WO2011069948A1 - Procédé de contrôle et/ou de régulation de piles à combustible - Google Patents

Procédé de contrôle et/ou de régulation de piles à combustible Download PDF

Info

Publication number
WO2011069948A1
WO2011069948A1 PCT/EP2010/068941 EP2010068941W WO2011069948A1 WO 2011069948 A1 WO2011069948 A1 WO 2011069948A1 EP 2010068941 W EP2010068941 W EP 2010068941W WO 2011069948 A1 WO2011069948 A1 WO 2011069948A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitted radiation
measuring cell
measuring
gas
electrode
Prior art date
Application number
PCT/EP2010/068941
Other languages
German (de)
English (en)
Inventor
Hans Bettermann
Peter Fischer
Arno Reichelt
Irmgard Buder
Volker Peinecke
Original Assignee
Heinrich Heine Universität Düsseldorf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinrich Heine Universität Düsseldorf filed Critical Heinrich Heine Universität Düsseldorf
Priority to CA2783138A priority Critical patent/CA2783138A1/fr
Priority to US13/512,602 priority patent/US9030665B2/en
Priority to EP10784323.7A priority patent/EP2510572B1/fr
Publication of WO2011069948A1 publication Critical patent/WO2011069948A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04455Concentration; Density of cathode reactants at the inlet or inside the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • US 5,168,323 describes an apparatus for detecting impurities in gases. This device finds particular application in the detection of impurities in noble gases such as helium. There is no indication for the determination of nitrogen concentrations in an atmosphere comparable to that of fuel cells. Also not mentioned here is the possibility of directly determining the water vapor concentration in a gas mixture.
  • DE 10 2006 001 778 T5 and DE 11 2006 002 060 T5 disclose methods for detecting a fuel gas leak in a fuel cell system, which are based on the estimation or assessment of the nitrogen concentration. Both methods are not suitable for online analysis of fuel cells in operation and do not use spectroscopic detection methods.
  • the object of the invention is to provide a method for monitoring and / or regulating fuel cells, with which reliable and verifiable gas components, such as nitrogen or water vapor, online can also be determined in a fuel cell system.
  • the subject of the present invention is a method for monitoring and / or regulating fuel cells, comprising determining the composition of the operating gases of fuel cells, comprising the steps of: introducing a gas mixture to be analyzed into a measuring cell; Generating an arc in the measuring cell; Picking up the radiation emitted by the arc; optically filtering the emitted radiation and / or spectrally dissecting the emitted radiation; Converting the emitted radiation into an electrical signal; Evaluating the electrical signal.
  • the discharge in the form of the arc causes the gases to be analyzed to be ionized and the resulting light emissions to be absorbed.
  • the light emission of the ions can then be used as specific detection.
  • the generation of ions makes sense here, since not all neutral molecules show a usable line emission.
  • the inventive method is particularly inexpensive to perform, which is ensured both by the simple design of the required measuring cell and by their low energy consumption.
  • the emitted radiation is taken from at least two measuring cells, wherein the optical filtering of the emitted radiation and / or the spectral decomposition of the emitted radiation for each of the measuring cells individually or in parallel. In this way, a safe monitoring and / or control of fuel cell stacks is possible, in which case only one analysis unit is necessary.
  • the arc is generated by the application of an alternating voltage to electrodes.
  • the AC voltage at the electrodes must be sufficiently high and matched to the electrode spacing in order to achieve the required current density.
  • the AC voltage is at a frequency between 20 kHz and 70 kHz. This makes it possible to also ionize molecules such as water, nitrogen or hydrogen and thus detect them by spectroscopic methods.
  • the method according to the invention is therefore preferably usable in the atmosphere of a fuel cell. By selecting the discharge conditions more precisely, optimum discharge properties and thus for the respective analytical task can be achieved.
  • an AC voltage in said frequency range also offers further advantages: On the one hand, a one-sided electrode burn, which could occur in a DC arc and would lead to the geometric displacement of the focal length and thus the change in the optical properties of the system. On the other hand, the required voltage sources are commercially available and inexpensive. It is particularly advantageous here to use inverter circuits which are used, for example, for the operation of cold cathode fluorescent tubes (CCFL). In addition, the use of the aforementioned frequency range prevents interference with radio and mobile radio systems. Since these inverter circuits already ensure electrical isolation, they also offer the advantage that it is possible to integrate the measuring cell described below without further insulation measures directly into a fuel cell stack.
  • CCFL cold cathode fluorescent tubes
  • a voltage in a range between 0.5 kV and 5 kV is applied to the electrodes so that current intensities are set in a range between 200 ⁇ to 6 mA.
  • the emitted radiation is removed with a light guide.
  • a light guide it is possible to mechanically integrate the measuring cell in a fuel cell stack or in a fuel cell stack or in the housing of the fuel cell stack, whereas the other components of the analysis can be arranged outside the fuel cell.
  • the invention further relates to a measuring cell for analyzing the composition of the operating gases of fuel cells, comprising a housing, which has a gas inlet and a gas outlet, and a discharge chamber, which is connected to the gas inlet and gas outlet, wherein the discharge chamber, at least from the housing is partially enclosed and in which an electrode and a counter electrode are arranged with a discharge gap, wherein the electrodes are formed to form an arc and at least one means is provided to remove the emitted radiation.
  • Such a measuring cell is particularly simple and inexpensive to produce.
  • the dimensions of such a measuring cell can be kept very small, so that inventive measuring cells can be easily integrated into a fuel cell stack.
  • an electrode is designed as a ring electrode.
  • constructions are possible, which allow a faster gas exchange in the discharge zone and in which the heat released during the discharge heat can be dissipated better. Due to the faster gas exchange, this design allows rapid detection and thus efficient control of the fuel cell.
  • the housing is formed thermostatically. As a result, it can be adjusted to the temperature of the fuel cell, whereby condensation of water within the measuring cell is effectively prevented. This is especially necessary when the measuring cell is placed outside the fuel cell casing or stack.
  • the means for removing the emitted radiation designed as a light guide.
  • a light guide it is possible to integrate the measuring cell directly into the housing of a fuel cell or of a fuel cell stack (a so-called fuel cell stack), whereas the other components of the analysis can be arranged outside the fuel cell.
  • This measure has the advantage that no additional thermostating to avoid the condensation of water in the measuring cell is required.
  • such a single optical analysis unit can be used for a plurality of measuring cells. This is particularly advantageous if the fuel cells are arranged as stacks or several stacks are combined to form a larger system.
  • the proposed structure has the advantage that it is robust and stable against external influences. Further advantages and advantageous embodiments of the subject invention are illustrated by the drawings and explained in the following description. It should be noted that the drawings have only descriptive character and are not intended to limit the invention in any way.
  • FIG. 1 shows the structure of an embodiment of a measuring cell according to the invention
  • FIG. 7 shows an enlarged view of the spectrum of FIG. 5.
  • FIG. 1 shows a measuring cell 1 according to the invention, which is designed for a method according to the invention for monitoring and / or regulating fuel cells.
  • the measuring cell 1 is designed as a discharge cell and arranged at the end of the anode gas channel of a fuel cell.
  • the measuring cell 1 can be looped directly into the anode gas channel or connected via a bypass with this.
  • the housing 2 is wholly or partly formed of metal.
  • a thermostatting of the measuring cell 1 to the temperature of the fuel cell is easily possible. This is of great importance for the operation of the combination of fuel cell and measuring cell 1, since in this way the condensation of water in the discharge chamber 3 can be effectively prevented. This prevents that condensed water leads to leakage currents or flashovers in the measuring cell 1, which can falsify the measurement results or even damage the cell.
  • a detector which carries out the conversion into an electrical signal, can serve in the first case, for example, photocells, photomultipliers, photodiodes, in the second CMOS or CCD detectors.
  • the evaluation of the electrical signals can be carried out by methods known to the person skilled in the art, for example as gas spectra, as shown below.
  • the dispersion unit may be dispensable and be replaced by a suitable optical bandpass filter, which is advantageously coupled to a photocell or photodiode as a detector.
  • the AC voltage of the measuring cell is preferably supplied via a coaxial line.
  • the housing 2 can then be placed with respect to the supplied AC voltage to ground potential or the potential of the anode of the fuel cell to be measured or the stack.
  • thermally conductive diaphragms can be provided in each case in the gas inlet 4 or the gas outlet 5 of the measuring cell 1 in order to reliably prevent ignition of the resulting oxyhydrogen gas mixture in the event of an air intrusion into the anode gas system.
  • copper meshes or bronze sintered frits can be used as heat-conducting diaphragms.
  • the electrodes can be applied to the electrodes so as to produce an arc discharge.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dispersion and detection system, for example, to a spectrograph.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dispersion and detection system, for example, to a spectrograph.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dispersion and detection system, for example, to a spectrograph.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dispersion and detection system, for example, to a spectrograph.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dispersion and detection system, for example, to a spectrograph.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dispersion and detection system, for example, to a spectrograph.
  • the light guide 12 is provided in order to forward the radiation thus generated to the dis

Abstract

L'invention concerne un procédé de contrôle et/ou de régulation de piles à combustible, comprenant en particulier la détermination de la composition des gaz de procédé de piles à combustible. Ce procédé comprend les étapes suivantes : introduction du mélange gazeux à analyser dans une cellule de mesure (1); production d'un arc électrique dans la cellule de mesure (1); captage du rayonnement émis par l'arc électrique; filtrage optique du rayonnement émis et/ou décomposition spectrale du rayonnement émis; conversion du rayonnement émis en signal électrique; évaluation du signal électrique.
PCT/EP2010/068941 2009-12-08 2010-12-06 Procédé de contrôle et/ou de régulation de piles à combustible WO2011069948A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2783138A CA2783138A1 (fr) 2009-12-08 2010-12-06 Procede de controle et/ou de regulation de piles a combustible
US13/512,602 US9030665B2 (en) 2009-12-08 2010-12-06 Method for monitoring and/or regulating fuel cells
EP10784323.7A EP2510572B1 (fr) 2009-12-08 2010-12-06 Procédé de contrôle et/ou de régulation de piles à combustible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009057130A DE102009057130A1 (de) 2009-12-08 2009-12-08 Verfahren zur Analyse der Zusammensetzung von Gasgemischen
DE102009057130.2 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011069948A1 true WO2011069948A1 (fr) 2011-06-16

Family

ID=43856000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068941 WO2011069948A1 (fr) 2009-12-08 2010-12-06 Procédé de contrôle et/ou de régulation de piles à combustible

Country Status (5)

Country Link
US (1) US9030665B2 (fr)
EP (1) EP2510572B1 (fr)
CA (1) CA2783138A1 (fr)
DE (1) DE102009057130A1 (fr)
WO (1) WO2011069948A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152621A1 (fr) * 2011-05-06 2012-11-15 Heinrich-Heine-Universität Düsseldorf Procédé et système pour la détection d'un premier gaz dans un mélange gazeux comprenant au moins un autre gaz
KR20190114548A (ko) 2018-03-30 2019-10-10 주식회사 엘지유플러스 콘텐츠 제어 장치 및 그 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2483289B (en) 2010-09-03 2012-10-17 Thermo Fisher Scient Ecublens Sarl Improved spark chamber for optical emission analysis
DE102013007872B4 (de) 2013-05-08 2015-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrochemischer Gassensor, Verfahren zu dessen Herstellung und dessen Verwendung
TW201546436A (zh) 2014-01-06 2015-12-16 Bloom Energy Corp 用於指示燃料電池系統中不欲組分的結構及方法
WO2016141465A1 (fr) * 2015-03-06 2016-09-15 Mécanique Analytique Inc. Procédés et systèmes de gestion d'épuration des gaz
DE102022208770A1 (de) 2022-08-24 2024-02-29 Hochschule Reutlingen, Körperschaft des öffentlichen Rechts Vorrichtung zum Erfassen von mindestens einer gasförmigen Komponente in einem Gas

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801209A (en) * 1986-01-17 1989-01-31 The Boc Group, Inc. Process and apparatus for analyzing a gaseous mixture and a visible emission spectrum generator therefor
US5168323A (en) 1988-03-31 1992-12-01 Sulzer Brothers Limited Device and method for determining impurities in a gas
US5570179A (en) 1993-12-16 1996-10-29 Instrumentarium Oy Measuring sensor and measuring arrangement for use in the analysis of gas mixtures
WO1998018001A2 (fr) * 1996-10-22 1998-04-30 Orbisphere Laboratories Neuchatel S.A. Dispositif de surveillance de la combustibilite et procede de surveillance associe
EP0940670A1 (fr) * 1998-03-06 1999-09-08 Praxair Technology, Inc. Cellule d'échantillon amélioré pour spectroscopie d'émission gazeux
DE102006001778A1 (de) 2006-01-12 2007-07-26 Kinetix Ag Vorrichtung zum Aufhängen von Gegenständen
WO2007098586A1 (fr) * 2006-02-28 2007-09-07 Panalytique Inc. Système et procédé d'élimination d'interférences en vue de mesurer les impuretés dans des gaz nobles
DE112006002060T5 (de) 2005-08-09 2008-05-29 Toyota Jidosha Kabushiki Kaisha, Toyota Brennstoffzellensystem und Verfahren zum Beurteilen einer Brenngasleckage in einem Brennstoffzellensystem
DE60223961T2 (de) 2001-03-29 2008-11-27 Taiyo Nippon Sanso Corporation Verfahren und Vorrichtung zur Messung von Stickstoff in einem Gas

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292988A (en) * 1966-12-20 Apparatus for surveillance of arc discharge lamps
DE423436C (de) * 1924-06-27 1925-12-30 Felten & Guilleaume Carlswerk Verfahren zur spektroskopischen Pruefung des Metallbades in Schmelz- und Frisch-, vorzugsweise Elektrooefen
GB727410A (en) * 1952-11-26 1955-03-30 Hilger & Watts Ltd Method and apparatus for spectrochemical analysis
GB873576A (en) * 1958-02-10 1961-07-26 Union Carbide Corp Improvements in or relating to methods and apparatus for gas mixture analysis
NL6403239A (fr) * 1964-03-26 1965-09-27
DE1614801C3 (de) * 1966-04-16 1973-09-27 Tavkoezlesi Kutato Intezet, Budapest Senkrecht angeordneter Licht bogen Plasmabrenner
FR1599587A (fr) * 1968-01-10 1970-07-15
US3545863A (en) * 1968-01-15 1970-12-08 Dow Chemical Co Method for detection of mercury in a helium glow discharge
US3791743A (en) * 1973-03-21 1974-02-12 Bethlehem Steel Corp Portable flame photometer and sampling probe
FR2586156A1 (fr) * 1985-08-07 1987-02-13 Hochvakuum Dresden Veb Procede pour regler la densite de vapeur dans des processus de revetement utilisant un plasma avec des evaporateurs a decharge d'arc, et dispositif correspondant pour revetir des substrats a l'aide de plasma
US4723438A (en) * 1985-12-19 1988-02-09 Spectral Sciences, Inc. Spark spectroscopic high-pressure gas analyzer
DE4113404A1 (de) * 1991-04-22 1992-10-29 Lucht Hartmut Dr Funkenemissionsspektrometer fuer loesungen
DE19505104A1 (de) * 1995-02-15 1996-08-22 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren und Anordnung zur Bestimmung der Reinheit und/oder des Drucks von Gasen für elektrische Lampen
AT406527B (de) * 1997-03-04 2000-06-26 Bernhard Dr Platzer Vorrichtung zum analysieren gasförmiger proben
US6034768A (en) * 1997-09-26 2000-03-07 Physical Sciences Inc. Induced breakdown spectroscopy detector system with controllable delay time
US6011882A (en) * 1997-10-16 2000-01-04 World Precision Instruments, Inc. Chemical sensing techniques employing liquid-core optical fibers
US6202468B1 (en) * 1998-01-14 2001-03-20 Life Measurement Instruments Apparatus and method for the determination of the relative proportions of gases
US6777120B2 (en) * 2001-05-23 2004-08-17 General Motors Corporation Relative humidity sensor with compensation for changes in pressure and gas composition
JP4254263B2 (ja) * 2002-08-22 2009-04-15 日産自動車株式会社 ガス流量測定装置及びガス流量測定方法
AU2003900184A0 (en) * 2003-01-16 2003-01-30 Ceramic Fuel Cells Limited Method of operating a fuel cell
US8486255B2 (en) * 2003-01-30 2013-07-16 Emisense Technologies, Llc System, apparatus, and method for measuring an ion concentration of a measured fluid
EP1776579A2 (fr) * 2004-08-10 2007-04-25 Honeywell International Inc. Systeme de capteur a micro-decharge
US7326926B2 (en) * 2005-07-06 2008-02-05 Yang Wang Corona discharge ionization sources for mass spectrometric and ion mobility spectrometric analysis of gas-phase chemical species
HUP0500715A2 (en) * 2005-07-26 2007-01-29 Tamas Dr Cserfalvi Method and device for determining components of sewages
JP4894994B2 (ja) 2005-08-09 2012-03-14 トヨタ自動車株式会社 燃料電池システム
US7654128B2 (en) * 2005-12-23 2010-02-02 Ford Motor Company Gas analyzing apparatus and method
US7820979B2 (en) * 2008-05-05 2010-10-26 Implant Sciences Corporation Pulsed ultraviolet ion source
US20120189876A1 (en) * 2009-01-29 2012-07-26 Ardica Technologies, Inc. Fuel cell purge system
JP5408420B2 (ja) * 2009-07-30 2014-02-05 日産自動車株式会社 燃料電池システムとこの燃料電池システムに用いる燃料電池の昇温方法
FR2952234B1 (fr) * 2009-10-30 2011-12-16 Michelin Soc Tech Procedure de detection de l'etat de permeabilite de la membrane polymere echangeuse d'ions d'une pile a combustible.
US8040517B1 (en) * 2010-04-30 2011-10-18 General Electric Company Arc flash detection system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801209A (en) * 1986-01-17 1989-01-31 The Boc Group, Inc. Process and apparatus for analyzing a gaseous mixture and a visible emission spectrum generator therefor
US5168323A (en) 1988-03-31 1992-12-01 Sulzer Brothers Limited Device and method for determining impurities in a gas
US5570179A (en) 1993-12-16 1996-10-29 Instrumentarium Oy Measuring sensor and measuring arrangement for use in the analysis of gas mixtures
WO1998018001A2 (fr) * 1996-10-22 1998-04-30 Orbisphere Laboratories Neuchatel S.A. Dispositif de surveillance de la combustibilite et procede de surveillance associe
EP0940670A1 (fr) * 1998-03-06 1999-09-08 Praxair Technology, Inc. Cellule d'échantillon amélioré pour spectroscopie d'émission gazeux
DE60223961T2 (de) 2001-03-29 2008-11-27 Taiyo Nippon Sanso Corporation Verfahren und Vorrichtung zur Messung von Stickstoff in einem Gas
DE112006002060T5 (de) 2005-08-09 2008-05-29 Toyota Jidosha Kabushiki Kaisha, Toyota Brennstoffzellensystem und Verfahren zum Beurteilen einer Brenngasleckage in einem Brennstoffzellensystem
DE102006001778A1 (de) 2006-01-12 2007-07-26 Kinetix Ag Vorrichtung zum Aufhängen von Gegenständen
WO2007098586A1 (fr) * 2006-02-28 2007-09-07 Panalytique Inc. Système et procédé d'élimination d'interférences en vue de mesurer les impuretés dans des gaz nobles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152621A1 (fr) * 2011-05-06 2012-11-15 Heinrich-Heine-Universität Düsseldorf Procédé et système pour la détection d'un premier gaz dans un mélange gazeux comprenant au moins un autre gaz
KR20190114548A (ko) 2018-03-30 2019-10-10 주식회사 엘지유플러스 콘텐츠 제어 장치 및 그 방법

Also Published As

Publication number Publication date
DE102009057130A1 (de) 2011-06-09
EP2510572A1 (fr) 2012-10-17
US20120236311A1 (en) 2012-09-20
US9030665B2 (en) 2015-05-12
EP2510572B1 (fr) 2016-10-19
CA2783138A1 (fr) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2510572B1 (fr) Procédé de contrôle et/ou de régulation de piles à combustible
EP3788346B1 (fr) Spectromètre d'émission d'étincelles à chambre à étincelles séparable
EP2382460B1 (fr) Procédé et dispositif de détection de gaz ionisables
DE112014001431T5 (de) Verfahren und Vorrichtung zum Steuern eines Plasmas für eine Spektrometrie
DE102011081317B4 (de) Lichtquelle für Inline-Sensoren mit Festzustands-UV-Ermitter
DE2408197A1 (de) Spektrometer
EP3553499B1 (fr) Analyseur de gaz et procédé de mesure des oxydes d'azote dans un gaz d'échappement
DE102019104481A1 (de) Verfahren und Vorrichtung zum Identifizieren von flüchtigen Substanzen mit resonatorverstärkter Raman-Spektroskopie bei reduziertem Druck
EP0965035B1 (fr) Dispositif pour analyser des echantillons gazeux
DE102008003676A1 (de) Ionenmobilitätsspektrometer mit einer nicht radioaktiven Elektronenquelle
DE19505104A1 (de) Verfahren und Anordnung zur Bestimmung der Reinheit und/oder des Drucks von Gasen für elektrische Lampen
DE102009004398A1 (de) Gasanalyse-Verfahren sowie Gasanalyse-Vorrichtung
DE1929429A1 (de) Verfahren und Vorrichtung zur Anregung eines spektrochemisch zu untersuchenden Materials
DE19528290C1 (de) Verfahren zur Überwachung des Qualitätszustandes des Füllgases Schwefelhexafluorid in gasgefüllten Anlagen
WO2017042067A1 (fr) Chambre de chauffage, four de chauffage, dispositif d'analyse et procédé d'analyse de teneurs en substances étrangères dans des échantillons
WO2012152621A1 (fr) Procédé et système pour la détection d'un premier gaz dans un mélange gazeux comprenant au moins un autre gaz
DE102010033787B4 (de) Verfahren zum Bestimmen einer Sauerstoffkonzentration in einer Atmosphärendruck-Plasmakammer während eines Plasmaprozesses
Chen et al. Excitation of the B Π g 3 states of N 2 by electron impact
EP1220285A2 (fr) Source d' ions dans laquelle une source de lumière UV/VUV est utilisée pour l' ionisation
DE102021001430A1 (de) Sensorelement und Gassensor
DE10306900B4 (de) Spektrometer mit Laseranordnung zur Gasanalyse
DE3921895C2 (de) Aerosol-Elektrometer und Aerosol-Sensoreinrichtung
DE102021108009B4 (de) Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse
DE102004042483B4 (de) Vorrichtung und Verfahren zur Bestimmung des Sauerstoffpartialdrucks in Brennstofftanks, insbesondere von Luft- und Raumfahrzeugen, sowie Verwendung der Vorrichtung
DE102022208437A1 (de) Verfahren zur Bestimmung der Konzentration von Wasserstoff in einem wasserstoffhaltigen Gasgemisch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10784323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13512602

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2783138

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010784323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010784323

Country of ref document: EP