WO2011070813A1 - 複合樹脂材料粒子及びその製造方法 - Google Patents

複合樹脂材料粒子及びその製造方法 Download PDF

Info

Publication number
WO2011070813A1
WO2011070813A1 PCT/JP2010/062108 JP2010062108W WO2011070813A1 WO 2011070813 A1 WO2011070813 A1 WO 2011070813A1 JP 2010062108 W JP2010062108 W JP 2010062108W WO 2011070813 A1 WO2011070813 A1 WO 2011070813A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
material particles
composite resin
conductive
composite
Prior art date
Application number
PCT/JP2010/062108
Other languages
English (en)
French (fr)
Inventor
尊 矢嶋
英俊 太田
憲宏 能瀬
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44145958&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011070813(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2009282320A external-priority patent/JP5603059B2/ja
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to CN201080055235.0A priority Critical patent/CN102656216B/zh
Priority to EP10835735.1A priority patent/EP2511322B1/en
Priority to KR1020127014946A priority patent/KR101652097B1/ko
Priority to US13/514,411 priority patent/US10435519B2/en
Publication of WO2011070813A1 publication Critical patent/WO2011070813A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/87Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations transmitting the vibratory energy by means of a fluid, e.g. by means of air shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/08Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices shaking, oscillating or vibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/043Carbon nanocoils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/044Carbon nanohorns or nanobells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes

Definitions

  • the present invention relates to a composite resin material to which an additive for adding functionality to a resin is added, and more particularly to a conductive composite resin material to which conductivity is added by adding a conductor to the resin.
  • Conductive resin is used in applications such as antistatic members and plastic electrical members in electrical products, etc., and is particularly used when sufficient performance cannot be obtained by adding a metal film or the like to the resin surface. Since the plasticization of electronic parts has progressed and new applications of electronic parts have been pioneered every day, the development of conductive resins is industrially and commercially important.
  • the resin having conductivity itself there is polyacetylene or the like.
  • a conductive resin often does not exhibit sufficient performance during use.
  • a conductive material such as carbon black is added to a non-conductive resin such as fluorine resin to conduct conductivity. It is necessary to add sex.
  • the conductivity of the conductive material to be added is required to be high.
  • a highly conductive material there is a carbon nanomaterial such as a carbon nanotube.
  • these carbon nanomaterials contain a large amount of free electrons, they have excellent conductivity.
  • the carbon nanomaterial is hydrophobic, it has a high affinity with the resin. Therefore, the carbon nanomaterial is easily dispersed in the resin and is firmly fixed in the resin. Therefore, the carbon nanomaterial has excellent properties as an additive for adding conductivity to the resin.
  • these carbon nanomaterials are expensive, in order to keep the price of the conductive resin produced low, it is necessary to further reduce the amount of carbon nanomaterial added.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-100147
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-192914
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-221510
  • nano metal As another example of the conductive material that can add conductivity by being added to the resin, there is a nano metal.
  • Such nanometals are ultrafine metal particles having a diameter or outer diameter of 1 to 100 nm.
  • nanometals produced from noble metals such as gold and silver have excellent electrical conductivity and corrosion resistance. These nanometals can add high conductivity to the resin with a small addition amount.
  • Nano metal itself does not have hydrophobicity, but by applying coating to the nano metal, hydrophobicity can be added without impairing conductivity, and affinity with the resin can be increased.
  • Such coatings can also be used to add corrosion resistance to nanometals made from base metals such as copper. Therefore, such a nano base metal can also be used as a conductive material for adding to the resin.
  • the raw material is expensive when a noble metal is used as the nano metal, and the processing such as coating is expensive when a base metal is used. That is, it is expensive in any case. Therefore, in order to keep the price of the conductive resin to be manufactured low, it is necessary to further reduce the amount of nanometal added.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-315531
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-87427
  • the present invention has been made to solve the above problems.
  • the composite resin material particle of the present invention is characterized in that a conductive material is dispersedly mixed in the surface of the resin material particle.
  • the conductive material is firmly embedded in the surface of the resin material particle, the conductive material is difficult to peel off.
  • These conductive materials form a conductive layer in the composite resin material particles.
  • the composite resin material particles are molded to produce a molded body, the resin material in the composite resin material particles melts and fuses to form a strong molded body.
  • floating of the conductive material is prevented by the viscosity of the molten resin material liquid, so that the conductive layer maintains continuity. Accordingly, a conductive net having continuity and conductivity is formed inside the molded body, and conductivity is added to the molded body.
  • the method for producing composite resin material particles according to the present invention comprises mixing a conductive material using ultrasonic waves on the surface of resin material particles swollen and softened in carbon dioxide in a subcritical or supercritical state. It is characterized by forming.
  • the conductive material is distributed over almost the entire surface of the resin material particles and is firmly embedded from the surface of the resin particles toward the inside. Therefore, the conductive material is stably and firmly distributed on the surface of the resin material particles, is difficult to peel off, and can form a dispersed mixed layer having high conductivity.
  • the first aspect of the present invention is: It has resin material particles that are raw materials for producing resin molded bodies, and conductive nanomaterials, A dispersion mixed layer obtained by mixing conductive nanomaterials in a dispersed manner from the surface of the resin material particles toward the inside thereof is formed at least on the entire surface or a part of the surface of the resin material particles, In the dispersion mixed layer, the conductive nanomaterial is dispersed and mixed in the resin material of the resin material particles, The entire dispersion mixed layer is composite resin material particles forming a conductive layer.
  • the dispersed mixed layer has a predetermined mixed thickness and is formed on the entire surface of the composite resin material particle, and is disposed inside the composite resin material particle surrounded by the dispersed mixed layer.
  • the composite resin material particles according to the first embodiment wherein a single resin region formed only from the resin material exists.
  • a third aspect of the present invention is the composite resin material particles according to the second aspect, wherein the dispersion thickness of the dispersion mixed layer is 0.1 ⁇ m to 10 ⁇ m.
  • a fourth aspect of the present invention is the composite resin material particle according to the first aspect in which the entire interior of the composite resin material particle is formed only from the dispersion mixed layer.
  • the fifth aspect of the present invention is the composite resin material particles according to any one of the first to fourth aspects, which are pellets having a diameter of 100 ⁇ m or more.
  • the sixth aspect of the present invention is the composite resin material particle according to any one of the first to fourth aspects, which is a powder having a diameter of 100 ⁇ m or less.
  • the conductive nanomaterial is a carbon nanotube, carbon nanofiber, carbon nanocoil, carbon nanotwist, carbon nanohorn, fullerene, carbon black, ketjen black, acetylene black, metal nanoparticle,
  • the eighth aspect of the present invention is the composite resin material according to any one of the first to seventh aspects, wherein the conductive nanomaterial has a cylindrical shape having an outer diameter of 150 nm or less and a length of 500 nm or more. Particles.
  • the resin material is selected from the group consisting of a fluorine resin, a polycarbonate resin, an olefin resin, a polyether ether ketone resin, a formalin resin, an ester resin, and a styrene resin.
  • the tenth aspect of the present invention is Fill the pressure vessel with at least resin material particles, conductive nanomaterial, solvent for propagating ultrasonic waves and liquid carbon dioxide, Maintaining the inside of the pressure vessel at a temperature and pressure at which the liquid carbon dioxide can maintain a subcritical or supercritical state, Mixing the conductive nanomaterial in a dispersed manner from the surface of the resin material particles to the inside using ultrasonic waves,
  • the composite resin material particles are obtained by evaporating the liquid carbon dioxide by reducing the pressure later and further evaporating the solvent at the same time or with a time difference to obtain composite resin material particles having a dispersion mixed layer formed on the surface of the resin material particles. It is a manufacturing method.
  • the eleventh aspect of the present invention is the method for producing composite resin material particles according to the tenth aspect, wherein the solvent is a highly volatile solvent at normal temperature and normal pressure.
  • the composite resin material particle according to the eleventh aspect wherein the solvent is at least one selected from the group consisting of alcohols, ketones, esters, ethers, organic chlorides, and organic fluorides. It is a manufacturing method.
  • a thirteenth aspect of the present invention is the method for producing composite resin material particles according to any one of the tenth to twelfth aspects, wherein a weight ratio of the solvent to the conductive nanomaterial is 20 or more.
  • a fourteenth aspect of the present invention is the method for producing composite resin material particles according to any one of the tenth to thirteenth aspects, wherein the weight ratio of the liquid carbon dioxide: the solvent is 0.05: 1 to 20: 1. is there.
  • a fifteenth aspect of the present invention is a method for producing composite resin material particles according to any one of the tenth to fourteenth aspects, wherein a dispersant and / or a surfactant is added to the pressure vessel.
  • a sixteenth aspect of the present invention is the method for producing composite resin material particles according to the tenth to fifteenth aspects, wherein the temperature is higher than 25 ° C. and lower than the melting point temperature of the resin material.
  • the seventeenth aspect of the present invention is the method for producing composite resin material particles according to the tenth to sixteenth aspects, wherein the maximum pressure in the pressure vessel is 100 MPa.
  • the eighteenth aspect of the present invention is the method for producing composite resin material particles according to the tenth to seventeenth aspects, wherein the ultrasonic wave generator is a horn type of 150 W or more.
  • a nineteenth aspect of the present invention is a method for producing composite resin material particles according to any one of the tenth to eighteenth aspects, wherein the conductive nanomaterial is oxidized.
  • At least the conductive nanomaterial is mixed with the solvent, and the dispersion is filled in the pressure vessel together with the liquefied carbon dioxide and the resin material particles. It is a manufacturing method of any composite resin material particle of the form.
  • the twenty-first aspect of the present invention is the method for producing composite resin material particles according to the twentieth aspect, wherein the dispersion contains a dispersant and / or a surfactant.
  • the conductive nanomaterial is firmly embedded in the dispersion mixed layer in the composite resin material particles, so that the conductive mixed nanomaterial is formed. It is fixed inside from the surface of the composite resin material particles and does not peel off.
  • the dispersion mixed layer includes a dispersion implantation layer in which the conductive nanomaterial is implanted into the resin material particle surface, a dispersion kneading layer in which the conductive nanomaterial is incorporated into the resin material particle surface, and the conductive nanomaterial. It is an expression including all layers such as a dispersion embedding layer embedded in the surface of the resin material.
  • the composite material particle can be ensured in conductivity, so that it is not necessary to use a large amount of conductive nanomaterial, and the composite resin material particle Can be manufactured at low cost.
  • the composite resin material particles are molded to form a molded body, a conductive net derived from the conductive nanomaterial is formed inside the molded body, so that a molded body having high conductivity can be obtained.
  • the composite resin material particles lose their shape by melting and liquefying, but the viscosity of the molten resin material liquid prevents the conductive nanomaterial from floating, and maintains the continuity of the dispersed implantation layer. .
  • the conductive network formed from the conductive nanomaterial in the dispersed implant layer is also continuous and conductive.
  • the resin material of the melted composite resin material particles is fused at the time of molding, a strong and sturdy molded body can be obtained.
  • the dispersed mixed layer does not need to be formed on the entire surface of the composite resin material particles, and may be a partial surface.
  • the smaller the coating of the dispersed mixed layer on the composite resin material particles the lower the continuity of the formed conductive network and the lower the conductivity of the conductive network. Therefore, the larger the coating of the dispersion mixed layer, the better.
  • the inventor has confirmed that the conductivity of the molded body to be molded is sufficiently high when the coverage of the dispersed mixed layer is 60% or more. Further, when the dispersion mixed layer was formed in an island shape, it was confirmed that the conductivity of the molded body to be molded was sufficiently increased when the distance between the island dispersion mixed layers was within 500 nm.
  • the conductive nanomaterial is dispersed by the action of ultrasonic waves from the swollen and softened surface of the resin material particles as the raw material to the inside. To be mixed.
  • the particle diameter of the resin material particles is sufficiently small and the melting point of the resin material is sufficiently low, the entire resin material particles are swollen and softened. Therefore, if the amount of the conductive nanomaterial and the production time of the produced composite resin material particles are sufficient, the conductive nanomaterial is mixed in the entire resin material particles.
  • the dispersed mixed layer is formed on the entire surface of the composite resin material particles having a predetermined mixed thickness, and the composite resin material particles surrounded by the dispersed mixed layer. Since there is a single resin region formed only from the resin material inside, there is no need to add conductive nanomaterials throughout the composite resin material particles, so there is high continuity and high inside the molded body during molding. A conductive net having conductivity is obtained. Accordingly, a conductive nanomaterial can be saved and a molded body having high conductivity can be obtained. Moreover, it leads to the cost reduction and performance improvement of a composite resin material particle and a molded object formed from it.
  • the mixed thickness of the dispersed mixed layer is 0.1 ⁇ m to 10 ⁇ m, it is possible to ensure a mixed thickness that can secure the conductivity of the dispersed mixed layer, and at the same time, the conductive nanomaterial As a result, it is possible to secure a thin mixing thickness that can prevent waste. Therefore, it leads to improvement in the low cost and performance of the composite resin material particles and the molded body formed therefrom.
  • the composite resin material particles in which the conductive nanomaterial is uniformly distributed throughout the composite resin material particles Is obtained.
  • the composite resin material particles are pellets having a diameter of 100 ⁇ m or more, it is possible to obtain composite resin material particles having high conductivity at low cost.
  • the composite resin material particles in this embodiment since the diameter is relatively large, the surface area is relatively small. Therefore, a small amount of conductive nanomaterial for forming the dispersed mixed layer is required, leading to a reduction in the price of the composite resin material particles.
  • the diameter of the composite resin material particles in this embodiment is preferably 2 to 5 mm.
  • the composite resin material particles are powder having a diameter of 100 ⁇ m or less, a high-density conductive net can be formed in the molded body at the time of molding. Therefore, high conductivity of the molded body can be ensured.
  • the composite resin material particles in this embodiment have a relatively large surface area because of their relatively small diameter. Accordingly, when a molded body is produced from the composite resin material particles, a conductive net derived from the dispersed mixed layer is densely formed, and a highly conductive molded body is obtained.
  • the particle diameter of the composite resin material particles in this embodiment is preferably 5 ⁇ m or less.
  • the lower limit value of the diameter in the present embodiment is not particularly limited, and the minimum diameter for implementing the present invention is the lower limit value. For example, the lower limit of the diameter is 1 ⁇ m, preferably 5 ⁇ m.
  • the conductive nanomaterial carbon nanotube, carbon nanofiber, carbon nanocoil, carbon nanotwist, carbon nanohorn, fullerene, carbon black, ketjen black, acetylene black, metal nano Since at least one selected from the group consisting of particles, metal nanoplates, metal nanorods, and metal nanowires can be used, it is possible to select a conductive nanomaterial according to the application when producing composite resin material particles. it can. Since carbon nanomaterials such as carbon nanotubes have high corrosion resistance and hydrophobicity and high conductivity, they are optimal for forming a dispersed mixed layer on composite resin material particles. The higher the aspect ratio, the higher the conductivity of the dispersed mixed layer.
  • Nanometals such as metal nanowires, are very conductive and are useful in forming highly conductive dispersed mixed layers. The higher the aspect ratio, the higher the conductivity of the dispersed mixed layer. However, even when a material with a low aspect ratio such as metal nanoparticles is used, high conductivity can be obtained.
  • the conductive nanomaterial has a shape having an outer diameter of 150 nm or less and a length of 500 nm or more.
  • a functional material can be produced.
  • the higher the aspect ratio of the conductive nanomaterial the higher the entanglement between the conductive nanomaterials in the dispersion mixed layer.
  • conductivity is increased. Therefore, the conductivity of the dispersion mixed layer is increased.
  • the conductive nanomaterial in this embodiment preferably has an outer diameter of 80 nm or less and a length of 1000 ⁇ m or more. Note that specific shapes of the conductive nanomaterial include a cylindrical shape and a columnar shape.
  • the resin material of the composite resin material particles includes a fluorine resin, a polycarbonate resin, an olefin resin, a polyether ether ketone resin, a formalin resin, an ester resin, and a styrene resin. Since one or more selected from the group can be used, practicality can be enhanced by using an optimum resin in practical use, and conductivity can be imparted to various types of resins. Moreover, since these resin materials are easily swollen by liquid carbon dioxide, they are suitable for forming a dispersion mixed layer according to the tenth aspect of the present invention.
  • the conductive nanomaterial is mixed in a dispersed manner from the surface to the inside of the resin material particles.
  • the conductive nanomaterial is embedded in the surface of the resin material particle. Therefore, deposition of the conductive nanomaterial in an unmixed state on the resin material particles is prevented, and the conductive nanomaterial is firmly fixed from the surface of the composite resin material particles and does not peel off.
  • the conductive nanomaterial is dispersed by ultrasonic waves, the conductive nanomaterial is prevented from being biased in the direction of gravity on the resin material particles, and a dispersed mixed layer is formed on almost the entire surface of the resin material particles. Can be formed.
  • the ultrasonic wave here cannot propagate in liquid carbon dioxide because cavitation cannot occur in liquid carbon dioxide, but propagates by the solvent added at the same time.
  • the carbon dioxide in a subcritical state or a supercritical state is used as the swelling liquid, the carbon dioxide can be completely removed by reducing the pressure after the preparation of the dispersion mixed layer. Can be simplified.
  • the solvent for propagating ultrasonic waves can be volatilized after the carbon dioxide evaporation. When the volatility of the solvent is sufficiently high, it can be volatilized simultaneously with the evaporation of carbon dioxide. Furthermore, when the volatility of the solvent is higher than the volatility of carbon dioxide, the solvent can be volatilized first.
  • the supercritical state refers to a material state at a temperature and pressure above the critical point.
  • the supercritical state indicates a state where the temperature is 31.1 ° C. or higher and the pressure is 72.8 atm or higher.
  • a subcritical state refers to a state at a pressure above the critical point and a temperature below the critical point. Even in this state, carbon dioxide can efficiently swell the resin. Therefore, the formation of the dispersed mixed layer can be promoted.
  • the conductive nanomaterial is mixed in a dispersed manner by the action of ultrasonic waves from the swelling and softening surface of the resin material particles toward the inside.
  • the particle diameter of the resin material particles is sufficiently small, the entire resin material particles are swollen and softened. Therefore, if the amount of the conductive nanomaterial and the production time of the composite resin material particles are sufficient, the conductive nanomaterial is mixed in the entire resin material particles.
  • the conductive nanomaterial floats in the dispersion-implanted layer due to the viscosity of the molten resin material liquid. And the continuity of the dispersed implant layer is maintained. Therefore, a continuous conductive net can be formed in the molded body. Therefore, by using the composite resin material particles in this embodiment, a conductive molded body can be produced using a small amount of conductive nanomaterial. Further, since the composite resin material particles melt and fuse at the time of molding, a strong and strong molded body can be produced.
  • the formation of the dispersion mixed layer in the tenth aspect leads to simplification of solvent removal, and the composite resin material particles can be easily formed. Can be manufactured.
  • alcohol, ketone, ester, ether, chlorinated organic substance, and fluorinated organic substance can be used as the solvent, so that a highly volatile organic solvent that has already been widely marketed can be used, This leads to a decrease in the price of the composite resin material particles.
  • the weight ratio of the solvent to the conductive nanomaterial is 20 or more, the conductive nanomaterial can be dispersed in the solvent before the addition, and the conductive The dispersibility of the nanomaterial in the pressurized container can be improved. Therefore, composite resin material particles in which the conductive nanomaterial is highly dispersed and mixed can be obtained.
  • the weight ratio of the liquid carbon dioxide: the solvent is 0.05: 1 to 20: 1, the ratio of the liquid carbon dioxide and the solvent can be selected almost arbitrarily. And the flexibility of the process can be increased.
  • the fifteenth aspect of the present invention since a dispersant and / or a surfactant is added into the pressure resistant container, even when a conductive nanomaterial that is relatively difficult to disperse is used, It is possible to obtain composite resin material particles having a high dispersibility of the conductive nanomaterial.
  • a dispersant Exepearl PE-MO and Trimex N-08 manufactured by Kao Corporation can be used.
  • the surfactant Triton X-100 manufactured by Acros Organics, Targetol NR-7 manufactured by Sigma-Aldrich, sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and the like can be used.
  • the dispersion mixed layer formation temperature exceeds 25 ° C. and is lower than the melting point temperature of the resin material, the liquid carbon dioxide is maintained in the subcritical state or the supercritical state.
  • the dispersion mixed layer formation temperature is a temperature of 50 ° C. or higher and lower than the melting point temperature of the resin material, and the resin material particles can be reliably swollen above this temperature. .
  • the maximum pressure in the pressure vessel is 100 MPa, composite resin material particles can be produced without destroying the pressure vessel.
  • the ultrasonic generator is a horn type having a power of 150 W or more, it is possible to obtain a powerful ultrasonic wave necessary for forming a dispersion mixed layer.
  • the ultrasonic waves in the present invention and this embodiment preferably have a frequency of 15 kHz or more and an amplitude of 20 ⁇ m or more.
  • the conductive nanomaterial in the dispersion mixed layer is used even when the conductive nanomaterial that is relatively difficult to disperse is used.
  • the composite resin material particles having a high dispersibility can be obtained.
  • the oxidation treatment here include a treatment of immersing the conductive nanomaterial in one or more selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, or phosphoric acid, and a treatment of immersing in an ozone aqueous solution.
  • the conductive nanomaterial in this embodiment needs to be a material that is not destroyed by the oxidation treatment, and is preferably a carbon nanomaterial.
  • the conductive nanomaterial is dispersed and mixed into the resin material particles in a uniformly dispersed state using a dispersion liquid of the conductive nanomaterial prepared in advance, the conductive The dispersion of the nanomaterial in the dispersed mixed layer is reliably performed, and the uniformity of the conductive nanomaterial in the dispersed mixed layer can be improved. Therefore, the conductivity of the composite resin material particles to be produced and the molded product molded therefrom can be increased.
  • the present inventor has found that the dispersibility in the dispersion mixed layer of the conductive nanomaterial is lowered when the resin material particles have low fluidity.
  • the shape and properties of the resin material particles having low fluidity include elongated particles such as fiber shapes, particles having a low bulk density, and particles having a high compressibility. These particles are easily entangled with each other by being stirred or stressed, and flow is easily prevented.
  • the reason why the dispersibility of the conductive nanomaterial in the dispersed mixed layer formed due to the low fluidity of the resin material particles is considered as follows.
  • the resin particles of these materials inhibit the diffusion movement and uniform dispersion of each other, and also inhibit the diffusion movement and uniform dispersion of the conductive nanomaterial. Therefore, the conductive nanomaterial dispersed and mixed is biased to a limited portion of the resin material particles. Further, the resin material particles are entangled with each other, so that they partially overlap, and these portions are shielded from the liquid carbon dioxide and the conductive nanomaterial.
  • the conductive nanomaterial When the conductive nanomaterial is dispersed in a solvent in advance and dispersed and mixed with the resin material particles in the state of a dispersion, the conductive nanomaterial can be prevented from being biased on the resin material particles.
  • the dispersibility of the conductive nanomaterial in the mixed layer can be increased.
  • the conductive nanomaterial is mixed with the solvent.
  • other substances may be mixed in the solvent together with the conductive nanomaterial. Examples of other substances include dispersants, surfactants and liquid carbon dioxide.
  • the conductive nanomaterial or the like may be mixed with a solvent and then stirred. If the conductive nanomaterial is not sufficiently dispersed by stirring, the dispersibility may be increased by ultrasonic treatment or the like.
  • the dispersion contains a dispersant and / or a surfactant
  • the dispersibility of the conductive nanomaterial in the dispersion is increased, and the conductivity in the dispersion mixed layer is increased.
  • the dispersibility of nanomaterials increases accordingly.
  • conductive nanomaterials that are difficult to disperse in a solvent can also be dispersed in the solution. For this reason, the electroconductivity of the composite resin material particle manufactured and the molded object shape
  • Triton X-100 manufactured by Acros Organics
  • Targetol NR-7 manufactured by Sigma-Aldrich
  • SDS sodium dodecyl sulfate
  • SDBS sodium benzenesulfonate
  • FIG. 1 is a schematic view showing an example of a method for producing composite resin material particles.
  • the pressure resistant container 3 is filled with the resin material particles 1 and the conductive nanomaterial 2 together with at least liquid carbon dioxide 21 and a solvent 22 for propagating ultrasonic waves.
  • the pressure vessel is heated by water 6 in the water tank 5.
  • the ultrasonic transmitter 4 is installed in the lower part of the water tank 5 and propagated by the water 6 in the water tank 5. However, the transmitter 4 may be installed directly on the pressure vessel 3.
  • FIG. 2A to 2C are schematic diagrams showing a process in which the conductive nanomaterial 2 is dispersed and mixed on the surface of the resin material particles 1.
  • FIG. FIG. 2A shows a state before the resin material particles 1 swell. Since the resin material particles 1 are not swollen, the surface remains in a cured state. In this state, the conductive nanomaterial 2 cannot be dispersed and mixed.
  • FIG. 2B shows a state where the resin material particles 1 are swollen. In this state, since the surface is softened, the conductive nanomaterial 2 is easily mixed. However, in a state where ultrasonic irradiation is not performed, the conductive nanomaterial 2 is not mixed from the surface of the resin material particle 1 into the inside.
  • FIG. 2C shows a state in which the conductive nanomaterial 2 is mixed from the surface to the inside by the action of the ultrasonic wave 7. It is presumed that bubbles are generated by the action of the ultrasonic wave 7, and the conductive nanomaterial 2 is mixed with the resin material particles 1 by an impact generated by the burst of the bubbles. Further, since the conductive nanomaterial 2 is distributed almost uniformly on the surface of the resin material particle 1 by the ultrasonic wave 7, the conductive nanomaterial 2 is deflected in the direction of gravity and unmixed on the resin material particle 1. The deposition of the conductive nanomaterial 2 in the state is prevented. Since the liquid carbon dioxide 21 does not cause cavitation even in the subcritical state and the supercritical state, it does not propagate ultrasonic waves.
  • the solvent 22 that propagates ultrasonic waves is essential.
  • composite resin material particles 8 are formed.
  • the dispersed mixed layer 9 of the composite resin material particles 8 has a mixed thickness d. Since the conductive nanomaterial 2 in the dispersion mixed layer 9 is embedded in the surface of the composite resin material particle 8 and firmly fixed, the conductive nanomaterial 2 is not peeled unless the dispersion mixed layer 9 is scraped off.
  • FIG. 3 is a system diagram showing the piping of the pressure vessel 3. After the material, liquid carbon dioxide and solvent are filled, the valves 10 and 11 are closed and sealed. The temperature and pressure in the pressure vessel 3 are measured by a thermometer 12 and a pressure gauge 13. When the pressure in the pressure vessel 3 exceeds the design upper limit of the pressure vessel 3, the pressure is released by the safety valve 23.
  • FIG. 4 is a phase diagram of carbon dioxide.
  • the critical point 14 of carbon dioxide exists at a critical temperature of 31.1 ° C. and a critical pressure of 72.8 atmospheres.
  • the supercritical state 15 refers to a state in which carbon dioxide has a temperature and pressure of the critical point 14 or higher. In this state, carbon dioxide has a high property of swelling the resin, and therefore promotes the formation of the dispersed mixed layer.
  • Subcritical state 16 refers to a state in which carbon dioxide has a pressure above critical point 14 and a temperature below critical point 14. Even in this state, carbon dioxide can swell the resin and thus promote the formation of the dispersed mixed layer. By sufficiently reducing the pressure of carbon dioxide, the carbon dioxide can be rapidly vaporized and carbon dioxide can be quickly removed from the composite resin material particles.
  • FIG. 5A and 5B are schematic views showing the configuration of the dispersion mixed layer 9 in the composite resin material particles 8.
  • the dispersed mixed layer 9 has a predetermined mixed thickness d, and the single resin region 17 exists inside.
  • the composite resin material particle 8 has high conductivity even though it contains a small amount of the conductive nanomaterial 2.
  • the composite resin material particles 8 in FIG. 5B are entirely formed of only the dispersion mixed layer 9.
  • Such composite resin material particles 8 have a sufficiently small particle size of the resin material particles 1 as a raw material, a sufficiently low melting point of the resin material particles 1, a sufficiently large amount of the conductive nanomaterial 2, and the above-mentioned It is obtained when the production time of the composite resin material particles 8 is sufficiently long.
  • a molded body having a conductive net inside can be produced.
  • these composite resin material particles 8 lose their shape by melting and liquefying, the conductive nanomaterial 2 in the dispersion mixed layer 9 is prevented from floating due to the viscosity of the molten resin material liquid. Therefore, since the dispersive mixed layer 9 is maintained in continuity, the conductive net derived from the dispersive mixed layer 9 also has continuity and high conductivity. Therefore, a molded body having high conductivity can be obtained by the melt fusion. Further, since the resin material in the composite resin material particles 8 is melted and fused, the obtained molded body is strong and sturdy.
  • Example 1 Production of composite resin material particles
  • 170 kg of polycarbonate (PC) pellets with an average particle diameter of 3 mm, 5 g of a carbon nanotube (CNT) concentration 0.3 wt% dispersion using ethanol as a solvent, and 48 g of liquid carbon dioxide are held in a pressure vessel and maintained at 65 ° C. Immerse it in a water tank filled with warm water, and supersonically disperse ultrasonic waves for 10 hours using an ultrasonic transmitter (GSD-600AT manufactured by Ginsen Co., Ltd.) went.
  • Two types of CNTs were used: Baytubes C150P (average diameter ⁇ 11 nm) manufactured by Bayer Co., Ltd. and VGCF-S (average diameter ⁇ 80 nm) manufactured by Showa Denko Co., Ltd.
  • FIGS. 6A and 6B are SEM photographs of the surface and cross section of a PC pellet modified with CNT.
  • 6A is a SEM photograph of the surface
  • FIG. 6B is a SEM photograph of the cross section. It was confirmed that CNT was uniformly dispersed and mixed on the surface, and a dispersed mixed layer having a mixed thickness d of about 1 ⁇ m in depth was confirmed in the cross section.
  • Example 2 Production of molded body
  • 24 g of liquid carbon dioxide was charged so that the ratio of the liquid carbon dioxide to the solvent was 1.
  • Two types of CNTs were used: Baytubes C150P (average diameter ⁇ 11 nm) manufactured by Bayer Co., Ltd. and VGCF-S (average diameter ⁇ 80 nm) manufactured by Showa Denko Co., Ltd.
  • This pressure vessel is immersed in a water tank filled with warm water maintained at 65 ° C., and an ultrasonic transmitter (ultrasonic generator is GSD-600AT manufactured by Ginsen Co., Ltd.) provided at the bottom of the water tank is used for 10 Supercritical ultrasonic dispersion of time was performed. After the treatment, the pressure vessel was opened, the liquid carbon dioxide was evaporated, and the ethanol was volatilized by treating at 105 ° C. for 24 hours using an atmospheric electric furnace to obtain a PFTE powder in which CNTs were dispersed and mixed. . When observed by SEM, it was observed that the resin and CNT were uniformly mixed in both types of CNTs.
  • the surface resistance of these molded products was measured with a surface resistance measuring instrument (MEGARESTA-HO709 manufactured by Sisid Electric Co., Ltd.).
  • the surface resistance of the molded product 3 produced by the commercially available PC containing CNTs was 4.1 ⁇ 10 8 ⁇ / cm 2
  • the surface resistance of the molded products 1 and 2 was 1.0 ⁇ 10 ⁇ / cm 2. 2 to 3.0 ⁇ 10 ⁇ / cm 2 .
  • the raw materials of molded products 1 and 2 are PFTE having a low CNT concentration and a high insulating property, they exhibit a low electrical resistance value compared to commercially available CNT-containing PCs, and can mold a highly conductive material. It was.
  • composite resin material particles having high conductivity can be easily obtained using a small amount of conductive nanomaterial.
  • carbon dioxide and the solvent are easily vaporized, so that the process can be simplified. Since this composite resin material particle can be used to form a molded product having a highly conductive network, a molded product having high conductivity can be obtained by using a small amount of conductive nanomaterial. Therefore, this invention contributes to obtaining the resin molding which has high electroconductivity by a cheap and highly industrial method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明の複合樹脂材料粒子は、樹脂成型体を製造する為の原料である樹脂材料粒子と、導電性ナノ材料を有し、前記樹脂材料粒子の表面からその内側に向かって導電性ナノ材料を分散状に混合してなる分散混合層が、前記樹脂材料粒子の全表面又は一部表面に少なくとも形成され、前記分散混合層においては前記樹脂材料粒子の樹脂材料中に前記導電性ナノ材料が分散混合され、前記分散混合層の全体が導電層を形成する。

Description

複合樹脂材料粒子及びその製造方法
 本発明は、樹脂に機能性を付加する為の添加物が添加された複合樹脂材料に関し、更に詳細には、樹脂に導電体を添加することにより導電性が付加された導電性複合樹脂材料に関する。
 本願は、2009年12月12日に、日本に出願された特願2009-282320号に基づき優先権を主張し、その内容をここに援用する。
 導電性樹脂は、電気製品などにおける静電気防止部材及びプラスチック製電気部材等の用途に使用され、特に樹脂表面などに金属膜などを付加することでは十分な性能が得られない場合に使用される。電子部品のプラスチック化が進歩し、電子部品の新たな応用が日々に開拓されているので、導電性樹脂の発展は、工業的及び商業的に重要である。
 それ自体が導電性を有する樹脂としては、ポリアセチレン等が存在する。しかし、このような導電性樹脂は、使用時において十分な性能を発揮しない場合が多い。例えば、フッ素系樹脂等が有する潤滑性などを必要とし、且つ導電性も同時に必要である場合には、フッ素系樹脂などの非導電性樹脂に、カーボンブラックなどの導電性材料を添加して導電性を付加する必要がある。
 しかし、カーボンブラックを導電性材料として使用する場合は、カーボンブラック自体の導電性が低い為、大量に添加する必要がある。このように導電性材料の添加量が大きい場合には、樹脂の成型性及び強度などが低下するという問題が発生する。
 従って、このような問題を回避する為には、導電性材料の添加量を可能な限り低下させる必要があり、添加する導電性材料の導電性が高いことが要求される。このように導電性が高い導電性材料としては、カーボンナノチューブなどのカーボンナノ物質が存在する。
 これらのカーボンナノ物質は、自由電子を多量に含むので、優れた導電性を有する。又、カーボンナノ物質は疎水性を有する為、樹脂との親和性が高い。よって、カーボンナノ物質は樹脂内に分散しやすく、且つ樹脂内に強固に固定される。従って、カーボンナノ物質は樹脂に導電性を付加する為の添加物として優れた性質を有する。但し、これらのカーボンナノ物質は高価なので、製造される導電性樹脂の価格を低く抑える為には、カーボンナノ物質の添加量を更に低く抑える必要がある。
 現段階においては、カーボンナノ物質は樹脂内に均一に添加されて使用されている。従来技術の例は、特開2003-100147号公報(特許文献1)、特開2003-192914号公報(特許文献2)及び特開2003-221510号公報(特許文献3)に開示されている。
 樹脂に添加されることにより導電性を付加できる導電性材料の他の例としては、ナノ金属が存在する。このようなナノ金属は、直径又は外径が1~100nmの金属製の超微粒子である。特に、金及び銀などの貴金属から製造されるナノ金属は、優れた導電性及び耐食性を有する。これらのナノ金属は、少量の添加量で高い導電性を樹脂に付加することができる。
 ナノ金属自体は疎水性を有さないが、ナノ金属にコーティングを行うことにより導電性を損なわずに疎水性を付加することができ、樹脂との親和性を高めることができる。このようなコーティングは、銅などの卑金属から製造されたナノ金属に耐食性を付加する際にも使用できる。従って、このようなナノ卑金属も樹脂に添加する為の導電性材料として使用できる。
 但し、ナノ金属として、貴金属を使用する場合には原料が高価であり、卑金属を使用する場合には、コーティングなどの加工が高価である。すなわち、何れの場合においても高価である。従って、製造される導電性樹脂の価格を低く抑える為には、ナノ金属の添加量を更に低く抑える必要がある。
 現段階においては、ナノ金属は樹脂内に均一に添加されて使用されている。従来技術の例は、特開2003-315531号公報(特許文献4)及び特開2004-87427号公報(特許文献5)に開示されている。
特開2003-100147号公報 特開2003-192914号公報 特開2003-221510号公報 特開2003-315531号公報 特開2004-87427号公報
 これらの従来技術は、何れも重大な欠点を有する。それは、添加されるべき導電性材料の相対量が大きいことである。これらの従来技術全てにおいて、導電性材料は樹脂内において均一に添加されるので、導電性材料を大量に添加する必要がある。添加される導電性材料が高価な場合には、製造される導電性樹脂も高価になってしまう。又、導電性材料が低価である場合においても、導電性材料が樹脂に加工性及び強度の低下などの悪影響を与える。
 このような悪影響を回避する為には、導電性材料をできるだけ低濃度で添加する必要がある。しかし、低濃度の導電性材料を樹脂内に均一に添加した場合には、導電性が低くなる。このような導電性の低下を防止する為には、導電性材料を局地的に集中させ、導電性網を形成させる必要がある。これにより、導電性を確保することができる。また、導電性材料が局地的に存在し、網状に分布していれば、低濃度の導電性材料を用いて所望の導電率が得られる。よって、導電性材料の使用量が抑えられ、導電性樹脂の価格が低下すると同時に、過大な添加量による導電性樹脂への悪影響を避けることもできる。
 本発明は上記の課題を解決する為になされたものである。
 本発明の複合樹脂材料粒子は、樹脂材料粒子の表面内に導電性材料が分散状に混合されていることを特徴とする。この複合樹脂材料粒子においては、導電性材料が強固に樹脂材料粒子の表面内に埋め込まれているので、前記導電性材料が剥離し難い。これらの導電性材料が複合樹脂材料粒子において導電層を形成する。この複合樹脂材料粒子を成型して成型体を作製する際に、複合樹脂材料粒子内における樹脂材料が溶融して融合することにより強固な成型体を形成する。更に、前記複合樹脂材料粒子の溶融融合時において、前記導電性材料の浮遊が、溶融した前記樹脂材料液体の粘性により阻止されるので、前記導電層が連続性を保つ。従って、前記成型体の内部において連続性且つ導電性を有する導電性網を形成し、前記成型体に導電性を付加する。
 本発明の複合樹脂材料粒子の製造方法は、亜臨界或いは超臨界状態の二酸化炭素内において膨潤軟化した樹脂材料粒子の表面に、超音波を用いて導電性材料を混合することにより、分散混合層を形成することを特徴とする。超音波の作用により、導電性材料は樹脂材料粒子の表面のほぼ全体に分布され、且つ樹脂粒子の表面から内部に向かって強固に埋め込まれる。よって、導電性材料は樹脂材料粒子の表面に安定且つ強固に分布し、剥離し難く、導電性が高い分散混合層を形成できる。
 本発明の第1の形態は、
 樹脂成型体を製造する為の原料である樹脂材料粒子と、導電性ナノ材料を有し、
 前記樹脂材料粒子の表面からその内側に向かって導電性ナノ材料を分散状に混合してなる分散混合層が、前記樹脂材料粒子の全表面又は一部表面に少なくとも形成され、
 前記分散混合層においては前記導電性ナノ材料が前記樹脂材料粒子の樹脂材料中に分散混合され、
 前記分散混合層の全体が導電層を形成する複合樹脂材料粒子である。
 本発明の第2の形態は、前記分散混合層は所定の混合厚を有して前記複合樹脂材料粒子の全表面に形成され、前記分散混合層に囲まれた前記複合樹脂材料粒子の内部に前記樹脂材料のみから形成される樹脂単体領域が存在する、第1の形態の複合樹脂材料粒子である。
 本発明の第3の形態は、前記分散混合層の混合厚が0.1μm~10μmである、第2の形態の複合樹脂材料粒子である。
 本発明の第4の形態は、前記複合樹脂材料粒子の内部全体が前記分散混合層のみから形成された、第1の形態の複合樹脂材料粒子である。
 本発明の第5の形態は、直径が100μm以上のペレットである、第1~4の形態のいずれかの複合樹脂材料粒子である。
 本発明の第6の形態は、直径が100μm以下の粉体である、第1~4の形態のいずれかの複合樹脂材料粒子である。
 本発明の第7の形態は、前記導電性ナノ材料が、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、カーボンナノツイスト、カーボンナノホーン、フラーレン、カーボンブラック、ケッチェンブラック、アセチレンブラック、金属ナノ粒子、金属ナノプレート、金属ナノロッド、及び金属ナノワイヤからなる群から選択される1種以上である、第1~6の形態のいずれかの複合樹脂材料粒子である。
 本発明の第8の形態は、前記導電性ナノ材料が、外径が150nm以下であり、且つ長さが500nm以上である円筒形状を有する、第1~7の形態のいずれかの複合樹脂材料粒子である。
 本発明の第9の形態は、前記樹脂材料が、フッ素系樹脂、ポリカーボネート樹脂、オレフィン系樹脂、ポリエーテルエーテルケトン樹脂、ホルマリン系樹脂、エステル樹脂、及びスチレン系樹脂からなる群から選択される1種以上である、第1~8の形態のいずれの複合樹脂材料粒子である。
 本発明の第10の形態は、
 少なくとも樹脂材料粒子、導電性ナノ材料、超音波を伝播させる為の溶媒及び液体二酸化炭素を耐圧容器に充填し、
 前記耐圧容器の内部を前記液体二酸化炭素が亜臨界又は超臨界状態を維持できる温度及び圧力に保持し、
 超音波を用いて前記導電性ナノ材料を前記樹脂材料粒子の表面からその内側に向かって分散状に混合し、
 後に減圧により前記液体二酸化炭素を蒸発させ、更に同時に又は時間差を設けて前記溶媒を揮発させることにより、前記樹脂材料粒子表面に分散混合層が形成された複合樹脂材料粒子を得る複合樹脂材料粒子の製造方法である。
 本発明の第11の形態は、前記溶媒が常温及び常圧において高揮発性溶媒である、第10の形態の複合樹脂材料粒子の製造方法である。
 本発明の第12の形態は、前記溶媒が、アルコール、ケトン、エステル、エーテル、塩化有機物、及びフッ化有機物からなる群から選択される1種以上である、第11の形態の複合樹脂材料粒子の製造方法である。
 本発明の第13の形態は、前記導電性ナノ材料に対する前記溶媒の重量比が20以上である、第10~12の形態のいずれかの複合樹脂材料粒子の製造方法である。
 本発明の第14の形態は、前記液体二酸化炭素:前記溶媒の重量比が0.05:1~20:1である、第10~13の形態のいずれかの複合樹脂材料粒子の製造方法である。
 本発明の第15の形態は、分散剤及び/又は界面活性剤を前記耐圧容器内に添加する、第10~14の形態のいずれかの複合樹脂材料粒子の製造方法である。
 本発明の第16の形態は、前記温度が25℃を超え、且つ前記樹脂材料の融点温度未満である、第10~15の形態の複合樹脂材料粒子の製造方法である。
 本発明の第17の形態は、前記耐圧容器内の最大圧力が100MPaである、第10~16の形態の複合樹脂材料粒子の製造方法である。
 本発明の第18の形態は、前記超音波の発生装置が150W以上のホーン式である、第10~17の形態の複合樹脂材料粒子の製造方法である。
 本発明の第19の形態は、前記導電性ナノ材料が酸化処理されている、第10~18の形態のいずれかの複合樹脂材料粒子の製造方法である。
 本発明の第20の形態は、少なくとも前記導電性ナノ材料が前記溶媒に混合され、分散された分散液を、前記液化二酸化炭素及び前記樹脂材料粒子と共に前記耐圧容器に充填する、第10~19の形態のいずれか複合樹脂材料粒子の製造方法である。
 本発明の第21の形態は、前記分散液は分散剤及び/又は界面活性剤を含有する、第20の形態の複合樹脂材料粒子の製造方法である。
 本発明の第1の形態によれば、複合樹脂材料粒子において導電性ナノ材料が分散混合層に強固に埋め込まれることにより導電性を有する分散混合層を形成するので、導電性ナノ材料が強固に複合樹脂材料粒子の表面から内部に固定され、剥離することがない。ここにおける分散混合層は、導電性ナノ材料が樹脂材料粒子表面内に打込まれる分散打込層、導電性ナノ材料が樹脂材料粒子表面に練り込まれる分散練込層、及び導電性ナノ材料が樹脂材料表面内に埋め込まれる分散埋込層などの層を全て包括した表現である。
 又、分散混合層が複合樹脂材料粒子の表面のみに形成された場合においても、前記複合材料粒子の導電性が確保できるので、導電性ナノ材料を大量に使用する必要が無く、複合樹脂材料粒子を安価に製作できる。更に、複合樹脂材料粒子を成型して成型体を作製する際に、成型体内部に前記導電性ナノ材料から由来する導電性網を形成するので、高い導電性を有する成型体が得られる。成型時において、複合樹脂材料粒子は溶融して液化することにより形状を失うが、溶融した樹脂材料液体の粘性により、前記導電ナノ物質の浮遊が阻止され、前記分散打込層の連続性を保つ。よって、前記分散打込層内の前記導電性ナノ材料から形成される前記導電性網も連続性且つ導電性を有する。加えて、成型する際に、溶融した複合樹脂材料粒子の樹脂材料が融合するので、強固且つ頑丈な成型体が得られる。
 前記導電性網を形成する為には、分散混合層が複合樹脂材料粒子の全表面に形成される必要はなく、一部表面でもよい。しかし、分散混合層の前記複合樹脂材料粒子上における被覆が小さいほど、形成される導電性網の連続性が低くなり、前記導電性網の導電性が低くなる。従って、前記分散混合層の被覆は、大きい程好適である。本発明者は、分散混合層の被覆度が60%以上の場合において、成型される成型体の導電性が十分に高くなることを確認した。また島状に分散混合層が形成される場合は、前記島状分散混合層間の間隔が500nm以内である場合において、成型される成型体の導電性が十分に高くなることを確認した。
 前記分散混合層が本発明の第10の形態により製造される場合には、導電性ナノ材料は、原料となる樹脂材料粒子の膨潤軟化した表面から内部に向かって、超音波の作用により分散状に混合される。前記樹脂材料粒子の粒径が十分に小さく、前記樹脂材料の融点が十分に低い場合には、前記樹脂材料粒子の全体が膨潤軟化される。従って、前記導電性ナノ材料の量及び製造される複合樹脂材料粒子の製造時間が充分であれば、前記樹脂材料粒子の全体において前記導電性ナノ材料が混合される。
 本発明の第2の形態によれば、前記分散混合層が所定の混合厚を有して前記複合樹脂材料粒子の全表面に形成され、前記分散混合層に囲まれた前記複合樹脂材料粒子の内部に樹脂材料のみから形成される樹脂単体領域が存在するので、複合樹脂材料粒子の内部を含む全体において導電ナノ材料を添加しなくても、成型時において成型体の内部に高連続性且つ高導電性を有する導電性網が得られる。従って導電ナノ材料を節約して高導電性を有する成型体が得られる。また、複合樹脂材料粒子及びそれから形成される成型体の低価格化及び性能の向上に繋がる。
 本発明の第3の形態によれば、前記分散混合層の混合厚が0.1μm~10μmであるので、分散混合層の導電性を確保できる程度の混合厚を確保できると同時に、導電ナノ材料の浪費を防止できる程度の混合厚の薄さを確保できる。従って、複合樹脂材料粒子およびそれから形成される成型体の低価格及び性能の向上に繋がる。
 本発明の第4の形態によれば、前記複合樹脂材料粒子の内部全体が分散混合層のみから形成されているので、導電性ナノ材料が複合樹脂材料粒子全体に均一分布された複合樹脂材料粒子が得られる。用途によっては、樹脂単体領域が存在しない複合樹脂材料粒子が必要な場合があり、本形態によりこのような複合樹脂材料粒子を得ることができる。
 本発明の第5の形態によれば、前記複合樹脂材料粒子が100μm以上の直径を有するペレットであるので、低価格で高導電性を有する複合樹脂材料粒子を得ることができる。本形態における複合樹脂材料粒子においては、直径が比較的大きいので、表面積が比較的小さい。従って分散混合層を形成する為の導電性ナノ材料が少量で済み、複合樹脂材料粒子の低価格化に繋がる。本形態における複合樹脂材料粒子の直径は、好ましくは2~5mmである。
 本発明の第6の形態によれば、前記複合樹脂材料粒子が100μm以下の直径を有する粉体であるので、成型時において、成型体内に高密度の導電性網を形成できる。従って、成型体の高導電性を確保できる。本形態における複合樹脂材料粒子においては、直径が比較的小さいので、表面積が比較的大きい。従って、前記複合樹脂材料粒子から成型体を製造する際に、分散混合層に由来する導電性網が緻密に形成され、高導電性の成型体が得られる。前記複合樹脂材料粒子の表面積を十分に高くする為に、本形態における複合樹脂材料粒子の粒径は、5μm以下であることが好ましい。
 なお、本形態における直径の下限値は特に制限されず、本発明が実施できるための最小の直径が下限値となる。例えば、直径の下限値として、1μm、好ましくは5μmが挙げられる。
 本発明の第7の形態によれば、前記導電性ナノ材料として、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、カーボンナノツイスト、カーボンナノホーン、フラーレン、カーボンブラック、ケッチェンブラック、アセチレンブラック、金属ナノ粒子、金属ナノプレート、金属ナノロッド、及び金属ナノワイヤからなる群から選択される1種以上を使用できるので、複合樹脂材料粒子を作製する際に、用途に応じて導電性ナノ材料を選択することができる。
 カーボンナノチューブ等のカーボンナノ物質は、耐食性及び疎水性が高く、また導電性も高いので、複合樹脂材料粒子上に分散混合層を形成するのに最適である。アスペクト比が高い程、分散混合層の導電性が高くなるが、フラーレン等の低アスペクト比を有する材料を使用しても、充分な導電性が得られる。
 カーボンブラック、ケッチェンブラック及びアセチレンブラックなどの従来型の導電性添加剤は、導電性は低いが、従来において広範囲に使用され、実績に富むので、本発明の複合樹脂材料粒子を確実に製造できる。
 金属ナノワイヤ等のナノ金属は、導電性が非常に高いので、高導電性の分散混合層を形成するのに有用である。アスペクト比が高い程、分散混合層の導電性が高くなるが、金属ナノ粒子などのアスペクト比が低い材料を使用しても、高い導電性が得られる。
 本発明の第8の形態によれば、前記導電性ナノ材料が、外径が150nm以下であり、且つ長さが500nm以上である形状を有するので、アスペクト比の高い材料を用いて、高導電性材料を作製することができる。導電性ナノ材料のアスペクト比が高い程、分散混合層内において導電性ナノ材料同士の絡合が高くなる。また導電性ナノ材料内の平均電子経路長が長くなるので、電通性が高まる。従って前記分散混合層の導電性が高くなる。このように、高アスペクト比の材料を使用することにより、高導電性の複合樹脂材料粒子及び成型体を作製できる。本形態における導電性ナノ材料においては、好ましくは外径が80nm以下であり、且つ長さが1000μm以上である。
 なお、導電性ナノ材料の具体的な形状としては、円筒形状及び円柱形状が挙げられる。
 本発明の第9の形態によれば、前記複合樹脂材料粒子の樹脂材料として、フッ素系樹脂、ポリカーボネート樹脂、オレフィン系樹脂、ポリエーテルエーテルケトン樹脂、ホルマリン系樹脂、エステル樹脂、及びスチレン系樹脂からなる群から選択される1種以上を使用できるので、実用時において最適な樹脂を使用することにより、実用性を高めることができ、また多様な種類の樹脂に導電性を与えることができる。又、これらの樹脂材料は、液体二酸化炭素により膨潤され易いので、本発明の第10の形態により分散混合層を形成するのに適している。
 本発明の第10の形態によれば、液体二酸化炭素により膨潤した樹脂材料粒子に超音波を作用させて、導電性ナノ材料を前記樹脂材料粒子の表面から内部に向かって分散状に混合するので、前記導電性ナノ材料が前記樹脂材料粒子の表面内に埋め込まれる。従って、未混合状態にある前記導電性ナノ材料の前記樹脂材料粒子上における堆積が防止され、前記導電性ナノ材料が強固に複合樹脂材料粒子の表面から内部に固定され、剥離することがない。又、超音波により前記導電性ナノ物質が分散するので、前記導電性ナノ物質が前記樹脂材料粒子上において重力方向に偏ることが防止され、前記樹脂材料粒子上のほぼ全表面において分散混合層を形成することができる。ここにおける超音波は、液体二酸化炭素中においてキャビテーションを生じることができないので、液体二酸化炭素中を伝播することはできないが、同時に添加される溶媒により伝播する。
 又、膨潤用の液体として亜臨界状態或いは超臨界状態にある二酸化炭素を使用するので、前記分散混合層作製の終了後において、減圧することにより前記二酸化炭素を完全に除去することができ、工程を簡略できる。又、超音波を伝播する為の溶媒は、前記二酸化炭素蒸発後に揮発することができる。前記溶媒の揮発性が十分に高い場合においては、前記二酸化炭素蒸発と同時に揮発させることができる。更に前記溶媒の揮発性が二酸化炭素の揮発性よりも高い場合においては、前記溶媒を先に揮発させることができる。
 ここにおける超臨界状態とは、臨界点以上の温度及び圧力にある物質状態を示す。二酸化炭素においては、超臨界状態とは、温度が31.1℃以上及び圧力が72.8気圧以上にある状態を示す。この状態においては、二酸化炭素は、気体の拡散性及び液体の溶解性を有するので、拡散しながら樹脂材料粒子を膨潤でき、迅速且つ均一な導電性ナノ材料の分散混合を行うことができる。又、亜臨界状態は、臨界点以上の圧力及び臨界点以下の温度に或る状態を指す。この状態においても、二酸化炭素は、樹脂を効率的に膨潤することができる。従って分散混合層の形成を促進できる。
 前記導電性ナノ材料は、前記樹脂材料粒子の膨潤軟化した表面から内部に向かって、超音波の作用により分散状に混合される。前記樹脂材料粒子の粒径が十分に小さい場合には、前記樹脂材料粒子の全体が膨潤軟化される。従って、前記導電性ナノ材料の量及び前記複合樹脂材料粒子の製造時間が充分であれば、前記樹脂材料粒子の全体において前記導電性ナノ材料が混合される。
 このようにして製造された複合樹脂材料粒子は、成型体を形成する為に溶融融合される際、溶融した樹脂材料液体の粘性により、前記分散打込層内の前記導電性ナノ材料の浮遊が阻止され、前記分散打込層の連続性が保たれる。よって、前記成型体内に連続的な導電性網を形成することができる。従って、本形態における複合樹脂材料粒子を用いることにより、僅かな導電性ナノ材料を使用して導電性成型体を作製することができる。又、成型時において、前記複合樹脂材料粒子が溶融して融合するので、頑丈且つ強固な成型体を作製できる。
 本発明の第11の形態によれば、前記溶媒として高揮発性溶媒を用いるので、第10の形態における分散混合層の形成後において、溶剤除去の簡略化に繋がり、容易に複合樹脂材料粒子を製造することができる。
 本発明の第12の形態によれば、前記溶媒として、アルコール、ケトン、エステル、エーテル、塩化有機物、及びフッ化有機物を使用できるので、既に広く市販されている高揮発性有機溶媒を使用でき、複合樹脂材料粒子の価格の低下に繋がる。
 本発明の第13の形態によれば、前記導電性ナノ材料に対する前記溶媒の重量比が20以上であるので、前記導電性ナノ材料を添加前に前記溶媒に分散させることができ、前記導電性ナノ材料の加圧容器内においての分散性を高めることができる。よって、前記導電性ナノ材料が高度に分散混合された複合樹脂材料粒子を得ることができる。
 本発明の第14の形態によれば、前記液体二酸化炭素:前記溶媒の重量比が0.05:1~20:1であるので、液体二酸化炭素と溶媒の比率をほぼ任意に選択することができ、工程の柔軟性を高めることができる。
 本発明の第15の形態によれば、分散剤及び/又は界面活性剤を前記耐圧容器内に添加するので、分散が比較的困難な導電性ナノ材料を使用する場合においても、分散混合層内における導電性ナノ材料の分散性が高い複合樹脂材料粒子を得ることができる。前記分散剤としては、花王(株)製のエキセパールPE-MO及びトリメックスN-08等が使用できる。前記界面活性剤としては、AcrosOrganics社製のTritonX-100、Sigma-Aldrich社製のTargetolNR-7、ドデシル硫酸ナトリウム(SDS)及びドデシルベンゼンスルホン酸ナトリウム(SDBS)等が使用できる。
 本発明の第16の形態によれば、分散混合層形成温度が、25℃を超え、且つ前記樹脂材料の融点温度未満であるので、液体二酸化炭素を亜臨界状態又は超臨界状態に保持することにより、分散混合層を形成する際に必要である樹脂材料粒子の膨潤を促進することができる。また、前記樹脂材料粒子の構造を破壊することなく分散混合層を形成することができる。本形態においては、好ましくは、前記分散混合層形成温度が50℃以上の温度で且つ前記樹脂材料の融点温度未満であり、この温度以上においては前記樹脂材料粒子の膨潤を確実に行うことができる。
 本発明の第17の形態によれば、前記耐圧容器内の最大圧力が100MPaであるので、耐圧容器を破壊することなく複合樹脂材料粒子を作製することができる。
 本発明の第18の形態によれば、前記超音波の発生装置が150W以上のホーン式であるので、分散混合層を形成するのに必要である強力な超音波を得ることができる。本発明及び本形態における超音波は、周波数が15kHz以上、振幅が20μm以上であることが好ましい。
 本発明の第19の形態によれば、前記導電性ナノ材料が酸化処理されているので、分散が比較的困難な導電性ナノ材料を使用する場合においても、分散混合層内における導電性ナノ材料の分散性が高い複合樹脂材料粒子を得ることができる。ここにおける酸化処理としては、硫酸、硝酸、塩酸、又はリン酸からなる群から選択される1種以上に前記導電性ナノ材料を浸漬する処理及びオゾン水溶液に浸漬する処理などがある。本形態における導電性ナノ材料は、酸化処理により破壊されないものである必要があり、カーボンナノ物質が最も好ましい。
 本発明の第20の形態によれば、予め作製された導電性ナノ材料の分散液を使用して、前記導電性ナノ材料を均一な分散状態で樹脂材料粒子へ分散混合するので、前記導電性ナノ材料の分散混合層における分散が確実に行われ、前記分散混合層内の導電性ナノ材料の均一性を高めることができる。従って、製造される複合樹脂材料粒子及びそれから成型される成型体の導電性を高めることができる。
 本発明者は、複合樹脂材料粒子の製造実験において、樹脂材料粒子の流動性が低い場合は、導電性ナノ材料の分散混合層における分散性が低下することを発見した。ここにおける流動性の低い樹脂材料粒子の形状及び性質としては、繊維形状などの細長い粒子、嵩密度の軽い粒子、及び圧縮性が高い粒子などが挙げられる。これらの粒子はいずれも攪拌されること又は応力が加えられること等により相互に絡みやすく、流動が防止されやすい。
 樹脂材料粒子の流動性が低くなることにより、形成される分散混合層における導電ナノ材料の分散性が低下することの理由としては、以下のように考えられる。前記粒子の拡散運動が低下することにより、これらの材料樹脂粒子が相互に拡散運動及び均一分散を阻害し、また導電性ナノ材料の拡散運動及び均一分散も阻害する。よって、分散混合される導電性ナノ材料が前記樹脂材料粒子の限られた部分に偏る。又、前記樹脂材料粒子が相互に絡み合うことにより、部分的に重なり合い、これらの部分が液体二酸化炭素及び導電性ナノ材料から遮蔽される。導電性ナノ材料を予め溶媒に分散させて、分散液の状態において樹脂材料粒子への分散混合を行うと、導電性ナノ材料の樹脂材料粒子上の偏りを防止ことができるので、形成される分散混合層における導電性ナノ材料の分散性を高めることができる。
 本形態においては、少なくとも導電性ナノ材料が溶媒に混合されている。しかし、他の物質が前記導電性ナノ材料と共に溶媒に混合されても良い。他の物質の例としては、分散剤、界面活性剤及び液体二酸化炭素などが挙げられる。又、分散液を作製する為の方法としては、導電性ナノ材料などを溶媒に混合した後に攪拌しても良い。もし攪拌による導電性ナノ材料の分散が不十分であれば、超音波処理などにより分散性を高めても良い。
 本発明の第21の形態によれば、前記分散液が、分散剤及び/又は界面活性剤を含有するので、前記分散液内の導電性ナノ材料の分散性が高まり、分散混合層における導電性ナノ材料の分散性もそれに伴って高まる。又、溶媒中への分散が困難な導電性ナノ材料も前記溶液中に分散させることができる。このため、製造される複合樹脂材料粒子及びそれから成型される成型体の導電性を高めることができる。本形態において使用できる分散剤及び/又は界面活性剤としては、第15の形態と同様に、AcrosOrganics社製のTritonX-100、Sigma-Aldrich社製のTargetolNR-7、ドデシル硫酸ナトリウム(SDS)及びドデシルベンゼンスルホン酸ナトリウム(SDBS)等が挙げられる。
複合樹脂材料粒子の製造方法の一例を示す概略図である。 樹脂材料粒子の表面に導電性ナノ材料が分散混合される過程を示す概要図である。 樹脂材料粒子の表面に導電性ナノ材料が分散混合される過程を示す概要図である。 樹脂材料粒子の表面に導電性ナノ材料が分散混合される過程を示す概要図である。 小型耐圧容器の配管の一例を示す系統図である。 二酸化炭素の相図である。 複合樹脂材料粒子における分散混合層の構成の一例を示す概要図である。 複合樹脂材料粒子における分散混合層の構成の他例を示す概要図である。 CNT修飾されたPCペレット表面及び断面のSEM写真である。 CNT修飾されたPCペレット表面及び断面のSEM写真である。
 図1は、複合樹脂材料粒子の製造方法の一例を示す概略図である。樹脂材料粒子1及び導電性ナノ材料2を少なくとも液体二酸化炭素21及び超音波を伝播させる為の溶媒22と共に耐圧容器3に充填する。耐圧容器は、水槽5内の水6により加熱される。図1においては、超音波発信子4は水槽5の下部に設置され、水槽5内の水6により伝播される。しかし、発信子4を耐圧容器3に直接設置しても良い。
 図2A~図2Cは、樹脂材料粒子1の表面に導電性ナノ材料2が分散混合される過程を示す概要図である。
 図2Aにおいては樹脂材料粒子1が膨潤する以前の状態を示す。樹脂材料粒子1は膨潤していないので、表面が硬化状態のままであり、この状態では導電性ナノ材料2の分散混合はできない。
 図2Bにおいては、樹脂材料粒子1が膨潤した状態を示す。この状態においては、表面が軟化するので、導電性ナノ材料2が混合されやすくなる。しかし、超音波照射を行わない状態においては、導電性ナノ材料2が樹脂材料粒子1の表面から内部へ混合されない。
 図2Cにおいては、導電性ナノ材料2が超音波7の作用により表面から内部へ混合される状態を示す。超音波7の作用により、気泡が生じ、この気泡が急激に破裂して発生する衝撃により導電性ナノ材料2が樹脂材料粒子1に混合されると推測される。又、超音波7により導電性ナノ材料2が樹脂材料粒子1の表面にほぼ均一に分布されて分散混合されるので、重力方向における導電性ナノ材料2の偏向及び樹脂材料粒子1上における未混合状態の導電性ナノ材料2の堆積が防止される。
 液体二酸化炭素21は亜臨界状態及び超臨界状態においてもキャビテーションを起こさないので、超音波を伝播しない。従って、図2A~図2Cに示される工程においては、超音波を伝播する溶媒22が必須となる。この工程により、複合樹脂材料粒子8が形成される。この複合樹脂材料粒子8の分散混合層9は、混合厚dを有する。分散混合層9内の導電性ナノ材料2は、複合樹脂材料粒子8の表面内に埋め込まれ、強固に固定される為、分散混合層9を削り取らない限り、導電性ナノ材料2は剥離されない。
 図3は、耐圧容器3の配管を示す系統図である。材料、液体二酸化炭素及び溶媒が充填された後、バルブ10、11を閉じて密閉する。耐圧容器3内の温度及び圧力は、温度計12及び圧力計13により測定される。耐圧容器3内の圧力が耐圧容器3の設計上限を超えた場合には、安全弁23により圧力が逃される。
 図4は、二酸化炭素の相図である。二酸化炭素の臨界点14は、臨界温度が31.1℃及び臨界圧力が72.8気圧において存在する。超臨界状態15は、二酸化炭素が臨界点14以上の温度及び圧力を有する状態を指す。この状態においては、二酸化炭素は樹脂を膨潤する性質を高度に有し、従って分散混合層の形成を促進する。亜臨界状態16は、二酸化炭素が臨界点14以上の圧力及び臨界点14以下の温度を有する状態を指す。この状態においても、二酸化炭素は、樹脂を膨潤することができ、従って分散混合層の形成を促進できる。二酸化炭素の圧力を十分に低下することにより、前記二酸化炭素を急速に気化して、複合樹脂材料粒子から二酸化炭素を迅速に除去できる。
 図5A及び図5Bは、複合樹脂材料粒子8における分散混合層9の構成を示す概要図である。図5Aにおける複合樹脂材料粒子8は、分散混合層9が所定の混合厚dを有し、内部に樹脂単体領域17が存在する。この複合樹脂材料粒子8は、少量の導電性ナノ材料2を含有するにも係わらず、高導電性を有する。図5Bにおける複合樹脂材料粒子8は、全体が分散混合層9のみにより形成されている。このような複合樹脂材料粒子8は、原料となる樹脂材料粒子1の粒径が十分に小さく、樹脂材料粒子1の融点が十分に低く、導電性ナノ材料2の量が十分に多く、且つ前記複合樹脂材料粒子8の製造時間が十分に長い場合において得られる。
 これらの複合樹脂材料粒子8を溶融して融合することにより、内部に導電性網を有する成型体を作製することができる。これらの複合樹脂材料粒子8は、溶融して液化することにより形状を失うが、分散混合層9内の導電性ナノ材料2は、溶融した樹脂材料液体の粘性により浮遊が阻止される。従って、分散混合層9は連続性を保たれるので、分散混合層9から由来する導電性網も連続性且つ高導電性を有する。従って、前記溶融融合により高導電性を有する成型体が得られる。又、複合樹脂材料粒子8内の樹脂材料が溶融融合するので、得られる成型体が強固且つ頑丈になる。
[実施例1:複合樹脂材料粒子の製造]
 耐圧容器内に平均粒径3mmのポリカーボネート(PC)ペレットを170mg、溶媒にエタノールを用いたカーボンナノチューブ(CNT)濃度0.3wt%分散液を5g、液体二酸化炭素を48g充填し、65℃に保持された温水を満たした水槽の中に浸漬し、水槽下部に設けられた超音波発信子(超音波発生装置はギンセン(株)製GSD-600AT)を用いて10時間の超臨界超音波分散を行った。CNTは、Bayer(株)製BaytubesC150P(平均径φ11nm)及び昭和電工(株)製VGCF-S(平均径φ80nm)の2種類を用いた。
 処理後、耐圧容器を開放し、液体二酸化炭素を蒸発させた。常圧電気炉にて105℃、24時間処理することによりエタノールを揮発させて、CNT修飾されたPCペレットを得た。
 図6Aと図6BはCNT修飾されたPCペレット表面及び断面のSEM写真である。図6Aは表面のSEM写真であり、図6Bは断面のSEM写真である。表面には一様にCNTが分散混合されていることが確認され、断面では均一に混合厚dが深さ約1μmである分散混合層が確認された。
[実施例2:成型体の製造]
 耐圧容器内に平均粒径5μmのポリテトラフルオロエチレン(PTFE)粉末を16g、溶媒にエタノールを用いたカーボンナノチューブ(CNT)濃度1.0wt%分散液をCNT重量がPFTEに対し3wt%になるように48g充填し、液体二酸化炭素を当該液体二酸化炭素の溶媒に対する比が1になるように48g充填した。CNTとしては、Bayer(株)製BaytubesC150P(平均径φ11nm)及び昭和電工(株)製VGCF-S(平均径φ80nm)の2種類を用いた。
 この耐圧容器を65℃に保持された温水を満たした水槽の中に浸漬し、水槽下部に設けられた超音波発信子(超音波発生装置はギンセン(株)製GSD-600AT)を用いて10時間の超臨界超音波分散を行った。処理後、耐圧容器を開放し、液体二酸化炭素を蒸発させ、常圧電気炉を用いて105℃にて24時間処理することによりエタノールを揮発させて、CNTが分散混合されたPFTE粉末を得た。SEMで観察したところ、両種類のCNTの場合において、樹脂とCNTが均一に混合していることが観察された。
 この2種類の粉末を原料として、磁性灰皿(L50mm×W30mm×H10mm)にそれぞれを圧粉充填し、電気炉中において350℃にて1時間成型を行い、成型品1(BaytubesC150P)及び成型品2(VGCF-S)を得た。又、比較例として、市販のCNT5wt%入りポリカーボネート(PC)ペレットを同様の方法(270℃、1時間)で成型し、成型品3を得た。
 これらの成型品の表面抵抗を表面抵抗測定器(シシド静電気(株)製MEGARESTA-HO709)で測定した。市販品のCNT入りPCにより製造された成型品3の表面抵抗は4.1×10Ω/cmであったのに対し、成型品1及び2の表面抵抗は1.0×10Ω/cm~3.0×10Ω/cmであった。成型品1及び2の原料は、CNT低濃度で、且つ絶縁性の高いPFTEであるにも係わらず、市販のCNT入りPCと対比して低い電気抵抗値を示し、高導電性材料を成型できた。
 本発明により、少量の導電性ナノ材料を使用して、容易に高導電性を有する複合樹脂材料粒子が得られる。複合樹脂材料粒子の製造においては、二酸化炭素及び溶媒が簡単に気化するので、工程を簡略化できる。この複合樹脂材料粒子は、高導電性網を有する成型物を形成するのに使用できるので、少量の導電性ナノ材料を使用することにより高導電性を有する成型物が得られる。従って、本発明は、高導電性を有する樹脂成型物を安価に且つ産業性が高い方法により得ることに貢献する。
 1  樹脂材料粒子
 2  導電性ナノ材料
 3  耐圧容器
 4  超音波発信子
 5  水槽
 6  水
 7  超音波
 8  複合樹脂材料粒子
 9  分散混合層
 10  バルブ
 11  バルブ
 12  温度計
 13  圧力計
 14  臨界点
 15  超臨界状態
 16  亜臨界状態
 17  樹脂単体領域
 21  液体二酸化炭素
 22  溶媒
 23  安全弁

Claims (21)

  1.  樹脂成型体を製造する為の原料である樹脂材料粒子と、導電性ナノ材料を有し、
     前記樹脂材料粒子の表面からその内側に向かって導電性ナノ材料を分散状に混合してなる分散混合層が、前記樹脂材料粒子の全表面又は一部表面に少なくとも形成され、
     前記分散混合層においては前記樹脂材料粒子の樹脂材料中に前記導電性ナノ材料が分散混合され、
     前記分散混合層の全体が導電層を形成する複合樹脂材料粒子。
  2.  前記分散混合層は所定の混合厚を有して前記複合樹脂材料粒子の全表面に形成され、前記分散混合層に囲まれた前記複合樹脂材料粒子の内部に前記樹脂材料のみから形成される樹脂単体領域が存在する請求項1に記載の複合樹脂材料粒子。
  3.  前記分散混合層の混合厚が0.1μm~10μmである請求項2に記載の複合樹脂材料粒子。
  4.  前記複合樹脂材料粒子の内部全体が前記分散混合層のみから形成された請求項1に記載の複合樹脂材料粒子。
  5.  前記複合樹脂材料粒子は、直径が100μm以上のペレットである請求項1に記載の複合樹脂材料粒子。
  6.  前記複合樹脂材料粒子は、直径が100μm以下の粉体である請求項1に記載の複合樹脂材料粒子。
  7.  前記導電性ナノ材料が、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、カーボンナノツイスト、カーボンナノホーン、フラーレン、カーボンブラック、ケッチェンブラック、アセチレンブラック、金属ナノ粒子、金属ナノプレート、金属ナノロッド、及び金属ナノワイヤからなる群から選択される1種以上である請求項1に記載の複合樹脂材料粒子。
  8.  前記導電性ナノ材料が、外径が150nm以下であり、且つ長さが500nm以上である形状を有する、請求項1に記載の複合樹脂材料粒子。
  9.  前記樹脂材料が、フッ素系樹脂、ポリカーボネート樹脂、オレフィン系樹脂、ポリエーテルエーテルケトン樹脂、ホルマリン系樹脂、エステル樹脂、及びスチレン系樹脂からなる群から選択される1種以上である請求項1に記載の複合樹脂材料粒子。
  10.  少なくとも樹脂材料粒子、導電性ナノ材料、超音波を伝播させる為の溶媒及び液体二酸化炭素を耐圧容器に充填し、
     前記耐圧容器の内部を前記液体二酸化炭素が亜臨界又は超臨界状態を維持できる温度及び圧力に保持し、
     超音波を用いて前記導電性ナノ材料を前記樹脂材料粒子の表面からその内側に向かって分散状に混合し、
     後に減圧により前記液体二酸化炭素を蒸発させ、
     更に同時に又は時間差を設けて前記溶媒を揮発させることにより、前記樹脂材料粒子表面に分散混合層が形成された複合樹脂材料粒子を得る複合樹脂材料粒子の製造方法。
  11.  前記溶媒が常温及び常圧において高揮発性溶媒である請求項10に記載の複合樹脂材料粒子の製造方法。
  12.  前記溶媒が、アルコール、ケトン、エステル、エーテル、塩化有機物、及びフッ化有機物からなる群から選択される1種以上である請求項11に記載の複合樹脂材料粒子の製造方法。
  13.  前記導電性ナノ材料に対する前記溶媒の重量比が20以上である請求項10に記載の複合樹脂材料粒子の製造方法。
  14.  前記液体二酸化炭素:前記溶媒の重量比が0.05:1~20:1である請求項10に記載の樹脂複合材料原料の製造方法。
  15.  分散剤及び/又は界面活性剤を前記耐圧容器内に添加する請求項10に記載の複合樹脂材料粒子の製造方法。
  16.  前記温度が25℃を超え、且つ前記樹脂材料の融点温度未満である請求項10に記載の複合樹脂材料粒子の製造方法。
  17.  前記耐圧容器内の最大圧力が100MPaである請求項10に記載の複合樹脂材料粒子の製造方法。
  18.  前記超音波の発生装置が150W以上のホーン式である請求項10に記載の複合樹脂材料粒子の製造方法。
  19.  前記導電性ナノ材料が酸化処理されている請求項10に記載の複合樹脂材料粒子の製造方法。
  20.  少なくとも前記導電性ナノ材料が前記溶媒に混合され、分散された分散液を、前記液化二酸化炭素及び前記樹脂材料粒子と共に前記耐圧容器に充填する請求項10に記載の複合樹脂材料粒子の製造方法。
  21.  前記分散液は分散剤及び/又は界面活性剤を含有する請求項20に記載の複合樹脂材料粒子の製造方法。
PCT/JP2010/062108 2009-01-20 2010-07-16 複合樹脂材料粒子及びその製造方法 WO2011070813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080055235.0A CN102656216B (zh) 2009-12-12 2010-07-16 复合树脂材料粒子及其制造方法
EP10835735.1A EP2511322B1 (en) 2009-12-12 2010-07-16 Composite resinous particles and process for producing same
KR1020127014946A KR101652097B1 (ko) 2009-12-12 2010-07-16 복합 수지 재료 입자 및 그 제조 방법
US13/514,411 US10435519B2 (en) 2009-01-20 2010-07-16 Composite resinous material particles and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-282320 2009-12-12
JP2009282320A JP5603059B2 (ja) 2009-01-20 2009-12-12 複合樹脂材料粒子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011070813A1 true WO2011070813A1 (ja) 2011-06-16

Family

ID=44145958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062108 WO2011070813A1 (ja) 2009-01-20 2010-07-16 複合樹脂材料粒子及びその製造方法

Country Status (5)

Country Link
EP (1) EP2511322B1 (ja)
KR (1) KR101652097B1 (ja)
CN (1) CN102656216B (ja)
TW (1) TWI543197B (ja)
WO (1) WO2011070813A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034591A (ja) * 2012-08-07 2014-02-24 Taiyo Nippon Sanso Corp 複合樹脂材料粒子の製造方法、及び複合樹脂成形体の製造方法
WO2017022229A1 (ja) * 2015-07-31 2017-02-09 日本ゼオン株式会社 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
WO2020026938A1 (ja) * 2018-08-01 2020-02-06 大陽日酸株式会社 複合樹脂粒子の製造方法および複合樹脂粒子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161946B2 (en) * 2016-10-03 2021-11-02 Zeon Corporation Method of producing composite resin material and method of producing shaped product
CN109790297A (zh) * 2016-10-03 2019-05-21 日本瑞翁株式会社 浆料、复合树脂材料和成型体的制造方法
CN108410183B (zh) * 2018-04-10 2021-06-08 东莞市宏昱新材料有限公司 一种导电塑胶材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506612A (ja) * 1993-02-11 1996-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー ポリマーの含浸法
JP2000511245A (ja) * 1996-05-31 2000-08-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド 中空炭素微小繊維の縺れをほぐす方法、電気伝導性透明炭素微小繊維凝集フイルム、及びそのようなフイルムを形成するための被覆組成物
JP2001158827A (ja) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd プラスチック成形品の表面改質方法及び表面改質プラスチック成形品
JP2003100147A (ja) 2001-09-25 2003-04-04 Nagase & Co Ltd カーボンナノチューブを含有する導電性材料およびその製造方法
JP2003192914A (ja) 2001-12-28 2003-07-09 Mitsubishi Plastics Ind Ltd 導電性に優れた熱可塑性樹脂成形体
JP2003221510A (ja) 2002-01-30 2003-08-08 Idemitsu Petrochem Co Ltd 熱可塑性樹脂組成物および成形品
JP2003315531A (ja) 2002-02-25 2003-11-06 Mitsubishi Materials Corp 金属ナノロッド含有高分子フィルムと光学フィルター
JP2004087427A (ja) 2002-08-29 2004-03-18 Hitachi Chem Co Ltd 導電性高分子−金属クラスタ複合体電極およびその製造方法
JP2006008945A (ja) * 2004-06-29 2006-01-12 Japan Science & Technology Agency 導電性樹脂成形体の製造方法及び導電性樹脂成形体
JP2006282843A (ja) * 2005-03-31 2006-10-19 Bussan Nanotech Research Institute Inc 微細炭素繊維含有樹脂組成物の製造方法
JP2008537016A (ja) * 2005-03-31 2008-09-11 バッテル メモリアル インスティチュート 材料を表面および基材に選択的に付着させる方法および装置
JP2009109910A (ja) * 2007-10-31 2009-05-21 Sumitomo Rubber Ind Ltd 導電性弾性層の表面処理液及び表面処理方法、表面処理された導電性部材
JP2009282320A (ja) 2008-05-22 2009-12-03 Toshiba Corp 携帯端末装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003218335A1 (en) 2002-03-20 2003-10-08 The Trustees Of The University Of Pennsylvania Nanostructure composites
WO2004091571A2 (en) 2003-04-08 2004-10-28 New Jersey Institute Of Technology (Njit) Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
US20040211942A1 (en) 2003-04-28 2004-10-28 Clark Darren Cameron Electrically conductive compositions and method of manufacture thereof
US20050070658A1 (en) * 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
JP4805820B2 (ja) * 2004-05-13 2011-11-02 国立大学法人北海道大学 微小カーボン分散物
JP2006069165A (ja) 2004-09-06 2006-03-16 Japan Science & Technology Agency カーボンナノチューブ複合シート、およびその製造方法
EP1910220A1 (en) 2005-07-22 2008-04-16 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Nanocomposite polymers
DE102007058992A1 (de) * 2007-12-07 2009-06-10 Bayer Materialscience Ag Verfahren zur Herstellung eines leitfähigen Polycarbonatverbundmaterials

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506612A (ja) * 1993-02-11 1996-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー ポリマーの含浸法
JP2000511245A (ja) * 1996-05-31 2000-08-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド 中空炭素微小繊維の縺れをほぐす方法、電気伝導性透明炭素微小繊維凝集フイルム、及びそのようなフイルムを形成するための被覆組成物
JP2001158827A (ja) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd プラスチック成形品の表面改質方法及び表面改質プラスチック成形品
JP2003100147A (ja) 2001-09-25 2003-04-04 Nagase & Co Ltd カーボンナノチューブを含有する導電性材料およびその製造方法
JP2003192914A (ja) 2001-12-28 2003-07-09 Mitsubishi Plastics Ind Ltd 導電性に優れた熱可塑性樹脂成形体
JP2003221510A (ja) 2002-01-30 2003-08-08 Idemitsu Petrochem Co Ltd 熱可塑性樹脂組成物および成形品
JP2003315531A (ja) 2002-02-25 2003-11-06 Mitsubishi Materials Corp 金属ナノロッド含有高分子フィルムと光学フィルター
JP2004087427A (ja) 2002-08-29 2004-03-18 Hitachi Chem Co Ltd 導電性高分子−金属クラスタ複合体電極およびその製造方法
JP2006008945A (ja) * 2004-06-29 2006-01-12 Japan Science & Technology Agency 導電性樹脂成形体の製造方法及び導電性樹脂成形体
JP2006282843A (ja) * 2005-03-31 2006-10-19 Bussan Nanotech Research Institute Inc 微細炭素繊維含有樹脂組成物の製造方法
JP2008537016A (ja) * 2005-03-31 2008-09-11 バッテル メモリアル インスティチュート 材料を表面および基材に選択的に付着させる方法および装置
JP2009109910A (ja) * 2007-10-31 2009-05-21 Sumitomo Rubber Ind Ltd 導電性弾性層の表面処理液及び表面処理方法、表面処理された導電性部材
JP2009282320A (ja) 2008-05-22 2009-12-03 Toshiba Corp 携帯端末装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511322A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034591A (ja) * 2012-08-07 2014-02-24 Taiyo Nippon Sanso Corp 複合樹脂材料粒子の製造方法、及び複合樹脂成形体の製造方法
WO2017022229A1 (ja) * 2015-07-31 2017-02-09 日本ゼオン株式会社 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
JPWO2017022229A1 (ja) * 2015-07-31 2018-05-24 日本ゼオン株式会社 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
US10414896B2 (en) 2015-07-31 2019-09-17 Zeon Corporation Composite resin material, slurry, shaped composite resin material product, and slurry production process
WO2020026938A1 (ja) * 2018-08-01 2020-02-06 大陽日酸株式会社 複合樹脂粒子の製造方法および複合樹脂粒子

Also Published As

Publication number Publication date
TWI543197B (zh) 2016-07-21
KR20120120164A (ko) 2012-11-01
EP2511322B1 (en) 2017-03-29
EP2511322A1 (en) 2012-10-17
EP2511322A4 (en) 2014-10-01
CN102656216B (zh) 2014-09-10
KR101652097B1 (ko) 2016-08-29
CN102656216A (zh) 2012-09-05
TW201120914A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5603059B2 (ja) 複合樹脂材料粒子及びその製造方法
WO2011070813A1 (ja) 複合樹脂材料粒子及びその製造方法
Atif et al. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers
US9717170B2 (en) Graphene nanoplatelets- or graphite nanoplatelets-based nanocomposites for reducing electromagnetic interferences
Subhani et al. Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds
Li et al. Selective laser sintering 3D printing: a way to construct 3D electrically conductive segregated network in polymer matrix
KR101135672B1 (ko) 압출로 제조된 전도성 열경화수지
Yi et al. CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites
US20180346689A1 (en) Carbon nanotube / graphene composites
Viskadouros et al. Enhanced field emission from reduced graphene oxide polymer composites
Wang et al. Application of carbon nanotubes from waste plastics as filler to epoxy resin composite
US20110281071A1 (en) Process for incorporating carbon particles into a polyurethane surface layer
Almazrouei et al. Robust surface-engineered tape-cast and extrusion methods to fabricate electrically-conductive poly (vinylidene fluoride)/carbon nanotube filaments for corrosion-resistant 3D printing applications
Mokhtari et al. A review of electrically conductive poly (ether ether ketone) materials
JP5313007B2 (ja) 導電性樹脂充填用カーボンナノ物質の分散液及びその製造方法
KR20100136079A (ko) 복합탄소소재를 포함하는 전도성 발포수지조성물
WO2019004235A1 (ja) 複合樹脂粒子の製造方法、樹脂成形体、及び複合樹脂粒子
Ganesh et al. Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding
van Berkel et al. Spin-coated highly aligned silver nanowire networks in conductive latex-based thin layer films
Nath et al. Synthesis of ionic liquid modified 1‐D nanomaterial and its strategical distribution into the biodegradable binary polymer matrix to get reduced electrical percolation threshold and electromagnetic interference shielding effectiveness
JP2009126985A (ja) 成形体、その製造方法及び該成形体の用途
Rangari et al. Synthesis Fabrication and Characterization of Ag/CNT‐Polymer Nanocomposites
Gabino et al. Flexible microwave absorbing composites based on polydimethylsiloxane filled with hybrid carbonaceous materials: Statistical analysis of the synergistic effect
Dorozhkin et al. Method of manufacturing of composite for 3D printing and the electrophysical properties of the obtained material
JP2024151413A (ja) 粉末床溶融結合造形用粉末、その製造方法及び造形物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055235.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13514411

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127014946

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010835735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010835735

Country of ref document: EP