WO2011071304A2 - 마그네슘 합금 - Google Patents

마그네슘 합금 Download PDF

Info

Publication number
WO2011071304A2
WO2011071304A2 PCT/KR2010/008725 KR2010008725W WO2011071304A2 WO 2011071304 A2 WO2011071304 A2 WO 2011071304A2 KR 2010008725 W KR2010008725 W KR 2010008725W WO 2011071304 A2 WO2011071304 A2 WO 2011071304A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
magnesium alloy
alloy
phase
formula
Prior art date
Application number
PCT/KR2010/008725
Other languages
English (en)
French (fr)
Other versions
WO2011071304A3 (ko
Inventor
구자교
석현광
양석조
김유찬
조성윤
김종택
Original Assignee
유앤아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유앤아이 주식회사 filed Critical 유앤아이 주식회사
Priority to US13/511,891 priority Critical patent/US20120269673A1/en
Priority to CN201080055372.4A priority patent/CN102648300B/zh
Priority to JP2012541957A priority patent/JP5894079B2/ja
Priority to EP10836199.9A priority patent/EP2511390A4/en
Priority to AU2010328809A priority patent/AU2010328809B2/en
Publication of WO2011071304A2 publication Critical patent/WO2011071304A2/ko
Publication of WO2011071304A3 publication Critical patent/WO2011071304A3/ko
Priority to US15/373,538 priority patent/US9943625B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Definitions

  • the present invention relates to a magnesium alloy.
  • Magnesium alloys are easy to mold, but have disadvantages of poor corrosion resistance and strength.
  • research for appropriately changing the composition of magnesium alloys is continued.
  • the study found that the mechanical strength is improved as the amount of added element increases.
  • the amount of added element increases, several phases are created, and the larger the electrical potential difference between them, the more the galvanic circuit that increases the corrosion rate is changed to a condition that is easy to form.
  • the present invention includes magnesium (Mg) and hetero elements other than the magnesium (Mg), includes a magnesium phase, and a phase consisting of magnesium and hetero elements, the magnesium phase, the magnesium and hetero atoms
  • a magnesium alloy with controlled corrosion characteristics characterized in that the difference in electrical potential between the phases of the element is between 0 seconds and 0.2V or less.
  • the present invention is characterized in that the electrical potential difference between the magnesium phase and the phase composed of magnesium and hetero elements is reduced to 0 seconds or less by adding a third element to the magnesium alloy composed of magnesium and hetero elements. It provides a method for producing a magnesium alloy controlled corrosion properties.
  • Magnesium alloy of the present invention can control the corrosion characteristics by using the electrical potential difference between magnesium and hetero elements.
  • the magnesium alloy of the present invention can also control the corrosion resistance and strength characteristics through a post-treatment process.
  • magnesium alloys can be utilized throughout the industrial and medical fields.
  • Example 2 is a graph measuring the strength of the magnesium alloy of Example 1, Example 2 and Comparative Example 1.
  • Example 3 is a graph measuring the strength of the magnesium alloy of Example 3, Example 4 and Comparative Example 2.
  • FIG. 4 is a photograph showing before and after the surface treatment of Example 2.
  • FIG. 5 is a graph showing the open circuit potential over time of magnesium of Examples 5 to 9 and Comparative Example 1;
  • 6 is a graph showing the amount of hydrogen generated according to the amount of zinc.
  • the magnesium alloy of the present invention is a magnesium alloy with controlled corrosion characteristics, and includes magnesium (Mg) and hetero elements other than the magnesium (Mg), and has a magnesium phase and a phase composed of magnesium and hetero elements. Include.
  • the difference in electrical potential between the magnesium phase and the phase composed of magnesium and hetero elements is greater than 0 and 0.2V or less, and the closer to zero, the more preferable. If the above-mentioned range is satisfied, the decomposition rate of the magnesium alloy is very low, and thus it is easy to utilize in the industrial and medical fields. And the corrosion resistance and strength of a magnesium alloy become excellent.
  • the hetero element is not particularly limited as long as it satisfies the above-described range of difference in electrical potential between the magnesium phase and the phase composed of magnesium and the hetero element.
  • the heterogeneous elements include calcium (Ca), iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), chromium (Cr), copper (Cu), cadmium (Cd), and zirconium (Zr).
  • the magnesium alloy satisfies the difference in electrical potential between the magnesium phase and the phase consisting of magnesium and hetero elements, it is preferably represented by the following formula (1).
  • Ti titanium
  • strontium Sr
  • Cr chromium
  • Mn manganese
  • Zn zinc
  • silicon Si
  • P nickel
  • Fe iron
  • the magnesium alloy of the present invention can determine the amount of Ca and X within the above-described range in consideration of the required strength and the rate of extinction of the filling metal.
  • X contains nickel (Ni). Nickel reduces the toxicity of magnesium alloys and facilitates corrosion rate control. At this time, the content of nickel is preferably 100ppm or less, more preferably 50ppm or less.
  • the iron content is preferably 1,000 ppm or less, and more preferably 500 ppm or less. At this time, if the iron content is included in the above range, the iron is not fixed to the magnesium is present as an independent factor to increase the corrosion rate of the magnesium alloy.
  • the magnesium alloy satisfies the difference in electrical potential between the magnesium phase and the phase composed of magnesium and heteroatoms, it is preferably represented by the following formula (2).
  • the magnesium alloy represented by the formula (2) the total weight, calcium (Ca) is greater than 0 to 23% by weight or less; Y is greater than 0 and less than or equal to 10 weight percent; And magnesium (Mg).
  • Y is Mn or Zn.
  • magnesium alloy represented by Chemical Formula 2 satisfies the above-described range, it is possible to provide a magnesium alloy in which mechanical properties and corrosion resistance are improved at the same time, and brittle fracture does not occur.
  • the magnesium alloy represented by the formula (2) is based on the total weight, the calcium (Ca) is preferably more than 0 to 23% by weight, Y is 0.1 to 5% by weight and magnesium (Mg) preferably comprises a residual amount.
  • the calcium (Ca) is more preferably 0 to 23% by weight or less, Y is 0.1 to 3% by weight and Mg more preferably contains the remaining amount. The reason for this is that in view of the possible side effects of impurities, if the same corrosion rate is achieved, it is advantageous that the content of impurities is small.
  • the magnesium alloy satisfies the difference in electrical potential between the magnesium phase and the phase composed of magnesium and heteroatoms, it is preferably represented by the following formula (3).
  • Z is more than 0 and 40% by weight or less based on the total weight;
  • Magnesium (Mg) contains the balance.
  • Z is manganese (Mn), cobalt (Co), nickel (Ni), chromium (Cr), copper (Cu), cadmium (Cd), zirconium (Zr), silver (Ag), gold (Au) ), Palladium (Pd), platinum (Pt), lithium (Re), iron (Fe), zinc (Zn), molybdenum (Mo), niobium (Nb), tantalum (Ta), titanium (Ti), strontium (Sr) ), Silicon (Si), phosphorus (P) and selenium (Se).
  • the magnesium alloy is subjected to a surface treatment.
  • the surface treatment is preferably shot peening.
  • the magnesium alloy included in the implant of the present invention can perform a surface coating.
  • corrosion products may be generated on the surface of the magnesium alloy, thereby delaying the decomposition rate.
  • the surface coating may be performed with a ceramic and / or a polymer.
  • the surface coating with ceramic will be described.
  • the surface of the magnesium alloy may be coated with a corrosion product.
  • the corrosion product is a ceramic
  • the ceramic may be magnesium oxide, calcium phosphate.
  • it may be further coated with a polymer.
  • the type of the polymer is the same as that of the polymer described later.
  • the polymer used to coat the surface of the magnesium alloy with a polymer is not particularly limited as long as it is used in the art.
  • the polymer is poly (L-lactide), poly (glycolide), poly (DL-lactide), poly (dioxanone), poly (DL-lactide-co L-lactide), poly (DL-lactide-co-glycolide ), poly (glycolide-co-trimethylene carbonate), poly (L-lactide-co-glycolide), poly (e-caprolactone) or polymers thereof.
  • the magnesium alloy according to the present invention may be variously changed depending on the use. For example, it may be utilized by coating on surfaces of ceramics, metals, polymers, and the like. In addition, the magnesium alloy according to the present invention can be utilized in combination with magnesium and dissimilar metals, ceramics or polymers.
  • the present invention is characterized in that the electrical potential difference between the magnesium phase and the phase composed of magnesium and hetero elements is reduced to 0 seconds or less by adding a third element to the magnesium alloy composed of magnesium and hetero elements. It provides a method for producing a magnesium alloy controlled corrosion properties.
  • the magnesium alloy is preferably an alloy containing magnesium and calcium. It is preferable that a said 3rd element is zinc.
  • Method for producing a magnesium alloy for controlling the corrosion characteristics according to the present invention may include a) providing the magnesium alloy, b) molding the magnesium alloy.
  • the step a) is a step of melting and providing the magnesium.
  • step a) may be a step of melting and providing the magnesium in an inert gas atmosphere or in a vacuum atmosphere such as argon (Ar) that does not react with magnesium.
  • the magnesium may be melted using various methods such as resistance heating, which generates heat by applying electricity to the resistor, induction heating by flowing a current through an induction coil, or by laser or focused light. It may be a step of providing.
  • the resistance heating method of the above-described melting method is the most economical. It is preferable to stir the molten alloy (hereinafter, molten metal) so that impurities can be mixed well when melting magnesium.
  • Step b) included in the method for producing a magnesium alloy of the present invention may be a step of molding the molten magnesium alloy into at least one selected from the group consisting of a cooling method, an extrusion method, and a metal processing method.
  • the said cooling method can be used for the purpose of improving the mechanical strength of a magnesium alloy.
  • a method of immersing the crucible containing molten magnesium in water may be used.
  • a cooling method of spraying the molten magnesium using an inert gas such as argon may be used.
  • the spraying cooling method can be cooled at a much higher rate to show very fine texture.
  • the extrusion method is used for the purpose of making the structure of magnesium uniform and improving mechanical performance. Due to the extrusion method it is possible to control the strength characteristics and corrosion resistance of the magnesium alloy of the present invention.
  • the extrusion method is preferably made at 300 to 450 °C.
  • the extrusion of the magnesium may be carried out within 10: 1 to 30: 1 reduction ratio (extrusion ratio) before and after extrusion.
  • the extrusion ratio increases, the microstructure of the extrusion material becomes uniform, and there is an advantage in that defects formed during casting are easily removed. In this case, it is preferable to increase the extrusion device capacity.
  • the metal processing method is not particularly limited as long as it is a metal processing method known in the art.
  • the molten magnesium is poured directly into a mold processed in a form close to the final product, manufactured by an intermediate material such as a rod or plate, and then milled or milled, and a large amount of magnesium alloy is used. And a method of producing the final product shape by pressing forging with a force.
  • the components were mixed in the composition shown in Table 1, and charged in a crucible having an internal diameter of 50 mm made of stainless steel (SUS 410). Subsequently, argon (Ar) gas was flowed around the crucible so that magnesium in the crucible did not come into contact with air, and the crucible temperature was raised from about 700 ° C. to 750 ° C. using a resistance furnace to melt magnesium. The crucible was shaken and stirred so that the molten magnesium and impurities could be mixed well. The molten magnesium was cooled to produce magnesium in the solid state. In addition, when cooling, the crucible was immersed in water (20 ° C.) for the purpose of improving the mechanical strength of magnesium, so that the molten magnesium was cooled rapidly to prepare a magnesium alloy.
  • argon (Ar) gas was flowed around the crucible so that magnesium in the crucible did not come into contact with air, and the crucible temperature was raised from about 700 ° C. to 750 °
  • Example 1 The magnesium alloys of Example 1, Example 2 and Comparative Example 1 were extruded. At this time, the extrusion temperature was carried out in the range of 370 ⁇ 375 °C, the cross-sectional area reduction ratio (extrusion ratio) before and after extrusion was fixed to 15: 1.
  • the extruded magnesium alloys of Example 1 and Ex. 2 were extruded from the magnesium alloys of Example 3 and Example 2.
  • the extruded magnesium alloys of Example 4 and Comparative Example 1 were referred to as Comparative Example 2.
  • the corrosion rate of the magnesium alloy is measured by the amount of hydrogen generated when the magnesium alloy is immersed in the solution of Table 2 below. This is because hydrogen is generated when magnesium is biodegraded, because the solution of Table 2 is the same conditions as the living body, that is, the biosimulation solution.
  • the corrosion characteristics of the magnesium alloy were significantly different due to the added element and the extrusion. Through this, it can be seen that the magnesium alloy can control various decomposition rates according to the added element and the post-treatment method.
  • the magnesium alloys of Examples 1 to 4, Comparative Example 1 and Comparative Example 2 were subjected to electric discharge machining to form a diameter of 3 mm and a length of 6 mm.
  • the lower and upper surfaces of the discharged specimens were polished with 1000 times emery paper to level the surfaces.
  • the machined test specimen was placed horizontally on a jig made of cemented carbide (tungsten carbide), and then a force was applied from the direction of the specimen using a head of a compression tester with a maximum load of 20 tons. At this time, the vertical descending speed of the head was set to 10-4 / s.
  • the deformation amount and the compressive stress change amount were recorded in real time using an extensometer and a stress cell mounted on the compression tester. At this time, the size of the specimen was small, so that the strain gauge was mounted on the jig of the tester which pressed the specimen rather than the specimen, and was measured larger than the actual deformation of the specimen.
  • Example 2 is a graph measuring the strength of the magnesium alloy of Example 1, Example 2 and Comparative Example 1.
  • 3 is a graph measuring the strength of the magnesium alloy of Example 3, Example 4 and Comparative Example 2.
  • Table 3 is a table showing the strength of the magnesium alloy of Examples 1 to 6.
  • Y.S represents yield strength
  • UCS represents ultimate compression strength.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative Example 1 Comparative Example 2 Strength (MPa) YS 87 100 155 165 47 48 UCS 180 230 365 400 146 208
  • the magnesium alloys of Examples 1 to 4 according to the present invention have a short corrosion resistance property of 2 to 3 days through composition control and post-treatment process (extrusion) control. It is understood that the intensity can be controlled from 87 MPa to 400 MPa for over a year. It can be inferred that this property can be used to produce magnesium alloys that can maintain their strength in the required period.
  • the magnesium alloy of Example 2 was glossy before the surface treatment, but after the surface treatment, the magnesium alloy disappeared.
  • the magnesium alloys of Examples 5 to 9 were prepared by using the preparation method of Example 1 as components in the composition of Table 4 below.
  • Example 5 Example 6
  • Example 7 Example 8
  • Mg 2 Ca (% by weight) 93.65 95.78 97.89 99.58 100 Zn (% by weight) 6.35 4.22 2.11 0.42 0
  • FIG. 5 is a graph showing the open circuit potential over time of magnesium of Examples 5 to 9 and Comparative Example 1;
  • Comparative Example 1 and Example 5 have the smallest difference in the open circuit potential, and thus have the best corrosion resistance. However, Comparative Example 1 and Example 9 show the fastest corrosion rate because of the large difference in the open circuit potential. .
  • Test Example 5 Evaluation of biodegradation rate due to electrical potential difference
  • the corrosion rate of the magnesium alloy is measured by the amount of hydrogen generated when the magnesium alloy is immersed in the solution of Table 2.
  • the x-axis represents Zn (at%) contained in Mg 2 Ca.
  • the zinc content (x-axis) represents Zn (at%) contained in Mg 2 Ca.
  • the decomposition rate increases rapidly when the open circuit potential difference exceeds 0.2V.
  • the decomposition rate is represented by the amount of hydrogen generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 마그네슘(Mg)과 상기 마그네슘(Mg) 이외의 이종원소를 포함하고, 마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase)을 포함하며, 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이가 0초과 0.2V 이하인 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금에 관한 것이다.

Description

마그네슘 합금
본 발명은 마그네슘 합금에 관한 것이다.
본 발명은 2009년 12월 7일에 한국특허청에 제출된 한국특허출원 제10-2009-0120356호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
마그네슘 합금은 성형이 용이하나, 내식성과 강도가 우수하지 못한 단점이 있다. 마그네슘 합금의 내식성과 강도를 개선하기 위하여, 마그네슘 합금의 조성을 적절히 변화시키기 위한 연구가 계속되고 있다. 그리고, 연구를 통해 첨가 원소량이 증가할수록 기계적 강도가 향상되는 것을 알게 되었다. 하지만, 첨가 원소량이 증가하면, 여러 상(phase)들이 만들어지는데 이들간 전기적 포텐셜 차이가 클수록 부식속도를 증가시키는 갈바닉 회로(galvanic circuit)가 형성되기 쉬운 조건으로 변하게 된다.
따라서, 부식특성을 제어할 수 있으면, 우수한 내식성 및 강도를 갖는 마그네슘 합금에 대한 연구가 요구되고 있다.
본 발명의 목적은 용도에 따라서 마그네슘과 전기적 포텐셜 차이가 있는 이종원소를 포함시켜, 부식특성을 제어하는 마그네슘 합금을 제공하는 것이다.
또한, 본 발명의 목적은 후처리 공정을 통하여 내식성 및 강도 특성도 제어할 수 있는 마그네슘 합금을 제공하는 것이다.
본 발명은 마그네슘(Mg)과 상기 마그네슘(Mg) 이외의 이종원소를 포함하고, 마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase)을 포함하며, 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이가 0초과 0.2V 이하인 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금을 제공한다.
본 발명은 마그네슘과 이종원소로 이루어진 마그네슘 합금에 제3 원소를 추가하여, 마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase) 사이의 전기적 포텐셜 차이를 0초과 0.2V이하로 낮추는 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금의 제조방법을 제공한다.
본 발명의 마그네슘 합금은 마그네슘과 이종원소의 전기적 포텐셜 차이를 이용하여 부식특성을 제어할 수 있다. 본 발명의 마그네슘 합금은 후처리 공정을 통하여 내식성 및 강도 특성도 제어할 수 있다. 또한, 이러한 효과로 인해, 마그네슘 합금을 산업계와 의료계 전반에서 활용 가능하다.
도 1은 실시예1 내지 실시예4, 비교예1 및 비교예2의 마그네슘 합금의 부식속도를 나타낸 그래프이다.
도 2는 실시예1, 실시예2 및 비교예1의 마그네슘 합금의 강도를 측정한 그래프이다.
도 3은 실시예3, 실시예4 및 비교예2의 마그네슘 합금의 강도를 측정한 그래프이다.
도 4는 실시예2의 표면처리 전후를 나타낸 사진이다.
도 5는 실시예5 내지 실시예9 및 비교예1의 마그네슘의 시간에 흐름에 따른 개회로 전위(open circuite potential)을 나타낸 그래프이다.
도 6은 아연의 함량에 따른 수소발생량을 나타낸 그래프이다.
도 7은 아연에 함량에 따른 개회로 전위(전기적 포텐셜)를 나타낸 그래프이다.
도 8은 개회로 전위(전기적 포텐셜) 차이로 인한 분해속도를 나타낸 것이다.
이하, 본 발명에 대하여 상세히 설명한다.
Ⅰ. 마그네슘 합금
본 발명의 마그네슘 합금은 부식특성이 제어된 마그네슘 합금으로서, 마그네슘(Mg)과 상기 마그네슘(Mg) 이외의 이종원소를 포함하고, 마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase)을 포함한다.
여기서, 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이가 0초과 0.2V 이하이고, 0에 가까울수록 바람직하다. 상술한 범위를 만족하면, 마그네슘 합금의 분해속도가 매우 낮아, 산업계와 의료계 전반에서 활용하기 용이하다. 그리고, 마그네슘 합금의 내식성과 강도가 우수해진다.
상기 이종원소는 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이를 상술한 범위를 만족하면 특별히 한정하지 않는다. 상기 이종원소의 예를 들면, 칼슘(Ca), 철(Fe), 망간(Mn), 코발트(Co), 니켈(Ni), 크롬(Cr), 구리(Cu), 카드뮴(Cd), 지르코늄(Zr), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 레튬(Re), 철(Fe), 아연(Zn), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 스트론튬(Sr), 규소(Si), 인(P) 및 세레늄(Se) 등을 들 수 있다.
한편, 상기 마그네슘 합금이, 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이를 만족한다면, 하기 화학식 1로 표시되는 것이 바람직하다.
<화학식 1>
MgaCabXc
상기 화학식 1에서,
a, b 및 c는 각 성분의 몰비로서, a+b+c=1이고, 0.5≤a<1, 0≤b≤0.4, 0≤c≤0.4이고, 단, b와 c 중 적어도 하나는 0을 초과하고, c가 0일 경우, Ca의 함량이 상기 마그네슘 합금 총 중량에 대하여 5 내지 33중량%로 포함되고, X는 지르코늄(Zr), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 스트론튬(Sr), 크롬(Cr), 망간(Mn), 아연(Zn), 규소(Si), 인(P), 니켈(Ni) 및 철(Fe) 중에서 선택되는 1종 또는 2종 이상이다.
상기 X가 2종 이상이어도, X의 총합의 몰비는 상기 c의 범위를 만족한다. 상기 Ca 및 X의 함량이 증가할수록, 마그네슘 합금의 강도가 증가하며, 동시에 분해 속도가 증가하게 된다. 따라서, 본 발명의 마그네슘 합금은 요구되는 강도 및 충진 금속의 소멸속도를 고려하여, 상술한 범위 내에서 Ca 및 X의 양을 결정할 수 있다.
상기 X에 니켈(Ni)이 포함될 때. 니켈은 마그네슘 합금의 독성을 감소시키고, 부식 속도 제어를 용이하게 한다. 이때, 니켈의 함량은 100ppm 이하인 것이 바람직하고, 50ppm이하가 더 바람직하다. 또한, 상기 X에 철(Fe)이 포함될 때, 철은 마그네슘 합금의 부식속도 증가에 매우 큰 영향을 미치므로, 철의 함량은 1,000ppm 이하인 것이 바람직하고, 500ppm 이하인 것이 더 바람직하다. 이때, 철의 함량이 상술한 범위 이상으로 포함되면, 철이 마그네슘에 고정되지 못하고 독립된 인자로 존재하여 마그네슘 합금의 부식속도를 증가시킨다.
상기 마그네슘 합금이, 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이를 만족한다면, 하기 화학식 2로 표시되는 것이 바람직하다.
여기서, 상기 화학식 2로 표시되는 마그네슘 합금은, 총 중량에 대하여, 칼슘(Ca)은 0 초과 23 중량% 이하; Y는 0 초과 10 중량% 이하; 및 마그네슘(Mg)은 잔량을 포함한다.
<화학식 2>
Mg-Ca-Y
상기 화학식 2에서, Y는 Mn 또는 Zn이다.
상기 화학식 2로 표시되는 마그네슘 함금이 상술한 범위를 만족하면, 기계적 물성 및 내식성이 동시에 향상되고, 취성파괴(脆性破壞)가 일어나지 않는 마그네슘 합금을 제공할 수 있다.
또한, 상기 화학식 2로 표시되는 마그네슘 합금은 총 중량에 대하여, 상기 칼슘(Ca)은 0 초과 23 중량% 이하, Y는 0.1 내지 5중량% 및 마그네슘(Mg)은 잔량을 포함하는 것이 바람직하다. 상기 화학식 2로 표시되는 마그네슘 합금은 상기 칼슘(Ca)은 0 초과 23 중량% 이하, Y는 0.1 내지 3중량% 및 Mg은 잔량을 포함하는 것이 보다 바람직하다. 그 이유는 혹시라도 발생할 수 있는 불순물의 부작용을 고려하여, 동일 부식 속도를 구현할 경우, 불순물의 함량이 적은 것이 유리하기 때문이다.
상기 마그네슘 합금이, 상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이를 만족한다면, 하기 화학식 3으로 표시되는 것이 바람직하다. 여기서, 상기 화학식 3으로 표시되는 마그네슘 합금은, 총 중량에 대하여, Z는 0 초과 40 중량% 이하; 마그네슘(Mg)은 잔량을 포함한다.
<화학식 3>
Mg-Z
상기 화학식 3에서, Z는 망간(Mn), 코발트(Co), 니켈(Ni), 크롬(Cr), 구리(Cu), 카드뮴(Cd), 지르코늄(Zr), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 레튬(Re), 철(Fe), 아연(Zn), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 스트론튬(Sr), 규소(Si), 인(P) 및 세레늄(Se) 중 선택되는 1종 이상이다.
상기 마그네슘 합금은 표면처리를 수행한 것이 바람직하다. 상기 표면처리는 숏피닝(shot peening)인 것이 바람직하다.
또한, 본 발명의 임플란트에 포함되는 마그네슘 합금은 표면코팅을 수행할 수 있다. 표면코팅을 수행하면, 마그네슘 합금 표면에 부식생성물이 생성되도록 하여 분해속도를 지연시킬 수 있다.
상기 표면코팅은 세라믹 및/또는 고분자로 수행할 수 있다.
우선, 세라믹으로 표면코팅을 수행하는 것을 설명한다. 상기 마그네슘 합금을 생체모사액이나 생리식염수 등에 침지시키면, 부식생성물로 마그네슘 합금의 표면을 코팅할 수 있다. 여기서, 부식생성물이 세라믹이고, 상기 세라믹은 산화마그네슘, 칼슘포스페이트일 수 있다. 그리고, 부식생성물로 생체분해성 마그네슘 합금의 표면을 코팅한 후, 고분자로 더 코팅할 수도 있다. 상기 고분자의 종류는 후술한 고분자의 종류와 동일하다.
또한, 상기 마그네슘 합금의 표면을 고분자로 코팅할 때 이용하는 고분자는 당 업계에서 이용되는 것이라면 특별히 한정하지 않는다. 하지만, 상기 고분자는 Poly(L-lactide), poly(glycolide), poly(DL-lactide), poly(dioxanone), poly(DL-lactide-co L-lactide), poly(DL-lactide-co-glycolide), poly(glycolide-co-trimethylene carbonate), poly(L-lactide-co-glycolide), poly(e-caprolactone) 또는 이들의 중합체를 이용하는 것이 바람직하다.
본 발명에 따른 마그네슘 합금은 용도에 따라 다양하게 변경될 수 있다. 예를 들어, 세라믹, 금속, 폴리머 등의 표면에 코팅하는 방식으로 활용될 수 있다. 또한, 본 발명에 따른 마그네슘 합금은 마그네슘과 이종 금속, 세라믹 또는 폴리머와 결합하여 활용될 수 있다.
Ⅱ. 제조방법
본 발명은 마그네슘과 이종원소로 이루어진 마그네슘 합금에 제3 원소를 추가하여, 마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase) 사이의 전기적 포텐셜 차이를 0초과 0.2V이하로 낮추는 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금의 제조방법을 제공한다. 여기서, 상기 마그네슘 합금은 마그네슘과 칼슘을 포함하는 합금인 것이 바람직하다. 상기 제 3 원소는 아연인 것이 바람직하다.
Ⅲ. 마그네슘 합금의 제조방법
본 발명에 따른 부식특성을 제어하는 마그네슘 합금의 제조방법은 a) 상기 마그네슘 합금을 제공하는 단계, b) 상기 마그네슘 합금을 성형하는 단계를 포함할 수 있다.
상기 a) 단계는 상기 마그네슘을 용융시켜 제공하는 단계인 것이 바람직하다. 보다 상세하게 설명하면, 상기 a) 단계는 마그네슘과 반응하지 않는 아르곤(Ar)과 같은 불활성 가스 분위기 또는 진공 분위기에서 상기 마그네슘을 용융시켜 제공하는 단계일 수 있다. 또한, 상기 a) 단계는 저항체에 전기를 가하여 열을 발생시키는 저항 가열 방식, 유도 코일에 전류를 흘려 유도 가열하는 방식, 또는 레이저나 집속 광에 의한 방법 등 다양한 방법을 이용하여 상기 마그네슘을 용융시켜 제공하는 단계일 수 있다. 여기서, 상술한 용융방법 중 저항가열 방식이 가장 경제적이다. 마그네슘의 용융 시 불순물들이 잘 섞일 수 있도록 용융 합금(이하 용탕)을 교반하는 것이 바람직하다.
본 발명의 마그네슘 합금의 제조방법에 포함되는 b) 단계는, 상기 용융된 마그네슘 합금을 냉각방법, 압출방법 및 금속가공방법으로 이루어진 군에서 선택되는 1종 이상으로 성형하는 단계일 수 있다.
상기 냉각방법은, 마그네슘 합금의 기계적 강도를 향상시킬 목적으로 이용할 수 있다. 보다 상세히 설명하면, 상기 a) 단계에서 마그네슘이 용융된다면, 용융된 마그네슘이 포함된 도가니를 물에 침지시키는 방법을 이용할 수 있다. 또한, 상기 용융된 마그네슘을 아르곤 등 불활성 가스를 이용하여 분무하는 냉각방법을 이용할 수 있다. 상기 분무하는 냉각방법은 훨씬 높은 속도로 냉각되어 매우 미세한 조직을 나타낼 수 있다. 하지만, 작은 크기로 마그네슘을 주조할 경우 내부에 다수의 기공(검은 부분)이 형성될 수도 있으므로, 주의해야 한다.
상기 압출방법은, 마그네슘의 조직이 균일해지고 기계적 성능이 향상시킬 목적으로 이용된다. 상기 압출방법으로 인해 본 발명의 마그네슘 합금의 강도 특성과 내식성을 제어할 수 있다.
상기 압출방법은 300 내지 450℃에서 이루어지는 것이 바람직하다. 또한 상기 마그네슘의 압출은 압출전후 단면적 감소비율(압출비)을 10:1 내지 30:1 내에서 수행할 수 있다. 압출비가 커질수록 압출재의 미세조직이 균일해지고, 주조시 형성된 결함이 용이하게 제거되는 장점이 있으나, 이 경우, 압출장치용량을 증가시키는 것이 바람직하다.
상기 금속가공방법은, 당 업계에서 공지된 금속가공방법이면, 특별히 한정하지 않는다. 예를 들면, 최종 제품에 가까운 형태로 가공된 형틀에 전술한 바와 같이 용융된 마그네슘을 부어서 직접 주조하는 방법, 봉상이나 판상 등의 중간재로 제조한 후 이를 선반 또는 밀링 가공하는 방법, 마그네슘 합금을 큰 힘으로 가압단조하여 최종 제품 형상으로 제조하는 방법 등을 들 수 있다.
이하, 실시예를 통하여 마그네슘 합금의 제조를 더욱 상세하게 설명한다. 다만, 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정할 것을 의도하지 않는다.
실시예1 내지 실시예4, 비교예1, 비교예2: 마그네슘 합금의 제조
<실시예1, 실시예2, 비교예1>
하기 표 1의 조성으로 구성요소를 혼합하여 스텐레스 강(SUS 410)으로 제작된 내부 직경 50mm의 도가니(Crucible)에 장입하였다. 이어서, 도가니 속의 마그네슘이 공기와 접촉하지 않도록 도가니 주위에 아르곤(Ar) 가스를 흘려주면서 저항 가열로를 이용하여 도가니 온도를 약 700℃에서 750℃로 올려 마그네슘을 용융하였다. 용융된 마그네슘과 불순물이 서로 잘 섞일 수 있도록 도가니를 흔들어 교반시켰다. 완전히 용융된 마그네슘을 냉각하여 고체 상태의 마그네슘을 제조하였다. 또한 냉각시킬 때에는 마그네슘의 기계적 강도를 향상시킬 목적으로 도가니를 물(20℃)에 침지시켜 용융된 마그네슘이 급속히 냉각되도록 하여, 마그네슘 합금을 제조하였다.
표 1
Mg(중량부) Ca(중량부) Zn(중량부) 전기적 포텐셜 차이(V)
Mg vs Mg-Ca-Zn
실시예1 95 5 0 - (Zn가 없으므로)
실시예2 95 5 6.35 0.20
비교예1 100 - - -
Mg: 시약용 초순도(99.98%)
<실시예3, 실시예4 및 비교예2>
실시예1, 실시예2 및 비교예 1의 마그네슘 합금을 압출하였다. 이때, 압출 온도는 370~375℃범위에서 수행하였으며, 압출 전 후 단면적 감소 비율(압출비)은 15:1로 고정하였다. 여기서, 실시예1의 마그네슘 합금을 압출한 것을 실시예3, 실시예2의 마그네슘 합금을 압출한 것을 실시예4, 비교예1의 마그네슘 합금을 압출한 것을 비교예2라 하였다.
시험예1: 마그네슘 합금의 부식속도 평가
일반적으로 마그네슘 합금의 부식속도는 하기 표 2의 용액에 마그네슘 합금을 침지하였을 때, 발생하는 수소의 양으로 측정한다. 이는 마그네슘이 생체분해되면 수소가 발생하는데, 상기 표 2의 용액은 생체와 같은 조건, 즉 생체모사액이기 때문이다.
표 2
몰농도[mM/L] 질량[g]
CaCl2 2H2O 1.26 0.185
KCl 5.37 0.400
KH2PO4 0.44 0.060
MgSO4 7H2O 0.81 0.200
NaCl 136.89 8.000
Na2HPO4 2H2O 0.34 0.060
NaHCO3 4.17 0.350
D-Glucose 5.55 1.000
도 1은 실시예1 내지 실시예4, 비교예1 및 비교예2의 마그네슘 합금의 부식속도를 나타낸 그래프이다.
도 1을 참조하면, 첨가된 원소와 압출에 의해서 마그네슘 합금의 부식특성이 현저하게 차이가 났다. 이를 통해서, 마그네슘 합금은 첨가된 원소와 후처리 방법에 따라 다양한 분해속도 제어가 가능한 것을 알 수 있다.
시험예2: 마그네슘 합금의 강도 평가
실시예1 내지 실시예4, 비교예1 및 비교예2의 마그네슘 합금을 방전 가공하여 지름 3㎜와 길이 6㎜ 형태로 가공하였다. 방전 가공된 시편의 아래면과 윗면을 1000번 에머리 페이퍼(emery paper)로 폴리싱하여 면의 수평을 맞추었다. 가공된 테스트용 시편을 초경(텅스텐 카바이드)으로 제조된 지그 위에 수평으로 세운 후 최대 하중 20톤의 압축시험기의 헤드를 이용하여 시편 위 방향으로부터 힘을 가하였다. 이 때 헤드의 수직 하강 속도는 10-4/s로 하였다. 시험 도중 압축시험기에 장착된 변형량 측정기(extensometer) 및 응력 측정기(load cell)을 이용하여 실시간으로 변형량 및 압축 응력 변화량을 기록하였다. 이 때 시편의 크기가 작아 변형량 측정기는 시편에 장착하지 않고 시편을 누르는 시험기의 지그에 장착하여 실제 시편의 변형량보다 크게 측정되었다.
도 2는 실시예1, 실시예2 및 비교예1의 마그네슘 합금의 강도를 측정한 그래프이다. 도 3은 실시예3, 실시예4 및 비교예2의 마그네슘 합금의 강도를 측정한 그래프이다.
그리고, 하기 표 3은 실시예1 내지 실시예6의 마그네슘 합금의 강도를 나타낸 표이다. 여기서, Y.S는 항복강도(Yield strength)를 나타내고, UCS는 최대압축강도(Ultimate compression strength)를 나타낸다.
표 3
실시예1 실시예2 실시예3 실시예4 비교예1 비교예2
강도(㎫) Y.S 87 100 155 165 47 48
UCS 180 230 365 400 146 208
도 2, 도 3 및 표 3을 참조하면, 마그네슘 합금이 첨가된 원소와 물리적 처리에 의해서 강도 특성이 현저하게 차이가 났다. 가장 우수한 결과는 실시예6인 것을 알 수 있다.
도 1 내지 도 3의 결과를 통해서, 본 발명을 따른 실시예1 내지 실시예4의 마그네슘 합금은 조성 제어와 후처리 공정(압출) 제어를 통해 짧게는 내식 특성이 2~3일에서 길게는 2년 이상, 강도는 87㎫에서 400㎫까지 제어가 가능한 것을 알 수 있다. 이 특성을 활용하여 요구되는 기간 동안 강도의 형태를 유지할 수 있는 마그네슘 합금의 제조가 가능할 것으로 유추할 수 있다.
시험예3: 표면처리 특성 평가
실시예2의 합금에 표면처리(short peening)를 하고, 그 결과를 도 4에 나타내었다. 도 4에서, 상단은 표면처리 전이고, 하단은 표면처리 후를 나타낸다.
도 4를 참조하면, 표면처리 전에는 실시예2의 마그네슘 합금이 광택이 있었으나, 표면처리 후에는 광택이 사라졌음을 알 수 있다.
그리고, 표면처리 후, 표면에 소성변형이 발생해 분해속도가 늦어지고 강도가 강해진다. 또한 수술실에서 강한 조명에 반사되는 정도가 적어져 시야를 방해하지 않고 고급스러운 느낌을 준다. 부수적인 효과로 표면이 거칠어지면 기능적으로 뼈와 계면력이 좋아질 수 있다.
실시예5 내지 실시예9: 마그네슘 합금의 제조
하기 표 4의 조성으로 구성요소를 실시예1의 제조방법을 이용하여 실시예5 내지 실시예9의 마그네슘 합금을 제조하였다.
표 4
실시예5 실시예6 실시예7 실시예8 실시예9
Mg2Ca(중량%) 93.65 95.78 97.89 99.58 100
Zn(중량%) 6.35 4.22 2.11 0.42 0
시험예4: 개회로 전위 특성 평가
도 5는 실시예5 내지 실시예9 및 비교예1의 마그네슘의 시간에 흐름에 따른 개회로 전위(open circuite potential)를 나타낸 그래프이다.
도 5를 참조하면, 비교예1과 실시예5는 개회로 전위 차이가 가장 적어 내식성이 가장 좋지만, 비교예1과 실시예9는 개회로 전위 차이가 크기 때문에 부식속도가 가장 빠른 것을 알 수 있다.
시험예5: 전기적 포텐셜 차이로 인한 생체분해속도 평가
마그네슘 합금의 부식속도는 상기 표 2의 용액에 마그네슘 합금을 침지하였을 때, 발생하는 수소의 양으로 측정한다.
도 6은 아연의 함량에 따른 수소발생량을 나타낸 그래프이다. 여기서, x축은 Mg2Ca에 함유된 Zn(at%)를 나타낸 것이다.
도 6을 참조하면, 아연의 함량이 많아질수록 부식속도가 낮아지는 것을 알 수 있다.
도 7은 아연에 함량에 따른 개회로 전위(전기적 포텐셜)을 나타낸 그래프이다. 여기서, 아연의 함량(x축)은 Mg2Ca에 함유된 Zn(at%)를 나타낸 것이다.
도 7을 참조하면, 아연의 함량이 많아질수록, 비교예1과 개회로 전위의 차이가 적어짐을 알 수 있다.
도 8은 개회로 전위 차이(전기적 포텐셜)에 따른 마그네슘 합금의 분해속도를 나타낸 것이다.
도 8을 참조하면, 개회로 전위 차이가 0.2V 를 넘어갈 경우 분해속도가 급격히 증가된다는 것을 알 수 있다. 여기서, 상기 분해속도는 수소발생량으로 나타낸다.

Claims (10)

  1. 마그네슘(Mg)과 상기 마그네슘(Mg) 이외의 이종원소를 포함하고,
    마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase)을 포함하며,
    상기 마그네슘 상과, 상기 마그네슘과 이종원소로 이루어진 상 사이의 전기적 포텐셜의 차이가 0초과 0.2V 이하인 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금.
  2. 청구항 1에 있어서,
    상기 마그네슘 합금은 알루미늄을 포함하지 않는 것을 특징으로 하는 마그네슘 합금.
  3. 청구항 1에 있어서,
    상기 마그네슘 합금은 희토류족 원소를 포함하지 않는 것을 특징으로 하는 마그네슘 합금.
  4. 청구항 1에 있어서,
    상기 이종원소는 칼슘(Ca), 철(Fe), 망간(Mn), 코발트(Co), 니켈(Ni), 크롬(Cr), 구리(Cu), 카드뮴(Cd), 지르코늄(Zr), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 레튬(Re), 철(Fe), 아연(Zn), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 스트론튬(Sr), 규소(Si), 인(P) 및 세레늄(Se) 중 선택되는 1종 또는 2종 이상인 것을 특징으로 하는 마그네슘 합금.
  5. 청구항 1에 있어서,
    상기 마그네슘 합금은 하기 화학식 1로 표시되는 것을 특징으로 하는 마그네슘 합금:
    <화학식 1>
    MgaCabXc
    상기 화학식 1에서,
    a, b 및 c는 각 성분의 몰비로서, a+b+c=1이고, 0.5≤a<1, 0≤b≤0.4, 0≤c≤0.4이고, 단, b와 c 중 적어도 하나는 0을 초과하고, c가 0일 경우, Ca의 함량이 상기 마그네슘 합금 총 중량에 대하여 5 내지 33중량%로 포함되고,
    X는 지르코늄(Zr), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 스트론튬(Sr), 크롬(Cr), 망간(Mn), 아연(Zn), 규소(Si), 인(P), 니켈(Ni) 및 철(Fe) 중에서 선택되는 1종 이상이다.
  6. 청구항 1에 있어서,
    상기 마그네슘 합금은 하기 화학식 2로 표시되고, 총 중량에 대하여, 칼슘(Ca)은 0 초과 23 중량% 이하; Y는 0 초과 10 중량% 이하; 및 마그네슘(Mg)은 잔량을 포함하는 것을 특징으로 하는 마그네슘 합금:
    <화학식 2>
    Mg-Ca-Y
    상기 화학식 2에서, Y는 Mn 또는 Zn이다.
  7. 청구항 1에 있어서,
    상기 마그네슘 합금은 하기 화학식 3으로 표시되고, 총 중량에 대하여, Z는 0 초과 40 중량% 이하; 마그네슘(Mg)은 잔량을 포함하는 것을 특징으로 하는 마그네슘 합금:
    <화학식 3>
    Mg-Z
    상기 화학식 3에서,
    Z는 망간(Mn), 코발트(Co), 니켈(Ni), 크롬(Cr), 구리(Cu), 카드뮴(Cd), 지르코늄(Zr), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 레튬(Re), 철(Fe), 아연(Zn), 몰리브덴(Mo), 니오븀(Nb), 탄탈륨(Ta), 티타늄(Ti), 스트론튬(Sr), 규소(Si), 인(P) 및 세레늄(Se) 중 선택되는 1종 이상이다.
  8. 청구항 1에 있어서,
    상기 마그네슘 합금을 표면처리 하는 것을 특징으로 하는 마그네슘 합금.
  9. 마그네슘과 이종원소로 이루어진 마그네슘 합금에 제3 원소를 추가하여, 마그네슘 상(phase)과, 마그네슘과 이종원소로 이루어진 상(phase) 사이의 전기적 포텐셜 차이를 0초과 0.2V이하로 낮추는 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금의 제조방법.
  10. 청구항 9에 있어서,
    상기 마그네슘 합금은 마그네슘과 칼슘을 포함하는 합금이고, 상기 제3 원소는 아연인 것을 특징으로 하는 부식특성이 제어된 마그네슘 합금의 제조방법.
PCT/KR2010/008725 2009-12-07 2010-12-07 마그네슘 합금 WO2011071304A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/511,891 US20120269673A1 (en) 2009-12-07 2010-12-07 Magnesium alloy
CN201080055372.4A CN102648300B (zh) 2009-12-07 2010-12-07 镁合金
JP2012541957A JP5894079B2 (ja) 2009-12-07 2010-12-07 マグネシウム合金
EP10836199.9A EP2511390A4 (en) 2009-12-07 2010-12-07 Magnesium alloy
AU2010328809A AU2010328809B2 (en) 2009-12-07 2010-12-07 Magnesium alloy
US15/373,538 US9943625B2 (en) 2009-12-07 2016-12-09 Magnesium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0120356 2009-12-07
KR20090120356 2009-12-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/511,891 A-371-Of-International US20120269673A1 (en) 2009-12-07 2010-12-07 Magnesium alloy
US15/373,538 Division US9943625B2 (en) 2009-12-07 2016-12-09 Magnesium alloy

Publications (2)

Publication Number Publication Date
WO2011071304A2 true WO2011071304A2 (ko) 2011-06-16
WO2011071304A3 WO2011071304A3 (ko) 2011-10-27

Family

ID=44146044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008725 WO2011071304A2 (ko) 2009-12-07 2010-12-07 마그네슘 합금

Country Status (7)

Country Link
US (2) US20120269673A1 (ko)
EP (1) EP2511390A4 (ko)
JP (1) JP5894079B2 (ko)
KR (1) KR101470052B1 (ko)
CN (1) CN102648300B (ko)
AU (1) AU2010328809B2 (ko)
WO (1) WO2011071304A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178673A (zh) * 2014-09-12 2014-12-03 杨攀 一种镁合金及其制备方法
CN110205531A (zh) * 2019-06-21 2019-09-06 北京万洁天元医疗器械股份有限公司 一种可降解镁合金及其制备方法
CN111411277A (zh) * 2020-05-21 2020-07-14 吉林大学 一种提高镁抗氧化能力的方法及镁钙合金

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
SG11201406024QA (en) 2012-06-26 2014-10-30 Biotronik Ag Magnesium alloy, method for the production thereof and use thereof
RU2640700C2 (ru) 2012-06-26 2018-01-11 Биотроник Аг Магниевый сплав, способ его производства и использования
CA2867773C (en) 2012-06-26 2022-10-25 Biotronik Ag Magnesium-aluminum-zinc alloy, method for the production thereof and use thereof
ES2797498T3 (es) 2012-06-26 2020-12-02 Biotronik Ag La invención se refiere a un implante hecho de una aleación de magnesio y a un método para la producción del mismo
US10246763B2 (en) 2012-08-24 2019-04-02 The Regents Of The University Of California Magnesium-zinc-strontium alloys for medical implants and devices
US9469889B2 (en) 2012-08-31 2016-10-18 DePuy Synthes Products, Inc. Ultrapure magnesium alloy with adjustable degradation rate
CA2906419C (en) 2013-03-14 2021-07-06 DePuy Synthes Products, Inc. Magnesium alloy with adjustable degradation rate
US9593397B2 (en) 2013-03-14 2017-03-14 DePuy Synthes Products, Inc. Magnesium alloy with adjustable degradation rate
US20140277328A1 (en) * 2013-03-14 2014-09-18 St. Jude Medical Systems Ab Composite material and uses thereof
JP6532858B2 (ja) * 2013-03-15 2019-06-19 チキソマット,インコーポレイテッド 高強度で生体吸収性のマグネシウム合金
DE102013006169A1 (de) * 2013-04-10 2014-10-16 Ulrich Bruhnke Aluminiumfreie Magnesiumlegierung
CN103266251B (zh) * 2013-05-31 2015-09-02 滁州市昊宇滑动轴承有限公司 耐腐蚀塑料合金
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
CN104513922A (zh) * 2013-09-27 2015-04-15 上海交通大学医学院附属第九人民医院 具有抗菌功能的可体液降解的医用金属材料及其应用
EP2857536B1 (de) * 2013-10-03 2015-12-30 Annelie-Martina Weinberg Implantat für Patienten im Wachstum, Verfahren zu dessen Herstellung und Verwendung
CN104593650A (zh) * 2013-11-01 2015-05-06 上海交通大学医学院附属第九人民医院 一种具有抗菌功能可降解吸收的镁锌铜合金及其应用
CN104645422B (zh) * 2013-11-21 2018-11-02 中国科学院金属研究所 一种具有强烈抗菌功能的生物可降解镁合金
CN103695747B (zh) * 2014-01-16 2015-11-04 陆明军 一种高强耐热镁合金及其制备方法
CN103789588A (zh) * 2014-01-27 2014-05-14 贵研铂业股份有限公司 一种镁基海水自溶材料及其制备方法
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
KR20160025898A (ko) 2014-08-28 2016-03-09 홍익대학교 산학협력단 기계적 물성과 생분해성이 우수한 마그네슘 합금 판재 및 그 제조방법
CN106282710A (zh) * 2014-11-10 2017-01-04 吴小再 耐腐蚀生物医用镁合金
CN104451302A (zh) * 2014-11-14 2015-03-25 苏州蔻美新材料有限公司 一种医用镁合金材料及其制备方法
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
CN104762542B (zh) * 2015-03-26 2017-01-25 中国科学院金属研究所 生物医用可降解吸收Mg‑Sr‑Cu合金材料及制备方法和应用
CN106048348A (zh) * 2015-04-15 2016-10-26 丁永新 生物相容性较好的医用镁基合金材料的制备方法
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
CN105112822A (zh) * 2015-09-14 2015-12-02 苏州法斯特信息科技有限公司 一种抗腐蚀镁钒锶合金材料及其制备方法
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN106151793B (zh) * 2016-08-29 2018-07-31 陈亮 一种异形齿轮传动展示装置
CN109923229A (zh) * 2016-11-04 2019-06-21 通用汽车环球科技运作有限责任公司 耐腐蚀镁合金
CN108203782B (zh) * 2016-12-19 2020-08-28 有研工程技术研究院有限公司 一种具有电磁屏蔽功能的镁合金及其制备方法
CN107190189B (zh) * 2017-05-19 2018-10-23 管家依 一种兼具力学与抗腐蚀性能的镁合金及其制备方法
CN107435116B (zh) * 2017-07-10 2019-06-11 太原理工大学 一种镁合金生物植入材料及其制备方法
CN107435113B (zh) * 2017-07-10 2019-06-25 太原理工大学 一种在生物体内可降解的高强韧耐腐蚀骨科用镁合金及其制备方法
CN107354354A (zh) * 2017-09-15 2017-11-17 广州宇智科技有限公司 一种具有高阻尼含双相α+β的镁锂合金及其加工工艺
CN107815574A (zh) * 2017-09-28 2018-03-20 江苏晶王新材料科技有限公司 一种耐腐蚀的镁合金材料
CN108570587A (zh) * 2017-12-13 2018-09-25 湖南工程学院 一种耐热耐蚀镁合金及其制备方法
CN107974567A (zh) * 2018-01-30 2018-05-01 山东建筑大学 一种可控的医用降解镁合金的制备工艺与方法
CN108842105A (zh) * 2018-07-02 2018-11-20 许小忠 一种厨具用镁锌硒合金材料及其制备方法
CN109280828B (zh) * 2018-12-10 2021-03-02 南京工程学院 一种高强度可降解植入器械用复合材料及其制备方法
CN109778037B (zh) * 2019-03-14 2020-07-28 广西大学 一种抗菌镁合金骨科材料及其制备方法
JPWO2021215543A1 (ko) * 2020-04-21 2021-10-28
CN111411278B (zh) * 2020-05-07 2021-08-10 有研工程技术研究院有限公司 用于提高人体免疫力的离子缓释镁基合金及其制备方法
CN112316206B (zh) * 2020-11-06 2022-09-02 中南大学湘雅三医院 含有再吸收的金属材料的植入物及其制造方法
CN113122761A (zh) * 2021-03-09 2021-07-16 珠海中科先进技术研究院有限公司 一种可降解、强韧性的镁合金及其制备方法和应用
US20220354487A1 (en) 2021-05-10 2022-11-10 Cilag Gmbh International Method for implementing a staple system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
JP2725112B2 (ja) * 1992-03-25 1998-03-09 三井金属鉱業株式会社 高強度マグネシウム合金
JP3204572B2 (ja) * 1993-06-30 2001-09-04 株式会社豊田中央研究所 耐熱マグネシウム合金
JPH10140304A (ja) * 1996-11-01 1998-05-26 Toyota Central Res & Dev Lab Inc マグネシウム合金の熱処理方法
JP2007270159A (ja) * 2004-06-03 2007-10-18 Ryobi Ltd 耐クリープマグネシウム合金
DE102007007879A1 (de) * 2007-02-14 2008-08-21 Gkss-Forschungszentrum Geesthacht Gmbh Beschichtung eines Bauteils

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2511390A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178673A (zh) * 2014-09-12 2014-12-03 杨攀 一种镁合金及其制备方法
CN110205531A (zh) * 2019-06-21 2019-09-06 北京万洁天元医疗器械股份有限公司 一种可降解镁合金及其制备方法
CN111411277A (zh) * 2020-05-21 2020-07-14 吉林大学 一种提高镁抗氧化能力的方法及镁钙合金

Also Published As

Publication number Publication date
JP2013512346A (ja) 2013-04-11
EP2511390A2 (en) 2012-10-17
US9943625B2 (en) 2018-04-17
AU2010328809B2 (en) 2014-09-11
US20170119922A1 (en) 2017-05-04
CN102648300A (zh) 2012-08-22
US20120269673A1 (en) 2012-10-25
WO2011071304A3 (ko) 2011-10-27
KR101470052B1 (ko) 2014-12-11
KR20110084100A (ko) 2011-07-21
AU2010328809A1 (en) 2012-07-05
JP5894079B2 (ja) 2016-03-23
CN102648300B (zh) 2015-06-17
EP2511390A4 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2011071304A2 (ko) 마그네슘 합금
KR102074388B1 (ko) 생분해성 금속 임플란트
KR101179311B1 (ko) 탄탈로 변형시킨 비결정질 합금
EP1390167B1 (en) Casting of alloys with isotropic graphite molds
WO2009116799A2 (en) Composite implant having porous structure filled with biodegradable alloy and method of magnesium-based manufacturing the same
KR100236151B1 (ko) Co-Cr-Mo 분말야금제품 및 그 제조 방법
US6805758B2 (en) Yttrium modified amorphous alloy
EP2430205B1 (en) Amorphous alloy composite material and method of preparing the same
WO2020122472A2 (ko) 마그네슘 합금재 및 이의 제조방법
KR20100116566A (ko) 생체분해성 임플란트 및 이의 제조방법
EP0693567A2 (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
KR101341298B1 (ko) 티타늄 합금 주조 방법
JP3894987B2 (ja) 耐熱性白金材料
CA2341660C (en) Modified nickel-chromium-aluminum-iron alloy
JP2534073B2 (ja) 電子部品構成用銅合金及びその製造方法
EP0341354B1 (en) Magnesium alloy
KR20210147684A (ko) 마그네슘 합금 및 이의 제조방법
JP2687641B2 (ja) 高靭性TiA▲l▼金属間化合物系Ti合金材の製造法
CN118326216B (zh) 一种高耐腐蚀稀土镁合金的制备方法
CN113913710A (zh) 无Be添加的低密度块体非晶合金及其制备方法、应用
WO2017003192A1 (ko) TiNi계 의료용 합금 및 그 제조 방법
Sahoo et al. Mechanical properties and erosion behaviour of nickel aluminides
Nieh et al. Superplastic Deformation and Viscous Flow in an Zr-Based Metallic Glass at 410° C
KR20110063962A (ko) 일회용품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055372.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107028002

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13511891

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012541957

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010836199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010328809

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 5828/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010328809

Country of ref document: AU

Date of ref document: 20101207

Kind code of ref document: A