2 (ja) 光ファイバ心線
JP2001240433A (ja) 被覆光ファイバ
JP2008040369A (ja) 光ファイバ
JPH1010379A (ja) 高強度光ファイバコード
JP2819660B2 (ja) 光ファイバ心線
AU2008200763A1 (en) Optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837345

Country of ref document: EP

Kind code of ref document: A1