JP2008300227A - 燃料電池装置およびこれを備えた電子機器システム - Google Patents

燃料電池装置およびこれを備えた電子機器システム Download PDF

Info

Publication number
JP2008300227A
JP2008300227A JP2007145796A JP2007145796A JP2008300227A JP 2008300227 A JP2008300227 A JP 2008300227A JP 2007145796 A JP2007145796 A JP 2007145796A JP 2007145796 A JP2007145796 A JP 2007145796A JP 2008300227 A JP2008300227 A JP 2008300227A
Authority
JP
Japan
Prior art keywords
sensor
fuel
gas
fuel cell
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007145796A
Other languages
English (en)
Inventor
Hideaki Tanaka
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007145796A priority Critical patent/JP2008300227A/ja
Priority to US12/130,949 priority patent/US20080299427A1/en
Publication of JP2008300227A publication Critical patent/JP2008300227A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04455Concentration; Density of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の運転動作に起因して生じるガスを正確に判断し、より安定した運転動作の実現でき、信頼性および安全性の向上した燃料電池装置を提供することにある。
【解決手段】燃料電池装置50は、アノード67およびカソード66を有し、化学反応により発電する起電部と、燃料タンク54と、燃料タンクから供給された燃料を起電部のアノード側を通して流す燃料流路62と、吸気口および排気口を有し、吸気口から吸気された空気をカソード側を通して循環させ、前記起電部で生じた排出気体を排出口から排気する気体流路64と、吸気口から吸気されるガスを検知する第1センサ90と、排気口から排気されるガスを検知する第2センサ92と、第1センサにより検出されたガスと第2センサにより検出されたガスとを比較し、発電の際に電池内部で発生した物質量を算出し、その算出結果に応じて発電動作を制御する制御部56と、を備えている。
【選択図】 図2

Description

本発明は、電子機器およびこの電子機器に電流を供給する燃料電池装置を備えた電子機器システムに関する。
現在、携帯可能なノート型のパーソナルコンピュータ(以下、ノートPCと称する)、モバイル機器等の電子機器の電源としては、主に、リチウムイオンバッテリなどの二次電池が用いられている。近年、これら電子機器の高機能化に伴う消費電力の増加や更なる長時間使用の要請から、高出力で充電の必要のない小型燃料電池が新たな電源として期待されている。燃料電池には種々の形態があるが、特に、燃料としてメタノール溶液を使用するダイレクトメタノール方式の燃料電池(以下、DMFCと称する)は、水素を燃料とする燃料電池に比べて燃料の取扱いが容易で、システムが簡易であることから、電子機器の電源として注目されている。
通常、DMFCは、メタノールが収容された燃料タンク、メタノールを起電部に圧送する送液ポンプ、および起電部に空気を供給する送気ポンプ等を備えている。起電部はそれぞれアノードおよびカソードを有した複数の単セルを積層したセルスタックを備え、アノード側にメタノールを、カソード側に空気を供給することにより、化学反応によって発電を行う。発電に伴う反応生成物として、起電部のアノード側には未反応のメタノールおよび炭酸ガスが発生し、カソード側には水が発生する。反応生成物である水は蒸気となって排気される。
上記構成の燃料電池は、排気ガスがクリーンな電池として開発されているが、システム異常が生じた場合には、未反応のメタノールや過度の二酸化炭素、あるいは、中間生成物の蟻酸やホルムアルデヒド等が排気される可能性も考えられる。非常に狭い空間で長期間異常な運転が連続した場合、人体への影響が心配される。
一般に、燃料電池は、その発電電力、セルスタックの温度を計測しながら、最適な燃料供給、温度制御を行い、上述したような排気ガスが規定値以上、排出されないように運転される。また、排気側に還元性ガスを検知するガスセンサを設け、有害な排気ガスを検知した場合に運転を停止する燃料電池が提案されている(例えば、特許文献1)。
特開2006−331907号公報
上記のように構成された燃料電池によれば、排気ガスをセンサにより検出することにより、燃料電池の運転の信頼性を向上することが可能となる。しかしながら、燃料電池の使用環境によっては、燃料電池に取り込む外気に種々のガス、例えば、高濃度の二酸化炭素、芳香剤から発生した揮発性ガス、タバコの煙等が含まれている場合も考えられる。このような場合、燃料電池の排気ガスに含まれているガスが、燃料電池の運転動作によって生じたガスであるか、外気に含まれていたガスであるか判別することが難しい。そのため、排気ガスの検知だけでは、より適正な運転制御を行うことが難しい。
この発明は以上の点に鑑みなされたもので、その目的は、燃料電池の運転動作に起因して生じるガスを正確に判断し、より安定した運転動作の実現でき、信頼性および安全性の向上した燃料電池装置および電子機器システムを提供することにある。
上記課題を達成するため、この発明の態様に係る燃料電池装置は、アノードおよびカソードを有し、化学反応により発電する起電部と、燃料を収容した燃料タンクと、前記燃料タンクから供給された燃料を前記起電部のアノード側を通して流す燃料流路と、吸気口および排気口を有し、前記吸気口から吸気された空気を前記カソード側を通して循環させ、前記起電部で生じた排出気体を前記排出口から排気する気体流路と、前記吸気口から吸気されるガスを検知する第1センサと、前記排気口から排気されるガスを検知する第2センサと、前記第1センサにより検出されたガスと第2センサにより検出されたガスとを比較し、発電の際に電池内部で発生した物質量を算出し、その算出結果に応じて発電動作を制御する制御部と、を備えている。
この発明の他の態様に係る電子機器システムは、筐体と、前記筐体に設けられた表示部と、を有した電子機器と、前記筐体内に配設された燃料電池装置と、を備え、
前記燃料電池装置は、アノードおよびカソードを有し、化学反応により発電する起電部と、燃料を収容した燃料タンクと、前記燃料タンクから供給された燃料を前記起電部のアノード側を通して流す燃料流路と、吸気口および排気口を有し、前記吸気口から吸気された空気を前記カソード側を通して循環させ、前記起電部で生じた排出気体を前記排出口から排気する気体流路と、前記吸気口から吸気されるガスを検知する第1センサと、前記排気口から排気されるガスを検知する第2センサと、前記第1センサにより検出されたガスと第2センサにより検出されたガスとを比較し、発電の際に電池内部で発生した物質量を算出し、その算出結果に応じて発電動作を制御する制御部と、を具備している。
上記構成によれば、燃料電池の運転動作に起因して生じるガスを正確に判断し、より安定した運転動作を実現でき、信頼性および安全性の向上した燃料電池装置および電子機器システムが得られる。
以下、図面を参照しながら、この発明の実施形態について詳細に説明する。
図1は、この発明の第1の実施形態に係る電子機器システムとして、燃料電池装置を備えたポータブルコンピュータを示し、図2は、ポータブルコンピュータの内部構造を概略的に示している。
図1に示すように、ポータブルコンピュータ10は、機器本体12と、この機器本体12に支持されたディスプレイユニット13とを備えている。機器本体12は、例えば合成樹脂で形成された偏平な矩形状の筐体14を備えている。筐体14の上面には、パームレスト部16が形成され、このパームレスト部のほぼ中央にはタッチパッド15およびクリックボタン17が設けられている。パームレスト部16の後方にはキーボード18が設けられている。筐体14の上面後端部左右には、それぞれスピーカ11が露出して設けられている。筐体14の上面後端部には、ポータブルコンピュータ10および後述する燃料電池装置の動作状態を示す複数のLED23が設けられている。
表示部としてのディスプレイユニット13は、偏平な矩形箱状のハウジング19と、ハウジング内に収納された液晶表示パネル20とを備えている。液晶表示パネル20の表示面20aは、ハウジング19に形成された表示窓21を介して外部に露出している。ハウジング19は、筐体14の後端部に設けられた一対のヒンジ部22により、筐体14の後端部に回動可能に支持されている。これにより、ディスプレイユニット13は、キーボード18を上方から覆うように倒される閉じ位置と、キーボードの後方において起立する開き位置とに亘って回動可能となっている。
図1および図2に示すように、筐体14は、その内部に、電子機器領域24aおよび燃料電池領域24bを有し、これらの領域は、筐体内に設けられた仕切り壁26により仕切られている。電子機器領域24aおよび燃料電池領域24bは、例えば、ほぼ同一の寸法に形成され、仕切り壁26を中心として左右に形成されている。
電子機器領域24aには、電子機器としてのポータブルコンピュータ10を構成する種々の要素が配設されている。例えば、電子機器領域24aには、マザーボードを構成するプリント回路基板28が設けられている。このプリント回路基板28上には、MPU30aを含む複数の半導体素子30、モデム基板、モデムコネクタ31、USB基板、その他、種々の電子部品が実装されている。
電子機器領域24aには、記憶装置として、例えば、ハードディスクドライブ32が配設されているとともに、発熱部材としてのMPU30aを冷却する放熱機構34が設けられている。放熱機構34は、放熱板(ヒートブロック)36、ヒートパイプ38、放熱フィン40、および冷却ファン42を備えている。
放熱板36は、熱伝導率の高い金属、例えばアルミニウム等によってほぼ矩形状に形成されている。放熱板36は、MPU30aの平面積よりも充分に大きく形成されている。放熱板36は、図示しない伝熱シートを介してMPU30aに重ねて設けられ、MPUに熱的に接続されている。放熱板36は、金属板ばね44によりプリント回路基板28に固定され、MPU30aに弾性的に押し付けられている。
放熱板36は、ヒートパイプ38を通して放熱フィン40に熱的に接続されている。放熱フィン40は、筐体14の側壁に隣接対向して設けられている。放熱フィン40は、筐体14の側壁に形成された開口に設けられ、冷却ファン42と対向している。
ポータブルコンピュータ10の動作にMPU30aが発熱すると、その熱は放熱板36に受熱される。これにより、MPU30aが冷却される。放熱板36の熱は、ヒートパイプ38を通して放熱フィン40に伝熱される。また、冷却ファン42が作動され、この冷却ファンの排気口から放熱フィン40に向けて冷却風が吹き付けられる。これにより、放熱フィン40に伝わった熱は、放熱フィンから放熱され、開口を筐体14外部に放熱される。
図2に示すように、燃料電池領域24b内には、燃料電池装置50が配設されている。燃料電池装置50は、メタノールを液体燃料としたDMFCとして構成されている。燃料電池装置50は、起電部を構成したセルスタック52、燃料タンク54、およびセルスタックに燃料および空気を供給する循環系60、燃料電池装置全体の動作を制御する電池制御部56を備えている。電池制御部56は、回路基板56aおよびマイコン(CPU)56bを有し、回路基板56aはインターフェース58を介してコンピュータ側のプリント回路基板28に接続されている。インターフェース58には、燃料電池装置50側からコンピュータ10側に電力を供給する給電ライン、コンピュータ側と燃料電池装置のマイコンとの間で信号を送受信する通信ラインが含まれている。
燃料タンク54は密閉構造を有し、その内部には液体燃料として高濃度のメタノールが収容されている。燃料タンク54は、燃料電池装置50に対して脱着自在な燃料カートリッジとして形成してもよい。
循環系60は、燃料タンク54の燃料供給口から供給された燃料をセルスタック52を通して循環させるアノード流路(燃料流路)62、およびセルスタック52を通して空気を含む気体を循環させるカソード流路(気体流路)64、アノード流路内およびカソード流路に設けられた複数の補機を有している。アノード流路62およびカソード流路64は、それぞれ配管等によって形成されている。
図3はセルスタック52の積層構造を示し、図4は各セルの発電反応を模式的に示している。図3および図4に示すように、セルスタック52は、複数、例えば、4つの単セル140と、5枚の矩形板状のセパレータ142とを交互に積層して構成された積層体、および積層体を支持した枠体145を有している。各単セル140は、それぞれ触媒層とカーボンペーパとで構成されたほぼ矩形板状のカソード(空気極)66およびアノード(燃料極)67、これらカソード、アノード間に挟持されたほぼ矩形状の高分子電解質膜144とを一体化した膜・電極接合体(MEA)を備えている。高分子電解質膜144は、アノード67およびカソード66よりも大きな面積に形成されている。
3つのセパレータ142は、隣合う2つの単セル140間に積層され、他の2つのセパレータは、積層方向両端にそれぞれ積層されている。セパレータ142および枠体145には、各単セル140のアノード67に燃料を供給する燃料流路146、および各単セルのカソード66に空気を供給する空気流路147が形成されている。
図4に示すように、供給された燃料および空気は、アノード67とカソード66との間に設けられた電解質膜144で化学反応し、これにより、アノードとカソードとの間に電力が発生する。セルスタック52で発生した電力は、電池制御部56を介してポータブルコンピュータ10に供給される。
図2に示すように、セルスタック52と対向して冷却ファン88が設けられている。冷却ファン88は、回転することにより冷却風をセルスタック52に吹き付け、このセルスタックを冷却する。セルスタック52は、起電動作に伴って発熱し、約50〜70℃の発熱体となる。冷却ファン88の回転数を制御して冷却風を調整することにより、セルスタック52の温度を適正な動作温度に制御することができる。なお、セルスタック52からの放熱を上げる目的で、セルスタックに複数の放熱フィンを設けても良い。
アノード流路62に設けられた補機は、燃料タンク54の燃料供給口に配管接続された開閉弁59、燃料ポンプ70、燃料ポンプの出力部に配管を介して接続された混合タンク71を備えている。また、補機は、燃料タンク54の一部を構成する混合タンク71の出力部に液体フィルタ72を介して接続された送液ポンプ73を備えている。送液ポンプ73の出力部はアノード流路62を介してセルスタック52の燃料流路146に接続されている。
セルスタック52のアノード67の出力部はアノード流路62を通して混合タンク71の入力部に接続されている。セルスタック52の出力部と混合タンク71との間でアノード流路62には気液分離器74が設けられている。セルスタック52のアノード67から排出される排出流体、つまり化学反応に用いられなかった未反応メタノール水溶液および生成された二酸化炭素(CO)を含む気液2相流は、気液分離器74に送られ、ここで、二酸化炭素が分離される。分離されたメタノール水溶液はアノード流路62を通して混合タンク71に戻され、再度、アノード67へ供給される。気液分離器74により分離された二酸化炭素は、カソード流路64を通して後述するガス浄化フィルタ76へ送られる。
一方、カソード流路64の吸気口64aおよび排気口64bは、それぞれ筐体14の側壁を通して大気に連通している。カソード流路64に設けられる補機は、セルスタック52の上流側でカソード流路64の吸気口64a近傍に設けられたエアフィルタ78、第1ガスセンサ90、セルスタック52と第1ガスセンサとの間でカソード流路に接続された送気ポンプ80、開閉弁81、セルスタック52の下流側でセルスタックと排気口64bとの間に設けられた第2ガスセンサ92、排気フィルタ82、および開閉弁83を含んでいる。また、カソード流路64において、開閉弁81とセルスタック52との間には、温度センサ84およびガス浄化フィルタ76が設けられている。
吸気口64aに設けられたエアフィルタ78は、カソード流路64に吸い込まれた空気中のゴミ、および二酸化炭素、蟻酸、燃料ガス、蟻酸メチル、ホルムアルデヒド等の不純物、有害物質等を捕獲し除去する。排気フィルタ82は、カソード流路64から外部へ排気される気体中の副生成物を無害化するとともに、排気中の含まれている燃料ガス等を捕獲する。
吸気口64a側に設けられた第1ガスセンサ90は、例えば、吸気中のCOの濃度を検出するCO濃度センサ90a、メタノール濃度を検出するメタノール濃度センサ90b、ホルムアルデヒド濃度を検出するホルムアルデヒド濃度センサ90c、蟻酸の濃度を検出する蟻酸濃度センサ90dを含んでいる。
排気口64bに設けられた第2ガスセンサ92は、少なくとも1種類以上、第1ガスセンサと同一のセンサを含んでいる。ここでは、第2ガスセンサ92は、排気中のCOの濃度を検出するCO2濃度センサ92a、メタノール濃度を検出するメタノール濃度センサ92b、ホルムアルデヒド濃度を検出するホルムアルデヒド濃度センサ92c、蟻酸の濃度を検出する蟻酸濃度センサ92dを含んでいる。
第1ガスセンサ90および第2ガスセンサ92は、それぞれ検出したガス濃度を電池制御部56に出力する。気液分離器74は、セルスタック52の流入側と開閉弁83との間でカソード流路64に接続されている。また、気液分離器74とセルスタック52の流入側との間でカソード流路64には、温度センサ84が設けられている。
上記のように構成された燃料電池装置50を電源としてポータブルコンピュータ10を動作させる場合、電池制御部56の制御の下、燃料ポンプ70、送液ポンプ73および送気ポンプ80を作動させるとともに、開閉弁59、81、83を開放する。燃料ポンプ70により、燃料タンク54から混合タンク71へメタノールが供給され、混合タンク内で水と混合され所望濃度のメタノール水溶液が形成される。また、送液ポンプ73により、混合タンク内のメタノール水溶液がアノード流路62を通してセルスタック52のアノード67に供給される。
一方、送気ポンプ80により、カソード流路64の吸気口64aからカソード流路内に外気、つまり、空気が吸い込まれる。この空気はエアフィルタ78を通り、ここで、空気中のゴミ、不純物が除去される。エアフィルタ78を通過した後、空気は、第1ガスセンサ90を通り、ここで、空気中に含まれるCO濃度、メタノール濃度、ホルムアルデヒド濃度、蟻酸濃度がそれぞれ検出される。空気は、カソード流路64を通り気液分離器74へ送られ、更に、気液分離器で分離されたセルスタック52からの排出ガスとともにセルスタック52のカソード66へ供給される。
セルスタック52に供給されたメタノールおよび空気は、アノード67とカソード66との間に設けられた電解質膜144で電気化学反応し、これにより、アノード67とカソード66との間に電力が発生する。セルスタック52で発生した電力は、電池制御部56を介してコンピュータ本体へ供給される。
電気化学反応に伴い、セルスタック52には反応生成物として、アノード67側に二酸化炭素、カソード66側に水が生成される。アノード67側に生じた二酸化炭素および化学反応に供されなかった未反応メタノール水溶液はアノード流路62を通して気液分離器74に送られ、ここで、二酸化炭素とメタノール水溶液とに分離される。分離されたメタノール水溶液は、気液分離器74からアノード流路62を通して混合タンク71へ回収され、再度、発電に用いられる。
分離された二酸化炭素は、気液分離器74からカソード流路64へ送られ、更に、空気とともにガス浄化フィルタ76へ送られる。ガス浄化フィルタ76により、空気中の不純物、および二酸化炭素を含む有害物が除去された後、空気および二酸化炭素はセルスタック52に供給され、発電に用いられる。空気中の不純物がセルスタック52へ送られることを防止し、これらの不純物による発電効率の低下を防止することができる。
セルスタック52のカソード66側に生じた水は、その大部分が水蒸気となり空気とともにカソード流路64に排出される。排出された空気および水蒸気を含む気体は、第2ガスセンサ92により、CO濃度、メタノール濃度、ホルムアルデヒド濃度、蟻酸濃度がそれぞれ検出される。その後、排出気体は、排気フィルタ82に送られ、ここで、ゴミ、不純物が除去された後、カソード流路64の排気口64bから外部に排気される。
上述した発電動作の間、電池制御部56は、第1ガスセンサ90により検出された吸気側のガス状態、および第2ガスセンサ92により検出された排気側のガス状態をモニタし、燃料電池内部で発電の際に発生した物質量を算出し、その算出結果に応じて、燃料電池装置を最適な動作状態に制御する。すなわち、電池制御部56は、装置内部での発生ガスが発電動作に悪影響する場合や、使用者の健康に影響する場合に、算出結果をシステム制御にフィードバックし、燃料電池の運転方法を変えてガス成分を改善する。また、運転制御で改善できない場合、電池制御部56は使用者に警告(音やLED、ディスプレー表示)を促す、条件によってはシステムを自動的に停止する。
例えば、吸気側および排気側のCO濃度センサ90a、92bの検出データを利用して、燃料電池装置50の発電状態、クロスオーバ量を判定し、セルスタック52の動作温度の変更、燃料供給量の変更を行い発電動作を適正な状態にする。
COは大気中に380ppm程度含まれ、狭い部屋では人間が吐く息と燃料電池装置50が生成するCOとにより空気中のCOの濃度が増加する。そこで、図5に示すように、燃料電池装置50が吸気する大気のCO濃度を吸気側のCO2濃度センサ90aにより測定し(S1)、また、セルスタック52から排気される排気ガス中のCO濃度をCO濃度センサ92aにより測定する(S2)。そして、測定されたCO濃度の差を算出することにより、燃料電池装置内で生成されたCOの量が求める(S3)。
濃度差をΔC(ppm)、排気流量Vout(L/min)、毎分生成されたCO2量をΔMとすると、 VoutΔC=ΔMとなる。
生成されたCOには、セルスタック52のアノード67側での反応で発生したCO(CHOH+HO → CO+6H+ +6e-)以外に、カソード66側でも電解質膜を通過したメタノールが触媒で反応し、COを発生する。この現象は、いわゆるクロスオーバと呼ばれ、システムの発電効率を下げる現象である。
通常の反応で毎分生成されるCOの量は以下の式で表される。
発電で消費するメタノール:Ngen[mol/min]
Ngen=I/F/6×n×60
Ngen=Vout×CO2アノード生成量分の濃度x(22.4×(273.15+Tout)/273.15)
I:発電電流 [A]
F:ファラデー定数(=96485) [C/mol]
n:スタックセル枚数 [枚]
Tout:排気温度 [℃]
CA:CO2アノード生成量分の濃度=
(I/F/6×n×60 )/Vout(22.4×(273.15+Tout)/273.15)
ΔC−CAがカソードから生成されたCOの濃度である。
このCO濃度が規定値よりも多くなると、クロスオーバ量が多く発生し発電効率が下がっている状態であると判断される。
電池制御部56は、生成されたCOの濃度を予め設定された所定値と比較し(S4)、所定値を超えている場合、セルスタック52に燃料を供給する送液ポンプ73、および空気を供給する送気ポンプ80の回転数を変更、ここでは、低下させ、燃料供給量を制御する(S5)。あるいは、電池制御部56は、セルスタック52を冷却する冷却ファン88の回転数を変更、ここでは上昇させることにより、セルスタックの動作温度を制御する(S6)。これにより、クロスオーバ量を低減させ、発電効率の適正化を図る。
また、電池制御部56は、発電動作の中間生成物である蟻酸の濃度を検出する。すなわち、電池制御部56は、蟻酸濃度センサ90dおよび蟻酸濃度センサ92dにより吸気側および排気側の蟻酸濃度を検出し、その差から、燃料電池装置50内で発生した蟻酸の濃度を算出する。そして、蟻酸の発生濃度が所定値を超えて異常である場合、電池制御部56は、セルスタック52の動作温度を高くし、例えば、冷却ファン88の回転数を下げることにより、中間生成物の発生を抑制する。
また、電池制御部56は、吸気側および排気側で注目している物質の濃度にシステム上あるいは使用者の健康上、悪影響を与える異常が生じた場合、使用者に警告するとともに、燃料電池装置50の動作を停止する。例えば、電池制御部56は、メタノール濃度センサ90b、92b、およびホルムアルデヒド濃度センサ90c、92cにより、吸気側および排気側のメタノール濃度およびホルムアルデヒド濃度を検出し、これらを比較することにより、燃料電池装置内で発生したメタノールガスの濃度、およびホルムアルデヒドの濃度を算出する。そして、メタノール濃度およびホルムアルデヒド濃度の少なくとも一方が所定の濃度を超え異常濃度となっていると判断した場合、電池制御部56は、LED23の色の変化、点滅し、同時に、スピーカ11から警告音を発生する。更に、電池制御部56は、コンピュータ10のディスプレイユニット13に物質、濃度、使用者に対して警告を表示してもよい。ここで、警告表示は、例えば、「電源を切ってください」「窓を開けて濃度を下げてください」などを含んでいる。また、電池制御部56は、上述した警告と同時に、燃料電池装置50の運転を自動的に停止してもよい。
以上のように構成されたポータブルコンピュータによれば、吸気側と排気側とのガス状態を検出し比較することにより、燃料電池装置の発電動作に起因して生じるガスを正確に判別することができ、その判別結果をシステム制御にフィードバックすることにより、安定した運転動作を実現することができる。排気有害物質をガスセンサで監視することにより、使用者への健康上の悪影響を防止することができる。これにより、信頼性および安全性の向上した燃料電池装置および電子機器システムが得られる
上述した第1の実施形態において、燃料電池装置は電子機器内に内蔵された構成としてが、電子機器と独立して構成されていてもよい。
図6は、この発明の第2の実施形態に係る電子機器システムを示している。第2の実施形態によれば、電子機器システムは、ポータブルコンピュータ10およびこのポータブルコンピュータに電流を供給する燃料電池装置50を備えている。燃料電池装置50は、ポータブルコンピュータ10の機器本体12の外側に設けられ、筐体14の後部に脱着自在に接続されている。燃料電池装置50は、インターフェースコネクタ58を介してコンピュータ10に電気的に接続されている。
機器本体12の筐体14内には、ポータブルコンピュータ10の種々の構成要素が配設されている。すなわち、筐体14内には、プリント回路基板28が設けられている。このプリント回路基板28上には、MPU30aを含む複数の半導体素子30、モデム基板、モデムコネクタ、USB基板、その他、種々の電子部品が実装されている。また、筐体14内には、記憶装置として、例えば、ハードディスクドライブ32が配設されているとともに、MPU30aを冷却する放熱機構34が設けられている。
筐体14の上面には、キーボード18、スピーカ11、LED23が設けられている。また、筐体14には、図示しないディスプレイユニットが設けられている。その他、ポータブルコンピュータ10の構成は、前述した第1の実施形態と同一であり、同一の部分には同一の参照符号を付してその詳細な説明を省略する。
燃料電池装置50は、メタノールを液体燃料としたDMFCとして構成されている。燃料電池装置50は、ほぼ矩形箱状の筐体93を備えている。筐体93内には、起電部を構成したセルスタック52、燃料タンク54、およびセルスタックに燃料および空気を供給する循環系60、燃料電池装置全体の動作を制御する電池制御部56が配設されている。セルスタック52は、アノード67、カソード66、図示しない電解質膜をそれぞれ有した複数の単セルを積層して構成されている。
燃料タンク54は密閉構造を有し、その内部には液体燃料として高濃度のメタノールが収容されている。燃料タンク54は、燃料電池装置50に対して脱着自在な燃料カートリッジとして形成してもよい。
循環系60は、燃料タンク54の燃料供給口から供給された燃料をセルスタック52を通して循環させるアノード流路(燃料流路)62、およびセルスタック52を通して空気を含む気体を循環させるカソード流路(空気流路)64、アノード流路内およびカソード流路に設けられた複数の補機を有している。アノード流路62およびカソード流路64は、それぞれ配管等によって形成されている。
カソード流路64の吸気口64aおよび排気口64bは、それぞれ筐体93の側壁を通して大気に連通している。カソード流路64に設けられる補機は、セルスタック52の上流側でカソード流路64の吸気口64a近傍に設けられた第1ガスセンサ90、セルスタック52の下流側でセルスタックと排気口64bとの間に設けられた第2ガスセンサ92を含んでいる。吸気口64a側に設けられた第1ガスセンサ90は、例えば、吸気中のCOの濃度を検出するCO濃度センサ90a、メタノール濃度を検出するメタノール濃度センサ90b、ホルムアルデヒド濃度を検出するホルムアルデヒド濃度センサ90c、蟻酸の濃度を検出する蟻酸濃度センサ90dを含んでいる。
排気口64bに設けられた第2ガスセンサ92は、少なくとも1種類以上、第1ガスセンサと同一のセンサを含んでいる。ここでは、第2ガスセンサ92は、排気中のCOの濃度を検出するCO濃度センサ92a、メタノール濃度を検出するメタノール濃度センサ92b、ホルムアルデヒド濃度を検出するホルムアルデヒド濃度センサ92c、蟻酸の濃度を検出する蟻酸濃度センサ92dを含んでいる。第1ガスセンサ90および第2ガスセンサ92は、それぞれ検出したガス濃度を電池制御部56に出力する。
第2の実施形態において、燃料電池装置50の他の構成は前述した第1の実施形態と同一であり、同一の部分には同一の参照符号を付してその詳細な説明を省略する。
上記構成の第2の実施形態においても、第1の実施形態と同様に、燃料電池の運転動作に起因して生じるガスを正確に判断し、より安定した運転動作を実現でき、信頼性および安全性の向上した燃料電池装置および電子機器システムが得られる。
なお、この発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
吸気側および排気側において検出するガスは、上述した実施形態に限らず、蟻酸メチル等の他のガスを検出する構成としてもよい。電子機器システムは、ポータブルコンピュータに限らず、他の電子機器に適用してもよい。燃料電池の形式としは、DMFCに限らず、PEFC(Polymer Electrolyte Fuel Cell)等の他の形式としてもよい。
図1は、この発明の第1の実施形態に係るポータブルコンピュータを示す斜視図。 図2は、前記ポータブルコンピュータおよび燃料電池装置の内部構造を概略的に示す図。 図3は、前記燃料電池装置のセルスタックを示す断面図。 図4は、前記セルスタックの単セルを概略的に示す図。 図5は、前記燃料電池装置のガス濃度に応じた運転動作を示すフローチャト。 図6は、この発明の第2の実施形態に係るポータブルコンピュータおよび燃料電池装置を概略的に示す図。
符号の説明
10…ポータブルコンピュータ、12…機器本体、13…ディスプレイユニット、
11…スピーカ、14…筐体、23…LED、24a…電子機器領域、
24b…燃料電池領域、26…仕切り壁、34…冷却機構、50…燃料電池装置、
52…セルスタック、54…燃料タンク、56…電池制御部、60…循環系、
62…アノード流路、64…カソード流路、66…カソード(空気極)、
67…アノード(燃料極)、90…第1ガスセンサ、90a…CO濃度センサ、
92…第2ガスセンサ、92a…CO濃度センサ、

Claims (8)

  1. アノードおよびカソードを有し、化学反応により発電する起電部と、
    燃料を収容した燃料タンクと、
    前記燃料タンクから供給された燃料を前記起電部のアノード側を通して流す燃料流路と、
    吸気口および排気口を有し、前記吸気口から吸気された空気を前記カソード側を通して循環させ、前記起電部で生じた排出気体を前記排出口から排気する気体流路と、
    前記吸気口から吸気されるガスを検知する第1センサと、
    前記排気口から排気されるガスを検知する第2センサと、
    前記第1センサにより検出されたガスと第2センサにより検出されたガスとを比較し、発電の際に電池内部で発生した物質量を算出し、その算出結果に応じて発電動作を制御する制御部と、
    を備えた燃料電池装置。
  2. 前記第1センサおよび第2センサは、それぞれCO濃度を検出するCO2濃度センサを含み、前記制御部は、電池内部で発生したCOの濃度に応じて、前記起電部の動作温度および燃料供給量の少なくとも一方を制御する請求項1に記載の燃料電池装置。
  3. 前記起電部に燃料を供給する送液ポンプ、前記起電部に空気を供給する送気ポンプ、および前記起電部を冷却する冷却ファンを備え、前記制御部は、前記送液ポンプの回転数を変更して燃料供給量を制御し、前記冷却ファンの回転数を変更することにより前記起電部の動作温度を制御する請求項2に記載の燃料電池装置。
  4. 前記第1センサおよび第2センサは、それぞれメタノール濃度を検出するメタノール濃度センサおよびホルムアルデヒド濃度を検出するホルムアルデヒド濃度センサの少なくとも一方を含み、前記制御部は、前記算出されたメタノールの発生量およびホルムアルデヒドの発生量の少なくとも一方が所定値を超えている場合、警告手段により使用者に警告または発電動作を停止する請求項1に記載の燃料電池装置。
  5. 前記警告手段は、音声発生器、表示装置の少なくとも一方を有している請求項4に記載の燃料電池装置。
  6. 前記第1センサおよび第2センサは、それぞれ蟻酸メチル濃度を検出する濃度センサを含み、前記制御部は、前記算出された蟻酸メチルの発生量が所定値を超えている場合、前記起電部の動作温度を高くする請求項1に記載の燃料電池装置。
  7. 筐体と、前記筐体に設けられた表示部と、を有した電子機器と、
    前記筐体内に配設された燃料電池装置と、を備え、
    前記燃料電池装置は、アノードおよびカソードを有し、化学反応により発電する起電部と、燃料を収容した燃料タンクと、前記燃料タンクから供給された燃料を前記起電部のアノード側を通して流す燃料流路と、吸気口および排気口を有し、前記吸気口から吸気された空気を前記カソード側を通して循環させ、前記起電部で生じた排出気体を前記排出口から排気する気体流路と、前記吸気口から吸気されるガスを検知する第1センサと、前記排気口から排気されるガスを検知する第2センサと、前記第1センサにより検出されたガスと第2センサにより検出されたガスとを比較し、発電の際に電池内部で発生した物質量を算出し、その算出結果に応じて発電動作を制御する制御部と、を具備している電子機器システム。
  8. 筐体と、前記筐体に設けられた表示部と、を有した電子機器と、
    前記筐体に脱着可能に接続され、前記電子機器に電力を供給する燃料電池装置と、を具備し、
    前記燃料電池装置は、アノードおよびカソードを有し、化学反応により発電する起電部と、燃料を収容した燃料タンクと、前記燃料タンクから供給された燃料を前記起電部のアノード側を通して流す燃料流路と、吸気口および排気口を有し、前記吸気口から吸気された空気を前記カソード側を通して循環させ、前記起電部で生じた排出気体を前記排出口から排気する気体流路と、前記吸気口から吸気されるガスを検知する第1センサと、前記排気口から排気されるガスを検知する第2センサと、前記第1センサにより検出されたガスと第2センサにより検出されたガスとを比較し、発電の際に電池内部で発生した物質量を算出し、その算出結果に応じて発電動作を制御する制御部と、を具備している電子機器システム。
JP2007145796A 2007-05-31 2007-05-31 燃料電池装置およびこれを備えた電子機器システム Withdrawn JP2008300227A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007145796A JP2008300227A (ja) 2007-05-31 2007-05-31 燃料電池装置およびこれを備えた電子機器システム
US12/130,949 US20080299427A1 (en) 2007-05-31 2008-05-30 Fuel cell device and electronic apparatus system including fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145796A JP2008300227A (ja) 2007-05-31 2007-05-31 燃料電池装置およびこれを備えた電子機器システム

Publications (1)

Publication Number Publication Date
JP2008300227A true JP2008300227A (ja) 2008-12-11

Family

ID=40088617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145796A Withdrawn JP2008300227A (ja) 2007-05-31 2007-05-31 燃料電池装置およびこれを備えた電子機器システム

Country Status (2)

Country Link
US (1) US20080299427A1 (ja)
JP (1) JP2008300227A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254714A (ja) * 2012-06-08 2013-12-19 Asahi Kasei E-Materials Corp 燃料電池システム
JP2016012526A (ja) * 2014-06-30 2016-01-21 アイシン精機株式会社 燃料電池システム
JP5914862B2 (ja) * 2011-02-24 2016-05-11 パナソニックIpマネジメント株式会社 燃料電池システム
JP2016146233A (ja) * 2015-02-06 2016-08-12 株式会社トクヤマ 燃料電池システム
JP2021012845A (ja) * 2019-07-09 2021-02-04 株式会社Subaru 燃料電池システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282265A (ja) * 2007-05-11 2008-11-20 Toshiba Corp 情報処理装置
US20100089978A1 (en) * 2008-06-11 2010-04-15 Suss Microtec Inc Method and apparatus for wafer bonding
DE102013204469A1 (de) * 2013-03-14 2014-09-18 Robert Bosch Gmbh Mikroelektrochemischer Sensor und Verfahren zum Betreiben eines mikroelektrochemischen Sensors
GB2531702A (en) * 2014-10-15 2016-05-04 Intelligent Energy Ltd Fuel source for electrochemical fuel cell power supply

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254263B2 (ja) * 2002-08-22 2009-04-15 日産自動車株式会社 ガス流量測定装置及びガス流量測定方法
AU2003304609A1 (en) * 2003-12-12 2005-06-29 Lg Electronics Inc. Fuel cell system and control method thereof
US7648792B2 (en) * 2004-06-25 2010-01-19 Ultracell Corporation Disposable component on a fuel cartridge and for use with a portable fuel cell system
JP2006221862A (ja) * 2005-02-08 2006-08-24 Toshiba Corp 燃料電池
JP4971604B2 (ja) * 2005-07-29 2012-07-11 キヤノン株式会社 撮像装置
US7758985B2 (en) * 2005-12-21 2010-07-20 American Power Conversion Corporation Fuel cell sensors and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914862B2 (ja) * 2011-02-24 2016-05-11 パナソニックIpマネジメント株式会社 燃料電池システム
JP2013254714A (ja) * 2012-06-08 2013-12-19 Asahi Kasei E-Materials Corp 燃料電池システム
JP2016012526A (ja) * 2014-06-30 2016-01-21 アイシン精機株式会社 燃料電池システム
JP2016146233A (ja) * 2015-02-06 2016-08-12 株式会社トクヤマ 燃料電池システム
JP2021012845A (ja) * 2019-07-09 2021-02-04 株式会社Subaru 燃料電池システム
JP7368961B2 (ja) 2019-07-09 2023-10-25 株式会社Subaru 燃料電池システム

Also Published As

Publication number Publication date
US20080299427A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP2008300227A (ja) 燃料電池装置およびこれを備えた電子機器システム
US8153310B2 (en) Electronic apparatus system
JP5914862B2 (ja) 燃料電池システム
JP2008066200A (ja) 燃料電池
TW200423466A (en) Fuel cell and electronic machine mounted with the same
JPWO2007083616A1 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2008130471A (ja) 燃料電池運転システム
US20090004517A1 (en) Fuel cell device and driving method therefor
JP2007005050A (ja) 燃料電池装置
JP5407235B2 (ja) 燃料電池システムとその制御方法
JP2009054546A (ja) 燃料電池装置の駆動方法
WO2010029729A1 (ja) 燃料電池システム
JP2005108718A (ja) 燃料電池および燃料電池を備えた電子機器
JP2006032209A (ja) 直接メタノール型燃料電池システムおよびそれを用いた輸送機器
JP2005108713A (ja) 燃料電池
JP2006252955A (ja) 燃料電池装置及び電子機器
JP5223169B2 (ja) 燃料容器及び発電システム
JP2010134786A (ja) 電子機器
JP2010272305A (ja) 燃料電池システム
JP2007299647A (ja) 燃料電池および燃料電池の制御方法
JP5075360B2 (ja) 冷却装置を備えた燃料電池
JP2009199946A (ja) 電子機器システム
JP2005108714A (ja) 燃料電池
JP2006221867A (ja) 燃料電池
JP2005108717A (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100830