JP4254263B2 - ガス流量測定装置及びガス流量測定方法 - Google Patents

ガス流量測定装置及びガス流量測定方法 Download PDF

Info

Publication number
JP4254263B2
JP4254263B2 JP2003037014A JP2003037014A JP4254263B2 JP 4254263 B2 JP4254263 B2 JP 4254263B2 JP 2003037014 A JP2003037014 A JP 2003037014A JP 2003037014 A JP2003037014 A JP 2003037014A JP 4254263 B2 JP4254263 B2 JP 4254263B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
measured
concentration
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037014A
Other languages
English (en)
Other versions
JP2004138595A (ja
Inventor
明信 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003037014A priority Critical patent/JP4254263B2/ja
Priority to US10/636,710 priority patent/US6842705B2/en
Priority to EP03019074A priority patent/EP1391700B1/en
Priority to DE60321099T priority patent/DE60321099D1/de
Publication of JP2004138595A publication Critical patent/JP2004138595A/ja
Application granted granted Critical
Publication of JP4254263B2 publication Critical patent/JP4254263B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0026General constructional details of gas analysers, e.g. portable test equipment use of an alternating circulation of another gas

Description

【0001】
【発明の属する技術分野】
本発明は、被測定ガスの質量流量を測定するガス流量測定装置及びガス流量測定方法に関する。
【0002】
【従来の技術】
自動車用エンジンのエアフローメータに採用しうるガス流量測定装置として、次のものが知られている。すなわち、センサ素子中央に設置されたヒータにより、このヒータの上下流各側に設置された測温抵抗体を加熱し、被測定ガスが素子上を流れるときに検出される抵抗値の差から、被測定ガスの流量を単位時間当たりの通過質量として検出するガス流量測定装置である(下記特許文献1)。
【0003】
【特許文献1】
特開2001−194202号公報
【0004】
【発明が解決しようとする課題】
しかしながら、このような熱式流量センサには、次のような問題がある。すなわち、測温抵抗体に生じる抵抗値の変化は、被測定ガスの流量に依存するばかりでなく、その組成にも依存している。組成の変化により被測定ガスの熱伝導率が変化するからである。このため、自動車用エンジンの吸気管内におけるなど、被測定ガスの組成が経時的に変化しない場合は、このセンサにより正確に流量を測定することができる。ところが、被測定ガスの組成が変化する場合は、測定結果にこの変化分に応じた誤差が生じてしまう。具体的には、燃料電池発電システムにおいて燃料ガスの流量を測定する場合に、この被測定ガスに高い濃度で水蒸気が含まれ、かつその濃度が大きく変化することがあることから、充分な精度を期待することができなかった。
【0005】
そこで、本発明は、被測定ガスの組成が変化したとしても、被測定ガスの流量を正確に測定することができ、さらに被測定ガスに含まれる特定ガス成分の流量をも測定することができる装置及び方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
この目的を達成するため、本発明では、被測定ガスに特定ガス成分としての若しくはこれとは異なるガスとしての対象ガスを添加するか、対象ガスを被測定ガスから抽出する手段を設け、この手段の上流における特定ガス成分の濃度を検出するとともに、その下流における対象ガスを添加又は抽出した後の特定ガス成分の濃度を検出し、これら検出された特定ガス成分の濃度と、前記手段により添加又は抽出された対象ガスの量とに基づいて、特定ガス成分の流量を算出する。
【0007】
本発明によれば、被測定ガスの組成が変化した場合でも、その特定ガス成分の流量を正確に測定することが可能となる。また、特定ガス成分の濃度を同時に検出するので、この濃度を把握する必要がある場合は、特に有用である。
【0008】
また、本発明では、被測定ガスに特定ガス成分としての若しくはこれとは異なるガスとしての対象ガスを添加するか、対象ガスを被測定ガスから抽出する手段を設け、この手段の上流における特定ガス成分の濃度、対象ガスを添加又は抽出した後の特定ガス成分の濃度、及び対象ガスの添加若しくは抽出前又は添加若しくは抽出後の被測定ガス又は特定ガス成分の流量を検出し、これら検出された特定ガス成分の濃度と、被測定ガス又は特定ガス成分の流量とに基づいて、前記手段により添加又は抽出された対象ガスの量を算出する。そして、対象ガスの添加又は抽出前の被測定ガスの流量が検出される場合は、検出された被測定ガスの流量に算出された対象ガスの量を加算して、対象ガスの添加又は抽出後の被測定ガスの流量を算出することができる。
【0009】
【発明の実施の形態】
以下に図面を参照して、本発明の実施の形態について説明する。
まず、本発明による流量の測定原理について、図1により説明する。同図(a)は、流量の測定に際して被測定ガスに対象ガスが添加される場合を、(b)は、被測定ガスから対象ガスが抽出される場合を示している。対象ガスとして添加又は抽出されるガスは、濃度の検出対象である被測定ガスの特定ガス成分であってもよいし、それ以外のガス(被測定ガスを組成するガス成分(以下「組成ガス成分」という。)を含む。)であってもよい。
【0010】
符号10,20は、被測定ガスが流れる通路を示しており、これらの通路10,20の接続部に他の通路30が接続されている。通路30は、対象ガスが流れる通路である。通路10,20と通路30との接続部には、ガス成分増減手段40が設けられている。記号Q,q,C及びqxの添え字は、通路10〜30の別を示しており、Q1,q1,C1及びqx1は、ガス成分増減手段40の上流における被測定ガスAの状態量として、被測定ガスの流量、特定ガス成分の流量、特定ガス成分の濃度及び特定ガス成分以外の組成ガス成分の流量を示している。同様に、Q2,q2,C2及びqx2は、ガス成分増減手段40の下流における被測定ガスBの状態量として、被測定ガスの流量、特定ガス成分の流量、特定ガス成分の濃度及び特定ガス成分以外の組成ガス成分の流量を示している。Q3,q3,C3及びqx3は、通路30を流れるガスCの状態量として、全流量、特定ガス成分の流量、特定ガス成分の濃度及び特定ガス成分以外のガスの流量を示している。
【0011】
第1の類型として、対象ガスとして被測定ガスの特定ガス成分が添加される場合について説明する。
図1(a)において、被測定ガスの状態量に関して対象ガスの添加前後で次の関係が成り立つ。
【0012】
C1=q1/Q1 ・・・(1.1)
C2=q2/Q2=(q1+q3)/(Q1+q3) ・・・(1.2)
(1.1)及び(1.2)式から、次の関係を導くことができる。
【0013】
q1=q3×C1×(C2−1)/(C1−C2) ・・・(1.3)
q3=q1×(C1−C2)/{C1×(C2−1)} ・・・(1.4)
(1.3)式から、ガス成分増減手段40の上下流各側における特定ガス成分の濃度C1,C2と、対象ガスとしての特定ガス成分の流量q3とを特定することができれば、特定ガス成分の流量q1及び被測定ガスの流量Q1(=q1/C1)を算出可能であることが分かる。
【0014】
また、(1.4)式から、特定ガス成分の濃度C1,C2と、特定ガス成分の流量q1とを特定することができれば、対象ガスとしての特定ガス成分の流量q3及び対象ガスの添加後における被測定ガスの流量Q2(=Q1+q3)を算出可能であることが分かる。
【0015】
第2の類型として、対象ガスとして特定ガス成分以外のガスが添加される場合について説明する。
図1(a)において、被測定ガスの状態量に関して対象ガスの添加前後で次の関係が成り立つ。
【0016】
C1=q1/Q1 ・・・(2.1)
C2=q2/Q2=q1/(Q1+qx3) ・・・(2.2)
(2.1)及び(2.2)式から、次の関係を導くことができる。
【0017】
q1=qx3×C1×C2/(C1−C2) ・・・(2.3)
qx3=q1×(C1−C2)/(C1×C2) ・・・(2.4)
(2.3)式から、特定ガス成分の濃度C1,C2と、対象ガスの流量qx3とを特定することができれば、特定ガス成分の流量q1及び被測定ガスの流量Q1(=q1/c1)を算出可能であることが分かる。
【0018】
また、(2.4)式から、特定ガス成分の濃度C1,C2と、特定ガス成分の流量q1とを特定することができれば、対象ガスの流量qx3及び対象ガスの添加後における被測定ガスの流量Q2(=Q1+qx3)を算出可能であることが分かる。
【0019】
第3の類型として、対象ガスとして被測定ガスの特定ガス成分が抽出される場合について説明する。
図1(b)において、被測定ガスの状態量に関して対象ガスの抽出前後で次の関係が成り立つ。
【0020】
C1=q1/Q1 ・・・(3.1)
C2=q2/Q2=(q1−q3)/(Q1−q3) ・・・(3.2)
(3.1)及び(3.2)式から、次の関係を導くことができる。
【0021】
q1=q3×C1×(1−C2)/(C1−C2) ・・・(3.3)
q3=q1×(C2−C1)/{C1×(C2−1)} ・・・(3.4)
(3.3)式から、特定ガス成分の濃度C1,C2と、対象ガスとしての特定ガス成分の流量q3とを特定することができれば、特定ガス成分の流量q1及び被測定ガスの流量Q1(=q1/C1)を算出可能であることが分かる。
【0022】
また、(3.4)式から、特定ガス成分の濃度C1,C2と、特定ガス成分の流量q1とを特定することができれば、対象ガスとしての特定ガス成分の流量q3及び対象ガスの抽出後における被測定ガスの流量Q2(=Q1−q3)を算出可能であることが分かる。
【0023】
第4の類型として、対象ガスとして特定ガス成分以外のガスが抽出される場合について説明する。
図1(b)において、被測定ガスの状態量に関して対象ガスの抽出前後で次の関係が成り立つ。
【0024】
C1=q1/Q1 ・・・(4.1)
C2=q2/Q2=q1/(Q1−qx3) ・・・(4.2)
(4.1)及び(4.2)式から、次の関係を導くことができる。
【0025】
q1=qx3×C1×C2/(C2−C1) ・・・(4.3)
qx3=q1×(C2−C1)/(C1×C2) ・・・(4.4)
(4.3)式から、特定ガス成分の濃度C1,C2と、対象ガスの流量qx3とを特定することができれば、特定ガス成分の流量q1及び被測定ガスの流量Q1(=q1/C1)を算出可能であることが分かる。
【0026】
また、(2.4)式から、特定ガス成分の濃度C1,C2と、特定ガス成分の流量q1とを特定することができれば、対象ガスの流量qx3及び対象ガスの抽出後における被測定ガスの流量Q2(=Q1−qx3)を算出可能であることが分かる。
【0027】
以上では、ガス成分増減手段40により対象ガスのみが添加又は抽出される場合について説明した。本発明は、これに限らず、少なくとも通路30における対象ガスの濃度が判明していることを条件に、対象ガスを含む2種以上の気体分子で構成されるガスを被測定ガスに添加する場合等に適用することが可能である。ただし、被測定ガスに添加されるガスによりガス成分増減手段40の上流及び下流における濃度C1,C2の検出に直接的な影響が生じてはならない。対象ガスとして特定ガス成分とは異なるガスを添加する場合は、対象ガスは、被測定ガスに対する化学的な特定を考慮して選択し、被測定ガスとの反応を生じ難い、被測定ガスに対して不活性な性質を有するガスを選択するのが好ましい。対象ガスとして一般的に不活性ガスと呼ばれる窒素ガス、ヘリウムガス又は水蒸気を選択することは、勿論可能である。これら以外にも、たとえば被測定ガスが水蒸気である場合等は、被測定ガスに含まれない酸素ガス又は水素ガスといった、いわゆる活性ガスを選択することができる。
【0028】
以下に、本発明の実施の形態を具体的に説明する。
図2は、本発明の第1の実施形態に係るガス流量測定装置101の概念図である。
【0029】
被測定ガスを流すための本管としての被測定ガス流通路1には、流れ方向に上流側から順に、第1のガス濃度検出手段としての上流側濃度センサ111、ガス成分増減手段112、及び第2のガス濃度検出手段としての下流側濃度センサ113が設置されている。本実施形態では、被測定ガスとして空気を、特定ガス成分として酸素ガスを採用する。また、ガス成分増減手段112として、酸素イオン伝導性電解質成型体と、この電解質を挟む一対の電極と、これらの電極に接続された電源若しくは電気負荷とを含んで構成される電気化学セルを採用する。
【0030】
本実施形態に係る装置101の動作は、次の通りである。上流側濃度センサ111は、空気の特定ガス成分としての酸素ガスの濃度を検出し、濃度検出信号C1をガス流量算出手段としての計算装置114に出力する。ガス成分増減手段112は、電気化学セルのポンピング作用により、被測定ガス流通路1を流れる空気から酸素ガスを選択的に抽出し、この通路1外の空間に輸送する。酸素抽出量q3は、単位時間当たりに抽出される酸素分子の数として、モル流量[mol/sec]で表される。そして、下流側濃度センサ113は、酸素抽出後の空気に残された酸素ガスの濃度を検出し、濃度検出信号C2を計算装置114に出力する。計算装置114は、酸素濃度C1,C2及び酸素抽出量q3に基づいて、本装置流入前の空気及びこれに含まれる酸素ガスの各流量Q1,q1[mol/sec]を算出し、その結果(Q1,q1)を表示装置115に出力する。
【0031】
ここで、空気の組成ガス成分が同じ流速で流れているものと近似すれば、酸素濃度C1を空気全体の流量Q1に対する酸素ガスの流量q1の比として扱うことができる。計算装置114は、空気及び酸素ガスの流量Q1,q1を次の(5),(6)式により算出する。ただし、酸素抽出後の空気に含まれる酸素ガスの流量をq2[mol/sec]とする。
【0032】
C1=q1/Q1 ・・・(3.1)
C2=q2/(Q1−q3)
=(q1−q3)/(Q1−q3) ・・・(3.2)
Q1=q3(1−C2)/(C1−C2) ・・・(5)
q1=C1×q3(1−C2)/(C1−C2) ・・・(6)
なお、ガス成分増減手段112による酸素抽出量q3がモル流量で表されているので、(5),(6)式により算出される空気及び酸素ガスの流量Q1,q1の単位もモル流量となる。従って、算出されたQ1,q1に空気又は酸素の分子量を乗算することで、質量流量[g/sec]に換算することができる。例えば、酸素ガスの流量q1[mol/sec]から酸素32の質量流量は、q1×32[g/sec]となる。また、酸素ガスの流量q1から乾燥空気28.8への換算も可能である。
【0033】
ここで、(5),(6)式によれば、酸素濃度C1,C2が等しい場合に分母が0となる。しかしながら、このような事態は、流れがないときや、流れがあったとしても流量が微小のときに生じるものであるので、C1,C2の測定精度等からその限界を予め設定しておくことで対応することが可能である。
【0034】
以上では、ガス成分増減手段112により、被測定ガスとしての空気から特定ガス成分としての酸素ガスを抽出する場合について説明した。しかしながら、対象ガスは、必ずしも特定ガス成分である必要はなく、特定ガス成分以外のガスであってもよい。電解質として水素イオン伝導性電解質成型体や、水蒸気分離膜を使用することも可能である。ガス成分増減手段112に水素イオン伝導性電解質成型体を備えることで、被測定ガスから水素ガスを抽出することができ、さらに第1及び第2のガス濃度検出手段111,113として水素濃度センサを設置することで、(6)式により水素ガスの流量q1を算出することができる。また、ガス成分増減手段112に水蒸気透過膜を備えることで、被測定ガスから水蒸気を抽出することができる。また、水蒸気の抽出は、凝縮器を備えることによっても達成することが可能である。被測定ガスから特定ガス成分以外のガスを抽出する場合は、(4.3)式により特定ガス成分の流量q1を、次の(7)式により被測定ガスの流量Q1を算出することができる。
【0035】
Q1=qx3×C2/(C2−C1) ・・・(7)
本発明に係るガス流量測定装置は、本管としての被測定ガス流通路と並列に枝管を設置し、本管から枝管に被測定ガスの一部を導入してこの分流成分の流量を測定し、分流成分の流量を換算することにより全体としての流量を算出するように構成してもよい。図3は、そのように構成された、本発明の第2の実施形態に係るガス流量測定装置102の概念図である。
【0036】
本実施形態に係る装置102は、本管としての被測定ガス流通路1から分岐して、被測定ガスの一部を上流側濃度センサ121に供給するとともに、前記分岐点の下流側で本管1と接続して、下流側濃度センサ123を通過した被測定ガスを本管1に合流させる、枝管としての被測定ガス流通路2を備える。上流側濃度センサ121、ガス成分増減手段122及び下流側濃度センサ123は、この枝管2に介装されている。計算装置124は、枝管2における空気及び酸素ガスの流量Q1,q1を(5),(6)式により算出する。計算装置124は、分流成分の流量Q1,q1を本管1における流量Q1’及びq1’に換算するための係数を記憶している。この係数は、本管1と枝管2との流路面積比から予め設定する。
【0037】
以上のようにガス成分増減手段112,122により被測定ガスから対象ガスを抽出する場合は、抽出された対象ガスを被測定ガスに還流する手段を設けるとよい。図4は、そのための構成を示している。図3のガス流量測定装置102において、ガス成分増減手段122と、本管としての被測定ガス流通路1とを還流手段としての戻し管21で接続し、抽出されたガス成分を、この戻し管21を通して分流点の下流側で本管1に還流させるようにしている。勿論、対象ガスは、下流側濃度センサ113の下流において、本管1との合流点の上流側で枝管2に還流させるようにしてもよい(図中点線21’)。
【0038】
また、対象ガスを抽出する場合に限らず、特定ガス成分若しくはこれとは異なるガスを対象ガスとして、これをガス成分増減手段112,122により被測定ガスに添加することでも、空気及び酸素ガスの流量Q1,q1を算出することができる。対象ガスとして特定ガス成分を添加する場合は、先に酸素抽出量として扱ったq3の符号を逆に修正した(1.3)式により流量Q1,q1を算出することができる。図5は、この場合の構成を示している。ガス成分増減手段122により添加される対象ガスは、供給手段126により、本管としての被測定ガス流通路1を流れる被測定ガスから抽出して得るとよい。この供給手段126は、電気化学セルを含んで構成することができる。対象ガスは、分流点の下流側で本管1から抽出するばかりでなく、下流側濃度センサ123の下流において、本管1との合流点の上流側で枝管2から抽出し、ガス成分増減手段122に供給するようにしてもよい(図中符号126’)。
【0039】
図6は、第2の実施形態に係るガス流量測定装置102の第1の具体例102aの構成図である。
本装置102aは、上流側濃度センサ121、ガス成分増減手段122及び下流側濃度センサ123が収まるケース1021を備える。ケース1021は、本管1を貫通する支柱1022により支持され、この管1内に固定されている。支柱1022は、一側でケース1021と結合する一方、本管1外で回路ボックス1023と結合している。また、各濃度センサ121,123とガス成分増減手段122との電気化学セルが1つの酸素イオン伝導性電解質成型体1024上に形成されており、この電解質1024上に、上流側濃度センサ121の電極1211a及び1211b、ガス成分増減手段122の電極1221a及び1221b、下流側濃度センサの電極1231a及び1231bが形成されている。そして、ケース1021内に、電解質1024の一側が面する被測定ガス流通路2が形成されており、この流通路2は、流れ方向の前後で本管1内と連通している。従って、本管1を流れる被測定ガスの一部が枝管としての被測定ガス流通路2に流入し、上流側濃度センサ121、ガス成分増減手段122及び下流側濃度センサ123を順に通過して、本管1に還流される。
【0040】
上流側濃度センサ121の電極1211a,1211bは、回路ボックス1023に収納された第1の濃度検出回路1241と接続されており、濃度検出時に所定の電圧が印加される。ケース1021と電解質1024との間に電極1211aが面する空間1212が形成されており、この空間1212に、電解質1024を貫通して設けられた孔1213を介して被測定ガスが流入するようになっている。電極1211a,1211bに電圧が印加されると、ポンピング作用により酸素が輸送され、電極間に電流が流れるが、孔1213により空間1212への被測定ガスの流入が制限されるため、印加電圧に応じた限界電流が生じる。濃度検出回路1241は、この限界電流値から酸素濃度C1を検出する。
【0041】
また、下流側濃度センサ123も構造及び機能において上流側濃度センサ121と同様であり、電極1231a,1231bが第2の濃度検出回路1243と接続され、電極1231aが面する空間1232が形成されるとともに、電解質1024に被測定ガス流通路2とこの空間1232とを連通する孔1233が設けられている。電極1231a,1231bに電圧が印加されると、孔1233により空間1232への被測定ガスの流入が制限されるため、電極間に印加電圧に応じた限界電流が流れる。濃度検出回路1243は、この限界電流値から酸素濃度C2を検出する。
【0042】
一方、ガス成分増減手段122の電極1221a,1221bは、ポンピング回路1242と接続しており、流量測定時に、これらの電極間に流れる電流(ポンピング電流)が一定となるように、電極間の電圧が制御される。また、電極1221aが面する空間1222が形成され、この空間1222は、ケース1021を貫通して設けられた孔1223を介して本管1内と連通している。電極1221a,1221bに電圧が印加されると、被測定ガス流通路2を流れる被測定ガスに含まれる酸素が汲み出され、電解質1024を通して空間1222に輸送される。このようにして空間1222に輸送された酸素ガスは、孔1223から本管1に還流される。ここで、上記ポンピング電流Ipと、汲み出される酸素の量q3との間には、次のような関係がある。ただし、電荷の数(酸素で4、水素で2)をn、ファラデー定数をF[C/mol]、イオン輸送量をJ(=q3)[mol/sec]とする。
【0043】
Ip=n×F×J ・・・(9)
ポンピング回路1242は、(9)式によりポンピング電流Ipからイオン輸送量Jを算出する。
【0044】
ガス流量算出手段にとしての流量演算回路124は、濃度検出回路1241,1243及びポンピング回路1242により検出された酸素濃度C1,C2及びイオン輸送量J(=q3)、さらに予め記憶されている分流比r=Q1/Q1’に基づいて、空気及び酸素ガスの流量Q1,q1を算出する。
【0045】
なお、符号1025は、算出されたQ1,q1を表示装置若しくは他の制御機器に出力するためのコネクタである。
また、ポンピング回路1242により、イオン輸送量J(=q3)を可変に制御することも可能である。流量が大きく変動する場合に、イオン輸送量Jを一定として、小流量時に適合させて設定したとすると、大流量時に酸素ガスの抽出量が少な過ぎ、濃度センサ121,123の間で充分な濃度差が形成されず、分解能が低下するからである。そこで、ポンピング回路1242に制御手段としての回路を組み込み、濃度差(C1−C2)に応じてイオン輸送量Jを可変とし、常に良好な濃度差が得られるようにポンピング電流Ipを制御する。
【0046】
なお、ガス成分増減手段122により対象ガスを添加する場合は、電極1221a,1221b間の電圧の印加方向を、抽出時とは反対に設定する。この場合でも、濃度センサ121,123により検出される濃度差に応じてポンピング電流Ipを制御することで、測定精度を向上させることができる。
【0047】
以上に述べた第1及び第2の実施形態によれば、次のような効果を得ることができる。
第1に、ガス流量測定装置101,102では、ガス成分増減手段112,122により添加若しくは抽出された対象ガスの流量q3と、この手段112,122の上下流各側で検出された特定ガス成分の濃度C1,C2とに基づいて被測定ガス及び特定ガス成分の流量Q1,q1を測定することとした。このため、本管1を流れる被測定ガスの組成が変化し、その熱的特性が変化したとしても、流量Q1,q1を正確に検出することができる。また、測定に際してガス濃度検出手段111,121により特定ガス成分の濃度C1を検出するので、流量ばかりでなくこの濃度C1を把握する必要がある場合は、特に有用である。
【0048】
第2に、ガス成分増減手段112,122において、電極間でのイオン輸送量Jを可変に制御し、小流量時と比較して大流量時のイオン輸送量Jを増量させることで、広範な測定領域で正確な測定に必要な濃度差(C1−C2)を形成することが可能となる。
【0049】
第3に、図6に示したように、ガス濃度検出手段としての濃度センサ121,123を構成する電解質と、ガス成分増減手段122を構成する電解質とを一体としたことで、ガス流量測定装置102aを小型軽量化し、コストを削減することができる。また、濃度センサ121,123を近くに配置することができるので、センサ間での測定時間差を正確に補正することができ、被測定ガスの過渡的流量変化時の測定精度を向上させることができる。
【0050】
第4に、図3,6に示したように、ガス流量測定装置102,102aに本管1を流れる被測定ガスの一部を流入させ、この分流成分の流量Q1,q1から全体としての流量Q1’,q1’を測定することで、特定ガス成分を被測定ガスの分流成分中に均一に分布させることができる。このため、特定ガス成分の濃度の検出精度を向上させ、より正確に流量を測定することができる。
【0051】
以下に、本発明に係るガス流量測定装置の他の構成例について説明する。
図7は、第2の実施形態に係るガス流量測定装置の第2の具体例102bの構成図である。
【0052】
本装置102bは、攪拌手段5及び可変手段6を備える。攪拌手段5として多孔質体が採用されており、多孔質体5は、枝管としての被測定ガス流通路2において、ガス成分増減手段122と下流側濃度センサ123との間に介装されている。一方、可変手段6は、本管としての被測定ガス流通路1において、本装置102bの上流に設置されている。可変手段6は、本管1の流路面積を縮小させる手段として構成されており、管壁に対して回動自在に軸支された平板61a,61bと、これら各平板と管壁との間に装着された、弾性体としてのスプリング62a,62bとを備える。
【0053】
攪拌手段5によれば、対象ガスとして特定ガス成分である酸素ガスが添加又は抽出される場合に、下流側濃度センサ123の検出精度を向上させることができる。ガス成分増減手段122により酸素ガスが局所的に添加等された空気が攪拌されることで、下流側濃度センサ123の設置位置での酸素ガスの分布が均一化されるからである。また、攪拌手段5を付設することで、ガス成分増減手段122と下流側濃度センサ123とを比較的近くに配置したとしても、下流側濃度センサ123から信頼性の高い濃度を得ることができるので、本装置102bの小型化を図ることができる。
【0054】
一方、可変手段6において、平板61a,61bは、本管1における流量Q1’に応じて開閉する弁として機能し、流れから受ける力と、スプリング62a,62bから受ける力とが釣り合う位置に変位する。従って、大流量時には、平板61a,61bが倒れて流路面積が広がるので、流れに対して過大な抵抗を与えないようにすることができる。小流量時には、各平板が起き上がり、本装置102bに供給される被測定ガスの被測定ガス全体に対する比率が増すので、小流量域における測定精度を向上させるとともに、測定可能下限流量を引き下げることができる。なお、可変手段6は、枝管2に設置してもよく、この場合は、小流量時に流路が開かれるようにスプリング等を設置する。可変手段6は、可変ベンチュリにより構成することもできる。
【0055】
図8は、第1の実施形態に係るガス流量測定装置の第1の具体例101aの構成図である。
本装置101aでは、ガス成分増減手段112として燃料電池を採用する。この燃料電池112は、高分子固体電解質若しくは酸化物固体電解質等の水素イオン伝導性電解質成型体1121の各側に、アノード又はカソードとしての電極1122,1123を形成して構成され、アノード1122には、燃料ガスとしての水素含有ガスが、カソード1123には、酸化剤ガスとしての空気が供給される。また、アノード1122とカソード1123との間に電気負荷1124が接続され、この負荷1124に流れる電流Igを検出するための電流センサ1125が設置されている。
【0056】
アノード1122の入口に接続する燃料ガス供給管1126には、上流側水素濃度センサ111aが設置されており、出口に接続する燃料ガス排出管1127には、下流側水素濃度センサ113aが設置されている。計算装置は、各濃度センサ111a,113aにより検出された水素濃度C11,C21と、電解質1121の水素通過量(イオン輸送量に相当する。)q31[mol/sec]とに基づいて、(5),(6)式により燃料ガスの流量Q11及び燃料ガスに含まれる水素ガスの流量q11を算出する。ここで、水素通過量q31は、電流センサ1125により検出される電流値Igとの一義的な関係から求めることができる。
【0057】
一方、カソード1123の入口に接続する空気供給管1128には、上流側酸素濃度センサ111bが設置されており、出口に接続する空気排出管1129には、下流側酸素濃度センサ113bが設置されている。計算装置は、各濃度センサ111b,113bにより検出された酸素濃度C12,C22と、水に変換されることで実質的に抽出される酸素抽出量q32[mol/sec]とに基づいて、空気及び酸素ガスの流量Q12,q12を算出する。なお、酸素抽出量q32は、電流センサ1125により検出された電流値Igとの一義的な関係から求めることができる。各流量Q12,q12は、次のように算出する。
【0058】
カソード1123では、アノード1122とは異なり、燃料電池112の発電動作に伴って水が生成される。その量は、2H+O→2HOの化学反応式が示すように、酸素抽出量q32の2倍である。従って、(3.2)式に相当する式は、次のようになる。
【0059】
C2=(q1−q3)/(Q1−q3+2q3)
=(q1−q3)/(Q1+q3) ・・・(3.2.2)
そして、(5),(6)式に相当する式は、次のようになる。
【0060】
Q1=q3(1+C2)/(C1−C2) ・・・(8)
q1=C1×q3(1+C2)/(C1−C2)・・・(9)
計算装置は、(8),(9)式により空気及び酸素ガスの流量Q12,q12を算出する。
【0061】
図9は、第2の実施形態に係るガス流量測定装置の第3の具体例102cの構成図である。
本装置102cは、ガス成分増減手段122として、燃料電池発電システムの電源としての燃料電池801とは別のより小型な燃料電池を備える。符号802は、電気負荷を示している。
【0062】
本装置102cでは、高分子固体電解質等の水素イオン伝導性電解質成型体1226の各側に形成されたアノード1227若しくはカソード1228に、枝管2a,2bを介して、本管1a,1bを流れる水素ガス又は酸素ガスの一部が供給される。また、枝管2aには、アノード1227を挟んで上流側水素濃度センサ121a及び下流側水素濃度センサ123aが、枝管2bには、カソード1228を挟んで上流側酸素センサ121b及び下流側酸素センサ123bが設置されている。符号1229は、この流量測定用燃料電池122の電気負荷であり、電源用燃料電池801の負荷802の一部を構成する。計算装置は、各濃度センサ121a,123a,121b及び123bにより検出された濃度C11,C21,C12及びC22、負荷1229に流れる電流Ig、及び分流比rに基づいて、(5),(6),(8)及び(9)式により本管1aにおける燃料ガス及び水素ガスの流量Q11’,q11’と、本管1bにおける空気及び酸素ガスの流量Q12’,q12’とを算出する。
【0063】
本装置101cによれば、電源用燃料電池801とは別に小型の流量測定用燃料電池122を設けたことで、図8に示したように電源用燃料電池112で流量測定用電気化学セルを兼ねた場合と比較して、応答性を向上させることができ、過渡運転時にも高い測定精度を維持することができる。また、流量測定用燃料電池122を電源用燃料電池801の上流側に位置させたことで、本管1a,1bを流れる燃料ガスの流量Q11’等を、燃料電池801への供給前に測定することができるので、燃料電池801を的確に制御することができる。
【0064】
図10は、第1の実施形態に係るガス流量測定装置の第2の具体例101bの構成図である。
本装置101bでは、燃料電池発電システムの電源用燃料電池801から排出され、燃料電池801に還流される燃料ガス(以下「還流燃料ガス」という。)を被測定ガスとして採用し、これに補填分又は増量分として加えられる新規分の水素ガスを対象ガスとして採用する。本装置101bにより、燃料電池801に供給される水素ガスの流量q2を測定する。図示しない水素タンクと燃料電池801とを接続する燃料ガス供給管3011,2011に、ガス成分増減手段として合流部112が介装されており、燃料電池801のアノード8011の出口から延伸する燃料ガス排出管1011がこの合流部112に接続され、燃料ガス排出管1011及び燃料ガス供給管2011により燃料ガスの還流経路が構成されている。新規分の水素ガスは、水素タンクから供給され、合流部112で還流燃料ガスと合流し、下流側の燃料ガス供給管2011に流入する。燃料ガス排出管1011には、第1のガス濃度検出手段としてのジルコニア酸素センサ111が、燃料ガス供給管2011には、第2のガス濃度検出手段としてのジルコニア酸素センサ113が設置されている。これらの濃度センサ111,113は、燃料ガスの水素濃度C1,C2を検出する。また、合流部112の上流側の燃料ガス供給管3011には、水素ガスの流量q3を検出するマスフローメータ5011が設置されている。水素タンクから供給される水素ガスは、他の成分を含まない乾燥した水素ガスであるため、一般的なマスフローメータ5011を採用することができる。
【0065】
計算装置は、ジルコニア酸素センサ111,113により検出された水素濃度C1,C2と、マスフローメータ5011により検出された水素ガスの流量q3とに基づいて、(1.3)式により燃料ガス供給管1011を流れる還流燃料ガスに含まれる水素ガスの流量q1を算出する。また、計算装置は、算出したq1と新規分の流量q3とを加算して、燃料電池801に供給される水素ガスの流量q2を算出する(q2=q1+q3)。
【0066】
本装置101bによれば、還流燃料ガスに含まれる水素ガスの流量q1を測定するとともに、新規分の水素ガスが添加された燃料ガスに含まれる水素ガスの流量q2を測定することができる。燃料電池801の発電量は、水素ガスの供給量に依存するので、このようにq1,q2を応答性良く測定することができることは、燃料電池801の効率向上に寄与する。
【0067】
図11は、第1の実施形態に係るガス流量測定装置の第3の具体例101cの構成図である。
本装置101cでは、被測定ガスとして空気を採用し、対象ガスとして空気に添加される水蒸気を採用する。本装置101cにより、燃料電池発電システムの燃料改質器901に供給される水蒸気の流量qx2及び濃度Cx2を測定する。水蒸気は、蒸発器401により水を蒸発させて発生させる。本管としての空気通路1012,2012は、一端で大気に開放され、他端で改質器901に接続されている。水蒸気は、図示しない水タンクから供給され、合流部112で空気に添加される。合流部112は、蒸発器401とともにガス成分増減手段を構成する。合流部112の上流側の空気通路1012には、第1のガス濃度検出手段としてのジルコニア酸素センサ111が、下流側の空気通路2012には、第2のガス濃度検出手段としてのジルコニア酸素センサ113が設置されている。これらの濃度センサ111,113は、空気の酸素濃度C1,C2を検出する。また、蒸発器401に供給される水の流量qx3を検出するマスフローメータ5012が設置されており、検出されたqx3を空気に添加される水蒸気の流量としている。
【0068】
計算装置は、ジルコニア酸素センサ111,113により検出された酸素濃度C1,C2及びマスフローメータ5012により検出された水蒸気の流量qx3に基づいて、(2.3)式により改質器901に供給される酸素ガスの流量q1(=q2)を算出する。計算装置は、上流側のジルコニア酸素センサ111により空気の酸素濃度C1が検出されているため、(2.1)式により空気の流量Q1を算出するとともに、空気における酸素及び窒素の混合比を1:3.77として、合流部112の上流側の空気通路1012における水蒸気の流量qx1を、次の(10)式により算出する。
【0069】
qx1=Q1−q1−3.77×q1 ・・・(10)
計算装置は、さらに合流部112の下流側の空気通路2012における水蒸気の流量qx2及び濃度Cx2を、次の(11),(12)式により算出する。
【0070】
qx2=qx1+qx3 ・・・(11)
Cx2=qx2/(Q1+qx3) ・・・(12)
本実施形態に係るガス流量測定装置では、被測定ガスが空気のように特定ガス成分以外に複数の組成ガス成分を含む場合であっても、特定ガス成分に対する比が判明しているものについては、その種類の数が問題とならない。上記第3の具体例101cでは、空気の組成ガス成分として、特定ガス成分である酸素ガス以外に窒素ガスが含まれているが、窒素ガスの酸素ガスに対する比(=3.77)が判明しているので、酸素ガスの流量等に加えて、窒素ガスの流量及び濃度を測定することができる。
【0071】
図12は、本発明の第3の実施形態に係るガス流量測定装置103の概念図である。
被測定ガスを流すための本管としての被測定ガス流通路1には、流れ方向に上流側から順に、第1のガス濃度検出手段としての上流側濃度センサ111、ガス成分増減手段112、及び第2のガス濃度検出手段としての下流側濃度センサ113が設置されている。また、ガス成分増減手段112の上流には、流量検出手段としてのマスフローメータ502が設置されている。
【0072】
上流側濃度センサ111は、被測定ガスに含まれる特定ガス成分の濃度C1を検出する。ガス成分増減手段112は、特定ガス成分又はこれとは異なるガスである対象ガスを被測定ガスに添加し又は被測定ガスから抽出する。下流側濃度センサ113は、特定ガス成分の添加又は抽出後における空気の特定ガス成分の濃度C2を検出する。マスフローメータ502は、被測定ガスの流量Q1を検出する。ガス流量算出手段としての計算装置114は、各濃度センサ111,113により検出された特定ガス成分の濃度C1,C2と、マスフローメータ502により検出された流量Q1とに基づいて、(1.4),(2.4),(3.4)又は(4.4)式により対象ガスの流量q3,qx3を算出するとともに、特定ガス成分の添加又は抽出後における被測定ガスの流量Q2等を算出する。
【0073】
図13は、第3の実施形態に係るガス流量測定装置の第1の具体例103aの構成図である。
本装置103aでは、被測定ガスとして空気を採用し、対象ガスとして空気に添加される水蒸気を採用する。本装置103aにより、燃料電池発電システムの燃料改質器901に供給される水蒸気の流量qx2を測定する。水蒸気は、蒸発器401により水を蒸発させて発生させる。本管としての空気通路1013,2013は、一端で大気に開放され、他端で改質器901に接続されている。蒸発器401により発生させた水蒸気は、ガス成分増減手段としての合流部112で空気に添加される。空気通路1013,2013には、合流部112の上下流各側にジルコニア酸素センサ111,113が設置されている。これらの濃度センサ111,113は、空気の酸素濃度C1,C2を検出する。また、合流部112の上流側の空気通路1013には、空気の流量Q1を検出するマスフローメータ5021が設置されている。大気から取り込まれる空気は、乾燥しているか、たとえ湿っていても湿度が安定しているため、一般的なマスフローメータ5021により流量Q1を検出することができる。なお、空気の湿度が不安定であり、その変化を無視することができない場合は、検出されたQ1を予め測定した湿度で補正するか、あるいは被測定ガス流通路1に湿度センサを設置して、その検出値により補正するとよい。
【0074】
改質器901に供給される空気に含まれる水蒸気の流量qx2は、蒸発器401により添加される水蒸気の流量qx3に等しく、(2.4)式により算出することができる。
【0075】
なお、大気から取り込まれる空気が乾燥している場合は、空気における酸素ガスの通常の混合率である20.9%を利用して、上流側のジルコニア酸素センサ111を省略することができる。
【0076】
図14は、第3の実施形態に係るガス流量測定装置の第2の具体例103bの構成図である。
本装置103bでは、被測定ガスとして空気を採用し、対象ガスとして空気に添加される水蒸気を採用する。本装置103bにより、燃料電池発電システムの加湿器112による水蒸気の添加量を流量qx3として測定する。加湿器112は、ガス成分増減手段を構成する。空気通路1014,2014には、加湿器112の上下流各側にジルコニア酸素センサ111,113が設置されている。これらの濃度センサ111,113は、空気の酸素濃度C1,C2を検出する。また、加湿器112の上流側の空気通路1014には、空気の流量Q1を検出するマスフローメータ5021が設置されている。
【0077】
燃料電池に供給される空気に含まれる水蒸気の流量qx2は、加湿器112による水蒸気の添加量qx3に等しい。従って、qx2(=qx3)は、ジルコニア酸素センサ111,113により検出された酸素濃度C1,C2及びマスフローメータ5021により検出された空気の流量Q1に基づいて、(2.4)式により算出することができる。
【0078】
なお、大気から取り込まれる空気が乾燥している場合に上流側のジルコニア酸素センサ111を省略可能であることは、前述と同様である。
図15は、第3の実施形態に係るガス流量測定装置の第3の具体例103cの構成図である。
【0079】
本装置103cでは、被測定ガスとして燃料電池発電システムの燃料ガス供給管1015,2015に流れる水素含有ガスを採用し、対象ガスとして還流燃料ガスを採用する。本装置103cにより、燃料電池から排出される水素ガスの流量q3を測定する。燃料ガス供給管1015,2015には、ガス成分増減手段としての合流部112が介装されており、この合流部112に燃料ガス排出管3015が接続され、燃料電池のアノードを介した燃料ガスの還流経路が構成されている。水素含有ガスは、合流部112で還流燃料ガスに添加され、燃料電池に供給される。燃料ガス供給管1015,2015には、合流部112の上下流各側にジルコニア酸素センサ111,113が設置されている。これらの濃度センサ111,113は、各設置位置を流れる水素含有ガスの水素濃度C1,C2を検出する。また、合流部112の上流側の燃料ガス供給管1015には、水素含有ガスの流量Q1を検出するマスフローメータ5022が設置されている。
【0080】
燃料電池から排出された水素ガスの流量q3は、(1.4)式により算出することができる。マスフローメータ5022により水素含有ガスの流量Q1が検出されており、その水素濃度C1も判明しているので、燃料電池に供給される燃料ガスに含まれる水素ガスの流量q2は、還流分及び新規分の水素ガスの流量を加算して、次の(13)式により算出することができる。
【0081】
q2=q3+Q1×C1 ・・・(13)
図16は、第1の実施形態に係るガス流量測定装置101cの変更例の構成図である。
【0082】
本装置101cは、上流側のジルコニア酸素センサ111を備えておらず、水蒸気の添加前及び添加後における空気の酸素濃度C1,C2を、合流部112の下流側に設置された1つのジルコニア酸素センサ113のみにより検出する。このため、空気に対して水蒸気を断続的に供給する。すなわち、図17のタイムチャートに示すように、添加される水蒸気の流量qx3を、0若しくは小流量qLと大流量qHとの間で交互に切り換える。そして、ジルコニア酸素センサ113により、qx3を大流量に設定して水蒸気を添加したときの酸素濃度C2LをC2として検出し、qx3を0若しくは小流量に設定して水蒸気の添加を停止したときの酸素濃度C2HをC1として検出する。水蒸気の流量qx3は、蒸発器401に供給される水の流量qx3を検出するマスフローメータ5012により検出する。
【0083】
改質器901に供給される酸素ガスの流量q2は、水蒸気の添加前における酸素ガスの流量q1に等しく、(2.3)式により算出することができる。また、合流部112の上流における水蒸気の流量qx1は、空気における酸素ガスと窒素ガスとの混合比を1:3.77として、qx1=Q1−q1−3.77×q1として算出することができ、合流部112の下流における水蒸気の流量qx2は、qx1とqx3とを加算して算出することができる(qx2=qx1+qx3)。
【0084】
本装置101cによれば、1つのジルコニア酸素センサ113を使用して第1及び第2のガス濃度検出手段の機能を実現し、水蒸気の添加前及び添加後における空気の酸素濃度C1,C2を検出することができる。
【図面の簡単な説明】
【図1】本発明による流量の測定原理の説明図
【図2】本発明の第1の実施形態に係るガス流量測定装置の概念図
【図3】本発明の第2の実施形態に係るガス流量測定装置の概念図
【図4】還流手段を備えるガス流量測定装置の概念図
【図5】供給手段を備えるガス流量測定装置の概念図
【図6】図3のガス流量測定装置の具体例
【図7】攪拌手段及び可変手段を備えるガス流量測定装置の具体例
【図8】ガス成分増減手段として燃料電池を備える図2のガス流量測定装置の具体例
【図9】ガス成分増減手段として燃料電池を備える図3のガス流量測定装置の具体例
【図10】燃料電池に供給される水素ガスの流量の測定に適用されたガス流量測定装置の構成図
【図11】燃料電池発電システムの燃料改質器に供給される水蒸気の流量及び濃度の測定に適用されたガス流量測定装置の構成図
【図12】本発明の第3の実施形態に係るガス流量測定装置の概念図
【図13】燃料改質器に供給される水蒸気の流量の測定に適用されたガス流量測定装置の構成図
【図14】燃料電池発電システムの加湿器により添加される水蒸気の流量の測定に適用されたガス流量測定装置の構成図
【図15】燃料電池から排出された水素ガスの流量の測定に適用されたガス流量測定装置の構成図
【図16】上流側のジルコニア酸素センサを含まずに構成された図11のガス流量測定装置の変更例
【図17】同上ガス流量測定装置による酸素濃度の測定原理
【符号の説明】
1…本管としての被測定ガス流通路、2…枝管としての被測定ガス流通路、5…攪拌手段としての多孔質体、6…可変手段、21…還流手段としての戻し管、101,102…ガス流量測定装置、111,121…第1のガス濃度検出手段としての上流側濃度センサ、112,122…電気化学セルを備えるガス成分増減手段、113,123…第2のガス濃度検出手段としての下流側濃度センサ、114,124…ガス流量算出手段としての計算装置、115,125…表示装置、126…供給手段、1021…ケース、1022…支柱、1023…回路ボックス、1024…ガス濃度検出手段とガス成分増減手段との共用電解質、1025…コネクタ、1241…上流側濃度センサの濃度検出回路、1242…制御手段を備えるポンピング回路、1243…下流側濃度センサの濃度検出回路、1121,1226…ガス成分増減手段としての燃料電池の電解質、1122,1227…アノード、1123,1228…カソード、1124,1229…電気負荷、1125…電流センサ、801…電源用燃料電池。

Claims (30)

  1. 被測定ガスに対して被測定ガスに含まれる特定ガス成分若しくはこれとは異なるガスである対象ガスを添加するか、あるいは対象ガスを被測定ガスから抽出するガス成分増減手段と、
    ガス成分増減手段の上流における被測定ガスの前記特定ガス成分の濃度を検出するか、あるいはその濃度として予め定められた濃度を設定する第1のガス濃度検出手段と、
    ガス成分増減手段の下流における被測定ガスの前記特定ガス成分の濃度を検出する第2のガス濃度検出手段と、
    第1のガス濃度検出手段により検出又は設定された特定ガス成分の濃度及び第2のガス濃度検出手段により検出された特定ガス成分の濃度と、ガス成分増減手段により添加又は抽出された対象ガスの量とに基づいて、前記特定ガス成分の流量を算出するガス流量算出手段と、を含んで構成されるガス流量測定装置。
  2. ガス成分増減手段が電解質と、これを挟む一対の電極とを含んで構成される電気化学セルを備える請求項1に記載のガス流量測定装置。
  3. 前記電気化学セルが電解質として、水素イオン伝導性電解質成型体若しくは酸素イオン電解質成型体を備える請求項2に記載のガス流量測定装置。
  4. 前記電気化学セルに対し、電極間でのイオン輸送量を制御する制御手段を備える請求項2又は3に記載のガス流量測定装置。
  5. 前記制御手段がイオン輸送量を、前記第1及び第2のガス濃度検出手段により検出された濃度に基づいて制御する請求項4に記載のガス流量測定装置。
  6. 第1及び第2のガス濃度検出手段が電気化学セルを備え、これらの電気化学セルの電解質と、ガス成分増減手段の電解質とが一体に形成された請求項2〜5のいずれかに記載のガス流量測定装置。
  7. ガス成分増減手段と、第2のガス濃度検出手段との間に被測定ガスを攪拌する攪拌手段を備える請求項1〜6のいずれかに記載のガス流量測定装置。
  8. ガス成分増減手段が被測定ガスからガス成分を抽出する場合に、この抽出されたガス成分を被測定ガスに還流する還流手段を備える請求項1〜7のいずれかに記載のガス流量測定装置。
  9. ガス成分増減手段が被測定ガスにガス成分を添加する場合に、この添加されるガスを被測定ガスから抽出してガス成分増減手段に供給する供給手段を備える請求項1〜7のいずれかに記載のガス流量測定装置。
  10. ガス成分増減手段が前記電気化学セルとして、燃料電池を備える請求項2に記載のガス流量測定装置。
  11. 燃料電池発電システムに設置され、ガス成分増減手段が前記電気化学セルとして、この発電システムの電源としての燃料電池の上流に別の燃料電池を備える請求項2に記載のガス流量測定装置。
  12. 被測定ガスの一部を第1のガス濃度検出手段、ガス成分増減手段及び第2のガス濃度検出手段に供給するための被測定ガス流通路を備える請求項1〜11のいずれかに記載のガス流量測定装置。
  13. ガス流量算出手段が、被測定ガスにおける前記被測定ガス流通路への分流成分の、予め定められた比率を記憶する請求項12に記載のガス流量測定装置。
  14. 被測定ガスにおける前記被測定ガス流通路への分流成分の比率を変化させる可変手段を備える請求項12に記載のガス流量測定装置。
  15. 前記特定ガス成分が酸素若しくは水素である請求項1〜14のいずれかに記載のガス流量測定装置。
  16. ガス成分増減手段が対象ガスを被測定ガスに断続的に添加するか、あるいは対象ガスを被測定ガスから断続的に抽出し、第2のガス濃度検出手段がガス成分増減手段の下流において、対象ガスの添加又は抽出時における特定ガス成分の濃度を検出し、第1のガス濃度検出手段がガス成分増減手段の下流において、対象ガスの添加又は抽出時以外の停止時における特定ガス成分の濃度を検出する請求項1〜15のいずれかに記載のガス流量測定装置。
  17. 被測定ガスに対して被測定ガスに含まれる特定ガス成分若しくはこれとは異なるガスである対象ガスを添加するか、あるいは対象ガスを被測定ガスから抽出するガス成分増減手段と、
    ガス成分増減手段の上流における被測定ガスの前記特定ガス成分の濃度を検出するか、あるいはその濃度として予め定められた濃度を設定する第1のガス濃度検出手段と、
    ガス成分増減手段の下流における被測定ガスの前記特定ガス成分の濃度を検出する第2のガス濃度検出手段と、
    ガス成分増減手段による対象ガスの添加若しくは抽出前又は添加若しくは抽出後における被測定ガス又は前記特定ガス成分の流量を検出する流量検出手段と、
    第1のガス濃度検出手段により検出又は設定された特定ガス成分の濃度及び第2のガス濃度検出手段により検出された特定ガス成分の濃度と、流量検出手段により検出された被測定ガスの流量又は特定ガス成分の流量とに基づいて、ガス成分増減手段により添加又は抽出された対象ガスの量を算出するガス流量算出手段と、を含んで構成されるガス流量測定装置。
  18. 流量検出手段が、ガス成分増減手段による対象ガスの添加又は抽出前における被測定ガスの流量を検出し、
    ガス流量算出手段が、流量検出手段により検出された被測定ガスの流量にガス成分増減手段により添加又は抽出された対象ガスの量を加算して、ガス成分増減手段による対象ガスの添加又は抽出後における被測定ガスの流量を算出する請求項17に記載のガス流量測定装置。
  19. 被測定ガスが空気であり、ガス成分増減手段が対象ガスとして水蒸気を添加し、ガス流量算出手段が添加された水蒸気の流量を算出する請求項17又は18に記載のガス流量測定装置。
  20. 第1及び第2のガス濃度検出手段が特定ガス成分としての酸素ガスの濃度を検出する請求項19に記載のガス流量測定装置。
  21. ガス成分増減手段により添加された水蒸気を含む空気が燃料電池発電システムの燃料改質器に供給される請求項19又は20に記載のガス流量測定装置。
  22. ガス成分増減手段により添加された水蒸気を含む空気が燃料電池のカソードに供給される請求項19又は20に記載のガス流量測定装置。
  23. 被測定ガスが特定ガス成分として水素ガスを含み、第1及び第2のガス濃度検出手段が水素ガスの濃度を検出する請求項17又は18に記載のガス流量測定装置。
  24. 被測定ガスが燃料電池のアノードに供給される燃料ガスである請求項23に記載のガス流量測定装置。
  25. ガス成分増減手段が対象ガスとして水蒸気を添加し、ガス流量算出手段が添加された水蒸気の流量を算出する請求項23又は24に記載のガス流量測定装置。
  26. ガス成分増減手段が水を蒸発させて水蒸気を添加する請求項19〜22及び25のいずれかに記載のガス流量測定装置。
  27. 第1及び第2のガス濃度検出手段がジルコニア酸素センサである19〜26のいずれかに記載のガス流量測定装置。
  28. ガス成分増減手段が対象ガスを被測定ガスに断続的に添加するか、あるいは対象ガスを被測定ガスから断続的に抽出し、第2のガス濃度検出手段がガス成分増減手段の下流において、対象ガスの添加又は抽出時における特定ガス成分の濃度を検出し、第1のガス濃度検出手段がガス成分増減手段の下流において、対象ガスの添加又は抽出時以外の停止時における特定ガス成分の濃度をする請求項17〜27のいずれかに記載のガス流量測定装置。
  29. 被測定ガスに対して被測定ガスに含まれる特定ガス成分若しくはこれとは異なるガスである対象ガスを添加するか、あるいは対象ガスを被測定ガスから抽出する一方、
    対象ガスを添加又は抽出する前の前記特定ガス成分の濃度を検出するとともに、その下流で対象ガスを添加又は抽出した後の前記特定ガス成分の濃度を検出し、
    検出された特定ガス成分のこれらの濃度と、添加又は抽出された対象ガスの量とに基づいて、前記特定ガス成分の流量を算出するガス流量測定方法。
  30. 被測定ガスに対して被測定ガスに含まれる特定ガス成分若しくはこれとは異なるガスである対象ガスを添加するか、あるいは対象ガスを被測定ガスから抽出する一方、
    対象ガスを添加又は抽出する前の前記特定ガス成分の濃度を検出するとともに、その下流で対象ガスを添加又は抽出した後の前記特定ガス成分の濃度を検出し、
    対象ガスの添加若しくは抽出前又は添加若しくは抽出後の被測定ガス又は前記特定ガス成分の流量を検出し、
    検出された特定ガス成分のこれらの濃度と、被測定ガスの流量又は特定ガス成分の流量とに基づいて、添加又は抽出された対象ガスの量を算出するガス流量測定方法。
JP2003037014A 2002-08-22 2003-02-14 ガス流量測定装置及びガス流量測定方法 Expired - Fee Related JP4254263B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003037014A JP4254263B2 (ja) 2002-08-22 2003-02-14 ガス流量測定装置及びガス流量測定方法
US10/636,710 US6842705B2 (en) 2002-08-22 2003-08-08 Gas flow rate measuring device and gas flow rate measuring method
EP03019074A EP1391700B1 (en) 2002-08-22 2003-08-22 Gas flow rate measurement using gas concentration measurements
DE60321099T DE60321099D1 (de) 2002-08-22 2003-08-22 Gasdurchflussmessung unter Benutzung von Gaskonzentrationmessungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002242316 2002-08-22
JP2003037014A JP4254263B2 (ja) 2002-08-22 2003-02-14 ガス流量測定装置及びガス流量測定方法

Publications (2)

Publication Number Publication Date
JP2004138595A JP2004138595A (ja) 2004-05-13
JP4254263B2 true JP4254263B2 (ja) 2009-04-15

Family

ID=31190388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037014A Expired - Fee Related JP4254263B2 (ja) 2002-08-22 2003-02-14 ガス流量測定装置及びガス流量測定方法

Country Status (4)

Country Link
US (1) US6842705B2 (ja)
EP (1) EP1391700B1 (ja)
JP (1) JP4254263B2 (ja)
DE (1) DE60321099D1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269993B2 (en) * 2004-06-29 2007-09-18 Honda Motor Co., Ltd. Gas detecting apparatus, gas detecting method and fuel cell vehicle
US7284448B2 (en) * 2004-11-16 2007-10-23 University Of Florida Research Foundation, Inc. Device and method for passively measuring fluid and target chemical mass fluxes in natural and constructed non-porous fluid flow system
JP4923424B2 (ja) * 2005-03-24 2012-04-25 日産自動車株式会社 燃料電池システム
TW200719512A (en) * 2005-11-09 2007-05-16 Syspotek Corp Feedback type fuel cell
NZ568694A (en) * 2005-11-09 2011-09-30 Zalicus Inc Method, compositions, and kits for the treatment of medical conditions
FR2914786A1 (fr) * 2007-04-06 2008-10-10 Peugeot Citroen Automobiles Sa Procede d'evaluation des debits des gaz circulant dans une boucle de recirculation en hydrogene d'une cellule de pile a combustible et dispositif associe
JP2008300227A (ja) * 2007-05-31 2008-12-11 Toshiba Corp 燃料電池装置およびこれを備えた電子機器システム
DE102009057130A1 (de) * 2009-12-08 2011-06-09 Heinrich-Heine-Universität Düsseldorf Verfahren zur Analyse der Zusammensetzung von Gasgemischen
MY150333A (en) * 2010-03-08 2013-12-31 Conducta Endress & Hauser Measuring device for use in a biogas plant
WO2013103314A1 (en) * 2012-01-02 2013-07-11 Engstroem Christian Method and system for measuring the mass flow by means of dilution of an exhaust gas from internal combustion
US9310349B2 (en) * 2013-12-10 2016-04-12 Continental Automotive Systems, Inc. Sensor structure for EVAP hydrocarbon concentration and flow rate
CN104931650B (zh) * 2015-05-22 2017-01-04 江苏大学 一种测量全射流喷头气体含量的方法
JP6734189B2 (ja) * 2016-12-26 2020-08-05 京セラ株式会社 燃料電池装置および燃料電池装置の制御方法
JP2019145380A (ja) * 2018-02-22 2019-08-29 株式会社デンソー 水素流量計測装置、燃料電池システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881351A (en) 1972-06-29 1975-05-06 Gen Motors Corp Method of measuring the mass flow rate of a constituent of a gaseous stream
JP2799885B2 (ja) * 1989-08-28 1998-09-21 日本酸素株式会社 微量酸素測定方法及びその装置
JP3583890B2 (ja) 1997-03-04 2004-11-04 日本碍子株式会社 ガスセンサ及びガスセンサの制御方法
US6033459A (en) * 1997-07-15 2000-03-07 Nec Corporation Gas collection apparatus, gas analyzing apparatus using the same and gas analyzing method
DE19819581C2 (de) 1998-04-30 2002-08-08 Siemens Ag Verfahren zur Bestimmung der NO¶x¶-Konzentration
US6274016B1 (en) * 1998-06-29 2001-08-14 Kabushiki Kaisha Riken Nitrogen oxide gas sensor
US6205843B1 (en) * 1998-11-16 2001-03-27 Denso Corporation Gas sensing element and a method for measuring a specific gas concentration
JP3560316B2 (ja) * 1998-11-25 2004-09-02 日本特殊陶業株式会社 ガスセンサとその製造方法及びガスセンサシステム
JP3468731B2 (ja) 2000-01-14 2003-11-17 株式会社日立製作所 熱式空気流量センサ、素子および内燃機関制御装置

Also Published As

Publication number Publication date
EP1391700A1 (en) 2004-02-25
DE60321099D1 (de) 2008-07-03
US20040035219A1 (en) 2004-02-26
US6842705B2 (en) 2005-01-11
EP1391700B1 (en) 2008-05-21
JP2004138595A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4254263B2 (ja) ガス流量測定装置及びガス流量測定方法
US8470479B2 (en) Sensorless relative humidity control in a fuel cell application
US7189572B2 (en) Method for measuring water content of fuel cell based on conductivity of electrolyte
CN104614680B (zh) 层叠电池的内阻测量装置
JP3663185B2 (ja) 圧力及びガス組成の変化に関して補償する相対湿度センサ
Görgün et al. An algorithm for estimation of membrane water content in PEM fuel cells
JP2001256988A (ja) 燃料電池システムおよび燃料電池の運転方法
US20090155651A1 (en) Fuel cell system and generation control device
US20100151340A1 (en) Fuel cell in-plane state estimating system and fuel cell in-plane state estimating method
JP4568140B2 (ja) ガス検出装置
US7399542B2 (en) Fuel cell system burp control
JP4590819B2 (ja) 燃料電池システム及び燃料電池運転方法
Himanen et al. Characterization of membrane electrode assembly with hydrogen–hydrogen cell and ac-impedance spectroscopy: Part I. Experimental
JP2006196414A (ja) 燃料電池検査システム
JP2006145341A (ja) ガスサンプリング方法及び装置
JP2007134287A (ja) 燃料電池の評価装置および評価方法
JP2009193722A (ja) 燃料電池評価装置
JP2004353915A (ja) 加湿装置
JP2005241540A (ja) ガス濃度測定装置
JP3972822B2 (ja) ガスセンサ及びこれを用いた燃料電池システム
JP5016426B2 (ja) メタノール透過量測定装置
US20240145744A1 (en) Fuel cell evaluation system and fuel cell evaluation method
JP3994903B2 (ja) 水素ガス濃度検出器及びこれを用いた燃料電池システム
JP2004061244A (ja) ガスセンサ及びガスセンサのガス検知方法及びガスセンサの故障検知方法
WO2022196657A1 (ja) 燃料電池評価システム及び燃料電池評価方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees