WO2011071011A1 - 赤外線式炎検知器 - Google Patents

赤外線式炎検知器 Download PDF

Info

Publication number
WO2011071011A1
WO2011071011A1 PCT/JP2010/071813 JP2010071813W WO2011071011A1 WO 2011071011 A1 WO2011071011 A1 WO 2011071011A1 JP 2010071813 W JP2010071813 W JP 2010071813W WO 2011071011 A1 WO2011071011 A1 WO 2011071011A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
filter
wavelength
film
multilayer film
Prior art date
Application number
PCT/JP2010/071813
Other languages
English (en)
French (fr)
Inventor
尚之 西川
祥文 渡部
雄一 稲葉
孝彦 平井
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to JP2011545201A priority Critical patent/JP5838347B2/ja
Priority to EP10835931A priority patent/EP2511679A1/en
Priority to CN2010800559006A priority patent/CN102713540A/zh
Priority to KR1020127016801A priority patent/KR101372989B1/ko
Priority to US13/514,631 priority patent/US20120298867A1/en
Publication of WO2011071011A1 publication Critical patent/WO2011071011A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering

Definitions

  • the present invention relates to an infrared flame detector.
  • infrared rays having a specific wavelength (4.3 ⁇ m to 4.4 ⁇ m) generated by resonance emission (also called CO 2 resonance emission) of carbon dioxide gas (CO 2 gas) in a flame during a fire are detected.
  • Infrared flame detectors that perform flame detection have been researched and developed in various places (for example, Japanese Laid-Open Patent Publication No. 3-78899: Patent Document 1).
  • the infrared rays generated by the CO 2 resonance radiation are greatly different from the relative intensity spectrum distribution of infrared rays emitted from sunlight, a high-temperature object, or a low-temperature object, and the amount of infrared rays emitted.
  • the frequency fluctuates constantly and the fluctuating frequency is concentrated between 1 and 15 Hz (for example, “Air Conditioning / Hygiene Engineering Society,“ 2. Infrared 3-wavelength flame detector ”, [online], [ Search on March 21, 2009], Internet ⁇ URL: http://www.shasej.org/gakkaishi/0109/0109-koza-02.html>: Non-Patent Document 1).
  • the said nonpatent literature 1 is disclosing the infrared 3 wavelength type flame detector of the structure shown in FIG.
  • This infrared three-wavelength flame detector has three optical filters (infrared optical filters) that selectively transmit infrared rays in three wavelength bands (4.0 ⁇ m, 4.4 ⁇ m, and 5.0 ⁇ m) of the CO 2 resonance radiation band. 220 1 , 220 2 , 220 3, and three infrared sensors 240 1 , 240 2 , 240 3 that individually receive infrared rays transmitted through the optical filters 220 1 , 220 2 , 220 3, respectively.
  • optical filters infrared optical filters
  • this infrared three-wavelength flame detector has an electrical bandpass filter that passes only a flicker frequency component of 1 to 10 Hz out of the output of each infrared sensor 240 1 , 240 2 , 240 3. 3 are provided with three signal amplifying units 250 1 , 250 2 , 250 3 for selectively amplifying only the signal. Further, this infrared three-wavelength flame detector calculates the magnitude of the signal values output from each of the signal amplifiers 250 1 , 250 2 , 250 3 , the ratio between the signal values, and the like using a unique algorithm, and radiates from the flame.
  • Non-Patent Document 1 describes that this infrared three-wavelength flame detector has a very high flame-selection performance and does not respond to natural light or artificial lighting such as a fluorescent lamp, a sodium lamp, or a mercury lamp. Yes.
  • the infrared three-wavelength flame detector disclosed in Non-Patent Document 1 includes each optical filter 220 1 , 220 2 , 220 3 and each infrared sensor 240 1 , 240 2 , 240 3 as individual components. Yes. For this reason, this infrared three-wavelength flame detector is equipped with an optical filter 220 1 , 220 2 , 220 3 and a housing (not shown) in which the infrared sensors 240 1 , 240 2 , 240 3 are stored. Is considerably larger than the can package of the infrared flame detector described in Patent Document 1.
  • the infrared flame detector disclosed in Patent Document 1 has a disk shape in which four infrared detection elements 40 1 , 40 2 , 40 3 , and 40 4 are arranged.
  • Each of the infrared detection elements 40 1 , 40 2 , 40 is disposed so as to close the insulating substrate 171, the metal cap 172 coupled to the insulating substrate 171, and the light transmitting window 7 a formed on the front wall of the cap 172.
  • 3 and 40 4 are provided with infrared optical filters 20 ′ having band-pass filter sections 202 1 , 202 2 , 202 3 , and 202 4 having different transmission wavelength bands.
  • the insulating substrate 171 and the cap 172 constitute a can package.
  • one of the four band-pass filter sections 202 1 , 202 2 , 202 3 , 202 4 transmits 4.3 ⁇ m infrared light.
  • the transmission wavelength band is set.
  • the infrared optical filter 20 ′ is selected by dividing a multilayer film designed according to the transmission characteristics of each of the bandpass filter sections 202 1 , 202 2 , 202 3 , 202 4 into four times on one glass substrate. It is formed by vapor deposition or by bonding four fan-shaped band-pass filter sections 202 1 , 202 2 , 202 3 , 202 4 together.
  • two infrared optical filter 20 1, 20 2, and two infrared light-receiving elements 40 1, 40 2 both the infrared optical filter 20 1, a 20 2 and both the infrared light-receiving element 40 1, 40 2 package 7 in which the housing, as the wavelength of the two infrared optical filter 20 1, 20 2 of the transmission wavelength range of the reference infrared absorption wavelength of the detection target gas light
  • the housing as the wavelength of the two infrared optical filter 20 1, 20 2 of the transmission wavelength range of the reference infrared absorption wavelength of the detection target gas light
  • the package 7 includes a metal stem 71 and the metal cap 72 can package have been used consists of, 2 TsunoToru each infrared optical filter 20 1, 20 2, which is provided in the cap 72 It is mounted on the cap 72 so as to close each of the optical windows.
  • the two infrared optical filter 20 1 having different transmission wavelength range, 20 2 is composed of discrete components, the number of components is increased, two infrared optical filter 20 1, 20 2 steps are required to individually to implement each package 7, there is a problem that cost is increased. Further, in the package 7, an adhesive portion is required for each of the infrared optical filters 20 1 and 20 2 , and it is difficult to reduce the size of the package 7.
  • FIG. 27 As an infrared light receiving module housed and used in a package of an infrared gas detector, two infrared light receiving elements 400 1 , 400 2 are formed on one surface side of a substrate 300 made of an MgO substrate. There is formed, the infrared light receiving element 400 1, 400 2 different narrow band pass filter unit 200 1 transmission wavelength from each other, respectively, 200 2 has been proposed that laminated (Japanese Unexamined Patent Publication Hei 7-72078 Publication: Patent Document 2). Wherein each infrared receiving elements 400 1, 400 2 and the narrow band pass filter unit 200 1, 200 2 are formed by using a sputtering method.
  • a combination of a plurality of types of thin film materials constituting each multilayer film to be the narrow band transmission filter portions 200 1 and 200 2 Si, Ge, Se, Te, LiF, NaF, CaF 2 , MgF 2 are used. A combination of materials selected from a group is employed.
  • the lower electrodes 401 1 , 401 2 of the two infrared light receiving elements 400 1 , 400 2 are continuously formed and electrically connected.
  • FIGS. 28A and 28B Japanese Patent Laid-Open Publication No. 3-205521: Patent Document 3
  • each infrared optical filter 20 1, 20 2, 20 3 , 20 4 , a plurality of infrared light receiving elements 40 1 , 40 2 , 40 3 , 40 4 for receiving the infrared rays transmitted through each of them are housed in the package 7.
  • the package 7 is a CAN package including a metal stem 71 and a metal cap 72. Further, in this infrared type gas detector, the transparent window 7a provided on the front wall of the cap 72 is closed by an infrared transmitting member 80 made of a sapphire substrate, and N 2 or dry air is enclosed in the package 7. ing.
  • each of the infrared optical filters 20 1 , 20 2 , 20 3 , and 20 4 disclosed in Patent Document 3 has a predetermined infrared ray on one surface side of the filter forming substrate 1 made of an Si substrate.
  • a broadband cutoff filter portion 3 ′ that cuts the short wavelength band and the long wavelength band of infrared rays is formed.
  • each of the narrow-band transmission filter portion 2 ′ and the broadband cutoff filter portion 3 ′ is formed of a multilayer film made of Ge and SiO.
  • the center wavelength of the narrow band filter part that selectively transmits 4.3 ⁇ m infrared light generated by the resonance emission of CO 2 gas is set to 4.3 ⁇ m, and the transmission bandwidth is set to about 0.2 ⁇ m. It is necessary to be able to detect a flame as large as a lighter at a distance of 10 m or more.
  • thermopiles capable of highly sensitive measurement are often used as infrared light receiving elements.
  • a current-voltage conversion circuit using a FET and a resistor connected to the gate of the FET, or a current in which a capacitor is connected between the output terminal and the inverting input terminal of an operational amplifier
  • a voltage conversion circuit Japanese Patent Laid-Open No. 10-281866: Patent Document 4
  • the infrared gas detector having the configuration shown in FIGS. 28A and 28B disclosed in Patent Document 3 is used as an infrared flame detector.
  • a plurality of kinds of infrared optical filter 20 1 having different filter characteristics, 20 2, 20 3, 20 4 are formed on different wafers, and the individual from each of the wafer infrared optical filter 20 1, 20 2 , 20 3 , and 20 4 , the infrared optical filters 20 1 , 20 2 , 20 3 , and 20 4 having different filter characteristics need to be bonded with the adhesive 19.
  • element 40 is 1, 40 2, 40 3, 40 distance between the centers of the 4 large, infrared light-receiving element 40 1, 40 2, 40 3, 40 4 difference in optical path length of infrared rays reach is increased in the. That is, in such an infrared flame detector, detection light composed of infrared light having a first selection wavelength of 4.3 ⁇ m and reference light composed of infrared light having a second selection wavelength other than the first selection wavelength. The difference in optical path length becomes large. Further, in such an infrared flame detector, the light receiving efficiency of each of the infrared light receiving elements 40 1 , 40 2 , 40 3 , and 40 4 is lowered.
  • the infrared transmitting member 80 can block far-infrared rays of ambient light such as sunlight and illumination light that cause noise, but the number of parts increases and the number of assembly steps increases, and the sapphire substrate is expensive. Since processing such as dicing is difficult, the cost increases. Further, if the number of layers of the multilayer film in the infrared optical filters 20 1 , 20 2 , 20 3 , and 20 4 is increased, it is possible to block far-infrared rays while realizing a narrow-band bandpass filter, but the cost is reduced. It will be high.
  • conductive adhesive such as silver paste is used as the adhesive 19 in order to establish conduction between the infrared optical filters 20 1 , 20 2 , 20 3 , and 20 4.
  • the agent is used, the mechanical strength is lowered.
  • the transmission characteristics of each of the band-pass filter sections 202 1 , 202 2 , 202 3 , 202 4 are set on one glass substrate.
  • each multilayer constituting each of the band-pass filter sections 202 1 , 202 2 , 202 3 , 202 4 is formed. Since it is necessary to form the film sequentially, there is a problem that the manufacturing cost increases. Also, in the case where the infrared optical filter 20 ′ is formed by bonding four fan-shaped bandpass filter sections 202 1 , 202 2 , 202 3 , and 2024, the bandpass filter sections 202 1 , 202 having different transmission characteristics are formed. 2 , 202 3 , and 202 4 need to be formed separately and fan-shaped, and there is a problem that the manufacturing cost increases and the mechanical strength decreases.
  • the peripheral portions of one surface and the other surface of each of the infrared optical filters 20 1 , 20 2 , 20 3 , and 20 4 are exposed. Therefore, in this configuration, unnecessary infrared holds the infrared receiving element 40 1, 40 2, 40 3, 40 a plurality of so as not to enter the 4 infrared receiving component 40 1, 40 2, 40 3, 40 4
  • the holder 90 is provided with a plurality of storage portions 90 1 , 90 2 , 90 3 , and 90 4 , and each of the storage portions 90 1 , 90 2 , 90 3 , and 90 4 has an infrared light receiving element 40 1 , 40 2 , 40 3. , there is a need to accommodate the 40 4.
  • infrared optical module having the configuration shown in FIG. 27 disclosed in Patent Document 2, two infrared light receiving elements 400 1 and 400 2 are formed on one surface side of the substrate 300 made of an MgO substrate.
  • infrared light-receiving element 400 1, 400 2 different narrow band pass filter unit 200 1 transmission wavelength from each other, respectively, 200 2 are laminated. Therefore, in the infrared optical module, and it can shorten the distance between the centers of the narrow band pass filter unit 200 1, 200 2, and the infrared first selected wavelength (4.3 [mu] m), other than the first selected wavelength second
  • the difference in optical path length from infrared light (reference light) having a selected wavelength can be reduced, and the cost can be reduced.
  • the infrared light receiving elements 400 1, 400 despite the thermal infrared light receiving element such as a 2 pyroelectric infrared receiving elements 400 1, 400 2 above directly, narrow band pass filter unit 200 1, 200 2 are laminated in. For this reason, in this infrared optical module, the heat capacity becomes large and it is difficult to ensure thermal insulation, and the responsiveness and sensitivity are lowered.
  • the amplifier circuit constituted by the current-voltage conversion circuit described in Patent Document 4 it is necessary to amplify the output of each infrared light receiving element separately. Because there is a direct current bias component caused by ambient light such as light and infrared light from fluorescent lamps and heat sources, if the intensity of the infrared light incident on the infrared light receiving element is too strong, the gain of the amplifier circuit will be saturated due to saturation of the output of the amplifier circuit Is limited, the improvement of the S / N ratio is limited, and there is a possibility that a flame cannot be detected by the infrared flame detector. Similarly, in the infrared three-wavelength flame detector shown in FIG.
  • the pyroelectric element is a so-called differential detection element that absorbs infrared rays as thermal energy and detects the resulting change in the amount of charge (pyroelectric effect), so that only the change in infrared rays can be detected.
  • the impedance of each of the current-voltage conversion circuits described above is as large as 100 G ⁇ to 1 T ⁇ , and it is effective to achieve a high S / N ratio by high impedance.
  • the impedance is high, the influence of external radiation noise It is easy to receive.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared flame detector capable of high sensitivity and low cost.
  • the infrared flame detector according to the present invention is an infrared flame detector in which an infrared light receiving element is housed in a package, and an infrared optical filter is disposed in front of the infrared light receiving element in the package.
  • the pyroelectric elements having a pair of different polarities are arranged in parallel on the pyroelectric element forming substrate and connected in reverse series or reverse parallel, and the infrared optical filter is a filter formed of an infrared transmitting material.
  • a first selected wavelength comprising a specific wavelength generated by resonance radiation of CO 2 gas caused by a flame, which is formed in a portion corresponding to each of the pyroelectric elements on one surface side of the filter forming substrate
  • a set of two narrow-band transmission filters that selectively transmit infrared rays of the second selected wavelength that are reference wavelengths other than the specific wavelength.
  • a broadband cutoff filter portion that is formed on the other surface side of the filter-forming substrate and absorbs infrared light having a wavelength longer than the infrared reflection band set by each of the narrow-band transmission filter portions.
  • the narrow-band transmission filter unit includes a first ⁇ / 4 multilayer film in which a plurality of types of thin films having different refractive indexes and equal optical thicknesses are stacked, and the filter forming substrate in the first ⁇ / 4 multilayer film Between the second ⁇ / 4 multilayer film and the second ⁇ / 4 multilayer film, which is formed on the opposite side to the side and is formed by laminating the plurality of types of thin films. And a wavelength selection layer having an optical film thickness different from the optical film thickness of each thin film according to the selected wavelength.
  • the broadband cut-off filter unit is formed of a multilayer film in which a plurality of types of thin films having different refractive indexes are laminated, and at least one type of the plurality of types of thin films absorbs far infrared rays. It is preferably formed of a far infrared ray absorbing material.
  • the filter forming substrate is preferably a Si substrate or a Ge substrate.
  • the package is made of metal and the filter forming substrate is electrically connected to the package.
  • the components of the amplification circuit for amplifying the output of the infrared light receiving element are housed in the package.
  • FIG. 1A is a schematic plan view of an infrared flame detector according to the embodiment
  • FIG. 1B is a schematic cross-sectional view of the infrared flame detector. It is a schematic exploded perspective view of an infrared flame detector same as the above.
  • FIG. 3A is a schematic plan view of an infrared light receiving element in the above infrared flame detector
  • FIG. 3B is a circuit diagram of the infrared light receiving element
  • FIG. 3C is a circuit diagram of another configuration example of the infrared detecting element.
  • FIG. 15A is a transmission spectrum of a reference example in which an Al 2 O 3 film having a thickness of 1 ⁇ m is formed on a Si substrate
  • FIG. 15B is an optical parameter of the Al 2 O 3 film calculated based on the transmission spectrum of FIG. 15A. It is explanatory drawing of (refractive index, absorption coefficient). It is a transmission spectrum figure of an infrared optical filter same as the above. It is a transmission spectrum figure of the broadband cutoff filter part of the infrared optical filter same as the above. It is a schematic block diagram of the infrared flame detection apparatus using the infrared flame detector same as the above.
  • FIG. 25A is a schematic perspective view of another conventional infrared flame detector, and FIG.
  • FIG. 25B is a schematic perspective view of a main part of the infrared flame detector. It is a schematic block diagram of the infrared type gas detector of a prior art example. It is a schematic sectional drawing of the conventional infrared rays light receiving module.
  • FIG. 28A is a schematic longitudinal sectional view of another conventional infrared gas detector
  • FIG. 28B is a schematic transverse sectional view of the infrared gas detector
  • FIG. 28C is a schematic side view of an infrared optical filter.
  • the infrared flame detector of the present embodiment includes an infrared light receiving element 40 having a plurality of (here, two) pyroelectric elements 4 1 and 4 2 and an infrared light receiving element 40.
  • a circuit block 6 provided with a signal processing circuit for signal processing of the output and a package 7 made of a can package (here, TO-5) for housing the circuit block 6 are provided.
  • the package 7 includes a metal stem 71 on which the circuit block 6 is mounted via a spacer 9 made of an insulating material, and a metal cap 72 fixed to the stem 71 so as to cover the circuit block 6.
  • a plurality (three in this case) of terminal pins 75 that are electrically connected to appropriate portions of the block 6 are provided so as to penetrate the stem 71.
  • the stem 71 is formed in a disc shape
  • the cap 72 is formed in a bottomed cylindrical shape with the rear surface open, and the rear surface is closed by the stem 71.
  • the spacer 9, the circuit block 6 and the stem 71 are fixed with an adhesive.
  • a rectangular (in this embodiment, a square) window portion 7a is formed on the front wall of the above-described cap 72 that constitutes a part of the package 7 and positioned in front of the infrared light receiving element 40.
  • the infrared optical filter 20 is disposed from the inside of the cap 72 so as to cover the window portion 7a.
  • the stem 71 is sealed in such a manner that a plurality of terminal holes 71b through which the respective terminal pins 75 are inserted are penetrated in the thickness direction, and each terminal pin 75 is inserted into the terminal hole 71b. Sealed by the portion 74.
  • the cap 72 and the stem 71 described above are formed of a steel plate, and an outer flange portion 72c extending outward from the rear end edge of the cap 72 with respect to the flange portion 71c formed on the peripheral portion of the stem 71 is provided. Sealed by welding.
  • the circuit block 6 is a first circuit composed of a printed wiring board (for example, a composite copper-clad laminate) on which ICs 63 and chip-like electronic components 64 that are components of the signal processing circuit are mounted on different surfaces.
  • a shield plate 66 formed with a layer (hereinafter referred to as a shield layer) and laminated on the resin layer 65, and a printed wiring board (for example, composite copper-clad laminate) on which the infrared light receiving element 40 is mounted and laminated on the shield plate 66 And a second circuit board 67 made of a plate.
  • the shield layer may be formed only with a copper foil or a metal plate.
  • an IC 63 is flip-chip mounted on the lower surface side in FIG. 2, and a plurality of electronic components 64 are mounted on the upper surface side in FIG. 2 by solder reflow.
  • a pair of pyroelectric elements 4 1 and 4 2 having different polarities are arranged in parallel on a pyroelectric element forming substrate 41 made of a pyroelectric material (for example, lithium tantalate). And it is a dual element connected in reverse series so that the differential output of two pyroelectric elements 4 1 and 4 2 can be obtained (see FIG. 3B).
  • the IC 63 is integrated with an amplifier circuit (bandpass amplifier) that amplifies the output of the infrared light receiving element 40 in a predetermined frequency band (for example, about 1 to 10 Hz), a window comparator at the subsequent stage of the amplifier circuit, and the like.
  • the infrared light receiving element 40 may be any element that can obtain the differential output of the pair of pyroelectric elements 4 1 and 4 2 , and the pair of pyroelectric elements 4 1 and 4 2 are reversely connected in series. For example, as shown in FIG. 3C, it may be connected in antiparallel.
  • the second circuit board 67 is provided with a thermal insulation hole 67a that thermally insulates the pyroelectric elements 4 1 and 4 2 of the infrared light receiving element 40 from the second circuit board 67 in the thickness direction. Therefore, a gap is formed between the pyroelectric elements 4 1 and 4 2 of the infrared light receiving element 40 and the shield plate 66, and sensitivity is increased.
  • the pyroelectric elements 4 1 and 4 2 of the infrared light receiving element 40 and the second circuit board 67 are provided on the second circuit board 67.
  • a support portion that supports the infrared light receiving element 40 may be provided so as to form a gap between the two.
  • the circuit block 6 has through holes 62b, 65b, 66b, 67b through which the terminal pins 75 are inserted in the first circuit board 62, the resin layer 65, the shield plate 66, and the second circuit board 67, respectively.
  • the infrared light receiving element 40 and the signal processing circuit are electrically connected via a terminal pin 75.
  • the first circuit board 62, the resin layer 65, the shield plate 66, and the second circuit board 67 are stacked, and a through hole is formed by a single drilling process that forms a through hole penetrating in the thickness direction of the circuit block 6.
  • the sealing portions 74 and 74 (74a and 74b) for sealing the terminal pins 75a and 75b are formed of sealing glass having insulating properties, and the sealing portion 74 for sealing the terminal pins 75c. (74c) is formed of a metal material.
  • the terminal pins 75 a and 75 b are electrically insulated from the stem 71, whereas the ground terminal pin 75 c has the same potential as the stem 71. Therefore, although the potential of the shield plate 66 is set to the ground potential, it may be set to a potential other than the ground potential as long as it is a specific potential capable of performing the shielding function.
  • the circuit block 6 on which the infrared light receiving element 40 is mounted is mounted on the stem 71 via the spacer 9, and then the infrared optical filter 20 closes the window portion 7a.
  • the inside of the metal package 7 composed of the cap 72 and the stem 71 may be sealed by welding the outer flange portion 72c of the cap 72 and the flange portion 71c of the stem 71 which are fixed together.
  • dry nitrogen is sealed in order to prevent the characteristic change of the infrared light receiving element 40 due to the influence of humidity or the like.
  • the package 7 in the present embodiment is a can package as described above, and can improve the shielding effect against external noise and improve weather resistance by improving airtightness.
  • the package 7 may be composed of a ceramic package having a shielding effect.
  • the above-described infrared optical filter 20 includes a filter main body 20a in which each of the narrowband filter sections 2 1 and 2 2 and a broadband cutoff filter section 3 described later are formed, and extends outward from the periphery of the filter main body section 20a. And a flange portion 20b fixed to the peripheral portion of the window portion 7a in the cap 72.
  • the planar view shape of the filter portion 20a is a rectangular shape (in this embodiment, a square shape)
  • the outer peripheral shape of the flange portion 20b is a rectangular shape (in the present embodiment, a square shape). Is formed.
  • the planar shape of the filter body 20a is a square of several mm ⁇ , but the planar shape and dimensions of the filter body 20a are not particularly limited.
  • the infrared optical filter 20 includes a filter forming substrate 1 made of an infrared transmitting material (for example, Si) and one surface side (upper surface side in FIG. 4) of the filter forming substrate 1.
  • a pair of narrowband transmission filter sections 2 1 and 2 2 that selectively transmit each infrared ray having a second selected wavelength are provided.
  • the infrared optical filter 20 is formed on the other surface side (the lower surface side in FIG. 4) of the filter forming substrate 1, and has a longer wavelength than the infrared reflection band set by each of the narrowband filter portions 2 1 and 2 2.
  • the broadband cutoff filter unit 3 that absorbs the infrared rays is provided.
  • a pair of narrowband transmission filter portions 2 1 and 2 2 are arranged in parallel on the one surface side of the filter forming substrate 1.
  • Each of the narrow band transmission filter sections 2 1 and 2 2 includes a first ⁇ / 4 multilayer film 21 in which a plurality of types (two types here) of thin films 21b and 21a having different refractive indexes and the same optical film thickness are stacked.
  • 23 1 and 23 2 The allowable range of variation in optical film thickness for the two types of thin films 21a and 21b is about ⁇ 1%, and the allowable range of variation in physical film thickness is determined according to the variation in optical film thickness.
  • the infrared optical filter 20 absorbs far-infrared rays as a material (low refractive index material) of the thin film 21b which is a low refractive index layer in the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22.
  • Al 2 O 3 which is a kind of far-infrared absorbing material is adopted, and Ge is adopted as a material (high refractive index material) of the thin film 21a which is a high refractive index layer.
  • the far-infrared-absorbing material Al 2 O 3 without necessarily, Al 2 O 3 SiO 2 and an oxide other than may be employed Ta 2 O 5, towards the SiO 2 of Al 2 Since the refractive index is lower than O 3 , the refractive index difference between the high refractive index material and the low refractive index material can be increased.
  • the first selected wavelength which is a specific wavelength generated by resonance emission of CO 2 gas in the flame at the time of fire is 4.3 ⁇ m (or 4.4 ⁇ m) and may be generated in a house or the like.
  • CH 4 (methane) is 3.3 ⁇ m
  • CO (carbon monoxide) is 4.7 ⁇ m
  • NO (nitrogen monoxide) is 5.3 ⁇ m. Therefore, in the infrared optical filter 20 in the present embodiment, the second selected wavelength that is the reference wavelength is set to 3.9 ⁇ m that is relatively close to the first selected wavelength, and the first selected wavelength and the second selected wavelength are set.
  • the narrow-band transmission filter sections 2 1 and 2 2 have a reflection band in the infrared region of about 3.1 ⁇ m to 5.5 ⁇ m.
  • the reflection bandwidth ⁇ is essential.
  • the reflection band has a wave number that is the reciprocal of the wavelength of the incident light, as shown in FIG. 5, if the set wavelength corresponding to four times the optical film thickness common to the thin films 21a and 21b is ⁇ 0 .
  • 1 / ⁇ 0 is the center of symmetry.
  • the first ⁇ / w is set so that the infrared light of the first selected wavelength can be detected by appropriately setting the optical film thicknesses of the wavelength selection layers 23 1 and 23 2.
  • the set wavelength ⁇ 0 of the four multilayer films 21 and the second ⁇ / 4 multilayer film 22 is 4.0 ⁇ m.
  • the physical film thickness of each of the thin films 21a and 21b is ⁇ , where n H is the refractive index of the high refractive index material that is the material of the thin film 21a, and n L is the refractive index of the low refractive index material that is the material of the thin film 21b.
  • 0 / 4n H is set such that ⁇ 0 / 4n L.
  • the film thickness is set to 250 nm
  • the physical film thickness of the thin film 21b formed of the low refractive index material is set to 588 nm.
  • a ⁇ / 4 multilayer film in which thin films 21b made of a low refractive index material and thin films 21a made of a high refractive index material are alternately laminated on one surface side of the filter forming substrate 1 made of an Si substrate.
  • the simulation results are shown in FIG.
  • the horizontal axis represents the wavelength of incident light (infrared rays) and the vertical axis represents the transmittance.
  • FIG. 7 shows the simulation result of the reflection bandwidth ⁇ of the ⁇ / 4 multilayer film (refractive index periodic structure) when the refractive index of the low refractive index material is changed using Ge as the high refractive index material. Note that “A”, “B”, and “C” in FIG. 7 correspond to the points “A”, “B”, and “C” in FIG. 6, respectively.
  • the reflection bandwidth ⁇ increases as the refractive index difference between the high refractive index material and the low refractive index material increases.
  • the high refractive index material is Ge
  • the low refractive index It can be seen that by adopting Al 2 O 3 or SiO 2 as the material, a reflection band in the infrared region of at least 3.1 ⁇ m to 5.5 ⁇ m can be secured and the reflection bandwidth ⁇ can be 2.4 ⁇ m or more.
  • the number of first ⁇ / 4 multilayer films 21 is 4, the number of second ⁇ / 4 multilayer films 22 is 6, and the high refractive index material of the thin film 21a is Ge,
  • the low refractive index material of the thin film 21b is Al 2 O 3
  • the material of the wavelength selection layer 23 that is interposed between the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 is a low refractive index material.
  • FIGS. 9 and 10 show the simulation results of the transmission spectrum when Al 2 O 3 is used and the optical film thickness of the wavelength selection layer 23 is variously changed in the range of 0 nm to 1600 nm.
  • the optical film thickness of the wavelength selection layer 23 is the product of the refractive index n and the physical film thickness d, where n is the refractive index of the material of the wavelength selection layer 23 and d is the physical film thickness of the wavelength selection layer 23. That is, it is obtained by nd. Also in this simulation, assuming that there is no absorption in each thin film 21a, 21b (that is, the extinction coefficient of each thin film 21a, 21b is 0), the set wavelength ⁇ 0 is 4 ⁇ m, and the physical film thickness of the thin film 21a. Was 250 nm, and the physical film thickness of the thin film 21b was 588 nm.
  • the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 form a reflection band in the infrared region of 3 ⁇ m to 6 ⁇ m.
  • the optical film thickness nd of the layer 23 it can be seen that a narrow transmission band is localized in the reflection band of 3 ⁇ m to 6 ⁇ m.
  • the transmission peak wavelength can be continuously changed in the range of 3.1 ⁇ m to 5.5 ⁇ m. I understand that.
  • the transmission peak wavelengths are 3.3 ⁇ m, 4.0 ⁇ m, 4.3 ⁇ m, 4.7 ⁇ m and 5.3 ⁇ m.
  • the specific wavelength is 4.3 ⁇ m. It is possible to sense various gases such as CH 4 having a specific wavelength of 3.3 ⁇ m, CO having a specific wavelength of 4.7 ⁇ m, and NO having a specific wavelength of 5.3 ⁇ m.
  • the range of 0 nm to 1600 nm of the optical film thickness nd corresponds to the range of 0 nm to 941 nm of the physical film thickness d. Further, when the optical film thickness nd of the wavelength selection layer 23 is 0 nm, that is, when there is no wavelength selection layer 23 in FIG.
  • the transmission peak wavelength is 4000 nm when the first ⁇ / 4 multilayer film 21 and the second This is because the set wavelength ⁇ 0 of the ⁇ / 4 multilayer film 22 is set to 4 ⁇ m (4000 nm), and the set wavelength ⁇ of the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 is set.
  • the transmission peak wavelength when there is no wavelength selection layer 23 can be changed.
  • the infrared reflection band set by the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 that is, the narrow band transmission filter sections 2 1 , 2).
  • Al 2 O 3 which is a far-infrared absorbing material that absorbs infrared rays in a longer wavelength range than the infrared reflection band set by 2 ) is adopted.
  • the far-infrared absorbing material MgF 2 , Al 2 O 3 , SiO x , Ta 2 O 5 , SiN x were examined.
  • the film forming conditions when forming the film on the Si substrate with the film thickness set to 1 ⁇ m for each of the MgF 2 film, the Al 2 O 3 film, the SiO x film, the Ta 2 O 5 film, and the SiN x film Is set as shown in Table 1 below, and the results of measuring the transmission spectra of the MgF 2 film, Al 2 O 3 film, SiO x film, Ta 2 O 5 film, and SiN x film are shown in FIG.
  • an ion beam assisted deposition apparatus was used as a film forming apparatus for the MgF 2 film, the Al 2 O 3 film, the SiO x film, the Ta 2 O 5 film, and the SiN x film.
  • IB condition in Table 1 is an ion beam assist condition when forming a film with an ion beam assisted deposition apparatus
  • no IB means no ion beam irradiation
  • oxygen IB means “ArIB” means irradiation with an oxygen ion beam
  • ArIB means irradiation with an argon ion beam.
  • the horizontal axis indicates the wavelength and the vertical axis indicates the transmittance.
  • A1 is the Al 2 O 3 film
  • A2 is the Ta 2 O 5 film
  • A3 is the SiO x film.
  • A4 is the SiN x film
  • A5 is the MgF 2 film.
  • the evaluation item of “optical characteristics: absorption” was evaluated by the absorption rate of far infrared rays of 6 ⁇ m or more calculated from the transmission spectrum of FIG.
  • Table 2 for each evaluation item, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” are listed in order from the highest ranked to the lowest ranked.
  • the evaluation item “optical characteristics: absorption” the higher the far infrared absorptivity, the higher the evaluation rank, and the lower far infrared absorptivity, the evaluation rank is lowered.
  • the evaluation item of “refractive index” from the viewpoint of increasing the difference in refractive index from the high refractive index material, the lower the refractive index, the higher the evaluation rank, and the higher refractive index, the lower the evaluation rank. It is. As for the evaluation item of “easiness of film formation”, the evaluation rank is higher when a dense film is easily obtained by vapor deposition or sputtering, and the evaluation rank is lower when a dense film is difficult to obtain. . However, for each evaluation item, SiO x is evaluated as SiO 2 and SiN x is evaluated as Si 3 N 4 .
  • the far-infrared absorptivity is improved as compared with the case where the far-infrared absorbing material is SiO x or SiN x. Can do.
  • Al 2 O 3 is more preferable than T 2 O 5 from the viewpoint of increasing the refractive index difference from the high refractive index material.
  • the SiN x as the far-infrared-absorbing material, it can increase the moisture resistance of the thin film 21b formed by far-infrared-absorbing material.
  • the refractive index difference from the high refractive index material can be increased, and the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 The number of stacked layers (number of layers) can be reduced.
  • a thin film 21b having a predetermined physical film thickness (here, 588 nm) made of Al 2 O 3 which is a low refractive index material and a high refractive index material are formed on the entire surface on one surface side of the filter forming substrate 1 made of a Si substrate.
  • the second position from the top of the first ⁇ / 4 multilayer film 21 is positioned.
  • the same material as the thin film 21b in this case, Al 2 O 3 is a low refractive index material
  • the wavelength selection layer 23 1 is set an optical thickness in accordance with one of the narrowband transmission filter section 2 first selected wavelength consists
  • the structure shown in FIG. 12A is obtained by performing a wavelength selective layer film forming step of forming a film.
  • the low refractive index material is Al 2 O 3 as described above
  • an ion beam assisted vapor deposition method is employed to irradiate an oxygen ion beam during the formation of the thin film 21b, thereby increasing the density of the thin film 21b.
  • the low refractive index material SiO x
  • SiN x is far-infrared-absorbing material other than Al 2 O 3.
  • the thin film 21b made of the far-infrared absorbing material by ion beam assisted deposition, and the chemical composition of the thin film 21b made of the low refractive index material can be precisely controlled.
  • the denseness of the thin film 21b can be improved.
  • Figure 12B Get the structure shown.
  • the resist layer 31 as a mask, the first lambda / 4 top of the thin film 21a unnecessary portion of the wavelength selection layer 23 1 as an etching stopper layer on the selectively etched to wavelength selection layer patterning process of the multilayer film 21
  • the structure shown in FIG. 12C is obtained.
  • the wavelength selective layer patterning step if the low refractive index material is an oxide (Al 2 O 3 ) and the high refractive index material is a semiconductor material (Ge) as described above, a hydrofluoric acid solution is used as an etching solution. By employing the wet etching used, it is possible to perform etching with a higher etching selectivity than when dry etching is employed.
  • dilute hydrofluoric acid for example, dilute hydrofluoric acid having a concentration of 2% hydrofluoric acid
  • HF hydrofluoric acid
  • H 2 O pure water
  • a resist layer removing step for removing the resist layer 31 is performed to obtain the structure shown in FIG. 12D.
  • the thin film 21a having a predetermined physical film thickness (250 nm) made of Ge, which is a high refractive index material, and a low refractive index material are formed on the entire surface of the one surface side of the filter forming substrate 1.
  • a second ⁇ / 4 multilayer film forming step of forming the second ⁇ / 4 multilayer film 22 by alternately laminating thin films 21b having a predetermined physical film thickness (588 nm) made of Al 2 O 3 thus, the structure shown in FIG. 12E is obtained.
  • the optical film thickness nd is equivalent to the case of 0 nm.
  • each thin film 21a, 21b for example, two kinds of thin films 21a, 21b can be continuously formed by employing a vapor deposition method, a sputtering method, or the like.
  • a vapor deposition method for example, Al 2 O 3
  • a wavelength selection layer film forming step of forming a wavelength selection layer 23 i having an optical film thickness set according to a selected wavelength of i (here, i 1) on the laminated film, and a wavelength selection layer film formation step of the formed wavelength selection layer 23 i Te of the arbitrary 1
  • narrow-band transmission filter unit wavelength selection layer forming step comprising the unnecessary portion other than the portion corresponding to the 2 i from the wavelength selection layer patterning step of etching the layer of top of the laminated film as an etching stopper layer once
  • a plurality of narrow-band transmission filter portions 2 1 and 2 2 are formed.
  • the wavelength selection layer forming step is performed a plurality of times in the middle of the above basic steps, the infrared optical filter 20 having more selected wavelengths can be manufactured with one chip.
  • part 2 i 1 to form at least one wavelength selective layer 23 1 of the pattern by etching a portion other than the portion corresponding.
  • a wavelength selection layer 23 2 is the same material as the wavelength selection layer 23 1 and the wavelength If the optical thickness than the selective layer 23 1 is set smaller, so as to form two wavelength selective layers 23 1, 23 2 of the pattern by etching halfway thin film on the laminated film Also good.
  • the far-infrared absorbing material of one of the two types of thin films 21a and 21b is SiO x or SiN x and the other thin film 21a is Si
  • Si the use of an ion beam assisted deposition apparatus for the evaporation source, and a vacuum atmosphere when forming a thin film 21a made of Si
  • when forming a thin film 21b made of SiO x is an oxide illuminates the oxygen ion beam
  • the evaporation sources of the two types of thin films 21a and 21b can be made common, so that it is not necessary to prepare an ion beam assisted vapor deposition apparatus having a plurality of evaporation sources, and the manufacturing cost can be reduced. Cost reduction can be achieved.
  • the far-infrared absorbing material of one thin film 21b of the two types of thin films 21a and 21b is SiO x or SiN x and the other thin film 21a is Si
  • Si is used.
  • a thin film 21a made of Si is formed using a target sputtering apparatus, a vacuum atmosphere is used.
  • the infrared optical filter 20 having a transmission peak wavelength (center wavelength) at 9 ⁇ m and approximately 4.3 ⁇ m can be realized with one chip.
  • both of the transmission spectrum having a transmission peak wavelength of about 3.9 ⁇ m and the transmission spectrum having a transmission peak wavelength of about 4.3 ⁇ m have a full width at half maximum (FWHM) of about 100 nm.
  • FWHM full width at half maximum
  • the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 may have a refractive index periodic structure, and may be a laminate of three or more types of thin films.
  • the broadband cutoff filter unit 3 of the infrared optical filter 20 will be described.
  • the broadband cutoff filter unit 3 is configured by a multilayer film in which a plurality of types (here, two types) of thin films 3a and 3b having different refractive indexes are stacked.
  • the broadband cutoff filter unit 3 employs Al 2 O 3 , which is a kind of far-infrared absorbing material that absorbs far-infrared rays, as the material of the thin film 3a that is a low refractive index layer having a relatively low refractive index, Ge is employed as the material of the thin film 3b, which is a high refractive index layer having a relatively high refractive index, and the thin films 3a and 3b are alternately stacked to form a stack number of 11, but this stack number is particularly limited. Not what you want.
  • the broadband cutoff filter unit 3 is configured by the thin film 3a which is the low refractive index layer as the uppermost layer farthest from the filter forming substrate 1.
  • the far-infrared-absorbing material is not limited to Al 2 O 3, Al 2 O 3 SiO 2 is an oxide other than, Ta 2 O 5 may be adopted, towards the SiO 2 is Al 2 O Since the refractive index is lower than 3, the difference in refractive index between the high refractive index material and the low refractive index material can be increased. Further, as the far infrared ray absorbing material, SiN x which is a nitride may be adopted.
  • the broadband cutoff filter unit 3 is formed of Al 2 O 3 which is a far-infrared absorbing material in which one of the two types of thin films 3a and 3b absorbs far-infrared rays. It suffices that at least one of the plurality of types is formed of a far-infrared absorbing material.
  • the plurality of types is formed of a far-infrared absorbing material.
  • a multilayer film may be laminated in the order of film-Al 2 O 3 film-Ge film. In this case, two kinds of thin films out of three kinds of thin films are formed of a far-infrared absorbing material. .
  • the above-described broadband cutoff filter unit 3 absorbs far-infrared rays having a longer wavelength range than the infrared reflection band set by the narrow-band transmission filter units 2 1 and 2 2 .
  • the broadband cutoff filter unit 3 employs Al 2 O 3 as a far-infrared absorbing material that absorbs infrared rays, but as the far-infrared absorbing material, similar to the narrow-band transmission filter units 2 1 and 2 2 described above. Examined five types of MgF 2 , Al 2 O 3 , SiO x , Ta 2 O 5 , and SiN x .
  • FIG. 14 shows the results of analysis by FT-IR, where the horizontal axis represents the wave number and the vertical axis represents the absorptance.
  • A1 is a sample without ion beam assist
  • “A2”, “A3” , “A4”, “A5”, and “A6” indicate the analysis results of the respective samples when the ion beam irradiation amount is changed from the smaller one to the larger one.
  • the absorptance in the vicinity of 3400 cm ⁇ 1 due to moisture can be reduced, and as the ion beam irradiation amount increases, the absorptance in the vicinity of 3400 cm ⁇ 1 due to moisture decreases.
  • the film quality of the Al 2 O 3 film can be improved by ion beam assist and the denseness can be improved.
  • the far infrared ray absorbability is higher than when the far infrared ray absorbing material is SiO x or SiN x . Can be improved.
  • the inventors of the present application measured the transmission spectrum of a reference example in which a 1 ⁇ m Al 2 O 3 film was formed on a Si substrate. As a result, an actual measurement value as shown in “A1” in FIG. 15A was obtained. Obtaining the knowledge that “A1” is deviated from the calculated value indicated by “A2” in FIG. 15A, the optical parameters (refractive index, absorption coefficient) of the thin film 3a formed of Al 2 O 3 are measured in FIG. 15A. The value was calculated from the value “A1” according to the Cauchy equation. The calculated optical parameters are shown in FIG. 15B. In the new optical parameters shown in FIG.
  • neither the refractive index nor the absorption coefficient is constant in the wavelength range of 800 nm to 20000 nm, and the refractive index gradually decreases as the wavelength increases, and the wavelength is 7500 nm. In the wavelength region of ⁇ 15000 nm, the absorption coefficient gradually increases as the wavelength increases.
  • the transmission peak wavelength has a laminated structure of Table 3 is the narrow band pass filter section 2 1 of 4.4 [mu] m, the following Table 4
  • Table 4 A simulation result of the transmission spectrum of a portion where the broadband cutoff filter portion 3 having the laminated structure is overlapped in the thickness direction of the filter forming substrate 1 is shown in “A1” of FIG.
  • the simulation result of the comparative example in which the refractive index of the Al 2 O 3 film is constant and the absorption coefficient is constant at 0 without using the new optical parameters of the Al 2 O 3 film described above is “A2” in FIG. Shown in In each of the examples and comparative examples, simulation was performed with the refractive index of Ge being constant at 4.0 and the absorption coefficient being constant at 0.0.
  • the horizontal axis represents the wavelength of incident light (infrared rays) and the vertical axis represents the transmittance.
  • the transmission spectrum “A2” of the comparative example that does not use the new optical parameter of the Al 2 O 3 film far infrared rays of 9000 nm to 20000 nm are not blocked, whereas the Al 2 O 3 film
  • the transmission spectrum “A1” of the embodiment using the new optical parameters far infrared rays of 9000 nm to 20000 nm are also blocked, the broadband cutoff filter unit 3 having 29 layers and the narrow band transmission filter having 11 layers.
  • part 2 1 wavelength and can be cut off broadband infrared 800 nm ⁇ 20000 nm, it can be seen that can localize a transmission band of the narrow band only in the vicinity of 4.3 [mu] m.
  • the transmission spectrum of the broadband cutoff filter unit 3 is as shown in FIG. 17, for example. In the example of FIG. 17, near infrared rays of 4 ⁇ m or less and far infrared rays of 5.6 ⁇ m or more are blocked.
  • the thin film 3a made of, for example, an Al 2 O 3 film and the thin film 3b made of, for example, a Ge film are formed on the other surface side of the filter forming substrate 1 made of an Si substrate.
  • a wide band blocking filter unit forming step of forming the broadband blocking filter unit 3 by alternately laminating is performed, and then the narrow band transmission filter units 2 1 , 2 are formed on the one surface side of the filter forming substrate 1 as described above. 2 may be formed.
  • the infrared flame detection apparatus shown in FIG. 18 is an infrared receiving device in which a pair of pyroelectric elements 4 1 and 4 2 having different polarities are arranged in parallel on a pyroelectric element forming substrate 41 and connected in reverse series.
  • An infrared optical filter 20 having an element 40, a broadband cutoff filter unit 3 and two narrow-band transmission filter units 2 1 and 2 2 having different transmission wavelength ranges and disposed in front of the infrared light receiving device 40;
  • Amplifying unit (amplifying circuit) 63a that amplifies 40 outputs (a differential output of a pair of pyroelectric elements 4 1 and 4 2 ), and determines whether there is a fire flame based on the output signal of the amplifying unit 63a
  • a signal processing unit 100 including a microcomputer or the like.
  • the signal processing unit 100 may output a fire detection signal to an external notification device, or a display device such as an LED or a display, a speaker, or a buzzer. You may make it alert
  • the amplification unit 63a is provided in the above-described IC 63, but the IC 63 may be provided with not only the amplification unit 63a but also the signal processing unit 100. In short, the signal processing unit 100 may be provided in the infrared flame detector of the present embodiment.
  • the infrared receiving element 40 1, 40 2 each consisting of a single pyroelectric element, disposed in front of the infrared receiving element 40 1, 40 2 are formed by using a sapphire substrate Infrared optical filters 320 1 and 320 2 , two amplifying units (amplifying circuits) 163 1 and 163 2 for amplifying output signals of the respective infrared light receiving elements 40 1 and 40 2 , and two amplifying units 163 1, 163 a subtracter 164 for obtaining a difference between the second output signal, and a microcomputer signal processing unit 100 consisting of a 'determines the presence or absence of fire flames on the basis of the output signal of the subtracter 164.
  • a microcomputer signal processing unit 100 consisting of a 'determines the presence or absence of fire flames on the basis of the output signal of the subtracter 164.
  • the infrared flame detection apparatus having the configuration shown in FIG. 19 includes infrared light receiving elements 40 1 and 40 2 , can packages 170 1 and 170 2 containing the infrared light receiving elements 40 1 and 40 2 , and an infrared optical filter 320 1. constitute an infrared sensor 340 1, 340 2 and 320 2.
  • the output signals of the infrared light receiving elements 40 1 and 40 2 are weak and are easily affected by electromagnetic noise, so the two infrared sensors 340 1 and 340 2 and the two amplifying units 163 are used.
  • the infrared flame detectors constitute the infrared flame detectors by shielded by the shield member 180, the size of the infrared flame detectors compared to the size of the can package 170 1, 170 2 As a result, the size of the infrared flame detector increases.
  • the infrared flame detector having the configuration shown in FIG. 18 uses the above-described infrared flame detector, the infrared flame is compared with the infrared flame detector having the configuration shown in FIG. The detector can be dramatically downsized, and the infrared flame detector can be downsized dramatically.
  • the infrared flame detection apparatus having the configuration shown in FIG. 18 includes the infrared optical filter 20 described above, there is an advantage that the influence of infrared rays generated by heat radiation can be removed.
  • the object is a black body
  • the relationship between the temperature of the object and the radiant energy is as shown in FIG. 20, and the infrared radiant energy distribution radiated from the object depends on the temperature of the object.
  • the wavelength of the infrared ray that gives the maximum value of the radiant energy distribution is ⁇ [ ⁇ m] and the absolute temperature of the object is T [K]
  • the spectrum emitted from the heat source is very broad compared to the spectrum emitted from the light emitting diode.
  • the infrared flame detection device of the comparative example shown in FIG. 19 causes noise and causes saturation of the amplifying units 163 1 and 163 2 , which causes a decrease in sensitivity.
  • saturation of the amplifying unit 63a can be prevented and sensitivity can be improved.
  • the infrared radiation spectrum generated by the resonance radiation of the CO 2 gas is a narrow-band radiation spectrum having a peak wavelength of 4.3 ⁇ m.
  • disturbance light such as sunlight, heat source, arc, and illumination generally rarely emits a spectrum of a specific wavelength, and generally has a broad emission spectrum with a wide band. Therefore, in the present embodiment, as described above, the first selected wavelength is set to 4.3 ⁇ m which is the peak wavelength of CO 2 gas resonance radiation, and the second selected wavelength is set to 3.9 ⁇ m in the vicinity of 4.3 ⁇ m. is there.
  • the second selected wavelength is preferably set to a wavelength such that the infrared intensity of the second selected wavelength of the disturbance light is as close as possible to the infrared intensity of 4.3 ⁇ m of the disturbance light.
  • the selected wavelengths of the infrared optical filters 320 1 and 320 2 are 4.3 ⁇ m and 3.9 ⁇ m, respectively, and the infrared light receiving elements 40 1 and 40 2 are respectively selected.
  • the output signals of 4.3 ⁇ m and 3.9 ⁇ m due to the flames, and Is1 and Is2, respectively, and the direct current bias components due to the infrared rays of 4.3 ⁇ m and 3.9 ⁇ m due to only the disturbance light are Id1 and Is2, respectively.
  • the amplification factors of the amplifiers 163 1 and 163 2 are G1 and G2, and the output signals of the amplifiers 163 1 and 163 2 are I1 and I2.
  • I1 (Is1 + Id1) ⁇ G1
  • the amplifiers 163 1 and 163 2 are saturated, and the S / N ratio is lowered.
  • the output of the element 40 becomes substantially zero), and the gain of the amplifying unit 63a that amplifies the output of the infrared light receiving element 40 can be increased to improve the S / N ratio.
  • the infrared optical filter 20 includes the filter forming substrate 1 made of an infrared transmitting material and the focal surface on the one surface side of the filter forming substrate 1.
  • Infrared light of a first selected wavelength formed at a portion corresponding to each of the electric elements 4 1 , 4 2 and having a specific wavelength (4.3 ⁇ m) generated by resonance emission of CO 2 gas caused by a flame and other than the specific wavelength
  • a pair of narrow-band transmission filter sections 2 1 and 2 2 that selectively transmit each infrared ray having a second selected wavelength that is a reference wavelength (for example, 3.9 ⁇ m), and the filter forming substrate 1 described above.
  • a broadband cutoff filter unit 3 that is formed on the other surface side and absorbs infrared light having a wavelength longer than the infrared reflection band set by the narrow-band transmission filter units 2 1 and 2 2 is provided.
  • each narrow-band transmission filter section 2 1 , 2 2 has a first ⁇ / 4 in which a plurality of types of thin films 21 a and 21 b having different refractive indexes and the same optical film thickness are stacked.
  • the selective layers 23 1 and 23 2 are included.
  • the distance between the centers of the parts 2 1 and 2 2 can be shortened, and the difference in optical path length between the infrared of the specific wavelength and the infrared of the reference wavelength can be reduced.
  • the pyroelectric elements 4 1 and 4 2 of the infrared light receiving element 40 can be reduced. The light receiving efficiency can be improved.
  • the broadband cutoff filter portion 3 of the infrared optical filter 20 is formed of a multilayer film in which a plurality of types of thin films 3a and 3b having different refractive indexes are stacked, and the plurality of types of thin films. At least one kind of thin film 3a out of 3a and 3b is formed of a far-infrared absorbing material that absorbs far-infrared rays.
  • the infrared flame detector of the present embodiment while reducing the number of layers of the multilayer film, the light interference effect by the multilayer film constituting the broadband cutoff filter unit 3 and the multilayer film are configured.
  • an infrared blocking function in a wide band from the near infrared to the far infrared can be realized without using a sapphire substrate, and the cost can be reduced.
  • the first ⁇ / 4 multilayer film 21 and the second ⁇ / 4 multilayer film 22 are also used in the narrow-band transmission filter portions 2 1 and 2 2 of the infrared optical filter 20.
  • a low-cost infrared optical filter 20 that can be selectively transmitted can be realized.
  • the infrared optical filter 20 employs an oxide or nitride as the far-infrared absorbing material, it prevents the thin-films 3a and 21b made of the far-infrared absorbing material from being oxidized and changing the optical characteristics. can do.
  • the broadband cutoff filter unit 3 and the narrowband transmission filter units 2 1 and 2 2 are both formed with the above-described oxide or nitride as the uppermost layer farthest from the filter forming substrate 1. Therefore, it is possible to prevent the physical properties of the uppermost thin films 3a and 21b from being changed due to reaction with moisture or oxygen in the air, adsorption or adhesion of impurities, and the stability of the filter performance is high.
  • reflection on the surfaces of the broadband cutoff filter unit 3 and the narrowband transmission filter units 2 1 and 2 2 can be reduced, and the filter performance can be improved.
  • the thin film 3a formed of the far infrared absorbing material and the thin film 3b formed of Ge, which is a higher refractive index material than the far infrared absorbing material, are alternately stacked, thereby blocking the broadband. Since the multilayer film of the filter unit 3 is configured, the refractive index difference between the high refractive index material and the low refractive index material can be increased compared to the case where the high refractive index material is Si, PbTe, or ZnS. The number of laminated multilayer films can be reduced.
  • the difference in refractive index between the high refractive index material and the low refractive index material in the multilayer film may be larger than when the high refractive index material is ZnS.
  • the number of multilayer films (number of layers) can be reduced.
  • the number of stacked layers can be reduced for the same reason with respect to the narrow-band transmission filter portions 2 1 and 2 2 .
  • a Si substrate is used as the filter forming substrate 1 of the infrared optical filter 20, but the filter forming substrate 1 is not limited to the Si substrate but may be a Ge substrate.
  • Data disclosed on the Internet regarding the transmission characteristics of Si and Ge are shown in FIGS. 21 and 22, respectively ([Search February 25, 2009], Internet ⁇ URL: http://www.spectra.co .jp / kougaku.files / k_kessho.files / ktp.htm>).
  • the filter forming substrate 1 is a sapphire substrate, an MgO substrate, or a ZnS substrate by using a Si substrate or a Ge substrate as the filter forming substrate 1. Compared to cost reduction.
  • the package 7 is made of metal, and the filter forming substrate 1 is made of a conductive bonding material (for example, silver paste, solder, etc.) with respect to the cap 72 of the package 7. It joins by the junction part 58 which becomes and is electrically connected.
  • the filter forming substrate 1 and the package 7 can perform electromagnetic shielding, and the influence of external radiation noise (electromagnetic noise) on the infrared light receiving element 40 is prevented.
  • the sensitivity can be improved by improving the S / N ratio.
  • the window portion 7a of the cap 72 is opened in a rectangular shape, and is positioned on the inner peripheral surface and the peripheral portion of the window portion 7a in the cap 72 by the infrared optical filter 20.
  • a step portion 20c is formed, and the step portion 20c in the infrared optical filter 20 is fixed to the cap 72 via a joint portion 58 made of the above-mentioned joining material.
  • the infrared optical filter 20 and can increase the parallelism between the infrared receiving element 40, the narrow band pass filter section 2 1 of the infrared optical filter 20, 2 2 of the narrow band pass filter unit in the optical axis direction 2 1 , 2 2 and the pyroelectric elements 4 1 , 4 2 of the infrared light receiving element 40 can be improved in distance accuracy, and the optical axes of the narrow band transmission filter sections 2 1 , 2 2 and the pyroelectric elements 4 1. , it is possible to improve the alignment accuracy between the optical axes of the four second light receiving surface.
  • the infrared flame detector of the present embodiment since the components of the amplifying unit (amplifying circuit) 63a that amplifies the output of the infrared light receiving element 40 are housed in the package 7, the infrared light receiving element 40 and the amplifying unit Since the electrical path to 63a can be shortened and the amplifying unit 63a is also electromagnetically shielded, high sensitivity can be achieved by further improving the S / N ratio.

Abstract

 本発明の赤外線式炎検知器は、赤外線受光素子がパッケージ内に収納される。赤外線受光素子は、2つ1組の焦電素子が焦電素子形成用基板において並設され且つ逆直列に接続されている。赤外線光学フィルタは、赤外線透過材料からなるフィルタ形成用基板と、フィルタ形成用基板の一表面側において各焦電素子それぞれに対応する部位に形成され、炎に起因するCOガスの共鳴放射により発生する特定波長からなる第1の選択波長の赤外線および当該特定波長以外の参照波長である第2の選択波長の赤外線それぞれを選択的に透過させる2つ1組の狭帯域透過フィルタ部と、フィルタ形成用基板の他表面側に形成され、各狭帯域透過フィルタ部により設定される赤外線の反射帯域よりも長波長の赤外線を吸収する広帯域遮断フィルタ部とを備える。各狭帯域透過フィルタ部は、第1のλ/4多層膜と第2のλ/4多層膜との間に介在し選択波長に応じて光学膜厚を設定した波長選択層を有する。

Description

赤外線式炎検知器
 本発明は、赤外線式炎検知器に関するものである。
 従来から、火災時に炎の中の炭酸ガス(COガス)の共鳴放射(CO共鳴放射とも呼ばれている)により発生する特定波長(4.3μmないし4.4μm)の赤外線を検出して炎検知を行う赤外線式炎検知器が各所で研究開発されている(例えば、日本公開特許公報特開平3-78899号公報:特許文献1)。
 ここにおいて、CO共鳴放射により発生する赤外線は、図23に示すように、太陽光や高温物体あるいは低温物体から放射される赤外線の相対強度スペクトル分布とは大きく異なることや、放射される赤外線量が常に変動し、変動周波数が1~15Hzの間に集中することが広く知られている(例えば、空気調和・衛生工学会、“2.赤外線3波長式炎検知器”、〔online〕、〔平成21年3月21日検索〕、インターネット<URL:http://www.shasej.org/gakkaishi/0109/0109-koza-02.html>:非特許文献1)。
 ところで、上記非特許文献1には、図24に示す構成の赤外線3波長式炎検知器が開示されている。この赤外線3波長式炎検知器は、CO共鳴放射帯域の3つの波長帯(4.0μm、4.4μm、5.0μm)の赤外線を選択的に透過させる3つの光学フィルタ(赤外線光学フィルタ)220,220,220と、各光学フィルタ220,220,220それぞれを透過した赤外線を各別に受光する3つの赤外線センサ240,240,240とを備えている。また、この赤外線3波長式炎検知器は、各赤外線センサ240,240,240それぞれの出力のうち1~10Hzのちらつき周波数成分だけを通過させる電気的バンドパスフィルタを有し当該周波数成分だけを選択的に増幅する3つの信号増幅部250,250,250を備えている。さらに、この赤外線3波長式炎検知器は、各信号増幅部250,250,250から出力される信号値の大きさや信号値間の比率などを独自のアルゴリズムにより計算し、炎から放射されたCO共鳴放射のスペクトルピークパターンを検出した場合にのみ火災であると判断し、警報信号出力部270に火災信号を送出する火災判断部&制御部260を備えている。上記非特許文献1には、この赤外線3波長式炎検知器は、炎に対する選択性能が非常に高く、自然光や、蛍光灯、ナトリウム灯、水銀灯などの人工照明には反応しないことが記載されている。
 しかしながら、上記非特許文献1に開示された赤外線3波長式炎検知器は、各光学フィルタ220,220,220および各赤外線センサ240,240,240それぞれを個別部品として備えている。このため、この赤外線3波長式炎検知器は、各光学フィルタ220,220,220が取り付けられるとともに各赤外線センサ240,240,240が収納される器体(図示せず)のサイズが、上記特許文献1に記載された赤外線式炎検知器のキャンパッケージに比べてかなり大きかった。
 一方、上記特許文献1に開示された赤外線式炎検知器は、図25A、図25Bに示すように、4つの赤外線検出素子40,40,40,40が配置された円盤状の絶縁基板171と、絶縁基板171に結合される金属製のキャップ172と、キャップ172の前壁に形成された透光窓7aを閉塞する形で配置され各赤外線検出素子40,40,40,40それぞれに対応する部位に互いに透過波長帯域の異なるバンドパスフィルタ部202,202,202,202を有する赤外線光学フィルタ20’とを備えている。この赤外線炎検知器は、絶縁基板171とキャップ172とでキャンパッケージを構成している。ここにおいて、図25A、図25Bに示した構成の赤外線式炎検知器では、4つのバンドパスフィルタ部202,202,202,202のうちの1つが、4.3μmの赤外線を透過するように透過波長帯域を設定してある。また、赤外線光学フィルタ20’は、1枚のガラス基板上に各バンドパスフィルタ部202,202,202,202それぞれの透過特性に応じて設計した多層膜を4回に分けて選択蒸着するか、あるいは4枚の扇形のバンドパスフィルタ部202,202,202,202を張り合わせることで形成されている。
 また、従来から、赤外線式ガス検知器として、図26に示すように、2つの赤外線光学フィルタ20,20と、2つの赤外線受光素子40,40と、両赤外線光学フィルタ20,20および両赤外線受光素子40,40を収納したパッケージ7とを備え、2つの赤外線光学フィルタ20,20の透過波長域を検出対象ガスの吸収波長の赤外線と参照光の波長として設定した波長の赤外線とを各別に透過できるように設定したものが知られており、この種の赤外線式ガス検知器を赤外線炎検知器として用いることが考えられる。なお、パッケージ7は、金属製のステム71と金属製のキャップ72とで構成されるキャンパッケージが用いられており、各赤外線光学フィルタ20,20が、キャップ72に設けられた2つの透光窓それぞれを閉塞する形でキャップ72に実装されている。
 しかしながら、図26に示した構成では、透過波長域の異なる2つの赤外線光学フィルタ20,20が個別の部品により構成されているので、部品点数が増加し、2つの赤外線光学フィルタ20,20それぞれをパッケージ7に実装する工程が各別に必要となり、コストが高くなってしまうという問題がある。また、パッケージ7において各赤外線光学フィルタ20,20ごとに接着部分ののりしろが必要となり、パッケージ7の小型化が難しい。
 これに対して、赤外線式ガス検知器のパッケージに収納して用いる赤外線受光モジュールとして、図27に示すように、MgO基板からなる基板300の一表面側に2つの赤外線受光素子400,400が形成され、各赤外線受光素子400,400それぞれに互いに透過波長の異なる狭帯域透過フィルタ部200,200が積層されたものが提案されている(日本公開特許公報特開平7-72078号公報:特許文献2)。ここにおいて、各赤外線受光素子400,400および各狭帯域透過フィルタ部200,200はスパッタ法などを利用して形成されている。これら各赤外線受光素子400,400は、Pt膜からなる下部電極401,401と、下部電極401,401上のPbTiO膜からなる焦電体膜402,402と、焦電体膜402,402上のNiCr膜からなる上部電極403,403とからなる焦電素子で構成されている。また、各狭帯域透過フィルタ部200,200となる各多層膜を構成する複数種類の薄膜の材料の組み合わせとしては、Si,Ge,Se,Te,LiF,NaF,CaF,MgFの群から選択した材料の組み合わせなどが採用されている。なお、図27に示した構成の赤外線光学モジュールでは、2つの赤外線受光素子400,400の下部電極401,401同士が連続一体に形成されて電気的に接続されている。
 また、従来から、図28A、図28Bに示す構成の赤外線式ガス検知器が提案されている(日本公開特許公報特開平3-205521号公報:特許文献3)。この赤外線式ガス検知器は、互いに透過波長の異なる複数個の赤外線光学フィルタ20,20,20,20を同一厚さとして当該複数個の赤外線光学フィルタ20,20,20,20の隣り合う側面同士を接着剤からなる接着層19(図28C参照)を介して接着することにより形成された赤外線光学フィルタモジュール5と、各赤外線光学フィルタ20,20,20,20それぞれを透過した赤外線を受光する複数個の赤外線受光素子40,40,40,40とが、パッケージ7に収納されている。このパッケージ7は、金属製のステム71と金属製のキャップ72とで構成されるCANパッケージからなる。また、この赤外線式ガス検知器は、キャップ72の前壁に設けられた透光窓7aが、サファイア基板からなる赤外線透過部材80により閉塞され、パッケージ7内に、Nもしくは乾燥空気が封入されている。
 上記特許文献3に開示された各赤外線光学フィルタ20,20,20,20は、図28Cに示すように、Si基板からなるフィルタ形成用基板1の一表面側に、赤外線の所定の波長帯域を透過させる狭帯域透過フィルタ部2’が形成されるとともに、フィルタ形成用基板1の他表面側に、狭帯域透過フィルタ部2’での透過帯域以外のノイズ成分を除くために、赤外線の短波長帯域と長波長帯域とをカットする広帯域遮断フィルタ部3’が形成されている。そして、上記特許文献3には、狭帯域透過フィルタ部2’および広帯域遮断フィルタ部3’それぞれを、GeとSiOとよりなる多層膜などで形成することが記載されている。
 ところで、赤外線式炎検知器では、COガスの共鳴放射により発生する4.3μmの赤外線を選択的に透過させる狭帯域フィルタ部の中心波長を4.3μm、透過帯域幅を0.2μm程度に設定し、ライターほどの大きさの炎を10m以上の距離で検知できる必要がある。
 そこで、赤外線式炎検知器の分野においては、赤外線受光素子として、高感度の測定が可能な焦電素子やサーモパイルが用いられることが多い。焦電素子の出力を増幅する方式としては、FETと当該FETのゲートに接続した抵抗とを用いた電流電圧変換回路や、演算増幅器の出力端子と反転入力端子との間にコンデンサを接続した電流電圧変換回路(日本公開特許公報特開平10-281866号公報:特許文献4)などがある。
 ところで、上記特許文献3に開示された図28A、図28Bに示す構成の赤外線式ガス検知器を赤外線炎検知器として用いることが考えられる。しかしながら、製造時に、フィルタ特性の異なる複数種の赤外線光学フィルタ20,20,20,20を互いに異なるウェハに形成してから、各ウェハそれぞれから個別の赤外線光学フィルタ20,20,20,20にダイシングした後で、フィルタ特性の異なる赤外線光学フィルタ20,20,20,20同士を接着剤19で接着する必要がある。このため、このような赤外線炎検知器では、コストが高くなるとともに、複数個の赤外線光学素子40,40,40,40により構成される赤外線光学素子モジュールの小型化が難しく赤外線受光素子40,40,40,40の中心間距離が大きくなって、赤外線受光素子40,40,40,40において到達する赤外線の光路長の差が大きくなってしまう。つまり、このような赤外線炎検知器では、第1の選択波長である4.3μmの赤外線からなる検出光と、当該第1の選択波長以外の第2の選択波長の赤外線からなる参照光との光路長の差が大きくなってしまう。また、このような赤外線炎検知器では、各赤外線受光素子40,40,40,40の受光効率が低下してしまう。
 また、図28A、図28Bに示す構成の赤外線式ガス検知器では、キャップ72の前壁に設けられた透光窓7aがサファイア基板からなる赤外線透過部材80により閉塞されているので、赤外線透過部材80により、ノイズの原因となる太陽光や照明光などの外乱光の遠赤外線を遮断することができるが、部品点数が増加するとともに組み立て工数が増えてしまい、しかも、サファイア基板は高価であるとともにダイシングなどの加工が難しいため、コストが高くなってしまう。また、赤外線光学フィルタ20,20,20,20における多層膜の層数を増加させれば、狭帯域のバンドパスフィルタを実現しつつ遠赤外線を遮断することはできるが、コストが高くなってしまう。
 また、図28A、図28Bに示す構成の赤外線式ガス検知器では、赤外線光学フィルタ20,20,20,20間で導通をとるために接着剤19として銀ペーストなどの導電性接着剤を用いた場合には、機械的強度が低くなってしまう。また、図25A、図25Bに示した構成の赤外線式炎検知器のように、1枚のガラス基板上に各バンドパスフィルタ部202,202,202,202それぞれの透過特性に応じて設計した誘電体多層膜を4回に分けて選択蒸着することで赤外線光学フィルタ20’を形成したものでは、バンドパスフィルタ部202,202,202,202それぞれを構成する各多層膜を順次形成する必要があるので、製造コストが高くなるという問題がある。また、4枚の扇形のバンドパスフィルタ部202,202,202,202を張り合わせることで赤外線光学フィルタ20’を形成したものでは、透過特性の異なるバンドパスフィルタ部202,202,202,202を別々に形成するとともに扇形にする必要があり、製造コストが高くなるとともに機械的強度が低くなってしまうという問題がある。
 また、図28A、図28Bに示した構成では、各赤外線光学フィルタ20,20,20,20それぞれの一表面および他表面の周部が露出している。このため、この構成では、不要な赤外線が赤外線受光素子40,40,40,40に入射しないように複数個の赤外線受光素子40,40,40,40を保持するホルダ90に複数個の収納部90,90,90,90を設け、各収納部90,90,90,90に各別に赤外線受光素子40,40,40,40を収納する必要がある。
 これに対して、上記特許文献2に開示された図27に示す構成の赤外線光学モジュールでは、MgO基板からなる基板300の一表面側に2つの赤外線受光素子400,400が形成され、各赤外線受光素子400,400それぞれに互いに透過波長の異なる狭帯域透過フィルタ部200,200が積層されている。したがって、この赤外線光学モジュールでは、狭帯域透過フィルタ部200,200の中心間距離を短くできて、第1の選択波長(4.3μm)の赤外線と、第1の選択波長以外の第2の選択波長の赤外線(参照光)との光路長の差を小さくできるとともに、低コスト化を図れる。
 しかし、図27に示した構成の赤外線光学モジュールでは、赤外線受光素子400,400が焦電素子などの熱型の赤外線受光素子であるにもかかわらず、赤外線受光素子400,400上に直接、狭帯域透過フィルタ部200,200が積層されている。このため、この赤外線光学モジュールでは、熱容量が大きくななるとともに熱絶縁性の確保が難しくなり、応答性や感度が低下してしまう。
 また、上記特許文献4に記載された電流電圧変換回路により構成される増幅回路では、各赤外線受光素子の出力を各別に増幅する必要があるが、各赤外線受光素子の出力には太陽光、アーク光や、蛍光灯や熱源などからの赤外線などの外乱光に起因した直流バイアス成分があるので、赤外線受光素子に入射する赤外線の強度が強すぎると、増幅回路の出力の飽和により増幅回路のゲインを高めることが制限され、S/N比の向上が制限され、赤外線式炎検知器において炎を検知できない場合が生じる恐れがある。同様に、図24に示した赤外線3波長式炎検知器においても、赤外線センサ240,240,240に入射する赤外線の強度が大きすぎると、信号増幅部250,250,250での信号の飽和が起こり、S/N比の向上が制限されて感度が低下し、炎を検知できない場合が生じる恐れがある。
 また、焦電素子は、赤外線を熱エネルギとして吸収し、その結果生じる電荷量の変化(焦電効果)を検出するいわゆる微分型の検出素子であるから、赤外線の変化分しか検出することができず、0.1~10Hz程度という低周波の赤外線を検出する必要がある。しかし、上述の各電流電圧変換回路のインピーダンスは、100GΩ~1TΩと非常に大きく、高インピーダンスによる高S/N化を図ることは効果的であるが、インピーダンスが高いため、外来の輻射ノイズの影響を受けやすい。
 本発明は上記事由に鑑みて為されたものであり、その目的は、高感度化および低コスト化が可能な赤外線式炎検知器を提供することにある。
 本発明の赤外線式炎検知器は、赤外線受光素子がパッケージ内に収納され、前記パッケージにおいて前記赤外線受光素子の前方に赤外線光学フィルタが配置された赤外線式炎検知器であって、前記赤外線受光素子は、互いに極性の異なる2つ1組の焦電素子が焦電素子形成用基板において並設され且つ逆直列もしくは逆並列に接続されてなり、前記赤外線光学フィルタは、赤外線透過材料からなるフィルタ形成用基板と、前記フィルタ形成用基板の一表面側において前記各焦電素子それぞれに対応する部位に形成され、炎に起因するCOガスの共鳴放射により発生する特定波長からなる第1の選択波長の赤外線および当該特定波長以外の参照波長である第2の選択波長の赤外線それぞれを選択的に透過させる2つ1組の狭帯域透過フィルタ部と、前記フィルタ形成用基板の他表面側に形成され、前記各狭帯域透過フィルタ部により設定される赤外線の反射帯域よりも長波長の赤外線を吸収する広帯域遮断フィルタ部とを備え、前記各狭帯域透過フィルタ部は、屈折率が異なり且つ光学膜厚が等しい複数種類の薄膜が積層された第1のλ/4多層膜と、前記第1のλ/4多層膜における前記フィルタ形成用基板側とは反対側に形成され前記複数種類の薄膜が積層された第2のλ/4多層膜と、前記第1のλ/4多層膜と前記第2のλ/4多層膜との間に介在し前記選択波長に応じて光学膜厚を前記各薄膜の光学膜厚とは異ならせた波長選択層とを有してなることを特徴とする。
 この赤外線式炎検知器において、前記広帯域遮断フィルタ部は、屈折率が異なる複数種類の薄膜が積層された多層膜からなり、当該複数種類の薄膜のうち少なくとも1種類の薄膜が遠赤外線を吸収する遠赤外線吸収材料により形成されてなることが好ましい。
 この赤外線式炎検知器において、前記フィルタ形成用基板は、Si基板もしくはGe基板であることが好ましい。
 この赤外線式炎検知器において、前記パッケージが金属製であり、前記フィルタ形成用基板が前記パッケージに電気的に接続されてなることが好ましい。
 この赤外線式炎検知器において、前記赤外線受光素子の出力を増幅する増幅回路の構成部品が前記パッケージ内に収納されてなることが好ましい。
図1Aは実施形態の赤外線式炎検知器の概略平面図、図1Bは赤外線式炎検知器の概略断面図である。 同上の赤外線式炎検知器の概略分解斜視図である。 図3Aは同上の赤外線式炎検知器における赤外線受光素子の概略平面図、図3Bは赤外線受光素子の回路図、図3Cは赤外線検出素子の他の構成例の回路図である。 同上の赤外線式炎検知器における赤外線光学フィルタの概略断面図である。 同上の赤外線光学フィルタにおける設定波長と反射帯域との関係説明図である。 同上の赤外線光学フィルタの反射帯域幅を説明するための屈折率周期構造の透過スペクトル図である。 同上の屈折率周期構造における低屈折率材料の屈折率と反射帯域幅との関係説明図である。 同上の赤外線光学フィルタのフィルタ本体部の基本構成を示す概略断面図である。 同上の基本構成の特性説明図である。 同上の基本構成の特性説明図である。 同上の赤外線光学フィルタにおける遠赤外線吸収材料により形成した薄膜の透過スペクトル図である。 同上の赤外線光学フィルタの製造方法を説明するための主要工程断面図である。 同上の赤外線光学フィルタの2つの狭帯域透過フィルタ部により構成される部分の透過スペクトル図である。 同上におけるイオンビームアシスト蒸着装置を用いて形成した薄膜の膜質をFT-IR(フーリエ変換赤外分光法)により分析した結果を示す図である。 図15AはSi基板上に膜厚が1μmのAl膜を成膜した参考例の透過スペクトル図、図15Bは図15Aの透過スペクトル図に基づいて算出したAl膜の光学パラメータ(屈折率、吸収係数)の説明図である。 同上の赤外線光学フィルタの透過スペクトル図である。 同上の赤外線光学フィルタの広帯域遮断フィルタ部の透過スペクトル図である。 同上の赤外線式炎検知器を用いた赤外線式炎検知装置の概略構成図である。 同上の比較例の赤外線式炎検知器を用いた赤外線式炎検知装置の概略構成図である。 物体の温度と放射エネルギとの関係説明図である。 Siの透過特性の説明図である。 Geの透過特性の説明図である。 赤外線発生源の強度波長分布と従来例の赤外線3波長式炎検知器の検出波長帯域との関係説明図である。 従来例の赤外線3波長式炎検知器のブロック図である。 図25Aは他の従来例の赤外線式炎検知器の概略斜視図、図25Bは当該赤外線式炎検知器の要部概略斜視図である。 従来例の赤外線式ガス検知器の概略構成図である。 従来の赤外線受光モジュールの概略断面図である。 図28Aは他の従来例の赤外線式ガス検知器の概略縦断面図、図28Bは当該赤外線式ガス検知器の概略横断面図、図28Cは赤外線光学フィルタの概略側面図である。
 本実施形態の赤外線式炎検知器は、図1および図2に示すように、複数(ここでは、2つ)の焦電素子4,4を有する赤外線受光素子40および赤外線受光素子40の出力を信号処理する信号処理回路が設けられた回路ブロック6と、回路ブロック6を収納するキャンパッケージ(ここでは、TO-5)からなるパッケージ7とを備えている。
 パッケージ7は、回路ブロック6が絶縁材料からなるスペーサ9を介して実装される金属製のステム71と、回路ブロック6を覆うようにステム71に固着される金属製のキャップ72とを備え、回路ブロック6の適宜部位と電気的に接続される複数本(ここでは、3本)の端子ピン75がステム71を貫通する形で設けられている。ここにおいて、ステム71は、円盤状に形成され、キャップ72は、後面が開放された有底円筒状の形状に形成されており、後面がステム71により閉塞されている。なお、スペーサ9と回路ブロック6およびステム71とは接着剤により固着されている。
 また、パッケージ7の一部を構成する上述のキャップ72において赤外線受光素子40の前方に位置する前壁には、矩形状(本実施形態では、正方形状)の窓部7aが形成されており、赤外線光学フィルタ20が窓部7aを覆うようにキャップ72の内側から配設されている。
 また、ステム71は、上述の各端子ピン75それぞれが挿通される複数の端子用孔71bが厚み方向に貫設されており、各端子ピン75が端子用孔71bに挿通された形で封止部74により封着されている。
 上述のキャップ72およびステム71は鋼板により形成されており、ステム71の周部に形成されたフランジ部71cに対して、キャップ72の後端縁から外方に延設された外鍔部72cを溶接により封着してある。
 回路ブロック6は、上述の信号処理回路の構成要素であるIC63およびチップ状の電子部品64が互いに異なる面に実装されたプリント配線板(例えば、コンポジット銅張積層板など)からなる第1の回路基板62と、第1の回路基板62における電子部品64の実装面側に積層された樹脂層65と、ガラスエポキシなどからなる絶縁性基材の表面に金属材料(例えば、銅など)からなる金属層(以下、シールド層と称す)が形成され樹脂層65に積層されたシールド板66と、赤外線受光素子40が実装されるとともにシールド板66に積層されたプリント配線板(例えば、コンポジット銅張積層板)からなる第2の回路基板67とで構成されている。なお、シールド板66の代わりに、銅箔や金属板のみでシールド層を形成してもよい。
 第1の回路基板62は、図2における下面側にIC63がフリップチップ実装され、図2における上面側に複数の電子部品64が半田リフローにより実装されている。
 上述の赤外線受光素子40は、互いに極性の異なる2つ1組の焦電素子4,4が焦電材料(例えば、リチウムタンタレートなど)からなる焦電素子形成用基板41において並設され且つ2つの焦電素子4,4の差動出力が得られるように逆直列に接続されたデュアル素子である(図3B参照)。IC63は、赤外線受光素子40の所定周波数帯域(例えば、1~10Hz程度)の出力を増幅する増幅回路(バンドパスアンプ)や当該増幅回路の後段のウインドウコンパレータなどが集積化されている。ここで、本実施形態における回路ブロック6では、上述のシールド板66が設けられているので、赤外線受光素子40と上記増幅回路との容量結合などに起因した発振現象の発生を防止することができる。また、赤外線受光素子40は、2つ1組の焦電素子4,4の差動出力が得られるものであればよく、2つ1組の焦電素子4,4が逆直列に接続されたものに限らず、例えば、図3Cに示すように、逆並列に接続されたものでもよい。
 第2の回路基板67には、赤外線受光素子40の焦電素子4,4と第2の回路基板67とを熱絶縁するための熱絶縁用孔67aが厚み方向に貫設されているので、赤外線受光素子40の焦電素子4,4とシールド板66との間に空隙が形成され、感度が高くなる。なお、第2の回路基板67に熱絶縁用孔67aを貫設する代わりに、第2の回路基板67に、赤外線受光素子40の焦電素子4,4と第2の回路基板67との間に空隙が形成される形で赤外線受光素子40を支持する支持部を突設してもよい。
 回路ブロック6は、第1の回路基板62、樹脂層65、シールド板66、第2の回路基板67それぞれに、上述の端子ピン75が挿通されるスルーホール62b,65b,66b,67bが厚み方向に貫設されており、赤外線受光素子40と上記信号処理回路とが端子ピン75を介して電気的に接続されている。なお、第1の回路基板62、樹脂層65、シールド板66、第2の回路基板67を積層し、回路ブロック6の厚み方向に貫通する貫通孔を形成する1回の孔あけ加工でスルーホール62b,65b,66b,67bを形成するような部品内蔵基板工法を採用すれば、製造工程の簡略化を図れるとともに回路ブロック6内の電気的な接続が容易になる。
 上述の3本の端子ピン75は、1本が給電用の端子ピン75(75a)、他の1本が信号出力用の端子ピン75(75b)、残りの1本がグランド用の端子ピン75(75c)であり、シールド板66におけるシールド層はグランド用の端子ピン75cと電気的に接続されている。ここで、端子ピン75a,75bを封着する封止部74,74(74a,74b)は、絶縁性を有する封着用のガラスにより形成されており、端子ピン75cを封着する封止部74(74c)は、金属材料により形成されている。要するに、端子ピン75a,75bはステム71と電気的に絶縁されているのに対し、グランド用の端子ピン75cはステム71と同電位となっている。したがって、シールド板66の電位はグランド電位に設定されるが、シールド機能を果たすことが可能な特定の電位であれば、グランド電位以外の電位に設定してもよい。
 本実施形態の赤外線式炎検知器の製造にあたっては、赤外線受光素子40が搭載された回路ブロック6をステム71にスペーサ9を介して実装した後、赤外線光学フィルタ20が窓部7aを閉塞する形で固着されたキャップ72の外鍔部72cとステム71のフランジ部71cとを溶接することにより、キャップ72とステム71とからなる金属製のパッケージ7内を封止すればよい。ここで、パッケージ7内は、湿度などの影響による赤外線受光素子40の特性変化を防止するために、ドライ窒素が封入されている。なお、本実施形態におけるパッケージ7は、上述のようにキャンパッケージであり、外来ノイズに対するシールド効果を高めるとともに、気密性の向上による耐候性の向上を図れる。ただし、パッケージ7は、シールド効果を有するセラミックスパッケージにより構成してもよい。
 ところで、上述の赤外線光学フィルタ20は、後述の各狭帯域フィルタ部2,2および広帯域遮断フィルタ部3が形成されたフィルタ本体部20aと当該フィルタ本体部20aの周部から外方に延設されキャップ72における窓部7aの周部に固着されるフランジ部20bとを有している。ここにおいて、赤外線光学フィルタ20は、フィルタ部20aの平面視形状が矩形状(本実施形態では、正方形状)であり、フランジ部20bの外周形状が矩形状(本実施形態では、正方形状)に形成されている。なお、本実施形態では、フィルタ本体部20aの平面形状を数mm□の正方形状としてあるが、フィルタ本体部20aの平面形状や寸法は特に限定するものではない。
 赤外線光学フィルタ20は、図4に示すように、赤外線透過材料(例えば、Siなど)からなるフィルタ形成用基板1と、当該フィルタ形成用基板1の一表面側(図4における上面側)において各焦電素子4,4それぞれに対応する部位に形成され、炎に起因するCOガスの共鳴放射により発生する特定波長からなる第1の選択波長の赤外線および当該特定波長以外の参照波長である第2の選択波長の赤外線それぞれを選択的に透過させる2つ1組の狭帯域透過フィルタ部2,2と備えている。さらに、赤外線光学フィルタ20は、フィルタ形成用基板1の他表面側(図4における下面側)に形成され、各狭帯域フィルタ部2,2により設定される赤外線の反射帯域よりも長波長の赤外線を吸収する広帯域遮断フィルタ部3を備えている。
 上述の赤外線光学フィルタ20は、フィルタ形成用基板1の上記一表面側で2つ1組の狭帯域透過フィルタ部2,2が並設されている。各狭帯域透過フィルタ部2,2は、屈折率が異なり且つ光学膜厚が等しい複数種類(ここでは、2種類)の薄膜21b,21aが積層された第1のλ/4多層膜21と、第1のλ/4多層膜21におけるフィルタ形成用基板1側とは反対側に形成され上記複数種類の薄膜21a,21bが積層された第2のλ/4多層膜22と、第1のλ/4多層膜21と第2のλ/4多層膜22との間に介在し各選択波長に応じて光学膜厚を各薄膜21a,21bの光学膜厚とは異ならせた波長選択層23,23とを備えている。なお、2種類の薄膜21a,21bについての光学膜厚のばらつきの許容範囲は±1%程度であり、当該光学膜厚のばらつきに応じて物理膜厚のばらつきの許容範囲も決まる。
 また、赤外線光学フィルタ20は、第1のλ/4多層膜21および第2のλ/4多層膜22における低屈折率層である薄膜21bの材料(低屈折率材料)として遠赤外線を吸収する遠赤外線吸収材料の一種であるAlを採用し、高屈折率層である薄膜21aの材料(高屈折率材料)としてGeを採用している。また、赤外線光学フィルタ20は、波長選択層23,23の材料を、当該波長選択層23,23直下の第1のλ/4多層膜21の上から2番目の薄膜21b,21aの材料と同じ材料とし、第2のλ/4多層膜22のうちフィルタ形成用基板1から最も遠い薄膜21b,21bが、上述の低屈折率材料により形成されている。ここで、遠赤外線吸収材料としては、Alに限らず、Al以外の酸化物であるSiOや、Taを採用してもよく、SiOの方がAlよりも屈折率が低いので、高屈折率材料と低屈折率材料との屈折率差を大きくできる。
 ところで、火災時に炎の中のCOガスの共鳴放射により発生する特定波長である第1の選択波長は、4.3μm(ないし4.4μm)であり、住宅内などで発生する可能性のある各種ガスにおける赤外線の吸収波長に関して、CH(メタン)が3.3μm、CO(一酸化炭素)が4.7μm、NO(一酸化窒素)が5.3μmである。そこで、本実施形態における赤外線光学フィルタ20では、参照波長である第2の選択波長を第1の選択波長に比較的近い3.9μmに設定してあり、第1の選択波長および第2の選択波長それぞれの赤外線を選択的に検知するために、狭帯域透過フィルタ部2,2が3.1μm~5.5μm程度の赤外領域に反射帯域を有する必要があって、2.4μm以上の反射帯域幅Δλが必要不可欠である。なお、反射帯域は、各薄膜21a,21bに共通する光学膜厚の4倍に相当する設定波長をλとすれば、図5に示すように、入射光の波長の逆数である波数を横軸、透過率を縦軸とした透過スペクトル図において、1/λを中心として対称となる。
 ここにおいて、本実施形態では、波長選択層23,23の各光学膜厚を適宜設定することによって上述の第1の選択波長の赤外線の検出が可能となるように、第1のλ/4多層膜21および第2のλ/4多層膜22の設定波長λを4.0μmとしている。また、各薄膜21a,21bの物理膜厚は、薄膜21aの材料である高屈折率材料の屈折率をn、薄膜21bの材料である低屈折率材料の屈折率nとすると、それぞれλ/4n、λ/4nとなるように設定してある。具体的には、高屈折率材料がGe、低屈折率材料がAlの場合、n=4.0、n=1.7として、高屈折率材料により形成する薄膜21aの物理膜厚を250nmに設定し、低屈折率材料により形成する薄膜21bの物理膜厚を588nmに設定してある。
 ここで、Si基板からなるフィルタ形成用基板1の一表面側に低屈折率材料からなる薄膜21bと高屈折率材料からなる薄膜21aとを交互に積層したλ/4多層膜(屈折率周期構造)の積層数を21とし、各薄膜21a,21bでの吸収がない(つまり、各薄膜21a,21bの消衰係数を0)と仮定して、設定波長λを4μmとした場合の透過スペクトルのシミュレーション結果を図6に示す。
 図6は、横軸が入射光(赤外線)の波長、縦軸が透過率であり、同図中の“A”は高屈折率材料をGe(n=4.0)、低屈折率材料をAl(n=1.7)とした場合の透過スペクトルを、同図中の“B”は高屈折率材料をGe(n=4.0)、低屈折率材料をSiO(n=1.5)とした場合の透過スペクトルを、同図中の“C”は高屈折率材料をGe(n=4.0)、低屈折率材料をZnS(n=2.3)とした場合の透過スペクトルを、それぞれ示している。
 また、図7に、高屈折率材料をGeとして、低屈折率材料の屈折率を変化させた場合のλ/4多層膜(屈折率周期構造)の反射帯域幅Δλをシミュレーションした結果を示す。なお、図7中の“A”、“B”、“C”は、それぞれ図6中の“A”、“B”、“C”の点に対応している。
 図6および図7から、高屈折率材料と低屈折率材料との屈折率差が大きくなるにつれて反射帯域幅Δλが増大することが分かり、高屈折率材料がGeの場合には、低屈折率材料としてAlもしくはSiOを採用することにより、少なくとも3.1μm~5.5μmの赤外領域の反射帯域を確保できるとともに、反射帯域幅Δλを2.4μm以上とできることが分かる。
 次に、図8に示すように、第1のλ/4多層膜21の積層数を4、第2のλ/多層膜22の積層数を6として、薄膜21aの高屈折率材料をGe、薄膜21bの低屈折率材料をAl、第1のλ/4多層膜21と第2のλ/4多層膜22との間に介在させる波長選択層23の材料を低屈折率材料であるAlとし、当該波長選択層23の光学膜厚を0nm~1600nmの範囲で種々変化させた場合の透過スペクトルについてシミュレーションした結果を図9および図10に示す。ここで、図8中の矢印A1は入射光、矢印A2は透過光、矢印A3は反射光をそれぞれ示している。また、波長選択層23の光学膜厚は、当該波長選択層23の材料の屈折率をn、当該波長選択層23の物理膜厚をdとすると、屈折率nと物理膜厚dとの積、つまり、ndで求められる。なお、このシミュレーションにおいても、各薄膜21a,21bでの吸収がない(つまり、各薄膜21a,21bの消衰係数を0)と仮定して、設定波長λを4μm、薄膜21aの物理膜厚を250nm、薄膜21bの物理膜厚を588nmとした。
 図9および図10から、第1のλ/4多層膜21および第2のλ/4多層膜22により、3μm~6μmの赤外領域に反射帯域が形成されていることが分かるとともに、波長選択層23の光学膜厚ndを適宜設定することにより、3μm~6μmの反射帯域の中に狭帯域の透過帯域が局在していることが分かる。具体的には、波長選択層23の光学膜厚ndを0nm~1600nmの範囲で変化させることにより、透過ピーク波長を3.1μm~5.5μmの範囲で連続的に変化させることが可能であることが分かる。より具体的には、波長選択層23の光学膜厚ndを、1390nm、0nm、95nm、235nm、495nmと変化させれば、透過ピーク波長がそれぞれ、3.3μm、4.0μm、4.3μm、4.7μm、5.3μmとなる。
 したがって、第1のλ/4多層膜21および第2のλ/4多層膜22の設計を変えることなく波長選択層23の光学膜厚の設計のみを適宜変えることにより、特定波長が4.3μmの炎のセンシングに限らず、特定波長が3.3μmのCH、特定波長が4.7μmのCO、特定波長が5.3μmのNOなどの種々のガスのセンシングが可能となる。なお、光学膜厚ndの0nm~1600nmの範囲は、物理膜厚dの0nm~941nmの範囲に相当する。また、波長選択層23の光学膜厚ndが0nmの場合、つまり、図9において波長選択層23がない場合の透過ピーク波長が4000nmとなるのは、第1のλ/4多層膜21および第2のλ/4多層膜22の設定波長λを4μm(4000nm)に設定しているからであり、第1のλ/4多層膜21および第2のλ/4多層膜22の設定波長λを適宜変化させることにより、波長選択層23がない場合の透過ピーク波長を変化させることができる。
 ところで、薄膜21bの低屈折率材料として、第1のλ/4多層膜21および第2のλ/4多層膜22により設定される赤外線の反射帯域(つまり、狭帯域透過フィルタ部2,2により設定される赤外線の反射帯域)よりも長波長域の赤外線を吸収する遠赤外線吸収材料であるAlを採用しているが、遠赤外線吸収材料としては、MgF、Al、SiO、Ta、SiNの5種類について検討した。具体的には、MgF膜、Al膜、SiO膜、Ta膜、SiN膜それぞれについて膜厚を1μmに設定してSi基板上に成膜する際の成膜条件を下記表1のように設定し、MgF膜、Al膜、SiO膜、Ta膜、SiN膜それぞれの透過スペクトルを測定した結果を図11に示す。ここで、MgF膜、Al膜、SiO膜、Ta膜、SiN膜の成膜装置としては、イオンビームアシスト蒸着装置を用いた。
Figure JPOXMLDOC01-appb-T000001
 ここにおいて、表1中の「IB条件」は、イオンビームアシスト蒸着装置で成膜する際のイオンビームアシストの条件であり、「IBなし」は、イオンビームの照射なし、「酸素IB」は、酸素イオンビームの照射あり、「ArIB」は、アルゴンイオンビームの照射あり、を意味している。また、図11は、横軸が波長、縦軸が透過率であり、同図中の“A1”がAl膜、“A2”がTa膜、“A3”がSiO膜、“A4”がSiN膜、“A5”がMgF膜、それぞれの透過スペクトルを示している。
 また、上述のMgF膜、Al膜、SiO膜、Ta膜、SiN膜について、「光学特性:吸収」、「屈折率」、「成膜容易性」を評価項目として、検討した結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ここにおいて、「光学特性:吸収」の評価項目については、図11の透過スペクトルから算出した6μm以上の遠赤外線の吸収率により評価した。表2では、各評価項目それぞれについて、評価の高いランクから低いランクの順に「◎」、「○」、「△」、「×」を記載してある。ここで、「光学特性:吸収」の評価項目については、遠赤外線の吸収率が高い方が評価のランクを高く、遠赤外線の吸収率が低い方を評価のランクを低くしてある。また、「屈折率」の評価項目については、高屈折率材料との屈折率差を大きくする観点から、屈折率が低い方が評価のランクを高く、屈折率が高い方が評価のランクを低くしてある。また、「成膜容易性」の評価項目については、蒸着法もしくはスパッタ法により緻密な膜の得やすい方が評価のランクを高く、緻密な膜の得にくい方が評価のランクを低くしてある。ただし、各評価項目について、SiOはSiOとして、SiNはSiとして評価した結果である。
 表2より、MgF、Al、SiO、Ta、SiNの5種類に関して、「成膜容易性」の評価項目については大差がなく、「光学特性:吸収」および「屈折率」の評価項目に着目した結果、遠赤外線吸収材料としては、Al、SiO、Ta、SiNのいずれかを採用することが好ましいとの結論に至った。ここにおいて、遠赤外線吸収材料としてAlもしくはTを採用する場合には、遠赤外線吸収材料がSiOやSiNである場合に比べて、遠赤外線の吸収性を向上させることができる。ただし、高屈折率材料との屈折率差を大きくするという観点からは、TよりもAlの方が好ましい。また、遠赤外線吸収材料としてSiNを採用する場合には、遠赤外線吸収材料により形成される薄膜21bの耐湿性を高めることができる。また、遠赤外線吸収材料としてSiOを採用すれば、高屈折率材料との屈折率差を大きくすることができ、第1のλ/4多層膜21および第2のλ/4多層膜22の積層数(層数)の低減を図れる。
 以下、赤外線光学フィルタ20における狭帯域透過フィルタ部2,2の製造方法について図12A~図12Eを参照しながら説明する。
 まず、Si基板からなるフィルタ形成用基板1の一表面側の全面に、低屈折率材料であるAlからなる所定の物理膜厚(ここでは、588nm)の薄膜21bと高屈折率材料であるGeからなる所定の物理膜厚(ここでは、250nm)の薄膜21aとを交互に積層することで第1のλ/4多層膜21を形成する第1のλ/4多層膜形成工程を行う。続いて、フィルタ形成用基板1の上記一表面側(ここでは、第1のλ/4多層膜21の表面)側の全面に、第1のλ/4多層膜21の上から2番目に位置する薄膜21bと同じ材料(ここでは、低屈折率材料であるAl)からなり1つの狭帯域透過フィルタ部2の選択波長に応じて光学膜厚を設定した波長選択層23を成膜する波長選択層成膜工程を行うことによって、図12Aに示す構造を得る。なお、各薄膜21b,21aおよび波長選択層23の成膜方法としては、例えば、蒸着法やスパッタ法などを採用すれば2種類の薄膜21b,21aを連続的に成膜することができるが、低屈折率材料が上述のようにAlの場合には、イオンビームアシスト蒸着法を採用し、薄膜21bの成膜時に酸素イオンビームを照射するようにして薄膜21bの緻密性を高めることが好ましい。また、低屈折率材料としては、Al以外の遠赤外線吸収材料であるSiO、T、SiNを採用してもよい。いずれにしても、遠赤外線吸収材料からなる薄膜21bの成膜にあたっては、イオンビームアシスト蒸着法により成膜することが望ましく、低屈折率材料からなる薄膜21bの化学的組成を精密に制御できるとともに、薄膜21bの緻密性を高めることができる。
 上述の波長選択層成膜工程の後、狭帯域透過フィルタ部2に対応する部位のみを覆うレジスト層31をフォトリソグラフィ技術を利用して形成するレジスト層形成工程を行うことによって、図12Bに示す構造を得る。
 その後、レジスト層31をマスクとし、第1のλ/4多層膜21の一番上の薄膜21aをエッチングストッパ層として波長選択層23の不要部分を選択的にエッチングする波長選択層パターニング工程を行うことによって、図12Cに示す構造を得る。ここで、波長選択層パターニング工程では、上述のように低屈折率材料が酸化物(Al)、高屈折率材料が半導体材料(Ge)であれば、エッチング液としてフッ酸系溶液を用いたウェットエッチングを採用することにより、ドライエッチングを採用する場合に比べて、エッチング選択比の高いエッチングが可能となる。これは、AlやSiOのような酸化物はフッ酸系溶液に溶解しやすいのに対して、Geはフッ酸系溶液に非常に溶けにくいためである。一例を挙げれば、フッ酸系溶液としてフッ酸(HF)と純水(HO)との混合液からなる希フッ酸(例えば、フッ酸の濃度が2%の希フッ酸)を用いてウェットエッチングを行えば、Alのエッチングレートが300nm/min程度で、AlとGeとのエッチングレート比が500:1程度であり、エッチング選択比の高いエッチングを行うことができる。
 上述の波長選択層パターニング工程の後、レジスト層31を除去するレジスト層除去工程を行うことによって、図12Dに示す構造を得る。
 上述のレジスト層除去工程の後、フィルタ形成用基板1の上記一表面側の全面に、高屈折率材料であるGeからなる所定の物理膜厚(250nm)の薄膜21aと低屈折率材料であるAlからなる所定の物理膜厚(588nm)の薄膜21bとを交互に積層することで第2のλ/4多層膜22を形成する第2のλ/4多層膜形成工程を行うことによって、図12Eに示す構造を得る。ここにおいて、第2のλ/4多層膜形成工程を行うことによって、狭帯域透過フィルタ部2に対応する領域では、第1のλ/4多層膜21の最上層の薄膜21a上に直接、第2のλ/4多層膜22の最下層の薄膜21aが積層されることとなり、当該最上層の薄膜21aと当該最下層の薄膜21aとで狭帯域透過フィルタ部2の波長選択層23を構成している。ただし、この狭帯域透過フィルタ部2の透過スペクトルは、図10のシミュレーション結果では、光学膜厚ndが0nmの場合に相当する。なお、各薄膜21a,21bの成膜方法としては、例えば、蒸着法やスパッタ法などを採用すれば2種類の薄膜21a,21bを連続的に成膜することができるが、低屈折率材料が上述のようにAlの場合には、イオンビームアシスト蒸着法を採用し、薄膜21bの成膜時に酸素イオンビームを照射するようにして薄膜21bの緻密性を高めることが好ましい。
 要するに、赤外線光学フィルタ20の狭帯域透過フィルタ部2,2の製造にあたっては、フィルタ形成用基板1の上記一表面側に屈折率が異なり且つ光学膜厚が等しい複数種類(ここでは、2種類)の薄膜21b,21aを積層する基本工程の途中で、当該途中における積層膜(ここでは、第1のλ/4多層膜21)の上から2番目の層と同じ材料からなる波長選択層23(ここでは、i=1)であって複数の狭帯域透過フィルタ部2,・・・,2(ここでは、m=2)のうちの任意の1つの狭帯域透過フィルタ部2(ここでは、i=1)の選択波長に応じて光学膜厚を設定した波長選択層23を上記積層膜上に成膜する波長選択層成膜工程と、波長選択層成膜工程にて成膜した波長選択層23のうち上記任意の1つの狭帯域透過フィルタ部2に対応する部分以外の不要部分を上記積層膜の1番上の層をエッチングストッパ層としてエッチングする波長選択層パターニング工程とからなる波長選択層形成工程を1回行っており、複数の狭帯域透過フィルタ部2,2が形成される。ここで、上述の基本工程の途中で、波長選択層形成工程を複数回行うようにすれば、1チップで、より多くの選択波長を有する赤外線光学フィルタ20を製造することができる。
 また、上述の製造方法においては、フィルタ形成用基板1の上記一表面側に複数種類の薄膜21a,21bを積層する基本工程の途中で、当該途中における積層膜(ここでは、第1のλ/4多層膜21)の上から2番目の層と同じ材料からなる薄膜であって各フィルタ部2,・・・,2(ここでは、m=2)のうちの任意の1つのフィルタ部2(ここでは、i=1)の選択波長に応じて光学膜厚を設定した薄膜を上記積層膜上に成膜し、上記積層膜上に成膜した薄膜のうち上記任意の1つのフィルタ部2(ここでは、i=1)に対応する部分以外の部分をエッチングすることで少なくとも1つの波長選択層23のパターンを形成している。しかしながら、これに限らず、基本工程の途中で、少なくとも1つの波長選択層23のパターンを形成すればよく、例えば、波長選択層23が、波長選択層23と同じ材料であり且つ波長選択層23よりも光学膜厚が小さく設定されている場合には、上記積層膜上の薄膜を途中までエッチングすることで2つの波長選択層23,23のパターンを形成するようにしてもよい。
 また、上述の製造方法に限らず、フィルタ形成用基板1の上記一表面側に第1のλ/4多層膜21を形成する第1のλ/4多層膜形成工程と、第1のλ/4多層膜におけるフィルタ形成用基板1側とは反対側に第2のλ/4多層膜22を形成する第2のλ/4多層膜形成工程との間で、各フィルタ部2,・・・,2(ここでは、m=2)に対応する各部位それぞれに、互いに光学膜厚の異なる波長選択層23,・・・,23(ここでは、m=2)をマスク蒸着により形成するようにしてもよい。
 また、上述の製造方法において、上述の2種類の薄膜21a,21bのうち一方の薄膜21bの遠赤外線吸収材料がSiOもしくはSiNであり、他方の薄膜21aがSiである場合には、Siを蒸発源とするイオンビームアシスト蒸着装置を用い、Siからなる薄膜21aを成膜するときは真空雰囲気とし、酸化物であるSiOからなる薄膜21bを成膜するときは酸素イオンビームを照射し、窒化物であるSiNからなる薄膜21bを成膜するときは窒素イオンビームを照射するようにすることが好ましい。これにより、上述の製造方法において、2種類の薄膜21a,21bの蒸発源を共通化することができるので、複数の蒸発源を備えたイオンビームアシスト蒸着装置を用意する必要がなく、製造コストの低コスト化を図れる。同様に、上述の製造方法において、上述の2種類の薄膜21a,21bのうち一方の薄膜21bの遠赤外線吸収材料がSiOもしくはSiNであり、他方の薄膜21aがSiである場合、Siをターゲットとするスパッタ装置を用い、Siからなる薄膜21aを成膜するときは真空雰囲気とし、SiOからなる薄膜21bを成膜するときは酸素雰囲気とし、SiNからなる薄膜21bを成膜するときは窒素雰囲気とすることが好ましい。これにより、上述の製造方法において、2種類の薄膜21a,21bのターゲットを共通化することができるので、複数のターゲットを備えたスパッタ装置を用意する必要がなく、製造コストの低コスト化を図れる。
 上述の赤外線光学フィルタ20の狭帯域透過フィルタ部2,2では、波長選択層23,23それぞれの光学膜厚ndを適宜設定することにより、図13に示すように、略3.9μmと略4.3μmとに透過ピーク波長(中心波長)を有する赤外線光学フィルタ20を1チップで実現することができる。ここで、透過ピーク波長が略3.9μmの透過スペクトルと、透過ピーク波長が略4.3μmの透過スペクトルとは、両方とも半値幅(FWHM)が約100nmであるが、狭帯域透過フィルタ部2,2を適宜設計することにより、半値幅を広げたり、透過率を上げたりすることができる。
 なお、第1のλ/4多層膜21および第2のλ/4多層膜22は、屈折率周期構造を有していればよく、3種類以上の薄膜を積層したものでもよい。
 次に、赤外線光学フィルタ20の広帯域遮断フィルタ部3について説明する。
 広帯域遮断フィルタ部3は、屈折率が異なる複数種類(ここでは、2種類)の薄膜3a,3bが積層された多層膜により構成されている。ここにおいて、広帯域遮断フィルタ部3は、相対的に屈折率の低い低屈折率層である薄膜3aの材料として、遠赤外線を吸収する遠赤外線吸収材料の一種であるAlを採用し、相対的に屈折率の高い高屈折率層である薄膜3bの材料としてGeを採用しており、薄膜3aと薄膜3bとを交互に積層し積層数を11としてあるが、この積層数は特に限定するものではない。ただし、広帯域遮断フィルタ部3は、フィルタ形成用基板1から最も遠い最上層を低屈折率層である薄膜3aにより構成することが光学特性の安定性の観点から望ましい。ここで、遠赤外線吸収材料としては、Alに限らず、Al以外の酸化物であるSiO、Taを採用してもよく、SiOの方がAlよりも屈折率が低いので、高屈折率材料と低屈折率材料との屈折率差を大きくできる。また、遠赤外線吸収材料としては、窒化物であるSiNを採用してもよい。
 上述のように、広帯域遮断フィルタ部3は、2種類の薄膜3a,3bのうちの1種類の薄膜3aが遠赤外線を吸収する遠赤外線吸収材料であるAlにより形成されているが、複数種類のうちの少なくとも1種類が遠赤外線吸収材料により形成されていればよい。例えば、3種類の薄膜としてGe膜とAl膜とSiO膜とが、Si基板よりなる半導体基板1に近い側からGe膜-Al膜-Ge膜-SiO膜-Ge膜-Al膜-Ge膜・・・の順に積層された多層膜としてもよく、この場合は、3種類の薄膜のうち2種類の薄膜が遠赤外線吸収材料により形成されることとなる。
 ところで、上述の広帯域遮断フィルタ部3では、狭帯域透過フィルタ部2,2により設定される赤外線の反射帯域よりも長波長域の遠赤外線を吸収する。ここで、広帯域遮断フィルタ部3では、赤外線を吸収する遠赤外線吸収材料としてAlを採用しているが、上述の狭帯域透過フィルタ部2,2と同様、遠赤外線吸収材料としては、MgF、Al、SiO、Ta、SiNの5種類について検討した。
 ここにおいて、本願発明者らは、イオンビームアシストの効果を確認するために、Si基板上にAl膜を成膜する時のイオンビームの照射量を種々変化させたサンプルを用意し、各サンプルのAl膜の膜質の違いをFT-IR(フーリエ変換赤外分光)により分析した。図14は、FT-IRによる分析結果を示し、横軸が波数、縦軸が吸収率であり、同図中の“A1”はイオンビームアシストなしの場合のサンプル、“A2”、“A3”、“A4”、“A5”、“A6”はイオンビームの照射量を少ない方から多い方へ変化させた場合の各サンプルそれぞれの分析結果を示している。この図14から、イオンビームを照射することにより、水分に起因した3400cm-1付近の吸収率を低減でき、イオンビームの照射量を多くするほど水分に起因した3400cm-1付近の吸収率が低下していることが分かる。要するに、イオンビームアシストによりAl膜の膜質を向上でき、緻密性を高めることができるものと推測される。
 また、上述のように、遠赤外線吸収材料としてAlもしくはTを採用する場合には、遠赤外線吸収材料がSiOやSiNである場合に比べて、遠赤外線の吸収性を向上させることができる。
 また、本願発明者らは、Si基板上に1μmのAl膜を成膜した参考例の透過スペクトルを測定したところ図15Aの“A1”に示すような実測値が得られ、実測値“A1”が図15A中の“A2”に示す計算値からずれているという知見を得て、Alにより形成される薄膜3aの光学パラメータ(屈折率、吸収係数)を図15Aの実測値“A1”からCauchyの式により算出した。この算出した光学パラメータを図15Bに示してある。図15Bに示した新規の光学パラメータでは、屈折率および吸収係数のいずれも800nm~20000nmの波長域で一定という訳ではなく、波長が長くなるにつれて屈折率が徐々に低下し、また、波長が7500nm~15000nmの波長域では波長が長くなるにつれて吸収係数が徐々に大きくなる。
 上述のAl膜の新規の光学パラメータを用いて赤外線光学フィルタ20として、下記表3の積層構造を有し透過ピーク波長が4.4μmの狭帯域透過フィルタ部2と、下記表4の積層構造を有する広帯域遮断フィルタ部3とがフィルタ形成用基板1の厚み方向において重なるように形成されている部分の透過スペクトルのシミュレーション結果を図16の“A1”に示す。また、上述のAl膜の新規の光学パラメータを用いずに、Al膜の屈折率を一定、吸収係数を0で一定とした比較例のシミュレーション結果を図16の“A2”に示す。なお、実施例、比較例のいずれもGeの屈折率を4.0で一定、吸収係数を0.0で一定としてシミュレーションした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上述の図16は、横軸が入射光(赤外線)の波長、縦軸が透過率である。図16から、Al膜の新規の光学パラメータを用いていない比較例の透過スペクトル“A2”では、9000nm~20000nmの遠赤外線が遮断されていないのに対して、Al膜の新規の光学パラメータを用いた実施例の透過スペクトル“A1”では9000nm~20000nmの遠赤外線も遮断されており、積層数が29層の広帯域遮断フィルタ部3と積層数が11層の狭帯域透過フィルタ部2とで波長が800nm~20000nmの広帯域の赤外線を遮断でき、4.3μm付近のみに狭帯域の透過帯域を局在させ得ることが分かる。なお、広帯域遮断フィルタ部3の透過スペクトルは、例えば、図17に示すようになり、図17の例では、4μm以下の近赤外線と5.6μm以上の遠赤外線とが遮断される。
 本実施形態の赤外線光学フィルタ20の製造にあたっては、まず、Si基板からなるフィルタ形成用基板1の上記他表面側に例えばAl膜からなる薄膜3aと例えばGe膜からなる薄膜3bとを交互に積層することで広帯域遮断フィルタ部3を形成する広域遮断フィルタ部形成工程を行い、その後、フィルタ形成用基板1の上記一表面側に上述のようにして狭帯域透過フィルタ部2,2を形成すればよい。
 次に、本実施形態の赤外線式炎検知器を用いた赤外線式炎検知装置について図18を参照しながら説明する。
 図18に示した赤外線式炎検知装置は、互いに極性の異なる2つ1組の焦電素子4,4が焦電素子形成用基板41において並設され且つ逆直列に接続された赤外線受光素子40と、広帯域遮断フィルタ部3および互いに透過波長域の異なる2つの狭帯域透過フィルタ部2,2を有し赤外線受光素子40の前方に配置された赤外線光学フィルタ20と、赤外線受光素子40の出力(2つ1組の焦電素子4,4の差動出力)を増幅する増幅部(増幅回路)63aと、増幅部63aの出力信号に基づいて火災の炎の有無を判定するマイクロコンピュータなどからなる信号処理部100とを備えている。ここにおいて、信号処理部100は、火災の炎が有ると判断した場合には、火災検知信号を外部の通報装置へ出力するようにしてもよいし、LEDやディスプレイなどの表示装置やスピーカやブザーなどの音響装置から火災の発生を報知させるようにしてもよい。なお、増幅部63aは上述のIC63に設けられているが、IC63には、増幅部63aだけでなく、信号処理部100も設けてもよい。要するに、本実施形態の赤外線式炎検知器に信号処理部100を設けてもよい。
 ところで、図18に示した構成の赤外線式炎検知装置の比較例として、図19に示す構成の赤外線式炎検知装置が考えられる。
 図19に示す構成の赤外線式炎検知装置は、それぞれ1つの焦電素子からなる赤外線受光素子40,40と、サファイア基板を用いて形成され赤外線受光素子40,40の前方に配置された赤外線光学フィルタ320,320と、各赤外線受光素子40,40それぞれの出力信号を各別に増幅する2つの増幅部(増幅回路)163,163と、2つの増幅部163,163の出力信号の差分を求める減算器164と、減算器164の出力信号に基づいて火災の炎の有無を判定するマイクロコンピュータなどからなる信号処理部100’とを備えている。なお、図19に示す構成の赤外線式炎検知装置は、赤外線受光素子40,40と、赤外線受光素子40,40を収納したキャンパッケージ170,170と、赤外線光学フィルタ320,320とで赤外線センサ340,340を構成している。しかしながら、この赤外線式炎検知装置では、赤外線受光素子40,40の出力信号が微弱であり、電磁ノイズの影響を受けやすいので、2つの赤外線センサ340,340と2つの増幅部163,163と減算器164とを、シールド部材180によりシールドすることによって赤外線式炎検知器を構成しており、赤外線式炎検知器のサイズがキャンパッケージ170,170のサイズに比べて、かなり大型化し、赤外線式炎検知装置も大型化してしまう。
 これに対して、図18に示した構成の赤外線式炎検知装置は、上述の赤外線式炎検知器を用いているので、図19に示した構成の赤外線式炎検知装置に比べて、赤外線炎検知器の劇的な小型化を図れ、赤外線式炎検知装置の劇的な小型化を図れる。
 また、図18に示した構成の赤外線式炎検知装置は、上述の赤外線光学フィルタ20を備えているので、熱の放射により発生した赤外線の影響を除去できるというメリットがある。ここで、物体が黒体の場合、物体の温度と放射エネルギとの関係は図20に示すようになり、物体から放射される赤外線の放射エネルギ分布は、物体の温度に依存する。ここにおいて、ウィーンの変位側によれば、放射エネルギ分布の極大値を与える赤外線の波長をλ〔μm〕、物体の絶対温度をT〔K〕とすれば、波長λは、λ=2898/Tとなる。熱源から放射されるスペクトルは発光ダイオードから放射されるスペクトルに比べて非常にブロードである。このため、図19に示した比較例の赤外線式炎検知装置では、ノイズの原因となったり、増幅部163,163の飽和の原因となり、感度低下の原因となってしまうが、図18に示した構成の赤外線式炎検知装置では、増幅部63aの飽和を防止でき、感度の向上を図れる。
 ところで、火災時には、炎の熱によりCOガスの共鳴放射が起こり、4.3μmをピーク波長とした赤外線が放射される。このCOガスの共鳴放射により発生する赤外線の放射スペクトルは、4.3μmをピーク波長とする狭帯域の放射スペクトルである。一方、太陽光や熱源、アーク、照明などの外乱光は、一般的に特定波長のスペクトルが放射されることは希であり、大抵は帯域の広いブロードな放射スペクトルとなる。そこで、本実施形態では、上述のように、第1の選択波長をCOガス共鳴放射のピーク波長である4.3μm、第2の選択波長を4.3μm近傍の3.9μmに設定してある。ここで、第2の選択波長は、外乱光の当該第2の選択波長の赤外線強度が、外乱光の4.3μmの赤外線強度とできるだけ近くなるような波長に設定することが好ましい。
 ここで、図19に示した構成の赤外線式炎検知装置において、各赤外線光学フィルタ320,320それぞれの選択波長を4.3μm、3.9μmとし、各赤外線受光素子40,40それぞれの出力信号のうち炎に起因した4.3μm、3.9μmそれぞれの赤外線による信号成分をIs1,Is2、外乱光のみに起因した4.3μm、3.9μmそれぞれの赤外線による直流バイアス成分をId1,Id2とし、各増幅部163,163の増幅率をG1,G2とし、各増幅部163,163の出力信号をI1,I2とすると、
I1=(Is1+Id1)×G1
I2=(Is2+Id2)×G2
となる。したがって、減算器164の出力信号は、
I1-I2=(Is1+Id1)×G1-(Is2+Id2)×G2
となる。しかしながら、外乱光による直流バイアス成分Id1,Id2が非常に大きい場合、各増幅部163,163の飽和が起こるので、S/N比が低下してしまう。
 これに対して、図18に示した構成の赤外線式炎検知装置における赤外線受光素子40は、焦電素子形成用基板41上で2つの焦電素子4,4の差動出力が得られるように両焦電素子4,4が図3(b)のように接続されているから、焦電素子4,4それぞれの出力信号が上述の赤外線受光素子40,40と同じであるとし、赤外線受光素子40の出力をIとすると、
I=(Is1+Id1)-(Is2+Id2)
となる。ここで、外乱光の放射スペクトルは一般的にはブロードなので、第1の選択波長と第2の選択波長とを、外乱光の放射強度が略同じとなる波長帯域に含まれるように選択しておけば、
Id1=Id2
とみなすことができ、
I=Is1-Is2
となり、太陽光などの外乱光による直流バイアス成分の影響をキャンセルすることができ(つまり、火災が発生しておらず、CO2ガスの共鳴放射に起因した赤外線の発生がない場合には、赤外線受光素子40の出力は略ゼロとなり)、赤外線受光素子40の出力を増幅する増幅部63aのゲインを大きくできてS/N比の向上が可能となる。
 また、本実施形態の赤外線式炎検知器では、上述のように、赤外線光学フィルタ20が、赤外線透過材料からなるフィルタ形成用基板1と、当該フィルタ形成用基板1の上記一表面側において各焦電素子4,4それぞれに対応する部位に形成され、炎に起因するCOガスの共鳴放射により発生する特定波長(4.3μm)からなる第1の選択波長の赤外線および当該特定波長以外の参照波長(例えば、3.9μm)である第2の選択波長の赤外線それぞれを選択的に透過させる2つ1組の狭帯域透過フィルタ部2,2と、フィルタ形成用基板1の上記他表面側に形成され、各狭帯域透過フィルタ部2,2により設定される赤外線の反射帯域よりも長波長の赤外線を吸収する広帯域遮断フィルタ部3とを備えている。ここで、赤外線式炎検知器は、各狭帯域透過フィルタ部2,2が、屈折率が異なり且つ光学膜厚が等しい複数種類の薄膜21a,21bが積層された第1のλ/4多層膜21と、第1のλ/4多層膜21におけるフィルタ形成用基板1側とは反対側に形成され複数種類の薄膜21a,21bが積層された第2のλ/4多層膜22と、第1のλ/4多層膜21と第2のλ/4多層膜22との間に介在し上記選択波長に応じて光学膜厚を各薄膜21a,21bの光学膜厚とは異ならせた波長選択層23,23とを有している。しかして、本実施形態の赤外線式炎検知器では、複数の狭帯域透過フィルタ部2,2を有する赤外線受光フィルタ20の小型化による低コスト化を図れ、しかも、複数の狭帯域透過フィルタ部2,2の中心間距離を短くできて特定波長の赤外線と参照波長の赤外線との光路長の差を小さくすることができ、赤外線受光素子40の各焦電素子4,4の受光効率の向上を図れる。
 また、本実施形態の赤外線式炎検知器では、赤外線光学フィルタ20の広帯域遮断フィルタ部3が、屈折率が異なる複数種類の薄膜3a,3bが積層された多層膜からなり、当該複数種類の薄膜3a,3bのうち少なくとも1種類の薄膜3aが遠赤外線を吸収する遠赤外線吸収材料により形成されている。しかして、本実施形態の赤外線式炎検知器によれば、多層膜の層数の低減を図りながらも、広帯域遮断フィルタ部3を構成する多層膜による光の干渉効果と、当該多層膜を構成する薄膜3aの遠赤外線吸収効果とにより、サファイア基板を用いることなく近赤外線から遠赤外線までの広帯域における赤外線遮断機能を実現することができ、低コスト化を図れる。
 また、本実施形態の赤外線式炎検知器では、赤外線光学フィルタ20の狭帯域透過フィルタ部2,2においても、第1のλ/4多層膜21および第2のλ/4多層膜22による光の干渉効果と、第1のλ/4多層膜21と波長選択層23,23と第2のλ/4多層膜22とで構成される多層膜における薄膜21bの遠赤外線吸収材料での遠赤外線吸収効果とにより、近赤外線から遠赤外線までの広帯域における赤外線遮断機能を有するから、近赤外線から遠赤外線までの広帯域における赤外線遮断機能を有し、且つ、所望の選択波長の赤外線を選択的に透過させることが可能な低コストの赤外線光学フィルタ20を実現できる。
 また、上述の赤外線光学フィルタ20では、遠赤外線吸収材料として、酸化物もしくは窒化物を採用しているので、遠赤外線吸収材料からなる薄膜3a,21bが酸化して光学特性が変化するのを防止することができる。また、上述の赤外線光学フィルタ20では、広帯域遮断フィルタ部3および各狭帯域透過フィルタ部2,2のいずれもフィルタ形成用基板1から最も遠い最上層が上述の酸化物もしくは窒化物により形成されているので、空気中の水分や酸素などとの反応や不純物の吸着や付着などに起因して最上層の薄膜3a,21bの物性が変化するのを防止できてフィルタ性能の安定性が高くなるとともに、広帯域遮断フィルタ部3および各狭帯域透過フィルタ部2,2の表面での反射を低減でき、フィルタ性能の向上を図れる。
 また、上述の赤外線光学フィルタ20では、遠赤外線吸収材料により形成された薄膜3aと、遠赤外線吸収材料よりも高屈折率材料であるGeにより形成された薄膜3bとが交互に積層されて広帯域遮断フィルタ部3の多層膜が構成されているので、高屈折率材料がSiやPbTeやZnSである場合に比べて、高屈折率材料と低屈折率材料との屈折率差を大きくすることができ、当該多層膜の積層数を低減できる。また、高屈折率材料としてSiを採用した場合には、高屈折率材料がZnSである場合に比べて、多層膜における高屈折率材料と低屈折率材料との屈折率差を大きくすることができ、多層膜の積層数(層数)を低減できる。また、狭帯域透過フィルタ部2,2に関しても、同様の理由により積層数を低減できる。
 ところで、本実施形態では、赤外線光学フィルタ20のフィルタ形成用基板1としてSi基板を用いているが、フィルタ形成用基板1はSi基板に限らず、Ge基板を用いてもよい。SiおよびGeそれぞれの透過特性についてインターネット上で開示されているデータをそれぞれ、図21,22に示す(〔平成21年2月25日検索〕、インターネット<URL:http://www.spectra.co.jp/kougaku.files/k_kessho.files/ktp.htm>)。
 本実施形態の赤外線式炎検知器では、上述のように、フィルタ形成用基板1としてSi基板もしくはGe基板を用いることにより、フィルタ形成用基板1がサファイア基板やMgO基板やZnS基板である場合に比べて低コスト化を図れる。
 また、本実施形態の赤外線式炎検知器は、パッケージ7が金属製であり、フィルタ形成用基板1がパッケージ7のキャップ72に対して導電性の接合材料(例えば、銀ペースト、半田など)からなる接合部58により接合して電気的に接続されている。これにより、本実施形態の赤外線式炎検知器では、フィルタ形成用基板1とパッケージ7とで電磁シールドを行うことができ、赤外線受光素子40への外来の輻射ノイズ(電磁ノイズ)の影響を防止でき、S/N比の向上による高感度化を図れる。
 また、本実施形態の赤外線式炎検知器では、キャップ72の窓部7aが矩形状に開口されるとともに、赤外線光学フィルタ20に、キャップ72における窓部7aの内周面および周部に位置決めされる段差部20cが形成されており、赤外線光学フィルタ20における段差部20cを上記接合材料からなる接合部58を介してキャップ72に固着してある。したがって、赤外線光学フィルタ20と赤外線受光素子40との平行度を高めることができ、赤外線光学フィルタ20の各狭帯域透過フィルタ部2,2の光軸方向における各狭帯域透過フィルタ部2,2と赤外線受光素子40の各焦電素子4,4との距離精度を高めることができるとともに、各狭帯域透過フィルタ部2,2の光軸と各焦電素子4,4の受光面の光軸との合わせ精度を高めることができる。
 また、本実施形態の赤外線式炎検知器では、赤外線受光素子40の出力を増幅する増幅部(増幅回路)63aの構成部品がパッケージ7内に収納されているので、赤外線受光素子40と増幅部63aとの電路を短くできるとともに、増幅部63aも電磁シールドされるから、S/N比のより一層の向上による高感度化を図れる。

Claims (5)

  1.  赤外線受光素子がパッケージ内に収納され、前記パッケージにおいて前記赤外線受光素子の前方に赤外線光学フィルタが配置された赤外線式炎検知器であって、前記赤外線受光素子は、互いに極性の異なる2つ1組の焦電素子が焦電素子形成用基板において並設され且つ逆直列もしくは逆並列に接続されてなり、前記赤外線光学フィルタは、赤外線透過材料からなるフィルタ形成用基板と、前記フィルタ形成用基板の一表面側において前記各焦電素子それぞれに対応する部位に形成され、炎に起因するCOガスの共鳴放射により発生する特定波長からなる第1の選択波長の赤外線および当該特定波長以外の参照波長である第2の選択波長の赤外線それぞれを選択的に透過させる2つ1組の狭帯域透過フィルタ部と、前記フィルタ形成用基板の他表面側に形成され、前記各狭帯域透過フィルタ部により設定される赤外線の反射帯域よりも長波長の赤外線を吸収する広帯域遮断フィルタ部とを備え、前記各狭帯域透過フィルタ部は、屈折率が異なり且つ光学膜厚が等しい複数種類の薄膜が積層された第1のλ/4多層膜と、前記第1のλ/4多層膜における前記フィルタ形成用基板側とは反対側に形成され前記複数種類の薄膜が積層された第2のλ/4多層膜と、前記第1のλ/4多層膜と前記第2のλ/4多層膜との間に介在し前記選択波長に応じて光学膜厚を前記各薄膜の光学膜厚とは異ならせた波長選択層とを有してなることを特徴とする赤外線式炎検知器。
  2.  前記広帯域遮断フィルタ部は、屈折率が異なる複数種類の薄膜が積層された多層膜からなり、当該複数種類の薄膜のうち少なくとも1種類の薄膜が遠赤外線を吸収する遠赤外線吸収材料により形成されてなることを特徴とする請求項1記載の赤外線式炎検知器。
  3.  前記フィルタ形成用基板は、Si基板もしくはGe基板であることを特徴とする請求項1記載の赤外線式炎検知器。
  4.  前記パッケージが金属製であり、前記フィルタ形成用基板が前記パッケージに電気的に接続されてなることを特徴とする請求項3記載の赤外線式炎検知器。
  5.  前記赤外線受光素子の出力を増幅する増幅回路の構成部品が前記パッケージ内に収納されてなることを特徴とする請求項4記載の赤外線式炎検知器。
PCT/JP2010/071813 2009-12-09 2010-12-06 赤外線式炎検知器 WO2011071011A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011545201A JP5838347B2 (ja) 2009-12-09 2010-12-06 赤外線式炎検知器
EP10835931A EP2511679A1 (en) 2009-12-09 2010-12-06 Infrared flame detector
CN2010800559006A CN102713540A (zh) 2009-12-09 2010-12-06 红外线式火焰检测器
KR1020127016801A KR101372989B1 (ko) 2009-12-09 2010-12-06 적외선 불꽃 검출기
US13/514,631 US20120298867A1 (en) 2009-12-09 2010-12-06 Infrared frame detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009279693 2009-12-09
JP2009-279693 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011071011A1 true WO2011071011A1 (ja) 2011-06-16

Family

ID=44145555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071813 WO2011071011A1 (ja) 2009-12-09 2010-12-06 赤外線式炎検知器

Country Status (7)

Country Link
US (1) US20120298867A1 (ja)
EP (1) EP2511679A1 (ja)
JP (1) JP5838347B2 (ja)
KR (1) KR101372989B1 (ja)
CN (1) CN102713540A (ja)
TW (1) TWI421475B (ja)
WO (1) WO2011071011A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384788A (zh) * 2011-11-11 2012-03-21 山东省科学院自动化研究所 手持式防爆红紫外火焰探测器现场检测装置
EP2639778A1 (en) * 2012-03-12 2013-09-18 Honeywell International, Inc. Method and device for detection of multiple flame types
WO2014014534A2 (en) * 2012-04-26 2014-01-23 Xyratex Technology Ltd. Monitoring radiated infrared
JP2014048161A (ja) * 2012-08-31 2014-03-17 Asahi Kasei Electronics Co Ltd 赤外線センサモジュール
WO2014112392A1 (ja) * 2013-01-21 2014-07-24 パナソニック株式会社 赤外線検出素子、赤外線検出器及び赤外線式ガスセンサ
JP2014142236A (ja) * 2013-01-23 2014-08-07 Panasonic Corp 赤外線受光ユニット、赤外線式ガスセンサ
US9335209B2 (en) 2014-02-26 2016-05-10 Seiko Epson Corporation Optical module and electronic apparatus
JP2016102651A (ja) * 2014-11-27 2016-06-02 ホーチキ株式会社 炎検出装置
CN106698323A (zh) * 2017-01-16 2017-05-24 北京芯创睿胜科技有限公司 一种红外吸收结构及其与红外传感器件的集成方法
JP2017182402A (ja) * 2016-03-30 2017-10-05 能美防災株式会社 炎検知器
WO2017191746A1 (ja) * 2016-05-06 2017-11-09 国立大学法人神戸大学 焦電型赤外線センサ素子
JP2018200246A (ja) * 2017-05-29 2018-12-20 ホーチキ株式会社 火炎検出装置
JP2019185694A (ja) * 2018-04-18 2019-10-24 ホーチキ株式会社 炎検出装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226883B2 (ja) * 2011-02-01 2013-07-03 Necトーキン株式会社 焦電型赤外線センサ
WO2013184136A1 (en) * 2012-06-08 2013-12-12 Empire Technology Development Llc Multi-frequency filter arrays for low cost spectrometers
US9939323B2 (en) * 2012-12-28 2018-04-10 Illinois Tool Works Inc. IR sensor with increased surface area
CN103405875B (zh) * 2013-08-05 2015-06-24 同济大学 可旋转火焰探测装置
US20170153144A1 (en) * 2015-06-02 2017-06-01 Dongguan Tranesen Optoelectronics Co., Ltd Pyroelectric sensor
CN105205969B (zh) * 2015-09-23 2016-05-25 陈一平 三维空间火源探测智能定位装置
DE102015223362A1 (de) * 2015-11-25 2017-06-01 Minimax Gmbh & Co. Kg Explosionsgeschütztes Gehäuse für Mittel zum Senden und Empfangen elektromagnetischer Strahlung
US10444076B2 (en) * 2015-11-26 2019-10-15 Sensirion Ag Infrared device
CN106932104A (zh) * 2015-12-30 2017-07-07 上海新微技术研发中心有限公司 一种双元火焰探测传感器
WO2017194367A1 (de) * 2016-05-13 2017-11-16 Siemens Schweiz Ag Brandmelder mit einer photodiode zur erfassung von umgebungslicht, um davon abhängig die ausgabe eines möglichen brandalarms zu beschleunigen
US10012545B2 (en) * 2016-12-07 2018-07-03 Wing Lam Flame detector with proximity sensor for self-test
US20180235478A1 (en) * 2017-02-18 2018-08-23 VVV IP Holdings Limited Multi-Vital Sign Detector in an Electronic Medical Records System
KR101767980B1 (ko) 2017-04-11 2017-08-14 김수언 적외선 열화상을 이용한 지능형 불꽃 검출 장치 및 방법
US10690057B2 (en) 2017-04-25 2020-06-23 General Electric Company Turbomachine combustor end cover assembly with flame detector sight tube collinear with a tube of a bundled tube fuel nozzle
JP6998144B2 (ja) * 2017-07-12 2022-01-18 リンナイ株式会社 フレームロッド
EP3462149B1 (en) 2017-09-28 2023-10-25 Sensirion AG Infrared device
EP3734242B1 (en) * 2017-12-28 2023-12-13 Murata Manufacturing Co., Ltd. Photodetector
CN111365730B (zh) * 2018-12-26 2022-06-24 Abb瑞士股份有限公司 火焰检测器
EP3913341A4 (en) * 2019-01-16 2022-02-23 Panasonic Intellectual Property Management Co., Ltd. OPTICAL FILTER, PHOTO DETECTION DEVICE AND PHOTO DETECTION SYSTEM
JP7275946B2 (ja) * 2019-07-10 2023-05-18 セイコーエプソン株式会社 光学フィルター、及び電子機器
WO2021100357A1 (ja) * 2019-11-18 2021-05-27 株式会社村田製作所 光センサ
CN113238311B (zh) * 2021-07-12 2021-10-01 翼捷安全设备(昆山)有限公司 一种红外滤光片及其制备方法、红外气体传感器
CN114180081A (zh) * 2021-11-19 2022-03-15 中国直升机设计研究所 一种直升机光感式火警探测及逻辑判断方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378899A (ja) 1989-08-23 1991-04-04 Nippon Mining Co Ltd 火災検知装置
JPH03205521A (ja) 1989-09-30 1991-09-09 Horiba Ltd 赤外線検出器
JPH05249313A (ja) * 1992-03-05 1993-09-28 Fujikura Ltd 光学多層膜フィルタ
JPH0581667U (ja) * 1992-03-31 1993-11-05 国際技術開発株式会社 赤外線受光装置
JPH0772078A (ja) 1993-09-02 1995-03-17 Matsushita Electric Ind Co Ltd 赤外線式ガスセンサー
JPH07159234A (ja) * 1993-12-11 1995-06-23 Horiba Ltd 赤外線検出器
JPH1078510A (ja) * 1996-09-05 1998-03-24 Yokogawa Electric Corp フィルタ
JPH10281866A (ja) 1997-04-09 1998-10-23 Matsushita Electric Works Ltd 焦電型赤外線検出装置
JPH10339698A (ja) * 1997-06-09 1998-12-22 Itachibori Seisakusho Kk 赤外線式ガス検出装置
JP2007225455A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 赤外線検出器
WO2010092898A1 (ja) * 2009-02-13 2010-08-19 パナソニック電工株式会社 赤外線光学フィルタおよびその製造方法
WO2010150787A1 (ja) * 2009-06-25 2010-12-29 パナソニック電工株式会社 赤外線式ガス検知器および赤外線式ガス計測装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125530A (ja) * 1983-12-09 1985-07-04 Kureha Chem Ind Co Ltd 赤外線センサ
US5574375A (en) * 1995-03-15 1996-11-12 Kureha Kagaku Kogyo Kabushiki Kaisha Dual pyroelectric sensor
US5831537A (en) * 1997-10-27 1998-11-03 Slc Technologies, Inc. Electrical current saving combined smoke and fire detector
CN2532483Y (zh) * 2001-11-09 2003-01-22 周流 红外线火焰探测器
CN100487900C (zh) * 2004-01-15 2009-05-13 松下电器产业株式会社 固体成像装置,其制造方法,和使用固体成像装置的相机
KR100680386B1 (ko) * 2004-01-15 2007-02-08 마츠시타 덴끼 산교 가부시키가이샤 고체촬상장치, 고체촬상장치의 제조방법 및 이를 이용한카메라
DE102004028433B4 (de) * 2004-06-14 2006-08-31 Danfoss A/S IR-Sensor, insbesondere CO2-Sensor
TWI407387B (zh) * 2007-02-09 2013-09-01 Multi - band flame detection device and method thereof
JP2010186147A (ja) * 2009-02-13 2010-08-26 Panasonic Electric Works Co Ltd 赤外線光学フィルタおよびその製造方法
JP5399732B2 (ja) * 2009-02-13 2014-01-29 パナソニック株式会社 赤外線光学フィルタおよびその製造方法
JP5374297B2 (ja) * 2009-06-25 2013-12-25 パナソニック株式会社 赤外線式ガス検知器および赤外線式ガス計測装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378899A (ja) 1989-08-23 1991-04-04 Nippon Mining Co Ltd 火災検知装置
JPH03205521A (ja) 1989-09-30 1991-09-09 Horiba Ltd 赤外線検出器
JPH05249313A (ja) * 1992-03-05 1993-09-28 Fujikura Ltd 光学多層膜フィルタ
JPH0581667U (ja) * 1992-03-31 1993-11-05 国際技術開発株式会社 赤外線受光装置
JPH0772078A (ja) 1993-09-02 1995-03-17 Matsushita Electric Ind Co Ltd 赤外線式ガスセンサー
JPH07159234A (ja) * 1993-12-11 1995-06-23 Horiba Ltd 赤外線検出器
JPH1078510A (ja) * 1996-09-05 1998-03-24 Yokogawa Electric Corp フィルタ
JPH10281866A (ja) 1997-04-09 1998-10-23 Matsushita Electric Works Ltd 焦電型赤外線検出装置
JPH10339698A (ja) * 1997-06-09 1998-12-22 Itachibori Seisakusho Kk 赤外線式ガス検出装置
JP2007225455A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 赤外線検出器
WO2010092898A1 (ja) * 2009-02-13 2010-08-19 パナソニック電工株式会社 赤外線光学フィルタおよびその製造方法
WO2010150787A1 (ja) * 2009-06-25 2010-12-29 パナソニック電工株式会社 赤外線式ガス検知器および赤外線式ガス計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"2. Three-wavelength Infrared Flame Detector", 21 March 2009, THE SOCIETY OF HEATING, AIR-CONDITIONING AND SANITARY ENGINEERS OF JAPAN

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384788B (zh) * 2011-11-11 2013-07-03 山东省科学院自动化研究所 手持式防爆红紫外火焰探测器现场检测装置
CN102384788A (zh) * 2011-11-11 2012-03-21 山东省科学院自动化研究所 手持式防爆红紫外火焰探测器现场检测装置
EP2639778A1 (en) * 2012-03-12 2013-09-18 Honeywell International, Inc. Method and device for detection of multiple flame types
US9587987B2 (en) 2012-03-12 2017-03-07 Honeywell International Inc. Method and device for detection of multiple flame types
WO2014014534A2 (en) * 2012-04-26 2014-01-23 Xyratex Technology Ltd. Monitoring radiated infrared
WO2014014534A3 (en) * 2012-04-26 2014-04-10 Xyratex Technology Ltd. Monitoring radiated infrared
JP2014048161A (ja) * 2012-08-31 2014-03-17 Asahi Kasei Electronics Co Ltd 赤外線センサモジュール
US9528879B2 (en) 2013-01-21 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Infrared detection element, infrared detector, and infrared type gas sensor
WO2014112392A1 (ja) * 2013-01-21 2014-07-24 パナソニック株式会社 赤外線検出素子、赤外線検出器及び赤外線式ガスセンサ
JP2014142236A (ja) * 2013-01-23 2014-08-07 Panasonic Corp 赤外線受光ユニット、赤外線式ガスセンサ
US9335209B2 (en) 2014-02-26 2016-05-10 Seiko Epson Corporation Optical module and electronic apparatus
US10203494B2 (en) 2014-02-26 2019-02-12 Seiko Epson Corporation Optical module and electronic apparatus
JP2016102651A (ja) * 2014-11-27 2016-06-02 ホーチキ株式会社 炎検出装置
JP2017182402A (ja) * 2016-03-30 2017-10-05 能美防災株式会社 炎検知器
WO2017191746A1 (ja) * 2016-05-06 2017-11-09 国立大学法人神戸大学 焦電型赤外線センサ素子
CN106698323A (zh) * 2017-01-16 2017-05-24 北京芯创睿胜科技有限公司 一种红外吸收结构及其与红外传感器件的集成方法
JP2018200246A (ja) * 2017-05-29 2018-12-20 ホーチキ株式会社 火炎検出装置
JP2019185694A (ja) * 2018-04-18 2019-10-24 ホーチキ株式会社 炎検出装置
JP7032982B2 (ja) 2018-04-18 2022-03-09 ホーチキ株式会社 炎検出装置

Also Published As

Publication number Publication date
EP2511679A1 (en) 2012-10-17
JPWO2011071011A1 (ja) 2013-04-22
KR101372989B1 (ko) 2014-03-12
JP5838347B2 (ja) 2016-01-06
TW201142256A (en) 2011-12-01
TWI421475B (zh) 2014-01-01
US20120298867A1 (en) 2012-11-29
CN102713540A (zh) 2012-10-03
KR20120103662A (ko) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5838347B2 (ja) 赤外線式炎検知器
JP5374297B2 (ja) 赤外線式ガス検知器および赤外線式ガス計測装置
KR101311322B1 (ko) 적외선식 가스 검지기 및 적외선식 가스 계측 장치
US10753858B2 (en) Wafer arrangement
US6756594B2 (en) Micromachined tuned-band hot bolometer emitter
US9528879B2 (en) Infrared detection element, infrared detector, and infrared type gas sensor
WO2015045411A1 (ja) ガスセンサ
US20050030628A1 (en) Very low cost narrow band infrared sensor
US10444076B2 (en) Infrared device
JP5223298B2 (ja) 赤外線光源
GB2340228A (en) Infra-red optical gas sensor
US5668376A (en) Double radiation source assembly and transducer
JP2010133946A (ja) 赤外線センサの製造方法及び赤外線センサ並びに量子型赤外線ガス濃度計
US11209353B2 (en) Infrared device
US10107743B2 (en) Thermal infrared sensor and gas measuring apparatus
US20060104319A1 (en) Device for reflecting and detecting electromagnetic radiation
US20230393061A1 (en) Optical detector and method for determining at least one property of at least one substance
JPH03134798A (ja) 赤外線センサ
JP3104951B2 (ja) 多波長放射温度計
CN116008228A (zh) 一种芯片集成式ndir气体传感器及其制备方法
JPH06213807A (ja) 火災感知器及び受光素子
JP2006145290A (ja) 標準放射温度計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055900.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545201

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010835931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5603/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127016801

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13514631

Country of ref document: US