WO2011068209A1 - 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体含有組成物、水溶性単量体用中間体、水溶性単量体及びその製造方法 - Google Patents

水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体含有組成物、水溶性単量体用中間体、水溶性単量体及びその製造方法 Download PDF

Info

Publication number
WO2011068209A1
WO2011068209A1 PCT/JP2010/071703 JP2010071703W WO2011068209A1 WO 2011068209 A1 WO2011068209 A1 WO 2011068209A1 JP 2010071703 W JP2010071703 W JP 2010071703W WO 2011068209 A1 WO2011068209 A1 WO 2011068209A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
water
compound
monomer
reaction
Prior art date
Application number
PCT/JP2010/071703
Other languages
English (en)
French (fr)
Inventor
米田淳郎
齊藤周
塚島亜希
道尭大祐
牧野貢明
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010203743A external-priority patent/JP5765903B2/ja
Priority claimed from JP2010203769A external-priority patent/JP5763899B2/ja
Priority claimed from JP2010203745A external-priority patent/JP5765904B2/ja
Priority claimed from JP2010203746A external-priority patent/JP2012056912A/ja
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to EP10834659.4A priority Critical patent/EP2508516B1/en
Priority to CN201080054692.8A priority patent/CN102639519B/zh
Priority to US13/512,845 priority patent/US8921584B2/en
Publication of WO2011068209A1 publication Critical patent/WO2011068209A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/14Unsaturated ethers
    • C07C43/178Unsaturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/28Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/125Monomers containing two or more unsaturated aliphatic radicals, e.g. trimethylolpropane triallyl ether or pentaerythritol triallyl ether
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1416Monomers containing oxygen in addition to the ether oxygen, e.g. allyl glycidyl ether
    • C08F216/1425Monomers containing side chains of polyether groups
    • C08F216/1433Monomers containing side chains of polyethylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/188Unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds

Definitions

  • the present invention relates to an intermediate-containing composition for water-soluble monomers, a method for producing the same, a water-soluble monomer-containing composition obtained thereby, and an intermediate for water-soluble monomers. More specifically, a composition comprising an intermediate for a water-soluble monomer that can be suitably used as an intermediate for producing a compound that can be a raw material monomer for a water-soluble polymer, a method for producing the same, and The water-soluble monomer containing composition obtained by this, and the intermediate body for water-soluble monomers.
  • the present invention also relates to a water-soluble monomer and a method for producing the same.
  • the water-soluble monomer is usually used as a polymer raw material for imparting water solubility or water dispersibility to the polymer.
  • polyalkylene glycol monomers are one of the useful industrial raw materials that are widely used industrially as water-soluble monomers. For example, they are copolymerized with carboxylic acid (salt) monomers. A polymer that can be used in various applications is obtained.
  • Such water-soluble polymers are suitably used as raw materials for, for example, dispersants, detergent compositions, scale inhibitors, cement additives, thickeners, and the like.
  • a polyalkylene glycol monomer having a specific functional group as well as a polymerizable double bond has attracted attention and has been developed.
  • a functional group is imparted to the polymer obtained in this manner, and functional addition by the functional group is being studied actively.
  • a specific functional group is introduced together with a polyalkylene glycol chain that exhibits characteristics such as water solubility.
  • a conventional method for synthesizing a polyalkylene glycol monomer having a specific functional group is a method for producing a polyalkylene glycol compound having a carboxyl group and / or a salt of a carboxyl group and having a specific structure.
  • a method of reacting a compound obtained by adding an alkylene oxide to an unsaturated alcohol and epichlorohydrin and reacting a compound having a specific reactive group and a carboxyl group with the resulting reaction product is disclosed. (For example, refer to Patent Document 1).
  • Examples of the compound having the same structure as the reaction product obtained by reacting the above-described unsaturated alcohol-added compound with alkylene oxide and epichlorohydrin include one of the monomer components of the polyether copolymer.
  • a monomer having a specific structure is disclosed (for example, see Patent Documents 2, 3, and 4).
  • a monomer having a specific structure is disclosed as a monomer component for synthesizing a specific polyether polymer having an oligooxyethylene side chain (see, for example, Patent Document 5).
  • a cationic polymer obtained by polymerizing a cationic group-containing monomer which is one of water-soluble monomers having a specific functional group, can be obtained by polymerizing an amino group-containing monomer.
  • Amino group-containing polymers have traditionally been coagulants, flocculants, printing inks, adhesives, detergent additives, soil conditioners (modifiers), flame retardants, shampoos, hair sprays, soaps, cosmetic additives, In a wide range of fields, including anion exchange resins, dye mordants and auxiliaries for fibers and photographic films, pigment spreaders in papermaking, paper strength enhancers, emulsifiers, preservatives, fabric and paper softeners, and lubricant additives It is used.
  • a polymer having a main chain derived from a specific monomer component is disclosed, and a representative cationic monomer, a copolymer of diallyldimethylammonium chloride and a hydrophobic comonomer, is colored from a fiber. It is disclosed that it can be used as a laundry additive for preventing flow and / or dye transfer (see, for example, Patent Document 6).
  • specific modified alkyleneimine polymers having alkyleneimine structural units are disclosed, and it is disclosed that such polymers exhibit excellent performance in applications such as cleaning agents (for example, (See Patent Document 7).
  • a detergent composition containing a specific amount of a nonionic surfactant and a non-soap anionic surfactant, a polymer compound containing a structural unit derived from a monomer having a vinylpyridine moiety, and an alkanolamine is high. It is disclosed that the cleaning power is shown (for example, refer patent document 8). In addition, amino group-containing monomers are disclosed as specific siloxanes contained in the composition (see, for example, Patent Document 9).
  • a sulfonic acid group-containing polymer obtained by polymerizing a sulfonic acid group-containing monomer which is one of water-soluble monomers having a specific functional group has been conventionally used as a water treatment agent and a detergent builder. It is used in a wide range of fields such as detergent compositions, dispersants and cleaning agents.
  • a polyalkylene glycol compound having a terminal double bond and a specific structural portion containing a sulfonic acid group in the molecule is disclosed, and such a polymer is used as a dispersant, a detergent builder, or the like. It has been disclosed to exhibit high performance in aqueous applications (see, for example, Patent Document 10).
  • a polyalkylene glycol polymer made from a polyalkylene glycol monomer containing a hydrophobic portion, which is one of water-soluble monomers having a specific functional group is hydrophobic by hydrophobic interaction.
  • a monomer for example, a polyalkylene glycol-based monomer having a polymerizable double bond derived from allyl glycidyl ether and a polyalkylene glycol chain, in the polyalkylene glycol chain and / or at the terminal
  • a monomer having a hydrophobic portion, or a polyalkylene glycol-based monomer having a polymerizable double bond and a polyalkylene glycol chain derived from isoprenol, allyl alcohol, or methallyl alcohol A monomer having a hydrophobic moiety derived from a glycidyl ether having 1 to 20 carbon atoms in the chain and / or at the terminal is disclosed.
  • JP 2010-132814 A (1-2, 15-17 pages) European Patent Publication No. 0838487 (page 1-2) Republished patent WO98 / 007772 (page 47) Republished Patent WO 97/042251 (Page 50) JP-A-63-2441026 (page 1-2) International Publication No. 04/056888 pamphlet (6-7, 37) Japanese Patent Laying-Open No. 2005-170977 (page 2-3) JP 2008-1770 A (page 2-3) International Publication No. 97/32475 (19th page) JP 2008-303347 A (pages 2 and 8) JP-T 2009-510175 (page 2, 11)
  • the water-soluble monomer preferably has a polymerizable double bond at its end, and more preferably has a specific functional group at the other end.
  • the specific functional group is located at the end of the polymer side chain when the polymer is formed, and the characteristics derived from the specific functional group are exhibited.
  • the present invention has been made in view of the above-described situation, and has a polymerizable terminal double bond, and can be suitably used for the production of a water-soluble polymer, and can produce a water-soluble polymer in a high yield.
  • Composition comprising an intermediate for water-soluble monomer that can be suitably used for the production of a water-soluble polyalkylene glycol monomer, its production method, and a composition comprising a water-soluble monomer obtained thereby
  • the purpose is to provide goods.
  • Another object of the present invention is to provide a production method that can be produced with high selectivity (high purity).
  • the present inventors polymerize a polyalkylene glycol-based monomer as a water-soluble monomer having a polymerizable terminal double bond and having a specific functional group and exhibiting water solubility by a polyalkylene glycol chain.
  • a water-soluble polymer first, it has been found that the yield of the water-soluble polymer is lowered because gelation occurs as described above.
  • the content of the compound having the specific structure is within a specific range, not only can the water-soluble polymer be produced with good yield, but the produced water-soluble polymer is further adsorbed to mud and cloth. It has also been found that new functions can be imparted, such as imparting performance, and making it possible to make a polymer having a low viscosity even as a high molecular weight polymer.
  • the content of the specific component is in a specific range, and the intermediate is contained in a specific amount, so that the above-mentioned problem is solved brilliantly, Further, the inventors have conceived that a new function can be imparted to a water-soluble polymer obtained from the intermediate-containing composition, and the present invention has been achieved.
  • the present inventor further examined water-soluble monomers as raw materials for various water-soluble polymers / copolymers in order to achieve the above object.
  • polymers using water-soluble monomers having a specific structure as raw materials can capture excellent metal ions such as calcium ions and magnesium ions even under high hardness when used as detergent additives, for example. It has excellent properties such as high performance and anti-gelling ability, excellent anti-recontamination ability, better anti-dye transfer than conventional, and better compatibility with surfactants.
  • the inventors have found that the properties required for the use of products are excellent and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
  • the present inventor has also studied various methods for producing water-soluble monomers in order to solve the above-described problems.
  • a glycidyl group-containing polyalkylene glycol compound By reacting a glycidyl group-containing polyalkylene glycol compound with a functional group-containing compound, The present inventors have found that a water-soluble monomer can be produced in a high yield and a high selectivity (high purity) without generating a by-product, and have conceived that the above problems can be solved brilliantly.
  • a water-soluble monomer can be produced in a high yield and a high selectivity (high purity) without generating a by-product, and have conceived that the above problems can be solved brilliantly.
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average added mole number of an oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.)
  • a body-containing composition wherein the composition has the following general formula (2):
  • R 0 is the same or different and represents a hydrogen atom or a methyl group.
  • R 1 is the same or different and represents a methylene group, an ethylene group or a direct bond.
  • X is —CH 2 —CH ( OR ′) — CH 2 —O— or a direct bond, R ′ represents a hydrogen atom or a glycidyl group.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • compound (B) represented by the average added mole number of an oxyalkylene group (—Y 1 —O—) which is the same or different and represents a number of 1 to 300,
  • the content of (B) is 0.1 to 6.0 mol% based on the content of compound (A), and the content of compound (A) is an intermediate-containing composition for water-soluble monomers.
  • the present invention also provides the following general formula (11):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • R represents a structure of any one of the following general formulas (7) to (9) It is also a water-soluble monomer represented by
  • * represents that an atom marked with * is bonded to a carbon atom bonded to R in the general formula (11).
  • R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 , R 5 and R 6 are respectively They may combine to form a ring structure.
  • X 1- represents a counter anion.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • the present invention further includes the following general formula (6):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • Q is a structure of any one of the following general formulas (7) to (10) In which the water-soluble monomer is represented by the following general formula (I):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is the average number of moles of oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • the compound (I) represented by epihalohydrin and an alkali compound are reacted. Any one of the steps or the step of reacting the compound (I) represented by the general formula (I) with epihalohydrin in the presence of a catalyst, and (ii) the reaction product obtained in the step (i) above.
  • reaction of a tertiary amine salt, a secondary amine, a sulfite compound, or a hydroxyl group-containing compound, or a reaction product obtained in the step (i) with a secondary amine Reaction obtained by the reaction It is also a method for producing a water-soluble monomer comprising the step of reacting a quaternizing agent when.
  • * represents that an atom marked with * is bonded to a carbon atom bonded to Q in the general formula (6).
  • R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 , R 5 and R 6 are respectively They may combine to form a ring structure.
  • X 1- represents a counter anion.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • R 7 represents an organic group having 1 to 20 carbon atoms. The present invention is described in detail below.
  • the intermediate-containing composition for a water-soluble monomer of the present invention has the following general formula (1):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300), and the following general formula (2) ;
  • R 0 is the same or different and represents a hydrogen atom or a methyl group.
  • R 1 is the same or different and represents a methylene group, an ethylene group or a direct bond.
  • X is —CH 2 —CH ( OR ′) — CH 2 —O— or a direct bond, R ′ represents a hydrogen atom or a glycidyl group.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • the intermediate-containing composition may contain other components as long as it contains the compound (A) and the compound (B).
  • the compound (A) is represented by the following general formula (1);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average added mole number of an oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300).
  • the compound can be made into a compound having various functional groups by appropriately modifying the terminal glycidyl group.
  • the compound having various functional groups can be polymerized by a polymerizable carbon-carbon double bond, has various functional groups at the end of the side chain, and has water-solubility due to the side chain oxyalkylene group.
  • the polymer shown can be obtained.
  • the compound having various functional groups and an acrylate ester when the compound having various functional groups and an acrylate ester are copolymerized, a functional group derived from the acrylate ester and a compound having the various functional groups in the obtained copolymer.
  • the functional group at the terminal end of the side chain is present at a position separated in the structure of the copolymer by the oxyalkylene group of the side chain, and the copolymer weight obtained due to the positional relationship of such a functional group It is expected that new physical properties may be added to the coalescence.
  • the compound (A) is an intermediate for a water-soluble monomer that is a base when synthesizing a monomer used to synthesize a water-soluble polymer having various functional groups at the side chain ends.
  • the following general formula (1) that is, the following general formula (1);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average added mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300. It is one of.
  • the above intermediate for water-soluble monomer is synthesized when synthesizing a monomer used to synthesize a water-soluble polymer having various functional groups at the end of the side chain. However, it is also possible to synthesize a polymer by polymerizing itself.
  • the intermediate for a water-soluble monomer can also be used as a monomer for synthesizing a polymer. Therefore, it is further possible to synthesize a polymer using the composition for the water-soluble monomer intermediate-containing composition of the present invention including the water-soluble monomer intermediate. It can also be used as a monomer-containing composition.
  • R 0 represents a hydrogen atom or a methyl group
  • R 1 represents a methylene group, an ethylene group, or a direct bond.
  • R 1 represents a direct bond in the structure represented by H 2 C ⁇ C (R 0 ) —R 1 —O— in the general formula (1).
  • This represents a structure represented by H 2 C ⁇ C (R 0 ) —O—. That is, H 2 C ⁇ C (R 0 ) —R 1 — represents that when R 0 is a methyl group and R 1 is a methylene group, a methallyl group, R 0 is a methyl group, and R 1 is an ethylene group.
  • R 0 is a methyl group
  • R 1 is a direct bond
  • R 0 is a hydrogen atom
  • R 1 is a methylene group
  • an allyl group R 0 is a hydrogen atom
  • R 1 is ethylene
  • R 0 is a hydrogen atom
  • R 1 is ethylene
  • a group having a carbon-carbon double bond that is polymerized when the monomer derived from the compound (A) is polymerized that is, H 2 C ⁇ C (R 0 ).
  • R 1 — is preferably an isoprenyl group, a methallyl group, an allyl group, or a vinyl group from the viewpoint of polymerizability. More preferably, it is an isoprenyl group, a methallyl group, or an allyl group. Since the concern of gelation increases as the polymerizability increases, the effect of suppressing the gelation of the present invention is maximized. The group is particularly preferred.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • Y 1 1 is preferably an ethylene group, a propylene group or a butylene group, particularly preferably an ethylene group or a propylene group.
  • the alkylene group may be one type or two or more types, but in the case of two or more types, the (—Y 1 —O—) oxyalkylene structure has a random shape. May be continuous, alternately continuous, or block-like.
  • n is the average number of added moles of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300, and n is preferably 2 or more.
  • the average added mole number of the oxyalkylene group (—Y 1 —O—) of the compound (A) is within such a range, the compound (A) and further a single amount derived from the compound (A) Since the body has a high boiling point, the compound (A) or the monomer derived from the compound (A) cannot be purified by distillation or the like, and is produced simultaneously with the synthesis of the compound (A). Difficult to separate from by-products.
  • n is more preferably 5 or more.
  • n is preferably 2 or more. More preferably, it is 5 or more, More preferably, it is 10 or more. Particularly preferably, it is 20 or more.
  • n is preferably 200 or less, more preferably 150 or less, still more preferably 120 or less, and particularly preferably 100 or less, because the polymerizability of the monomer derived from the compound (A) becomes good. Most preferably, it is 50 or less.
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of an oxyalkylene group (—Y 1 —O—), which represents a number of 1 to 300) and is synthesized using epihalohydrin as a reaction raw material.
  • —Y 1 —O— an average addition mole number of an oxyalkylene group
  • R 0 is the same or different and represents a hydrogen atom or a methyl group.
  • R 1 is the same or different and represents a methylene group, an ethylene group or a direct bond.
  • X is —CH 2 —CH ( OR ′) — CH 2 —O— or a direct bond, R ′ represents a hydrogen atom or a glycidyl group.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms. Is the average number of moles of oxyalkylene group (—Y 1 —O—), which may be the same or different and represents a number of 1 to 300). .
  • the compound (B) has a structure obtained by dimerizing the compound (I) as a reaction raw material through a group represented by X in the general formula (2). Therefore, in the general formula (2), R 0, R 1, Y 1, n is the same as R 0, R 1, Y 1, n in the general formula (1).
  • X represents —CH 2 —CH (OR ′) — CH 2 —O— or a direct bond
  • R ′ represents a hydrogen atom or a glycidyl group.
  • R 0 , R 1 , Y 1 , and n are the same as those in the general formula (2).
  • the compound (I) as a reaction raw material reacts with the compound (A) as a reaction product.
  • the compound (B-2) is a compound produced by the reaction of the compound (B-1) produced as a by-product with epihalohydrin, and the compound (B-3). Is a compound produced by dimerization of compound (I) as a reaction raw material.
  • the content of the compound (B) is 0.1 to 6.0 mol% with respect to the content of the compound (A).
  • the content of (A) is 50 to 100% by mass with respect to 100% by mass of the nonvolatile content of the intermediate-containing composition for water-soluble monomers.
  • the non-volatile content of the intermediate-containing composition for a water-soluble monomer represents a component that does not volatilize under conditions of 130 ° C., 1 atm, and 1 hour, and therefore, the composition contains a solvent. In such a form, a solvent such as water that volatilizes under the conditions is not included.
  • the content of the compound (B) contained in the composition By controlling the amount to a specific amount, it is possible to sufficiently suppress the water-soluble polymer from gelling during the polymerization reaction.
  • the water-soluble polymer to be produced can be adsorbed with mud or cloth, or can be made into a polymer having a low viscosity even as a high molecular weight polymer.
  • a new function can be imparted to the conductive polymer. This is because the composition contains an optimal amount of the compound (B) that has two unsaturated bonds in the structure and can serve as a crosslinking component during the production of the water-soluble polymer. Is assumed to be a partially crosslinked graft polymer. For example, when the water-soluble polymer thus produced is given a mud-adsorbing ability so that the water-soluble polymer is contained in a detergent composition, the polymer component is dispersed in the dispersed mud soil.
  • the intermediate-containing composition for a water-soluble monomer by setting the content of the compound (B) within a specific range, a highly functional water-soluble polymer can be produced in a high yield. It becomes possible.
  • the content of the compound (B) is preferably 0.3 to 4.5 mol%, more preferably 0.5 to 3.0 mol% with respect to the content of the compound (A). In particular, 0.7 to 2.5 mol% is particularly preferable because the effect that can impart a function to the produced water-soluble polymer is the highest.
  • the content of the compound (A) is 50 to 100% by mass with respect to 100% by mass of the nonvolatile content of the intermediate-containing composition for water-soluble monomer. It can be said that the compound (A) is sufficiently contained as the containing composition and is sufficient to induce the water-soluble monomer using the intermediate-containing composition for a water-soluble monomer of the present invention.
  • the content of the compound (A) is preferably 55 to 95% by mass, and more preferably 60 to 90% by mass.
  • the content of the compound (B) is the total of the compound (I) which is a reaction raw material when synthesizing the compound (A) and the compound (A). It is also one of the preferred embodiments of the present invention to be 0.1 to 5.0 mol% with respect to the content of. That is, the compound (A) is represented by the following general formula (I):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of an oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300), and is obtained by reacting epihalohydrin with compound (I).
  • the content of the compound (B) is 0.1 to 5.0 mol% with respect to the total content of the compound (A) and the compound (I).
  • the total content of the compound (A) and the compound (I) may be 50 to 100% by mass with respect to 100% by mass of the nonvolatile content of the intermediate-containing composition for a water-soluble monomer. 1 is one of the preferred embodiments of the present invention.
  • the content of the compound (B) is preferably 0.25 to 4.0 mol% with respect to the total content of the compound (A) and the compound (I), preferably 0.35 to The amount is more preferably 3.0 mol%, and 0.5 to 2.0 mol% is particularly preferable because the effect that can impart a function to the produced water-soluble polymer is the highest.
  • the total content of the compound (A) and the compound (I) is 50 to 100% by mass with respect to 100% by mass of the nonvolatile content of the intermediate-containing composition for water-soluble monomers.
  • the compound (A) and the compound (I) are sufficiently contained, and the water-soluble monomer is prepared using the intermediate-containing composition for water-soluble monomers of the present invention. It can be said that it is enough to guide.
  • the total content of compound (A) and compound (I) is preferably 60 to 98% by mass, more preferably 70 to 96% by mass.
  • the intermediate-containing composition for a water-soluble monomer containing the compound (A) comprises a compound (I) and an epihalohydrin 1 ⁇ 2 to 1/15 (hydroxyl group (hydroxyl value conversion) / epihalohydrin of the compound (I)) It can obtain by making it react by the molar ratio of. That is, the following general formula (1);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average added mole number of an oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.)
  • a method for producing a body-containing composition, wherein the production method comprises the following general formula (I);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—), which represents a number of 1 to 300), and an epihalohydrin is 1/2 to 1
  • a method for producing an intermediate-containing composition for a water-soluble monomer comprising a step of reacting at a molar ratio of / 15 (hydroxyl group of compound (I) / epihalohydrin) is also one aspect of the present invention.
  • the manufacturing method of the intermediate containing composition for water-soluble monomers of this invention may include the other process, as long as the said reaction process is included.
  • the above reaction step can be carried out by a reaction method usually used for reacting compound (I) with epihalohydrin, but is preferably carried out by the following reaction step (ia) or (ib). .
  • (Ia) a step of reacting compound (I) with epihalohydrin in the presence of an alkali compound;
  • (ib) an epihalohydrin and a Lewis acid catalyst are added to and reacted with compound (I);
  • the reaction step includes a step of reacting compound (I) with epihalohydrin in the presence of an alkali compound.
  • the reaction step includes a step of reacting compound (I) with an epihalohydrin and a Lewis acid catalyst and then reacting with an alkali compound. It is.
  • a water-soluble compound containing compound (A) is produced by the method of reaction step (ia) because side reactions such as decomposition reaction of compound (I) due to the influence of a catalyst or the like are unlikely to occur during the reaction step. It is preferable to produce an intermediate-containing composition for monomers.
  • R 0, R 1, Y 1 , n is the same as R 0, R 1, Y 1 , n in the synthesized compound (A) .
  • 1 type may be used independently and 2 or more types may be used together.
  • the compound (I) can be produced by adding an alkylene oxide to an alkylene glycol monovinyl ether, (meth) allyl alcohol, isoprenol or an alcohol having an alkylene oxide addition structure thereof by a method usually used. it can.
  • the produced compound (I) may be subjected to steps such as pretreatment before the above reaction step to remove the catalyst used in the production of compound (I) and the acid and alkali contained therein. It does not have to be.
  • the method for adding the compound (I) to the reaction system is not particularly limited, and may be added at one time before or during the reaction, or intermittently added several times before and / or during the reaction. May be.
  • Z represents a halogen atom
  • specific examples include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like.
  • epichlorohydrin is particularly preferable because it is industrially inexpensive.
  • epihalohydrins may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the compound (I) and epihalohydrin used is such that the molar ratio thereof is 1/2 to 1/15 (hydroxyl group (hydroxyl value conversion) / epihalohydrin of the compound (I)).
  • the amount of the compound (I) and epihalohydrin used is preferably a molar ratio of 1 / 2.5-1 / 12 (hydroxyl group / epihalohydrin of the compound (I)), more preferably 1 / 3 to 1/10, and more preferably 1/4 to 1/7.
  • the method for adding the epihalohydrin to the reaction system is not particularly limited, and may be added at one time before or during the reaction, or may be intermittently added several times before and / or during the reaction. .
  • the reaction step (ia) includes a step of reacting compound (I) with epihalohydrin in the presence of an alkali compound.
  • the reaction formula of the reaction in the reaction step (ia) is shown in FIG. From FIG. 1, it can be seen that in the reaction step (ia), the compound (B-1) and the compound (B-2) are produced as by-products together with the product compound (A). .
  • the alkali compound is not particularly limited, and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferable. These alkali compounds may be used individually by 1 type, and may use 2 or more types together.
  • the molar ratio of alkenyl to alkali compound is 15/1 to 1/15 (hydroxyl group / alkali compound of compound (I)). More preferably, it is 5/1 to 1/5, and still more preferably 3/1 to 1/3.
  • the method for adding the alkali compound to the reaction system is not particularly limited, and may be added at one time before or during the reaction, or may be intermittently added several times before and / or during the reaction. Good.
  • the state of aqueous solution may be sufficient, and it may be in flake form, without melt
  • the concentration of the alkali compound in the reaction system does not become too high at one time, and it exists throughout the reaction, so that the synthesis reaction of the compound (A) can proceed slowly. Since the amount of the crosslinking component by-produced can be controlled within a specific range, among the above-described addition methods, a method of adding a plurality of times is preferable. More preferably, it is added dropwise in the form of an aqueous solution.
  • the amount of epihalohydrin used is, as described above, the molar ratio of the hydroxyl group (in terms of hydroxyl value) of the compound (I) to the epihalohydrin is 1 / 2.5 to 1 / 12 (hydroxyl group / epihalohydrin of compound (I)) is preferable. More preferably, it is 1/3 to 1/10, and still more preferably 1/4 to 1/7.
  • the reaction step (ia) is preferably performed using a phase transfer catalyst as necessary.
  • the phase transfer catalyst is not particularly limited, but tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, tetraoctylammonium chloride, benzyltriethylammonium chloride, benzyltriethylammonium chloride, octyltrimethylammonium chloride.
  • Quaternary ammonium chloride such as cetyltrimethylammonium chloride; tertiary ammonium chloride such as trimethylammonium chloride and triethylammonium chloride; tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, tetraoctylammonium Bromide
  • Quaternary ammonium bromides such as benzyltrimethylammonium bromide, benzyltriethylammonium bromide, octyltrimethylammonium bromide and cetyltrimethylammonium bromide; Tertiary ammonium bromide salts such as trimethylammonium bromide and triethylammonium bromide; Tetrabutylphosphonium chloride Phosphonium salts such as butylphosphonium bromid
  • phase transfer catalysts may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the phase transfer catalyst used may be insufficient if the amount is too small. If the amount is too large, the effect corresponding to the amount used may not be obtained and the economy will not be obtained. Therefore, the molar ratio of the hydroxyl group (in terms of hydroxyl value) of the compound (I) to the phase transfer catalyst is 1 / 0.0001 to 1 / 0.3 (compound (I)). (Hydroxyl group / phase transfer catalyst). More preferably, it is 1 / 0.001 to 1 / 0.2, and still more preferably 1 / 0.005 to 1 / 0.1.
  • reaction step (ia) As a method for adding each reaction material in the reaction step (ia), it is possible to appropriately combine the preferable addition methods for each component as described above. Among them, compound (I) and epihalohydrin are added all at once before the reaction, and an alkali compound is dropped in the form of an aqueous solution during the reaction, or intermittently in a flaky state several times during the reaction. It is suitable to carry out by the method of adding.
  • the reaction step (ib) includes a step of reacting compound (I) with an epihalohydrin and a Lewis acid catalyst and then adding an alkali compound to react.
  • the reaction formula of the reaction in the reaction step (ib) is shown in FIG. In FIG. 2, Z represents a halogen atom derived from epihalohydrin.
  • FIG. 2 shows that in the reaction step (ib), the compound (B-3) is produced as a by-product together with the product compound (A).
  • the Lewis acid is not particularly limited as long as it is usually used as a Lewis acid. For example, boron trifluoride, tin tetrachloride, tin dichloride, zinc chloride, ferric chloride, aluminum chloride, tetrachloride.
  • the molar ratio of the hydroxyl group (in terms of hydroxyl value) of compound (I) to the Lewis acid catalyst is 1 / 0.0001 to 1 / 0.1 (hydroxyl group of compound (I) / Lewis acid catalyst).
  • the molar ratio of the hydroxyl group (in terms of hydroxyl value) of compound (I) to the Lewis acid catalyst is 1 / 0.0001 to 1 / 0.1 (hydroxyl group of compound (I) / Lewis acid catalyst).
  • it is 1 / 0.0005 to 1 / 0.05, and still more preferably 1 / 0.001 to 1 / 0.03.
  • the amount of epihalohydrin used in the reaction step (ib) is the same as the amount of epihalohydrin used in the reaction step (ia).
  • the alkali compound added in the reaction step (ib) is the same as the alkali compound in the reaction step (ia).
  • the amount of the alkali compound used in the reaction step (ib) is such that the molar ratio of the halogen group to the alkali compound in the reaction product obtained by reacting compound (I) with epihalohydrin and Lewis acid is 1 / It is preferably 1 to 1/100 (halogen group / alkali compound). More preferably, it is 1/1 to 1/50, and still more preferably 1/1 to 1/20.
  • reaction steps (ia) and (ib) are preferably carried out without using a solvent from the viewpoint of volume efficiency because the reaction proceeds efficiently when carried out in the absence of a solvent. It can also be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the reaction.
  • hydrocarbons such as hexane, octane, decane, cyclohexane, benzene and toluene
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • acetone and methyl Ketones such as methyl ketone
  • chlorinated hydrocarbons such as dichloromethane and dichloroethane
  • water alcohols such as methanol, ethanol and isopropanol.
  • the amount of the solvent used in the case of using the above solvent is not particularly limited, but is preferably 0.005 to 5 times the mass, and 0.01 to 3 times the mass of the compound (I). Is more preferable.
  • the reaction steps (ia) and (ib) may be performed in an air atmosphere or an inert gas atmosphere. Moreover, you may carry out under any pressure under pressure reduction, atmospheric pressure, and pressurization.
  • the reaction temperature is preferably 0 to 200 ° C., more preferably 15 to 150 ° C., and further preferably 30 to 100 ° C. From the viewpoint of the fluidity of the compound (I) which is a reaction raw material, the reaction is preferably performed at a temperature at which no problem occurs in stirring.
  • the reaction time is preferably 0.1 to 50 hours, more preferably 0.5 to 30 hours, and further preferably 1 to 15 hours.
  • the reaction step includes so-called slurry reaction, and the reaction can be carried out using a reaction apparatus having a commonly used stirring apparatus.
  • a reaction apparatus having a commonly used stirring apparatus.
  • any of a batch reactor, a semi-batch reactor, and a continuous tank reactor can be used.
  • a derivatization reaction step of various monomers from the compound (A) after desalting, removal of excess epihalohydrin, and the like is preferable to perform a derivatization reaction step of various monomers from the compound (A) after desalting, removal of excess epihalohydrin, and the like.
  • the desalting step can be carried out by a method usually used for desalting such as sedimentation separation, centrifugation, filtration, etc., and can be carried out by appropriately setting so that the salt is sufficiently removed. In order to obtain speed, it is preferable to carry out at a temperature of 15 to 100 ° C.
  • the method for removing excess epihalohydrin is not particularly limited as long as it can be removed.
  • the epihalohydrin can be easily removed by distillation or evaporation.
  • the intermediate-containing composition for a water-soluble monomer of the present invention contains the compound (A) and contains compounds having various functional groups by appropriately modifying the terminal glycidyl group of the compound (A).
  • a composition can be obtained. Since such a compound having various functional groups can be polymerized by a polymerizable terminal double bond, it has various functional groups at the end of the side chain and is water-soluble by the oxyalkylene group of the side chain. It becomes possible to obtain the polymer which shows. Therefore, the compound is useful as a water-soluble monomer.
  • the functional group is appropriately selected according to the physical properties to be finally added to the water-soluble polymer to be synthesized.
  • a group can be selected and used.
  • a composition containing such a compound having various functional groups for example, a water-soluble monomer obtained by reacting the water-soluble monomer intermediate-containing composition of the present invention with a functional group-containing compound.
  • a water-containing monomer-containing composition wherein the water-soluble monomer is a cationic group-containing monomer obtained by using a tertiary amine salt as the functional group-containing compound
  • a water-soluble monomer-containing composition obtained by reacting an intermediate-containing composition for a water-soluble monomer of the invention with a functional group-containing compound, wherein the water-soluble monomer contains the functional group
  • a water-soluble monomer-containing composition that is an amino group-containing monomer obtained by using a secondary amine as a compound, the intermediate-containing composition for a water-soluble monomer of the present invention, and a functional group-containing compound are reacted.
  • a water-soluble monomer-containing composition obtained by allowing the water-soluble monomer to A water-soluble monomer-containing composition that is a sulfonic acid group-containing monomer obtained by using a sulfite compound as the functional group-containing compound, the intermediate-containing composition for a water-soluble monomer of the present invention, and a functional group-containing composition A water-soluble monomer-containing composition obtained by reacting a compound, wherein the water-soluble monomer is an organic ether group-containing monomer obtained by using a hydroxyl group-containing compound as the functional group-containing compound.
  • a certain water-soluble monomer containing composition etc. are mentioned, These water-soluble monomer containing compositions and these water-soluble monomers are also one of this invention.
  • a water-soluble monomer-containing composition obtained by reacting the intermediate-containing composition for a water-soluble monomer of the present invention with a functional group-containing compound, wherein the water-soluble monomer is the above-mentioned
  • the following general formula (6) obtained by using a tertiary amine salt, secondary amine, sulfite compound, or hydroxyl group-containing compound as the functional group-containing compound;
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • Q is a structure of any one of the following general formulas (7) to (10)
  • a water-soluble monomer-containing composition that is a water-soluble monomer represented by the above formula is also one aspect of the present invention.
  • * represents that an atom marked with * is bonded to a carbon atom bonded to Q in the general formula (6).
  • R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 , R 5 and R 6 are respectively They may combine to form a ring structure.
  • X 1- represents a counter anion.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • R 7 represents an organic group having 1 to 20 carbon atoms.
  • a cationic group-containing monomer is obtained as the water-soluble monomer-containing composition.
  • This synthetic reaction is a reaction in which a tertiary amine salt is reacted with the glycidyl group of the compound (A), and the terminal of the compound (A) is converted to quaternary ammonium chloride to obtain a cationic group-containing monomer. It is possible to synthesize by appropriately using a reaction method usually used for such a reaction.
  • an amino group-containing monomer is obtained as the water-soluble monomer-containing composition.
  • This synthesis reaction is a reaction in which a secondary amine and the glycidyl group of the compound (A) are reacted to form a tertiary amine at the terminal of the compound (A) to obtain an amino group-containing monomer. It is possible to synthesize by appropriately using the reaction method usually used in the above.
  • the amino group-containing monomer has an amino group at the terminal of the amino group-containing monomer, and examples of the substituent bonded to the nitrogen atom of the amino group include an alkyl group, a hydroxyl group, Examples include groups having a functional group such as a carboxyl group.
  • a sulfite compound When a sulfite compound is used as the functional group-containing compound, a sulfonic acid group-containing monomer is obtained as the water-soluble monomer-containing composition.
  • This synthesis reaction is a reaction in which a sulfite compound and a glycidyl group of the compound (A) are reacted to sulfonate the end of the compound (A) to obtain a sulfonic acid group-containing monomer. It is possible to synthesize by appropriately using the reaction method used.
  • This synthesis reaction is a reaction in which a hydroxyl group of the hydroxyl group-containing compound and a glycidyl group of the compound (A) are reacted to synthesize an organic ether group-containing monomer containing an organic ether group at the terminal, such as It is possible to synthesize by appropriately using a reaction method usually used for the reaction.
  • the organic ether group-containing monomer has a functional group such as a carboxyl group bonded to a carbon atom in the alkyl ether group in addition to a form containing an alkyl ether group at the terminal of the organic ether group-containing monomer.
  • a functional group such as a carboxyl group bonded to a carbon atom in the alkyl ether group in addition to a form containing an alkyl ether group at the terminal of the organic ether group-containing monomer.
  • the form which is carrying out is also included.
  • the structures of the cationic group-containing monomer, amino group-containing monomer, sulfonic acid group-containing monomer, and organic ether group-containing monomer will be described in detail later.
  • the purification step can be performed by a technique that is performed as a normal purification step such as extraction or washing.
  • the water-soluble monomer-containing composition is derived using the water-soluble monomer-containing intermediate-containing composition of the present invention, but the water-soluble monomer-containing composition contains the water-soluble monomer-containing composition.
  • Monomers are also one aspect of the present invention. That is, the following general formula (11);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • R represents a structure of any one of the following general formulas (7) to (9)
  • the water-soluble monomer represented by this is also one aspect of the present invention.
  • * represents that an atom marked with * is bonded to a carbon atom bonded to R in the general formula (11).
  • R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 , R 5 and R 6 are respectively They may combine to form a ring structure.
  • X 1- represents a counter anion.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • R in the general formula (11) is represented by the general formula (7)
  • the water-soluble monomer is a cationic group-containing monomer described later
  • R in the general formula (11) is a general formula.
  • R in the general formula (11) is represented by the general formula (9)
  • a sulfonic acid group-containing monomer described later Become a body.
  • a cationic group-containing monomer can be given as one of water-soluble monomers having a specific functional group, and the following general formula (12);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom. Alternatively, it represents an organic group having 1 to 20 carbon atoms, and R 2 and R 3 may combine to form a cyclic structure, and Y 1 may be the same or different and each represents an alkylene group having 2 to 20 carbon atoms.
  • n is an average added mole number of an oxyalkylene group (—Y 1 —O—), and represents a number of 1 to 300.
  • X 1 — represents a counter anion.
  • Containing monomers are also one aspect of the present invention.
  • H 2 C ⁇ C (R 0 ) —R 1 —O— in the general formula (12) is preferably an isoprenyl group, a methallyl group, an allyl group, or a vinyl group, more preferably from the viewpoint of polymerizability.
  • R 2 , R 3 and R 4 in the general formula (12) are the same or different and are a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • the organic group having 1 to 20 carbon atoms is not particularly limited as long as it has 1 to 20 carbon atoms as a whole, but is preferably an alkyl group, an aryl group, or an alkenyl group.
  • the alkyl group, aryl group, and alkenyl group may be unsubstituted groups, or one or more of the hydrogen atoms may be substituted with other organic groups.
  • the other organic group serving as a substituent is an alkyl group (when the organic group having 1 to 20 carbon atoms is an alkyl group, the organic group becomes an alkyl group as a whole. Applicable)), aryl groups, alkenyl groups, alkoxy groups, hydroxyl groups, acyl groups, ether groups, amide groups, ester groups, ketone groups and the like.
  • R 2 , R 3 , and R 4 preferably have 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 2 carbon atoms. If it exists in the said range, the cationic group containing monomer of this invention can be manufactured with a high yield.
  • R 2 , R 3 , and R 4 include methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, octyl, lauryl, stearyl, and cyclohexyl groups.
  • Alkyl groups such as 2-ethylhexyl group; alkenyl groups such as butylene group, octylene group and nonylene group; phenyl group, benzyl group, phenethyl group, 2, 3- or 2,4-xylyl group, mesityl group, naphthyl group, etc.
  • R 2 and R 3 may be bonded to form a cyclic structure.
  • a nitrogen atom, R 2 and R 3 The formed cyclic structure is preferably a 3 to 7-membered ring, that is, the total number of carbon atoms of R 2 and R 3 is preferably 2 to 6.
  • Y 1 is the same or different and is an alkylene group having 2 to 20 carbon atoms.
  • Y 1 1 is preferably an alkylene group having 2 to 4 carbon atoms, and particularly preferably an alkylene group having 2 to 3 carbon atoms.
  • an alkylene group having 2 to 4 carbon atoms such as an ethylene group, a propylene group or a butylene group is preferable, and an alkylene group having 2 to 3 carbon atoms such as an ethylene group or a propylene group is particularly preferable.
  • the alkylene group may be one type or two or more types, but in the case of two or more types, the structure of —Y 1 —O— may be a block shape, which may be randomly continuous or alternately continuous. It may be continuous.
  • n is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300, and many polyalkylene glycol chains can be introduced into the polymer.
  • n is preferably 2 or more, more preferably 5 or more, and still more preferably 10 or more. 20 or more is particularly preferable.
  • n is preferably 200 or less, more preferably 150 or less, and still more preferably 120 or less. 100 or less is particularly preferable, and 50 or less is most preferable.
  • a counter anion X 1- exists in the vicinity of the quaternized nitrogen atom.
  • the type of the counter anion X 1 — is not particularly limited, but is preferably a halogen atom ion or an alkyl sulfate ion.
  • the halogen atom ion include a chlorine atom, bromine atom, iodine atom, and fluorine atom ion. Of these, ions of chlorine atom, bromine atom and iodine atom are preferable, and ion of chlorine atom is particularly preferable.
  • Specific examples of the alkyl sulfate ion include methyl sulfate ion and ethyl sulfate ion. Of these, methyl sulfate ion is preferable.
  • the polymer obtained by polymerizing the cationic group-containing monomer of the present invention has a structure derived from the cationic group-containing monomer of the present invention.
  • the structure derived from the cationic group-containing monomer is a structure in which the carbon-carbon double bond of the cationic group-containing monomer of the present invention is a single bond, and is represented by the following general formula (13);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom. Alternatively, it represents an organic group having 1 to 20 carbon atoms, and R 2 and R 3 may combine to form a cyclic structure, and Y 1 may be the same or different and each represents an alkylene group having 2 to 20 carbon atoms.
  • n is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • X 1 — represents a counter anion).
  • amino group-containing monomer of the present invention As described above, an amino group-containing monomer can be mentioned as one of water-soluble monomers having a specific functional group, and the following general formula (14);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or a carbon number of 1 to And R 5 and R 6 may combine to form a cyclic structure
  • Y 1 may be the same or different and represents an alkylene group having 2 to 20 carbon atoms
  • n is an oxyalkylene group.
  • An amino group-containing monomer having a structure represented by (—Y 1 —O—) is the average number of moles added and represents a number of 1 to 300 is also one aspect of the present invention.
  • R 5 and R 6 in the general formula (14) are the same or different and are a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • the organic group having 1 to 20 carbon atoms include the same organic groups having 1 to 20 carbon atoms as R 2 , R 3 , and R 4 in the general formula (12). Among these, those having 1 to 8 carbon atoms are more preferable, and those having 1 to 5 carbon atoms are more preferable. If it is the said range, the amino group containing monomer of this invention can be manufactured with a high yield. Specifically, a methyl group, an ethyl group, an n-butyl group, and a hydroxyethyl group are preferable.
  • R 5 and R 6 may be bonded to form a cyclic structure.
  • a nitrogen atom R 5 and R 6 are The formed cyclic structure is preferably a 3 to 7-membered ring, that is, the total number of carbon atoms of R 5 and R 6 is preferably 2 to 6.
  • R 0 , R 1 , Y 1 and n are the same as those in the general formula (12).
  • R 0 in the general formula (14) represents a hydrogen atom and R 1 represents a methylene group, that is, an allylic amino group.
  • R 1 represents a methylene group, that is, an allylic amino group.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms
  • n represents a number of 20 to 300
  • R 5 and R 6 are the same or Differently, it preferably represents a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an aryl group, or an alkenyl group.
  • the resulting amino group-containing polymer has a structure derived from the amino group-containing monomer of the present invention.
  • the structure derived from the amino group-containing monomer is a structure in which the carbon-carbon double bond of the amino group-containing monomer of the present invention is a single bond, and the following general formula (15):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or a carbon number of 1 to And R 5 and R 6 may combine to form a cyclic structure,
  • Y 1 may be the same or different and represents an alkylene group having 2 to 20 carbon atoms, and n is an oxyalkylene group. (The average added mole number of —Y 1 —O—), which represents a number of 1 to 300).
  • the group having a carbon-carbon double bond to be polymerized in the amino acid group-containing monomer of the present invention includes an isoprenyl group, a methallyl group, an allyl group, a vinyl group. Is preferred. From the viewpoint of polymerizability, an isoprenyl group and a methallyl group are particularly preferable.
  • water-soluble monomers having a specific functional group includes a sulfonic acid group-containing monomer, and the following general formula (16);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average added mole number of an oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • a sulfonic acid group-containing monomer having the structure is also one aspect of the present invention.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • the monovalent cation include alkali metal ions such as sodium, potassium and lithium; quaternary ammonium salts such as ammonium ion, tetramethylammonium salt, tetraethylammonium salt and tetrabutylammonium salt.
  • Alkali metal ions such as lithium are preferable, and sodium ions are particularly preferable.
  • R 0 , R 1 , Y 1 and n are the same as those in the general formula (12).
  • the resulting sulfonic acid group-containing polymer has a structure derived from the sulfonic acid group-containing monomer of the present invention.
  • the structure derived from the sulfonic acid group-containing monomer is a structure in which the carbon-carbon double bond of the sulfonic acid group-containing monomer of the present invention is a single bond, and is represented by the following general formula (17);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of an oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • M 1 represents a hydrogen atom or a monovalent cation. Can do.
  • the group having a carbon-carbon double bond to be polymerized in the sulfonic acid group-containing monomer of the present invention that is, H 2 C ⁇ C (R 0 ) —R 1 — is an isoprenyl group, methallyl group, allyl group, vinyl Groups are preferred. From the viewpoint of polymerizability, an isoprenyl group and a methallyl group are particularly preferable.
  • Organic ether group-containing monomer One of the water-soluble monomers having the specific functional group described above includes an organic ether group-containing monomer, for example, the following general formula (18);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • R 7 represents an organic group having 1 to 20 carbon atoms.
  • Y 1 represents The same or different and each represents an alkylene group having 2 to 20 carbon atoms, n is an average added mole number of an oxyalkylene group (—Y 1 —O—) and represents a number from 1 to 300.
  • an organic ether group-containing monomer having the following structure.
  • R 7 in the general formula (18) represents an organic group having 1 to 20 carbon atoms.
  • the organic group may have a substituent and is not particularly limited as long as it has 1 to 20 carbon atoms as a whole.
  • Examples of the organic group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, Examples include an aryl group, an amino group, an alkoxyl group, and a group formed by combining these groups.
  • an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxyl group or a group formed by combining these groups is preferable, and an alkyl group, an aryl group, an alkoxyl group or these groups are more preferable.
  • the substituent in the organic group having 1 to 20 carbon atoms include a halogen atom, dialkyl group, amino group, nitro group, carbonyl group, carboxyl group, alkoxy group, acetoxy group, hydroxyl group, mercapto group, sulfone group, and methylenebis.
  • a carbonyl group etc. are mentioned.
  • the organic group preferably has 1 to 18 carbon atoms. More preferably, it is 1-16, and more preferably 1-14.
  • organic group examples include methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, t-butyl, octyl, lauryl, stearyl, cyclopentyl, Alkyl groups such as cyclohexyl group and 2-ethylhexyl group; alkenyl groups such as allyl group and isoprenyl group; aryl groups such as phenyl group, benzyl group and naphthyl group; or some of these hydrogen atoms are alkoxy groups or carboxyesters And a group substituted with a group, an amino group, an amide group, a hydroxyl group, and the like, such as a 2-methoxyethyl group, a 2-ethoxyethyl group, a p-methoxyphenyl group, and the like.
  • an organic ether group-containing monomer (hereinafter also referred to as an organic ether group-containing polyalkylene glycol monomer) can be produced with a high yield, so that a methyl group, an ethyl group, an n-butyl group, An octyl group, a lauryl group, and a 2-ethylhexyl group are preferred.
  • R 0 , R 1 , Y 1 and n are the same as those in the general formula (12).
  • the resulting polymer has a structure derived from the organic ether group-containing monomer.
  • the structure derived from the organic ether group-containing monomer is a structure in which the carbon-carbon double bond of the organic ether group-containing monomer is a single bond, and is represented by the following general formula (19);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • R 7 represents an organic group having 1 to 20 carbon atoms.
  • Y 1 represents The same or different and each represents an alkylene group having 2 to 20 carbon atoms, n is an average added mole number of an oxyalkylene group (—Y 1 —O—) and represents a number from 1 to 300. Can do.
  • the water-soluble monomer of the present invention can be applied by a commonly used production method and is not particularly limited, but is preferably produced by the following production method. According to this method, the water-soluble monomer of the present invention can be produced with a high yield. That is, the following general formula (6);
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is an average addition mole number of the oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • Q is a structure of any one of the following general formulas (7) to (10) In which the water-soluble monomer is represented by the following general formula (I):
  • R 0 represents a hydrogen atom or a methyl group.
  • R 1 represents a methylene group, an ethylene group or a direct bond.
  • Y 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • N is the average number of moles of oxyalkylene group (—Y 1 —O—) and represents a number of 1 to 300.
  • the compound (I) represented by epihalohydrin and an alkali compound are reacted. Any one of the steps or the step of reacting the compound (I) represented by the general formula (I) with epihalohydrin in the presence of a catalyst, and (ii) the reaction product obtained in the step (i) above.
  • reaction of a tertiary amine salt, a secondary amine, a sulfite compound, or a hydroxyl group-containing compound, or a reaction product obtained in the step (i) with a secondary amine also constitutes the present invention.
  • the manufacturing method of the water-soluble monomer of this invention may contain the other process, as long as the process of said (i) and the process of (ii) are included.
  • * represents that an atom marked with * is bonded to a carbon atom bonded to Q in the general formula (6).
  • R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 , R 5 and R 6 are respectively They may combine to form a ring structure.
  • X 1- represents a counter anion.
  • M 1 represents a hydrogen atom or a monovalent cation.
  • R 7 represents an organic group having 1 to 20 carbon atoms.
  • the water-soluble monomer represented by the general formula (6) produced by the above production method is the above-described cationic group when Q in the general formula (6) is represented by the general formula (7).
  • Q in the general formula (6) is represented by the general formula (8), it is the amino group-containing monomer described above, and the Q in the general formula (6) is represented by the general formula ( 9) is the above-mentioned sulfonic acid group-containing monomer, and when Q in the general formula (6) is represented by the general formula (10), the above-mentioned organic ether group Containing monomer.
  • the water-soluble monomer produced by the production method is preferably a preferable form of each of the water-soluble monomers described above.
  • the cationic group-containing monomer of the present invention can be produced by the above-described method, and can also be produced by a generally known production method.
  • a preferred production method (1-1) of the cationic group-containing monomer of the present invention includes (a) a compound (I) represented by the above general formula (I) (hereinafter referred to as polyalkylene glycol chain-containing single monomer). And a step of reacting the epihalohydrin with an alkali compound (step A), and (b) a step of reacting the reaction product obtained in step A with a tertiary amine salt (step B).
  • step A a step of reacting the epihalohydrin with an alkali compound
  • step B a tertiary amine salt
  • a preferred production method (1-2) of the cationic group-containing monomer of the present invention comprises (i) a reaction between a polyalkylene glycol chain-containing monomer represented by the above general formula (I), an epihalohydrin, and an alkali compound. (B) a step of reacting the reaction product obtained in step A with a secondary amine (step C), and (c) a reaction product obtained in step C and a quaternizing agent. Is a method for producing a cationic group-containing monomer.
  • a preferred production method (1-3) of the cationic group-containing monomer of the present invention comprises (i) a reaction of a polyalkylene glycol chain-containing monomer represented by the above general formula (I) with an epihalohydrin in the presence of a catalyst. And (b) a step of reacting the reaction product obtained in step E with a tertiary amine (step F).
  • a preferred production method (1-4) of the cationic group-containing monomer of the present invention comprises (a) a polyalkylene glycol chain-containing monomer represented by the above general formula (I) and a glycidyl trialkylammonium salt. It is a manufacturing method of the cationic group containing monomer including the process (process G) made to react.
  • a preferred production method (1-5) of the cationic group-containing monomer of the present invention comprises (i) a reaction of a polyalkylene glycol chain-containing monomer represented by the above general formula (I) with an epihalohydrin in the presence of a catalyst. (B) a step of reacting the reaction product obtained in step E with an alkali compound (step H), and (c) a reaction product obtained in step H and a tertiary amine salt. Is a method for producing a cationic group-containing monomer.
  • a preferred production method (1-6) of the cationic group-containing monomer of the present invention comprises (i) a reaction of a polyalkylene glycol chain-containing monomer represented by the above general formula (I) with an epihalohydrin in the presence of a catalyst. (B) a step of reacting the reaction product obtained in step E with an alkali compound (step H), and (c) a reaction product obtained in step H and a secondary amine.
  • a method for producing a cationic group-containing monomer comprising: a step of reacting (step C); and (d) a step of reacting the reaction product obtained in step C with a quaternizing agent (step D). .
  • an alkylene oxide is usually used for an alkylene glycol monovinyl ether, (meth) allyl alcohol, isoprenol or an alcohol having an alkylene oxide addition structure thereof. What was manufactured by adding by a method can be used, and since the purity of a monomer can be made high, it is preferable.
  • epihalohydrin in the production methods (1-1) to (1-3), (1-5) and (1-6), those represented by the general formula (II) are preferable.
  • Specific examples of the epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like. Among these, epichlorohydrin is preferable because it is industrially inexpensive.
  • R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 may combine to form a cyclic structure.
  • X 1- represents a counter anion.
  • R 2, R 3, R 4 and X 1 - a preferred embodiment
  • R 2, R 3 in the general formula (12), R 4 and X 1 - the same as the preferred embodiment is there.
  • Specific examples of the tertiary amine salt include trimethylamine, dimethylethylamine, dimethylisopropylamine, dimethyl-n-propylamine, dimethylcyclohexylamine, triethylamine, triisopropylamine, tri-n-propylamine, tributylamine, and trilauryl.
  • Hydrochloride hydrobromide, hydroiodide, nitrate of tertiary amines such as amine, tristearylamine, tricyclohexylamine, tri-2-ethylhexylamine, triethanolamine, tris (2-hydroxypropyl) amine , Acetate, perchlorate, paratoluenesulfonate, and the like.
  • trimethylamine hydrochloride, triethylamine hydrochloride, and dimethylethylamine hydrochloride are preferable because the cationic group-containing monomer of the present invention can be produced with high yield.
  • R 2 and R 3 may be the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 may combine to form a cyclic structure). Those represented are preferred.
  • R 2 and R 3 are the same as the preferred embodiment of R 2 and R 3 in the general formula (12).
  • Specific examples of the secondary amine include dimethylamine, methylethylamine, diethylamine, diisopropylamine, di-n-propylamine, di-n-butylamine, dioctylamine, dilaurylamine, distearylamine, dicyclohexylamine, di- Examples include dialkylamines such as -2-ethylhexylamine; dialkanolamines such as diethanolamine and bis (2-hydroxypropyl) amine; and cyclic amines such as morpholine and pyrrole. Among them, dimethylamine, methylethylamine, diethylamine, and diethanolamine are preferable because the cationic group-containing monomer of the present invention can be produced with high yield and is industrially inexpensive.
  • Examples of the quaternizing agent in the production methods (1-2) and (1-6) include alkyl halides such as methyl chloride, ethyl chloride, methyl bromide, ethyl bromide, methyl iodide, ethyl iodide; Examples thereof include benzyl halides such as benzyl, benzyl bromide and benzyl iodide; dialkyl sulfates such as dimethyl sulfate and diethyl sulfate; alkyl sulfonates such as methyl paratoluenesulfonate and ethyl paratoluenesulfonate. Of these, methyl chloride, benzyl chloride, and dimethyl sulfate are preferred because they are easily available industrially.
  • R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 may combine to form a cyclic structure. .) Is preferred.
  • R 2, R 3 and R 4 are the same as the preferred embodiment of R 2, R 3, and R 4 in the general formula (12).
  • Specific examples of the tertiary amine include trimethylamine, dimethylethylamine, dimethylisopropylamine, dimethyl-n-propylamine, dimethylcyclohexylamine, triethylamine, triisopropylamine, tri-n-propylamine, tributylamine, and trilaurylamine.
  • Trialkylamines such as tristearylamine, tricyclohexylamine and tri-2-ethylhexylamine; trialkanolamines such as triethanolamine and tris (2-hydroxypropyl) amine.
  • trimethylamine, dimethylethylamine, triethylamine, and triethanolamine are preferable because the cationic group-containing monomer of the present invention can be produced with high yield.
  • Examples of the glycidyl trialkylammonium salt in the production method (1-4) include the following general formula (23);
  • R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 2 and R 3 may combine to form a cyclic structure.
  • X 1- represents a counter anion.
  • R 2, R 3, R 4 and X 1 - a preferred embodiment, R 2, R 3 in the general formula (12), R 4 and X 1 - the same as the preferred embodiment is there.
  • Specific examples of the glycidyltrialkylammonium salt include glycidyltrimethylammonium chloride, glycidyltriethylammonium chloride, glycidyltrimethylammonium bromide, glycidyltriethylammonium bromide, and the like. Of these, glycidyltrimethylammonium chloride is preferred because it is easily available industrially.
  • steps A, B, C, D, E, F, G, and H is preferably carried out in the absence of a solvent because the reaction proceeds efficiently and is more preferable from the viewpoint of volume efficiency. It can also be carried out in the presence. Only one solvent may be used alone, or two or more solvents may be used in combination.
  • the amount used is not particularly limited, but in the case of Steps A, E, and G, in addition to the polyalkylene glycol chain-containing monomer represented by the general formula (I), Step B, In the case of C, D, F, and H, the mass is usually in the range of 0.005 to 5 times, preferably 0.01 to 3 times the mass of the reaction product obtained in the previous step. Range.
  • the solvent that can be used in the reactions of Steps A, E, and G is not particularly limited as long as the reaction is not adversely affected.
  • hydrocarbons such as hexane, octane, decane, cyclohexane, benzene, and toluene; diethyl ether And ethers such as tetrahydrofuran and dioxane; ketones such as acetone and methyl ethyl ketone; and chlorinated hydrocarbons such as dichloromethane and dichloroethane.
  • the solvent that can be used in the reaction of Steps B, C, D, F, and H is not particularly limited as long as it does not adversely influence the reaction.
  • water for example, water; alcohols such as methanol, ethanol, isopropanol; diethyl ether, examples include ethers such as tetrahydrofuran and dioxane; ketones such as acetone and methyl ethyl ketone.
  • alcohols such as methanol, ethanol, isopropanol
  • diethyl ether examples include ethers such as tetrahydrofuran and dioxane; ketones such as acetone and methyl ethyl ketone.
  • ethers such as tetrahydrofuran and dioxane
  • ketones such as acetone and methyl ethyl ketone.
  • the reaction of steps A, B, C, D, E, F, G, and H may be performed in an air atmosphere or an inert gas atmosphere. Further, it can be carried out under reduced pressure, atmospheric pressure, or increased pressure.
  • the reaction temperature is usually 0 to 200 ° C., preferably 15 to 150 ° C., more preferably 30 to 100 ° C. From the viewpoint of fluidity of the raw material, the polyalkylene glycol chain-containing monomer represented by the above general formula (I) and the compound obtained in the previous step, it may be carried out at a temperature at which no problem occurs in stirring. preferable.
  • the reaction time is usually 0.1 to 50 hours, preferably 0.5 to 30 hours, more preferably 1 to 15 hours.
  • Steps B, C, D, F, and H may be performed as it is under the remaining catalyst when a catalyst is used in the previous step.
  • Step A is a so-called slurry reaction and can be carried out in a reaction apparatus having a general stirring apparatus.
  • a reaction apparatus having a general stirring apparatus.
  • any of batch, semi-batch, and continuous tank reactors can be used.
  • the desalting step can be carried out by sedimentation separation, centrifugation, filtration or the like, and is not particularly limited.
  • the conditions for carrying out the desalting step may be appropriately carried out so that the salt is sufficiently removed, and it is preferably carried out at a temperature of 15 ° C. to 100 ° C. from the viewpoint of obtaining a sufficient separation rate.
  • Steps B, C, D, E, F, G, and H may be performed in a batch or continuously.
  • the reaction may be performed in any of a tank type and a tubular reactor. it can.
  • the step F or H may be performed after a step such as washing is performed.
  • the reaction in Step A is performed in the presence of an alkali compound and, if necessary, a catalyst and / or a solvent.
  • an alkali compound Alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide, are preferable.
  • the type of the catalyst is not particularly limited, but tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, tetraoctylammonium chloride, benzyltrimethylammonium chloride, benzyltriethylammonium chloride, octyltrimethylammonium Chloride, cetyltrimethylammonium chloride, trimethylammonium chloride, triethylammonium chloride, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, tetraoctylammonium bromide, benzyltrimethylammonium bromide, benzyltriethyl Quaternary ammonium salts such as am
  • the amount used is a molar ratio with respect to the hydroxyl group (in terms of hydroxyl value) of the polyalkylene glycol chain-containing monomer represented by the general formula (I), usually (hydroxyl group).
  • /(Catalyst) 1/0.0001 to 1 / 0.3, preferably 1 / 0.001 to 1 / 0.2, more preferably 1 / 0.005 to 1 / 0.1. is there. If the amount of the catalyst is too small, a sufficient catalytic effect cannot be obtained. If the amount is too large, there is no further effect, which is economically disadvantageous.
  • the amount of the epihalohydrin used in the reaction of steps A and E is a molar ratio with respect to the hydroxyl group (hydroxyl value conversion) of the polyalkylene glycol chain-containing monomer represented by the general formula (I).
  • Hydroxyl group) / (epihalohydrin) 1/1 to 1/15, preferably 1/1 to 1/10, more preferably 1/1 to 1/5. If it is out of the range, a crosslinking component may be generated, which may cause gelation during polymerization.
  • the amount of the tertiary amine salt used in the reaction of Step B is usually (glycidyl group) / (tertiary amine) in a molar ratio with respect to the number of moles of glycidyl groups in the reaction product obtained in the previous step.
  • Salt) 2/1 to 1/2, preferably 1.5 / 1 to 1 / 1.5, and more preferably 1.3 / 1 to 1 / 1.3.
  • the tertiary amine salt may be used in the form of an aqueous solution, but is usually an aqueous solution containing a tertiary amine salt of 30% by mass or more, preferably an aqueous solution containing 40% by mass or more, more preferably 50%. An aqueous solution containing at least mass%. When the amount is less than 30% by mass, the selectivity of the cationic group-containing monomer obtained by the reaction may decrease.
  • the amount of the quaternizing agent used in the reaction of Step D is usually (amino group) / (quaternized) in a molar ratio with respect to the number of moles of amino groups of the reaction product obtained in the previous step.
  • Agent 2/1 to 1/2, preferably 1.5 / 1 to 1 / 1.5, and more preferably 1.3 / 1 to 1 / 1.3.
  • the reaction in Step E may be an acid or a base as a catalyst, but an acid is preferred.
  • the acid may be a Lewis acid or a Bronsted acid, but a Lewis acid is preferred.
  • Lewis acid those generally referred to as Lewis acids can be used.
  • Lewis acids boron trifluoride, tin tetrachloride, tin dichloride, zinc chloride, ferric chloride, aluminum chloride, titanium tetrachloride, chloride Examples include magnesium and antimony pentachloride.
  • the reaction of Step G is performed in the presence of a catalyst as necessary.
  • the catalyst used in the reaction include alkali metal salts such as sodium hydroxide, potassium hydroxide, potassium carbonate and sodium carbonate; quaternary ammonium salts such as tetramethylammonium chloride and tetrabutylammonium bromide.
  • the same alkali compounds as used in Step A can be used.
  • the amount of alkali compound used in Step H is such that the molar ratio of the halogen group to the alkali compound in the reaction product obtained in Step E is 1/1 to 1/100 (halogen group / alkali compound). Is preferred. More preferably, it is 1/1 to 1/50, and still more preferably 1/1 to 1/20.
  • the cationic group-containing monomer of the present invention can be produced by the above method, a purification step may be provided as necessary.
  • a purification step by extraction or washing is preferable in that the amount of the crosslinking component that causes gelation during polymerization can be reduced.
  • the production methods (1-1) to (1-6) since the raw materials are inexpensive and simple in terms of production, the production methods (1-1) to (1-3), (1- 5) and (1-6) are preferred.
  • the production method (1-1) is preferable because it can suppress the formation of a cross-linking component that causes gelation during polymerization.
  • the production method (1-2) is preferably used as a counter in a cationic group-containing monomer.
  • the anion is preferable because it is easy to select, and the above production method (1-3) is preferable because there is little waste generated in the reaction.
  • the production method (1-1) is more preferable.
  • the counter anion in the cationic group-containing monomer of the present invention can be converted into a desired anion species by an ion exchange method after being obtained by the above production method, but it can be obtained by appropriately selecting the raw materials used in each production method. It is preferable to introduce the anionic species because of its simplicity. That is, in the production methods (1-1) and (1-5), the anion of the tertiary amine salt used in the step (B) is changed in the production methods (1-2) and (1-6). By the quaternizing agent in the step (D), the halogen atom of the epihalohydrin in the step (E) in the production method (1-3) is converted into the glycidyl trimethyl in the step (G) in the production method (1-4). A counter anion of an alkyl ammonium salt can be introduced as the counter anion in the cationic group-containing monomer.
  • the amino group-containing monomer of the present invention can be produced by an applicable ordinarily used production method, and is not particularly limited, but is produced by the following production methods (2-1) to (2-4). It is preferable. According to this method, the amino group-containing monomer of the present invention can be produced with high yield. That is, the preferred production method (2-1) of the amino group-containing monomer of the present invention comprises (a) a polyalkylene glycol chain-containing monomer represented by the above general formula (I), an epihalohydrin, and an alkali compound.
  • a process for producing an amino group-containing monomer comprising a step of reacting (step I) and a step of reacting the reaction product obtained in step I with a secondary amine (step J).
  • step K the polyalkylene glycol chain-containing monomer represented by the general formula (I) is reacted with an epihalohydrin in the presence of a catalyst.
  • step M a step in which the reaction product obtained in step K is reacted with a secondary amine.
  • the preferred production method (2-4) of the amino group-containing monomer of the present invention comprises (a) a polyalkylene glycol chain-containing monomer represented by the above general formula (I) and N- (dialkylaminomethyl) oxirane.
  • R 0 , R 1 , Y 1 and n are The same as the preferred embodiments of R 0 , R 1 , Y 1 and n in the general formula (14).
  • the polyalkylene glycol chain-containing monomer represented by the general formula (I) epihalohydrin, alkali compound and secondary amine used in the method for producing an amino group-containing monomer, the cationic property of the present invention described above is used.
  • the same thing as the polyalkylene glycol chain containing monomer represented by general formula (I), epihalohydrin, an alkali compound, and a secondary amine used in the manufacturing method of a group containing monomer can be used.
  • R 5 and R 6 may be the same or different and each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and R 5 and R 6 may combine to form a cyclic structure). Those having the structure represented are preferred.
  • N- (dialkylaminomethyl) oxirane examples include N- (dimethylaminomethyl) oxirane, N- (diethylaminomethyl) oxirane, N- (di-n-butylaminomethyl) oxirane, N- ( And dihydroxyethylaminomethyl) oxirane.
  • reaction conditions and embodiments of Steps I to N essential for the production methods (2-1) to (2-4) are described in detail below.
  • Preferred reaction conditions and embodiments of Steps I, J, K, and L are respectively preferred reaction conditions and embodiments of Steps A, C, E, and H in the method for producing a cationic group-containing monomer. It is the same.
  • the reaction in Steps M and N is preferably carried out in the absence of a solvent because the reaction proceeds efficiently and is more preferable from the viewpoint of volumetric efficiency, but can also be carried out in the presence of a solvent. Only one solvent may be used alone, or two or more solvents may be used in combination.
  • the amount used is not particularly limited, but in the case of Step M, the reaction product obtained in Step K, and in the case of Step N, the polyalkylene represented by the above general formula (I) The amount is usually in the range of 0.005 to 5 times the mass of the glycol chain-containing monomer, and preferably in the range of 0.01 to 3 times the mass.
  • the solvent that can be used in the reaction of Step M is not particularly limited as long as it does not adversely influence the reaction.
  • ethers such as diethyl ether, tetrahydrofuran, and dioxane
  • acetone Mention may be made of ketones such as methyl ethyl ketone.
  • the solvent that can be used in the reaction of Step N is not particularly limited as long as it does not adversely affect the reaction.
  • hydrocarbons such as hexane, octane, decane, cyclohexane, benzene, toluene; diethyl ether, tetrahydrofuran, dioxane, etc.
  • Ethers ketones such as acetone and methyl ethyl ketone
  • chlorinated hydrocarbons such as dichloromethane and dichloroethane.
  • the reaction in Step M may be performed as it is under the remaining catalyst.
  • the reaction of Steps M and N may be performed in an air atmosphere or an inert gas atmosphere. Further, it can be carried out under reduced pressure, atmospheric pressure, or increased pressure.
  • the reaction temperature is usually 0 to 200 ° C., preferably 15 to 150 ° C., more preferably 30 to 100 ° C. From the viewpoint of fluidity of the raw material, the reaction product obtained in Step K and the polyalkylene glycol chain-containing monomer represented by the above general formula (I), it may be carried out at a temperature at which no problem occurs in stirring. preferable.
  • the reaction time is usually 0.1 to 50 hours, preferably 0.5 to 30 hours, more preferably 1 to 15 hours.
  • the reaction of Steps M and N may be performed in a batch or continuously.
  • the reaction can be performed in either a tank-type reactor or a tubular reactor.
  • a step such as desalting.
  • the desalting step can be carried out by sedimentation separation, centrifugation, filtration, washing, etc., and is not particularly limited.
  • the conditions for carrying out the desalting step may be appropriately performed so that the salt is sufficiently removed. It is preferable to carry out the reaction at a temperature of 15 ° C. to 100 ° C. in that a sufficient separation rate can be obtained.
  • the reaction in Step N is performed in the presence of a catalyst as necessary.
  • the catalyst used for the reaction the same catalyst as used in Step G can be used.
  • the amount of N- (dialkylaminomethyl) oxirane used in the reaction of Step N is a molar amount relative to the hydroxyl group (in terms of hydroxyl value) of the polyalkylene glycol chain-containing monomer represented by the above general formula (I).
  • the ratio of (hydroxyl group) / (N- (dialkylaminomethyl) oxirane) is preferably 5/1 to 1/5, more preferably 3/1 to 1/3, still more preferably 1.5. / 1 to 1 / 1.5.
  • the amino group-containing monomer of the present invention can be produced by the above method, but a purification step may be provided as necessary. A purification step by extraction or washing is preferable in that the amount of the crosslinking component that causes gelation during polymerization can be reduced.
  • the above production methods (2-1) to (2-4) the above production methods (2-1) to (2-3) are preferred because the raw materials and catalysts are inexpensive and simple in terms of production. .
  • the production method (2-1) is particularly preferable because it can suppress the formation of a crosslinking component that causes gelation during polymerization.
  • the sulfonic acid group-containing monomer can be produced by an applicable ordinarily used production method, and is not particularly limited, but can be produced by the following production methods (3-1) to (3-4). Is preferred. According to this method, the sulfonic acid group-containing monomer of the present invention can be produced with a high yield.
  • a preferred production method (3-1) of the sulfonic acid group-containing monomer of the present invention includes (a) a polyalkylene glycol chain-containing monomer represented by the above general formula (I), an epihalohydrin, an alkali compound, This is a method for producing a sulfonic acid group-containing monomer, which comprises a step of reacting (Step O), and (b) a step of reacting the reaction product obtained in Step O with a sulfite compound (Step P).
  • a preferred method (3-2) for producing a sulfonic acid group-containing monomer of the present invention comprises (a) a reaction of a polyalkylene glycol chain-containing monomer represented by the above general formula (I) with an epihalohydrin in the presence of a catalyst. (B) reacting the reaction product obtained in step Q with the alkali compound (step R), and (c) reacting the reaction product obtained in step R with the sulfite compound. And a process for producing a sulfonic acid group-containing monomer.
  • a preferred method (3-3) for producing a sulfonic acid group-containing monomer of the present invention comprises (i) a reaction of a polyalkylene glycol chain-containing monomer represented by the above general formula (I) with an epihalohydrin in the presence of a catalyst. And a step (step S) of reacting the reaction product obtained in step Q with a sulfurous acid compound (step S).
  • a preferred production method (3-4) of the sulfonic acid group-containing monomer of the present invention includes (a) a polyalkylene glycol chain-containing monomer represented by the above general formula (I) and an oxirane methanesulfonic acid (salt). It is a manufacturing method of the sulfonic acid group containing monomer including the process (process T) which is made to react.
  • Examples of the polyalkylene glycol chain-containing monomer represented by the general formula (I), epihalohydrin, and alkali compound used in the method for producing the sulfonic acid group-containing monomer include the cationic group-containing monomer of the present invention described above. The same thing as the polyalkylene glycol chain containing monomer represented by general formula (I), epihalohydrin, and an alkali compound used in the manufacturing method of a monomer can be used.
  • the sulfite compound sulfite, hydrogen sulfite, dithionite, metabisulfite, and salts thereof are preferable.
  • the sulfite compound can be used as an acid (that is, sulfite or the like is used), but it is preferably used as a salt from the viewpoint of handling and improving the yield.
  • As the salt sodium, potassium, lithium, ammonium, quaternary ammonium salt and the like are preferable.
  • the sulfite compound include lower oxides such as sodium hydrogen sulfite, potassium hydrogen sulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, and potassium metabisulfite, and salts thereof. Among them, sodium hydrogen sulfite and sodium metabisulfite are particularly preferable because they are industrially inexpensive.
  • M 1 is. Represents a hydrogen atom or a monovalent cation
  • M 1 is. Represents a hydrogen atom or a monovalent cation
  • a preferred embodiment of M 1 are the same as the preferred embodiment M 1 in the general formula (16).
  • Specific examples of the oxirane methane sulfonic acid (salt) include oxirane methane sulfonic acid, sodium oxirane methane sulfonate, potassium oxirane methane sulfonate, ammonium oxirane methane sulfonate, tetrabutyl ammonium oxirane methane sulfonate, and the like. .
  • reaction conditions and embodiments of the steps OT essential to the production methods (3-1) to (3-4) are described in detail below.
  • Preferred reaction conditions and embodiments of steps O, Q, and R are the same as the preferred reaction conditions and embodiments of steps A, E, and H in the method for producing a cationic group-containing monomer, respectively.
  • Reaction of process P, S, and T is performed in presence of a solvent as needed. Only one solvent may be used alone, or two or more solvents may be used in combination.
  • the amount used is not particularly limited, but in the case of Steps P and S, the reaction product obtained in the previous step is used, and in the case of Step T, the above general formula (I) is used.
  • the amount of the polyalkylene glycol chain-containing monomer is usually in the range of 0.005 to 5 times the mass, and preferably in the range of 0.01 to 3 times the mass.
  • the solvent that can be used in the reaction of Steps P and S is not particularly limited as long as it does not adversely influence the reaction.
  • Step T water; alcohols such as methanol, ethanol, and isopropanol; ethers such as diethyl ether, tetrahydrofuran, and dioxane And ketones such as acetone and methyl ethyl ketone.
  • the solvent that can be used in the reaction of Step T is not particularly limited as long as it does not adversely affect the reaction.
  • hydrocarbons such as hexane, octane, decane, cyclohexane, benzene, toluene; diethyl ether, tetrahydrofuran, dioxane, and the like Ethers; ketones such as acetone and methyl ethyl ketone; and chlorinated hydrocarbons such as dichloromethane and dichloroethane.
  • the reaction in Steps P and S may be performed as it is under the remaining catalyst.
  • the reaction of the processes P, S, and T may be performed in an air atmosphere or an inert gas atmosphere. Further, it can be carried out under reduced pressure, atmospheric pressure, or increased pressure.
  • the reaction temperature is usually 0 to 200 ° C., preferably 15 to 150 ° C., more preferably 30 to 100 ° C. From the viewpoint of the fluidity of the reactant obtained in the previous step as a raw material and the polyalkylene glycol chain-containing monomer represented by the general formula (I), it may be carried out at a temperature at which no problem occurs in stirring. preferable.
  • reaction time is usually 0.1 to 50 hours, preferably 0.5 to 30 hours, more preferably 1 to 15 hours.
  • reaction of the said process P, S, and T may be performed by a batch or may be performed continuously, for example, can be implemented with any apparatus of a tank type and a tubular reactor.
  • a step such as desalting.
  • the desalting step can be carried out by sedimentation separation, centrifugation, filtration, washing, etc., and is not particularly limited.
  • the conditions for carrying out the desalting step may be appropriately performed so that the salt is sufficiently removed. It is preferable to carry out the reaction at a temperature of 15 ° C. to 100 ° C. in that a sufficient separation rate can be obtained.
  • Reaction of process P and S is performed by adjusting pH as needed.
  • the pH may be adjusted before or during the reaction, and it is preferable to add an alkaline compound.
  • alkaline compound include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, ammonia, and amines.
  • Step P the amount of the glycidyl group of the reaction product obtained in the previous step and the case of Step S are used.
  • Is (glycidyl group or halogen group) / (sulfurous compound) 2/1 to 1/2 as a molar ratio with respect to the number of moles of halogen groups in the reaction product obtained in the previous step. More preferably, it is 1.7 / 1 to 1 / 1.7, and still more preferably 1.4 / 1 to 1 / 1.4.
  • the sulfite compound may be used in the form of an aqueous solution.
  • the reaction in Step T is performed in the presence of a catalyst as necessary.
  • the catalyst used for the reaction the same catalyst as used in Step G can be used.
  • oxirane methanesulfonic acid (salt) used for reaction of the process T, it is molar ratio with respect to the hydroxyl group (hydroxyl value conversion) of the polyalkylene glycol chain containing monomer represented by the said general formula (I).
  • (Hydroxyl group) / (oxirane methanesulfonic acid (salt)) 5/1 to 1/5, more preferably 3/1 to 1/3, still more preferably 1.5 / 1. ⁇ 1 / 1.5.
  • the sulfonic acid group-containing monomer of the present invention can be produced by the above method, a purification step may be provided as necessary.
  • a purification step by extraction or washing is preferable in that the amount of the crosslinking component that causes gelation during polymerization can be reduced.
  • the above production methods (3-1) to (3-4) are preferable because raw materials and catalysts are inexpensive and simple in production. .
  • the production method (3-1) is particularly preferable because it can suppress the formation of a crosslinking component that causes gelation during polymerization.
  • the organic ether group-containing monomer can be produced by an applicable ordinarily used production method, and is not particularly limited, but can be produced by the following production methods (4-1) to (4-2). Is preferred. According to this method, an organic ether group-containing monomer can be produced with a high yield.
  • a preferred production method (4-1) of the organic ether group-containing monomer of the present invention includes (a) a polyalkylene glycol chain-containing monomer represented by the above general formula (I), an epihalohydrin, an alkali compound, And (b) a step of reacting the reaction product (glycidyl group-containing polyalkylene glycol monomer) obtained in step U with a hydroxyl group-containing compound (step V). This is a method for producing an organic ether group-containing monomer.
  • a preferred production method (4-2) of the organic ether group-containing monomer of the present invention comprises (i) a reaction of a polyalkylene glycol chain-containing monomer represented by the above general formula (I) with an epihalohydrin in the presence of a catalyst. (B) a step of reacting the reaction product obtained in step W with an alkali compound (step X), and (c) a reaction product obtained in step X (glycidyl group-containing polyalkylene).
  • a process for reacting a glycol-based monomer) with a hydroxyl group-containing compound (process V).
  • a method for producing an alkylene glycol monomer is also one aspect of the present invention.
  • R 0 , R 1 , Y 1 and n are The same as the preferred embodiments of R 0 , R 1 , Y 1 and n in the general formula (18).
  • Examples of the polyalkylene glycol chain-containing monomer represented by the general formula (I), epihalohydrin and alkali compound used in the method for producing the organic ether group-containing monomer include the cationic group-containing monomer of the present invention described above. The same thing as the polyalkylene glycol chain containing monomer represented by general formula (I), epihalohydrin, and an alkali compound used in the manufacturing method of a monomer can be used.
  • examples of the hydroxyl group-containing compound include the following general formula (26): R 7 —OH (26) (Wherein R 7 represents an organic group having 1 to 20 carbon atoms) is preferred.
  • a preferred embodiment of R 7 is the same as the preferred embodiment of R 7 in the general formula (18).
  • Specific examples of the hydroxyl group-containing compound include alkyl alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, octanol, lauryl alcohol, stearyl alcohol, and 2-ethylhexanol.
  • Cycloalkyl alcohols such as cyclopentanol and cyclohexanol; aryl alcohols such as benzyl alcohol; alkylene glycol monoalkyl ethers such as 2-methoxyethanol, 2-ethoxyethanol, polyethylene glycol monomethyl ether, polypropylene glycol monomethyl ether, etc. Phenols such as phenol, p-methoxyphenol and naphthol; hydroxyls such as glycolic acid, lactic acid, malic acid and citric acid Carboxylic acids, and the like.
  • methanol, ethanol, n-butanol, octanol, lauryl alcohol, 2-ethylhexanol and glycolic acid are preferable because an organic ether group-containing polyalkylene glycol monomer can be produced with high yield.
  • reaction conditions and embodiments of the steps U to X essential for the production methods (4-1) to (4-2) are described in detail below.
  • Preferred reaction conditions and embodiments of the steps U, W, and X are the same as the preferred reaction conditions and embodiments of the steps A, E, and H in the method for producing a cationic group-containing monomer, respectively.
  • the amount of the hydroxyl group-containing compound used in Step V is (glycidyl group) / (hydroxyl group) in the molar ratio of the reaction product (glycidyl group-containing polyalkylene glycol monomer) obtained in the previous step to the glycidyl group.
  • Containing compound) 1/1 to 1/100 is preferable, 1/2 to 1/50 is more preferable, and the organic ether group-containing polyalkylene glycol monomer represented by the general formula (18) is expressed with higher purity. Is preferably 1/3 to 1/20 from the viewpoint that can be produced.
  • the reaction in Step V may be performed using a catalyst, and as the catalyst, an acid may be used or an alkali may be used.
  • the acid may be a Lewis acid or a Bronsted acid, but a Lewis acid is preferred.
  • a Lewis acid what is generally called a Lewis acid can be used.
  • antimony pentachloride is boron trifluoride, tin tetrachloride, tin dichloride, zinc chloride, ferric chloride, aluminum chloride, titanium tetrachloride, magnesium chloride.
  • Alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, are preferable.
  • an aqueous solution of the alkali metal hydroxide may be used.
  • the reaction in Step V may be performed in the presence of a phase transfer catalyst and / or a solvent as necessary.
  • the type of the phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetramethylammonium chloride and tetrabutylammonium bromide; phosphonium salts such as tetrabutylphosphonium chloride; and crown ethers such as 15-crown-5. It is done.
  • the amount used is (glycidyl group) in a molar ratio with respect to the glycidyl group of the reaction product (glycidyl group-containing polyalkylene glycol monomer) obtained in the previous step.
  • / (Phase transfer catalyst) 1 / 0.0001 to 1 / 0.3, more preferably 1 / 0.001 to 1 / 0.2, and still more preferably 1 / 0.005. ⁇ 1 / 0.1. If the amount of the catalyst is too small, a sufficient catalytic effect cannot be obtained. If the amount is too large, there is no further effect, which is economically disadvantageous.
  • the reaction in Step V is preferably carried out in the absence of a solvent because the reaction proceeds efficiently and is more preferable from the viewpoint of volumetric efficiency, but can also be carried out in the presence of a solvent.
  • Solvents that can be used are not particularly limited as long as they do not adversely affect the reaction.
  • hydrocarbons such as hexane, octane, decane, cyclohexane, benzene, and toluene
  • ethers such as diethyl ether, tetrahydrofuran, and dioxane
  • acetone, Ketones such as methyl ethyl ketone
  • chlorinated hydrocarbons such as dichloromethane and dichloroethane.
  • the amount used is not particularly limited, but is usually in the range of 0.005 to 5 times the mass of the reaction product (glycidyl group-containing polyalkylene glycol monomer) obtained in the previous step, preferably Is in the range of 0.01 to 3 times the mass.
  • the reaction of step V may be carried out as it is under the remaining catalyst when a catalyst is used in the previous step.
  • the reaction in the step V may be performed in an air atmosphere or an inert gas atmosphere. Further, it can be carried out under reduced pressure, atmospheric pressure, or increased pressure.
  • the reaction temperature is usually 0 to 200 ° C., preferably 15 to 160 ° C., more preferably 30 to 120 ° C.
  • the reaction time is usually 0.1 to 50 hours, preferably 0.5 to 30 hours, more preferably 1 to 15 hours.
  • the reaction of step V may be performed in a batch or continuously. For example, the reaction can be performed in any of a tank type reactor and a tubular reactor.
  • hydroxyl group-containing compound After the reaction, it is preferable to carry out a step of removing excess hydroxyl group-containing compound. Excess hydroxyl group-containing compound can be easily removed by washing, distillation, evaporation operation or the like. Moreover, you may implement the removal process of a catalyst after reaction.
  • the organic ether group-containing monomer of the present invention can be produced by the above method, but a purification step may be provided as necessary.
  • a purification step by extraction or washing is preferable in that the amount of the crosslinking component that causes gelation during polymerization can be reduced.
  • the production method (4-1) is particularly preferable because it can suppress the formation of a crosslinking component that causes gelation during polymerization.
  • the cationic polymer using the cationic group-containing polymerizable monomer of the present invention as a raw material has (i) a structure derived from the cationic group-containing monomer of the present invention represented by the general formula (13) (structure) A) is essential, and (ii) has a structure derived from other monomer (structure B) as required.
  • the structure derived from the other monomer (structure B) is a structure formed by polymerization of monomers other than the cationic group-containing monomer of the present invention. It is a structure in which the carbon unsaturated double bond is a single bond.
  • the structure derived from another monomer (structure B) is —CH 2 —CH (COOCH 3 ) —.
  • the cationic polymer of the present invention has (i) the structure A as an essential component, and (ii) the structure B as necessary.
  • the structure A has a ratio of 1 to 99% by mass and the structure B has a ratio of 0 to 99% by mass with respect to 100% by mass of the structure (structure A and structure B) derived from all monomers constituting the polymer. More preferably, the ratio of the structure A is 5 to 95% by mass, the structure B is 0 to 95% by mass, the structure A is 10 to 95% by mass, and the structure B is 0 to 90% by mass.
  • a ratio is particularly preferred.
  • the counter anion is not included in the calculation, and the amino group-containing monomer
  • it shall calculate as a corresponding amine.
  • polymerizing the cationic group containing monomer of this invention is demonstrated.
  • the cationic polymer of this invention can use the method similar to the normally known polymerization method, or the method which modified it,
  • the cationic polymer of this invention is ( i) By polymerizing the cationic group-containing monomer of the present invention (also referred to as monomer a) and, if necessary, (ii) another monomer (also referred to as monomer b). Can be manufactured.
  • polymerization methods include, for example, an oil-in-water emulsion polymerization method, a water-in-oil emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a solution polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and the like. Can be adopted.
  • an aqueous solution polymerization method or an emulsion polymerization method because the safety is high and the production cost (polymerization cost) can be reduced.
  • polymerization initiator In the above polymerization method, those usually used as polymerization initiators can be used as the polymerization initiator, such as hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate, ammonium persulfate; 2 2'-azobis (2-amidinopropane) hydrochloride, 4,4'-azobis-4-cyanoparellonic acid, azobisisobutyronitrile, 2,2'-azobis (4-methoxy-2,4-dimethylvalero) Suitable are azo compounds such as nitrile); organic peroxides such as benzoyl peroxide, lauroyl peroxide, peracetic acid, di-t-butyl peroxide and cumene hydroperoxide. These polymerization initiators may be used alone or in the form of a mixture of two or more. For example, a combination of hydrogen peroxide and persulfate is a preferred form.
  • a chain transfer agent may be used as a molecular weight regulator of the polymer as long as it does not adversely affect the polymerization.
  • the chain transfer agent include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropion, 3-mercaptopropion, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2 Thiol chain transfer agents such as mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, butylthioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform, bromotrichloroethane; isopropanol, glycerin, etc.
  • phosphorous acid, hypophosphorous acid, and salts thereof sodium hypophosphite, potassium hypophosphite, etc.
  • sulfurous acid hydrogen sulfite, dithionite, metabisulfite, and salts thereof (Sodium hydrogen sulfite, hydrogen bisulfite Um, sodium dithionite, potassium dithionite, sodium metabisulfite, metabisulfite potassium, etc.) and the like, and the like lower oxides and salts thereof.
  • the chain transfer agent may be used alone or in the form of a mixture of two or more.
  • sulfite and / or sulfite hereinafter simply referred to as “sulfur (salt)”
  • sulfur (salt) sulfite and / or sulfite
  • an initiator is used.
  • heavy metal ions may be used in combination as a reaction accelerator.
  • a reaction accelerator may be added for the purpose of reducing the amount of an initiator used.
  • the reaction accelerator include heavy metal ions.
  • the heavy metal ion means a metal having a specific gravity of 4 g / cm 3 or more.
  • iron, cobalt, manganese, chromium, molybdenum, tungsten, copper, silver, gold, lead, platinum, iridium, osmium, palladium, rhodium, ruthenium etc. are preferable, for example.
  • These heavy metals can be used alone or in combination of two or more. Among these, iron is more preferable.
  • the ionic valence of the heavy metal ions is not particularly limited.
  • the iron ions in the initiator may be Fe 2+ or Fe 3+ , and these may be combined. May have been.
  • the method for adding the heavy metal ions is not particularly limited, but it is preferably added before the completion of the dropwise addition of the monomer, and it is particularly preferable to initially charge the entire amount. Moreover, it is preferable that it is 100 ppm or less as a usage-amount with respect to reaction liquid whole quantity.
  • a decomposition catalyst for the polymerization initiator or a reducing compound may be added to the reaction system in addition to the above-described compounds.
  • the decomposition catalyst for the polymerization initiator include metal halides such as lithium chloride and lithium bromide; metal oxides such as titanium oxide and silicon dioxide; hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, nitric acid and the like.
  • Metal salts of inorganic acids Carboxylic acids such as formic acid, acetic acid, propionic acid, lactic acid, isolacric acid, benzoic acid, their esters and their metal salts; heterocyclic amines such as pyridine, indole, imidazole, carbazole and their derivatives, etc. Is mentioned. These decomposition catalysts may be used alone or in combination of two or more.
  • the copolymerization of the monomers a and b is preferably performed using a solvent capable of dissolving the monomers a and b, and water is used in 50% by mass or more of the solvent used. preferable.
  • mixing of the organic solvent may be severely restricted, but by using water in 50% by mass or more of the solvent used, the amount of the organic solvent used for the polymerization can be suppressed, so There is an advantage that the organic solvent can be easily distilled off.
  • Examples of the solvent that can be used by mixing with water include lower alcohols such as methanol, ethanol and isopropyl alcohol; lower ketones such as acetone, methyl ethyl ketone and diethyl ketone; ethers such as dimethyl ether and dioxane; amides such as dimethylformaldehyde.
  • the amount of water is preferably 80% by mass or more, and most preferably water alone (ie, 100% by mass) with respect to the total amount of the solvent used.
  • the amount of the solvent such as water used is preferably 40 to 200% by mass with respect to 100% by mass of the monomer component.
  • the amount of the solvent used is less than 40% by mass, the resulting copolymer may have a high molecular weight. If it exceeds 200% by mass, the concentration of the resulting copolymer will be low, and solvent removal will be required. There is a fear.
  • the solvent may be partially or wholly charged in the reaction vessel at the beginning of the polymerization, but a part of the solvent may be added (dropped) into the reaction system during the polymerization reaction, or the monomer.
  • Components, initiators, and the like may be added (dropped) into the reaction system during the polymerization reaction together with these components in a form that has been previously dissolved in a solvent.
  • a method for adding the monomer component and the polymerization initiator to the reaction vessel all the monomer components are charged into the reaction vessel, and copolymerization is performed by adding the polymerization initiator into the reaction vessel. By charging a part of the monomer component into the reaction vessel, and adding the polymerization initiator and the remaining monomer component continuously or stepwise (preferably continuously) into the reaction vessel.
  • the polymerization method can be carried out either batchwise or continuously.
  • the polymerization conditions such as the polymerization temperature are appropriately determined depending on the polymerization method used, the solvent, and the polymerization initiator.
  • the polymerization temperature is usually preferably 0 ° C. or higher, and 150 ° C. The following is preferable. More preferably, it is 40 degreeC or more, More preferably, it is 60 degreeC or more, Most preferably, it is 80 degreeC or more. Moreover, More preferably, it is 120 degrees C or less, More preferably, it is 110 degrees C or less.
  • the polymerization time is not particularly limited, but is preferably 30 to 420 minutes.
  • the pressure in the reaction system in the polymerization method may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure, but in terms of the molecular weight of the resulting copolymer,
  • the reaction system is preferably sealed and the reaction is carried out under pressure.
  • the atmosphere in the reaction system may be an air atmosphere, but is preferably an inert atmosphere.
  • the inside of the system is preferably replaced with an inert gas such as nitrogen before the start of polymerization.
  • the pH during the polymerization in the polymerization is not particularly limited.
  • amino group-containing polymer, sulfonic acid group-containing polymer, organic ether group-containing polymer of the present invention Polymer (or polymer composition) obtained from amino group-containing monomer of the present invention, polymer (or polymer composition) obtained from sulfonic acid group-containing monomer of the present invention, and organic ether of the present invention Regarding the polymer (or polymer composition) obtained from the group-containing monomer, the configuration, composition, and production method are the same as those of the cationic polymer (or polymer composition) described above, and are appropriately set. be able to.
  • Water-soluble polymers (or polymer compositions) obtained from the above water-soluble monomers are coagulants, flocculants, printing inks, adhesives, soil conditioners (modifiers), flame retardants, skin care agents, hair care.
  • Agents shampoos, hair sprays, soaps, cosmetic additives, anion exchange resins, dye mordants and auxiliaries for fibers and photographic films, pigment spreaders in papermaking, paper strength enhancers, emulsifiers, preservatives, textiles and paper Softeners, lubricant additives, water treatment agents, fiber treatment agents, dispersants, detergent additives, scale inhibitors (scale inhibitors), metal ion sealants, thickeners, various binders, emulsifiers, etc.
  • Can be used as As a detergent builder it can be used by adding to detergents for various uses such as clothing, tableware, residential, hair, body, toothpaste, and automobile.
  • the intermediate-containing composition for a water-soluble monomer according to the present invention has the above-described configuration, whereby a water-soluble polymer can be produced with high yield, and mud or cloth is further added to the produced water-soluble polymer. Can be imparted to the water-soluble polymer, so that it can be suitably used for the production of a polyalkylene glycol monomer having a polymerizable terminal double bond that is suitably used for the production of a water-soluble polymer and exhibiting water solubility. be able to.
  • the water-soluble monomer of the present invention has the above-described configuration and has excellent copolymerizability with various nonionic monomers, cationic monomers, and anionic monomers.
  • the polymer obtained from the water-soluble monomer of the present invention exhibits, for example, excellent metal ion scavenging ability and gelation resistance during washing due to the structure derived from the water-soluble monomer of the present invention.
  • a detergent additive when used as a detergent additive, it exhibits excellent recontamination prevention ability, dye transfer prevention ability, and excellent compatibility with a surfactant.
  • the method for producing a water-soluble monomer according to the present invention comprises the above-described configuration, whereby the production of by-products is suppressed, and the water-soluble monomer can be produced with high yield and high selectivity. .
  • FIG. 1 is a reaction formula showing an outline of the reaction in the reaction step (ia).
  • FIG. 2 is a reaction formula showing an outline of the reaction in the reaction step (ib).
  • 3 is a 1 H-NMR chart of monomer [ 1 ] intermediate [A] obtained in Example 4.
  • FIG. 4 is a 1 H-NMR chart of the monomer (1) obtained in Example 4.
  • FIG. 5 is a 1 H-NMR chart of the monomer (5) obtained in Example 9.
  • FIG. 6 is a 1 H-NMR chart of the monomer (6) obtained in Example 10.
  • FIG. 7 is a 1 H-NMR chart of the monomer (11) obtained in Example 16.
  • Isoprenol ethylene oxide average 10 mol adduct (hereinafter also referred to as “IPN10”): hydroxyl value 106.5 (mgKOH / g)
  • Isoprenol ethylene oxide average 25 mol adduct (hereinafter also referred to as “IPN25”): hydroxyl value 47.3 (mgKOH / g)
  • IPN50 hydroxyl value 25.5 (mgKOH / g)
  • ⁇ Adsorption ability test to mud> A 0.3% polymer-containing aqueous solution in terms of solid content was prepared. 11 kinds of JIS Z 8901 Test Powder 1 (Kanto Loam) were charged to a polymer-containing aqueous solution so as to be 5%, stirred at room temperature for 20 minutes, filtered through a clay, and then UV-visible spectrophotometer. Absorbance at 210 nm was measured using a meter (measurement apparatus: UV-1650PC manufactured by SHIMADZU). Moreover, the same test was conducted using pure water instead of the polymer-containing aqueous solution as a blank. From the above measurement results, the adsorption ability to mud was determined by the following formula.
  • Adsorption capacity to mud (%) [(absorbance of polymer-containing aqueous solution after test ⁇ absorbance of blank) / absorbance of polymer-containing aqueous solution before test] ⁇ 100 It was also confirmed in advance that the polymer concentration in the aqueous solution and the absorbance were in a proportional relationship at a measurement wavelength of 210 nm.
  • Example 1 In a 1 L four-necked flask equipped with a stirring blade, a thermometer, and a cooling tube, the following chemical formula (27);
  • IPEG10 represented by the formula, unreacted IPN10, the following chemical formula (29);
  • a 100 mL sample tube equipped with a stirrer was charged with 1.95 g of a water-soluble monomer-containing composition (1-2) containing IPEC10, 0.49 g of hydroxyethyl acrylate, and 9.40 g of pure water, and stirred and mixed.
  • the internal temperature was raised to 80 ° C.
  • 0.42 g of a 15% aqueous sodium persulfate solution was added, and the mixture was stirred for 1 hour while maintaining the internal temperature at 80 ° C., to obtain 12.26 g of the polymer (1-3).
  • the obtained polymer confirmed that the monomer was consumed using NMR and gas chromatography. An adsorption test on mud was performed using the obtained polymer.
  • Table 1 shows the charged molar ratio and formulation of the reaction raw materials charged to obtain the intermediate-containing composition (1-1).
  • Table 1 shows the IPN10, IPEG10, and secondary substances contained in the obtained intermediate-containing composition (1-1).
  • Example 2 1679.8 g of IPN10 and 1406.0 g of epichlorohydrin (ECH) are charged all at once into a 5 L four-necked flask equipped with a stirring blade, a thermometer, and a cooling tube, and heated to an internal temperature of 50 ° C. while stirring and mixing. did. To this, 374.3 g of a 48% sodium hydroxide aqueous solution was added dropwise over 2 hours, and the mixture was further stirred for 4 hours while maintaining the internal temperature of 50 ° C. During the reaction, the system was evacuated and the reaction was carried out while distilling off water (prescription A).
  • the obtained polymer confirmed that the monomer was consumed using NMR and gas chromatography.
  • An adsorption test on mud was performed using the obtained polymer.
  • Table 1 shows the charged molar ratio and formulation of the reaction raw materials charged to obtain the intermediate-containing composition (2-1).
  • Table 1 shows the IPN10, IPEG10, and secondary ingredients contained in the obtained intermediate-containing composition (2-1).
  • Example 3 A 2 L four-necked flask equipped with a stirring blade, thermometer, and cooling tube was charged with 802.0 g of IPN10 and 422.1 g of epichlorohydrin (ECH) in a lump, and heated to an internal temperature of 50 ° C. while stirring and mixing. did. 91.2 g of flaky sodium hydroxide was gradually added thereto over 2 hours, and the mixture was further stirred for 5 hours while maintaining the internal temperature of 50 ° C. (Formulation B). After cooling the resulting solution to room temperature, the precipitated salt is removed by filtration, and further, epichlorohydrin and water mixed by vacuum distillation are removed to remove IPEG10, unreacted IPN10, byproduct 1 and byproduct.
  • ECH epichlorohydrin
  • a 100 mL sample tube equipped with a stirrer was charged with 2.36 g of a water-soluble monomer-containing composition (3-2) containing IPEC10, 0.53 g of hydroxyethyl acrylate, and 10.25 g of pure water, and mixed by stirring.
  • the internal temperature was raised to 80 ° C.
  • 0.46 g of 15% aqueous sodium persulfate solution was added, and the mixture was stirred for 1 hour while maintaining the internal temperature at 80 ° C., to obtain 13.60 g of the polymer (3-3).
  • the obtained polymer confirmed that the monomer was consumed using NMR and gas chromatography. An adsorption test on mud was performed using the obtained polymer.
  • Table 1 shows the charged molar ratio and formulation of the reaction raw materials charged to obtain the intermediate-containing composition (3-1).
  • Table 1 shows the IPN10, IPEG10, and secondary ingredients contained in the obtained intermediate-containing composition (3-1).
  • Table 1 shows the charged molar ratio and formulation of the reaction raw materials charged to obtain the intermediate-containing composition (4-1).
  • Table 1 shows the IPN10, IPEG10, and secondary ingredients contained in the obtained intermediate-containing composition (4-1).
  • Amount of organism 1 and by-product 2, polymerization test conducted using water-soluble monomer-containing composition (4-2), and adsorption to mud conducted using polymer (4-3) The test results are shown in Table 2.
  • the symbol in Table 1 and 2 is as follows.
  • IPN10 ethylene oxide average 10 mol adduct of isoprenol ECH: epichlorohydrin NaOH: sodium hydroxide
  • IPEG10 terminal glycidated product of IPN10
  • IPEG10 content mass proportion of IPEG10 contained in intermediate-containing composition
  • IPN10 content in intermediate-containing composition
  • Proportion of IPN10 contained in by-product 1 molar ratio of by-product 1 corresponding to compound (B-1) with respect to IPEG10 and molar ratio with respect to the total amount of IPEG10 and IPN10 by-product 2: compound (B- 2)
  • the content of the compound (B) in the composition is 0.1 to 6.0 with respect to the content of the compound (A). It has been demonstrated that when the polymer is produced using a monomer-containing composition derived from the composition, it can be prevented from being remarkably gelled. Furthermore, it has also been demonstrated that a polymer produced using a monomer-containing composition derived from such a composition has an excellent adsorption capacity for mud.
  • IPN10 was used as compound (I), epichlorohydrin as epihalohydrin, and sodium hydroxide as an alkali compound.
  • the mechanism that can prevent gelation during the polymerization reaction by setting the content of the compound (B) by-produced during the synthesis of the compound (A) to a specific range is In the case where the polymerization reaction is carried out using a monomer-containing composition derived from an intermediate-containing composition for water-soluble monomers containing a specific amount of compound (B), the same applies.
  • the mechanism by which a polymer produced using a monomer-containing composition derived from a composition having a content of B) in a specific range exhibits an excellent adsorption ability to mud is the compound (B).
  • Water containing a specific amount They are all similar in nature monomer-body intermediate containing composition polymer prepared by using a monomer-containing composition derived from. Therefore, it can be said from the results of the above-described embodiments that the present invention can be applied in the entire technical scope of the present invention and in various forms disclosed in this specification, and can exhibit advantageous effects.
  • the ethylene oxide adduct of isoprenol, the cationic group-containing monomer and the reaction intermediate were quantified by liquid chromatography under the conditions described in ⁇ Quantification of intermediate composition> above.
  • the solid content of the polymer was measured as described in ⁇ Measurement of Solid Content> above.
  • the weight average molecular weight and dye migration preventing ability of the polymer were measured according to the following methods.
  • N-vinylpyrrolidone was measured using liquid chromatography under the following conditions.
  • Eluent: methanol / water 1/24 (containing 0.4% by mass of sodium 1-heptanesulfonate)
  • Injection volume 10 ⁇ L UV detector: 235 nm
  • a targot meter is set at 40 ° C., 500 mL of hard water, 0.7 g of zeolite, 7.7 g of 5% by mass sodium carbonate aqueous solution, 3.5 g of 5% by mass LAS (obtained from Kao Corporation), 3.5 g solid A 1% polymer aqueous solution 3.5 g in terms of a fraction and 2 g of a 0.25% by mass aqueous solution of chlorazole black LF (reagent obtained from Tokyo Chemical Industry Co., Ltd.) as a dye were placed in a pot and stirred at 100 rpm for 1 minute. Then, 10 white cloths were put and stirred at 100 rpm for 30 minutes.
  • chlorazole black LF reaction obtained from Tokyo Chemical Industry Co., Ltd.
  • a detergent composition containing a test sample was prepared with the following formulation.
  • SFT-70H Nippon Shokubai Co., Ltd., polyoxyethylene alkyl ether
  • Neoperex F-65 manufactured by Kao Corporation, sodium dodecylbenzenesulfonate
  • 7.7 g active ingredient 5 g
  • Coatamine 86W manufactured by Kao Corporation, stearyltrimethylammonium chloride
  • 17.9 g active ingredient 5 g) Diethanolamine; 5g Ethanol; 5 g Propylene glycol; 5g
  • Test sample solid content conversion: 1.5 g Ion-exchanged water; balance (the amount of ion-exchanged water is appropriately adjusted so that the total amount is 100 g, with the amount of test sample used as the actual usage)
  • the components are sufficiently stirred so that each component is uniform, and the turbidity value at 25
  • Example 4 Into a 200 ml four-necked flask equipped with a stirring blade, thermometer, and cooling tube, 100 g of IPN10, 52.7 g (0.57 mol) of epichlorohydrin, and 3.1 g (0.01 mol) of tetrabutylammonium bromide are charged in a lump and mixed. However, the internal temperature was raised to 40-50 ° C. To this, 7.6 g (0.19 mol) of pelleted sodium hydroxide (hereinafter also referred to as “NaOH”) was gradually added over 30 minutes, and while maintaining the internal temperature at 45 to 50 ° C., further 5 Stir for 5 hours.
  • NaOH pelleted sodium hydroxide
  • Example 5 A 200 ml four-necked flask equipped with a stirring blade, a thermometer, and a condenser tube was charged with 100 g of IPN25, 23.3 g (0.25 mol) of epichlorohydrin, and 1.4 g (4.4 mmol) of tetrabutylammonium bromide in a lump and mixed with stirring. However, the internal temperature was raised to 45 to 50 ° C. To this, 3.4 g (0.084 mol) of pellet-like NaOH was gradually added over 30 minutes, and the mixture was further stirred for 5.5 hours while maintaining the internal temperature of 40 to 50 ° C.
  • Example 6 A 200 ml four-necked flask equipped with a stirring blade, a thermometer, and a condenser tube is charged with 100 g of IPN50, 12.3 g (0.13 mol) of epichlorohydrin, and 0.72 g (2.3 mmol) of tetrabutylammonium bromide, and mixed with stirring. However, the internal temperature was raised to 40-50 ° C. To this, 1.8 g (0.044 mol) of pellet-like NaOH was gradually added over 30 minutes, and the mixture was further stirred for 5.5 hours while maintaining the internal temperature of 40 to 50 ° C.
  • Example 7 In a 200 ml four-necked flask equipped with a magnetic stirrer, thermometer, condenser, and dropping funnel, 100 g of IPN10, 0.306 g (0.002 mol) of 46% boron trifluoride-diethyl ether complex were placed, While stirring at a temperature of 80 ° C., 18.2 g (0.19 mol) of epichlorohydrin was added dropwise over 2 hours, followed by further stirring for 4 hours. Thus, an intermediate [D] of the monomer (1) was obtained. As a result of analysis by high performance liquid chromatography, the yield was 60 mol%.
  • the reaction solution was kept at 90 ° C. (ripening) for another 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (2) was obtained.
  • the weight average molecular weight of the polymer (2) was 19,800, and the number average molecular weight was 7,400.
  • the reaction solution was kept at 90 ° C. (ripening) for another 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (3) was obtained.
  • the weight average molecular weight of the polymer (3) was 16,400, and the number average molecular weight was 6,800.
  • the reaction solution was kept at 90 ° C. (ripening) for another 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (4) was obtained.
  • the weight average molecular weight of the polymer (4) was 15,100, and the number average molecular weight was 6,200.
  • the reaction solution was kept at 90 ° C. (ripening) for another 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (5) was obtained.
  • the weight average molecular weight of the polymer (5) was 8,300, and the number average molecular weight was 3,500.
  • the dropping time was 180 minutes for AM, 120 minutes for monomer (1), 120 minutes for IPN10, 190 minutes for 15% NaPS and 35% SBS. Moreover, the dropping rate of each solution was made constant, and each solution was dropped continuously. After completion of the dropwise addition of AM, the reaction solution was kept at 90 ° C. (ripening) for another 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (6) was obtained.
  • Each dropping time was 180 minutes for 60% AAm, 120 minutes for monomer (1), 120 minutes for IPN10, 190 minutes for 15% NaPS and 35% SBS. Moreover, the dropping rate of each solution was made constant, and each solution was dropped continuously. After the completion of the dropwise addition of 60% AAm, the reaction solution was kept at 90 ° C. (ripening) for 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (7) was obtained.
  • the dropping time was 180 minutes for HEA, 150 minutes for monomer (3), 150 minutes for IPN50, 190 minutes for 15% NaPS and 35% SBS. Moreover, the dropping rate of each solution was made constant, and each solution was dropped continuously. After completion of the dropwise addition of HEA, the reaction solution was kept at 90 ° C. for 30 minutes (ripening) to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (8) was obtained.
  • each solution was dropped continuously.
  • the reaction solution was kept at 65 ° C. (ripening) for 30 minutes to complete the polymerization.
  • the polymerization reaction solution was stirred and allowed to cool. In this way, an aqueous solution of the polymer (9) was obtained.
  • Comparative polymerization example 1 In a 1000 mL glass separable flask equipped with a reflux condenser and a stirrer (paddle blade), 10.0 g of pure water and 475.0 g of a 60% aqueous solution of diallyldimethylammonium chloride (hereinafter also referred to as 60% DADMAC), 15.0 g of methyl methacrylate (hereinafter also referred to as MMA) was charged, and the temperature was raised to the boiling point while stirring to obtain a polymerization reaction system.
  • 60% DADMAC diallyldimethylammonium chloride
  • MMA methyl methacrylate
  • Example 8 Polyvinylpyrrolidone K30 (manufactured by Wako Pure Chemical Industries, Ltd.) which is a homopolymer of N-vinylpyrrolidone (NVP) as the polymers (1) to (5), the comparative polymer (1) and the comparative polymer (2) According to the above method, the compatibility with the surfactant and the ability to prevent dye migration were evaluated. The results are summarized in Table 3. The abbreviations in Table 3 are as follows.
  • IPN10 Ethylene oxide average 10 mol adduct of isoprenol
  • IPN25 Ethylene oxide average 25 mol adduct of isoprenol
  • IPN50 Ethylene oxide average 50 mol adduct of isoprenol
  • NVP N-vinylpyrrolidone
  • DADMAC diallyldimethylammonium chloride
  • MMA methyl methacrylate
  • the polymer in the present invention has significantly superior dye transfer preventing ability and compatibility with a surfactant as compared with a conventional comparative polymer. It was revealed that the cationic group-containing monomer of the present invention can be preferably used as a raw material for these polymers.
  • a cationic group-containing monomer having a specific structure is used as one kind of monomer component in the synthesis of the polymer, but it is represented by the general formula (12).
  • the mechanism in which a polymer synthesized using a cationic group-containing monomer as a monomer component exhibits excellent dye transfer preventing ability and compatibility with a surfactant is the cation represented by the general formula (12).
  • the ethylene oxide adduct of isoprenol, the amino group-containing monomer, and the reaction intermediate were quantified by liquid chromatography under the conditions described in ⁇ Quantification of Intermediate Composition> above. Further, the compatibility of the polymer with the surfactant and the measurement of the solid content were performed as described in the above ⁇ Method for evaluating the compatibility with the surfactant> and ⁇ Measurement of the solid content>. The weight average molecular weight of the polymer and the ability to prevent recontamination of the polymer were measured and evaluated according to the following methods.
  • the anti-recontamination ability test using carbon black was performed according to the following procedure.
  • a polyester cloth obtained from Test fabric was cut into 5 cm ⁇ 5 cm to prepare a white cloth.
  • the whiteness of the white cloth was measured by reflectance using a colorimetric color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd. in advance.
  • Pure water was added to 1.1 g of calcium chloride dihydrate to 15 kg to prepare hard water.
  • Pure water was added to 4.0 g of polyoxyethylene (20) lauryl ether to make 100.0 g to prepare a surfactant aqueous solution.
  • the pH was adjusted to 8.5 with sodium hydroxide.
  • a targot meter was set at 25 ° C., 1 L of hard water, 5 g of an aqueous surfactant solution, 1 g of a 5% polymer aqueous solution in terms of solid content, and 1.0 g of carbon black were placed in a pot and stirred at 150 rpm for 1 minute. . Then, 5 white cloths were put and stirred at 100 rpm for 10 minutes. (5) Water of the white cloth was drained by hand, 1 L of tap water adjusted to 25 ° C. was put in the pot, and stirred at 100 rpm for 2 minutes.
  • Recontamination prevention rate (%) (whiteness after washing) / (whiteness of raw white cloth) ⁇ 100
  • Example 9 Into a 1 L four-necked flask equipped with a stirring blade, a thermometer, and a condenser tube, 400 g of IPN10, 351.7 g of epichlorohydrin, 94.9 g of 48% aqueous sodium hydroxide (hereinafter also referred to as “48% NaOH”) were charged, 50 The reaction was allowed to stir for 6 hours while maintaining the temperature. After the reaction, the generated salt is removed, and then the epichlorohydrin and water are removed from the remaining organic layer to contain an intermediate [A] (a compound having a structure where n is an average of 10 in the general formula (31)). 451.2g of reaction liquid was obtained. As a result of analysis by liquid chromatography, 324.9 g of intermediate [A] and 64.1 g of IPN10 were contained.
  • intermediate [A] a compound having a structure where n is an average of 10 in the general formula (31)
  • Example 10 A 200 mL four-necked flask equipped with a stirring blade, a thermometer, and a cooling tube was charged with 100.0 g of the reaction solution containing the intermediate [A] synthesized in Example 9 and 23.2 g of dibutylamine, and maintained at 100 ° C. Stir for 8 hours. Thus, 123.2 g of a solution of the monomer (6) (a compound having a structure where n is an average of 10 in the following general formula (34)) was obtained. As a result of analysis by liquid chromatography, 83.6 g of monomer (6) and 10.2 g of IPN10 were contained. Further, as shown in FIG. 6, the production of the monomer (6) was also confirmed from 1 H-NMR.
  • Example 11 Into a 1 L four-necked flask equipped with a stirring blade, a thermometer, and a condenser tube, 500 g of IPN25, 233.7 g of epichlorohydrin, and 25.3 g of NaOH in pellet form were charged, and the mixture was stirred for 16 hours while being kept at 50 ° C. for reaction. After the reaction, the generated salt is removed, and then the epichlorohydrin and water are removed from the remaining organic layer to contain intermediate [B] (a compound having a structure where n is an average of 25 in the general formula (31)). 499.4g of reaction liquid was obtained. As a result of analysis by liquid chromatography, 389.1 g of intermediate [B] and 43.5 g of IPN25 were contained.
  • intermediate [B] a compound having a structure where n is an average of 25 in the general formula (31)
  • Example 12 A 200 mL four-necked flask equipped with a stirring blade, a thermometer, and a cooling tube was charged with 100.0 g of the reaction solution containing the intermediate [B] synthesized in Example 11 and 11.3 g of dibutylamine, and maintained at 100 ° C. Stir for 8 hours. In this way, 111.3 g of a solution of the monomer (8) (a compound having a structure in which n is an average of 25 in the general formula (34)) was obtained. As a result of analysis by liquid chromatography, 81.7 g of monomer (8) and 6.8 g of IPN25 were contained. The production was confirmed from 1 H-NMR as in Example 10.
  • Example 13 A 200 mL four-necked flask equipped with a stirring blade, a thermometer, and a condenser tube was charged with 100 g of IPN50, 25.0 g of epichlorohydrin, and 2.6 g of pellet-like NaOH, and the mixture was allowed to react for 16 hours while maintaining at 50 ° C. After the reaction, the generated salt is removed, and then the epichlorohydrin and water are removed from the remaining organic layer to contain the intermediate [C] (a compound having a structure where n is 50 on average in the general formula (31)). 102.3g of reaction liquid was obtained. As a result of analysis by liquid chromatography, it was found that 71.7 g of intermediate [C] and 10.0 g of IPN50 were contained.
  • Example 14 A 200 mL four-necked flask equipped with a stirring blade, a thermometer, and a cooling tube was charged with 100.0 g of the reaction solution containing the intermediate [C] synthesized in Example 13 and 5.4 g of dibutylamine, and kept at 100 ° C. Stir for 8 hours. Thus, 105.4 g of a solution of the monomer (10) (a compound having a structure in which n is an average of 50 in the general formula (34)) was obtained. As a result of analysis by liquid chromatography, 70.3 g of monomer (10) and 9.8 g of IPN50 were contained. The formation was also confirmed from 1 H-NMR as in Example 10.
  • the dripping start of each solution is simultaneous, and the dropping time of each solution is 180 minutes for HEA, 120 minutes for monomer (5), 120 minutes for 80% IPN10, 190 minutes for 15% NaPS, 35
  • The% SBS was 180 minutes and the pure water was 180 minutes.
  • the dropping rate of each solution was made constant, and each solution was dropped continuously.
  • the reaction solution was kept at 70 ° C. (ripening) for 30 minutes to complete the polymerization. In this way, an aqueous solution (copolymer composition (10)) containing the copolymer (10) having a solid content concentration of 45% was obtained.
  • Comparative polymerization example 2 Polyethyleneimine (weight average molecular weight (Mw); 9,500, number average molecular weight (Mn); 6,500, hereinafter also referred to as PEI) in a glass 100 mL separable flask equipped with a reflux condenser, a thermometer, and a stirrer. ) was added while stirring, and 10 g of Denacol EX-121 (manufactured by Nagase ChemteX Corporation, 2-ethylhexyl glycidyl ether (hereinafter also referred to as 2EHGE)) was added. This polymer mixture was heated to 60 ° C. with stirring and reacted for 4 hours to obtain a comparative copolymer (3).
  • the comparative copolymer (3) is completely dissolved at an arbitrary ratio with respect to water, and is formed by opening an epoxy ring at around 3.5 ppm in 1 H-NMR spectrum measurement in D 2 O. Since the signal derived from methine proton was detected, its generation was confirmed.
  • the aqueous solutions of the copolymers (10) to (11) were dried and measured by 1 H-NMR. As a result, no peak due to the residual monomer was detected, and a polymer having a composition according to the charged amount (see Table 4) was obtained. I was able to confirm.
  • Example 15 For the copolymers (10) to (11) and the comparative copolymer (3) obtained in Polymerization Examples 10 to 11 and Comparative Polymerization Example 2, the compatibility with the surfactant and the ability to prevent re-contamination are obtained in accordance with the above method. evaluated. The results are shown in Table 4. The abbreviations in Table 4 are as follows. IPN10: ethylene oxide average 10-mole adduct of isoprenol HEA: hydroxyethyl acrylate DAA: dimethylaminoethyl acrylate PEI: polyethyleneimine 2EHGE: 2-ethylhexyl glycidyl ether
  • the amino group-containing polymer in the present invention has significantly better compatibility with the surfactant and re-contamination prevention ability than the conventional comparative polymer. It has been clarified that the amino group-containing monomer of the present invention can be preferably used as a raw material for these polymers.
  • an amino group-containing monomer having a specific structure is used as one kind of monomer component in the synthesis of the polymer, and is represented by the general formula (14).
  • a mechanism in which a polymer synthesized using an amino group-containing monomer as a monomer component exhibits excellent compatibility with a surfactant and anti-recontamination ability is the amino group represented by the general formula (14).
  • the sulfonic acid group-containing monomer, the reaction intermediate, and the ethylene oxide adduct of isoprenol were quantified by liquid chromatography under the conditions described in ⁇ Quantification of intermediate composition> above.
  • the measurement of the solid content of the polymer was performed as described in ⁇ Measurement of Solid Content> above.
  • the weight average molecular weight, gelation resistance and calcium ion scavenging ability of the polymer were measured and evaluated according to the following methods.
  • the turbidity of the test solution caused by the gel formed by combining the copolymer and calcium ions is detected by measuring the absorbance in a quartz cell with a UV wavelength of 380 nm and 50 mm, and the gel is made resistant to gelation by the obtained absorbance value. Noh was evaluated. It shows that gel-proof ability is excellent, so that a value is small.
  • 4M-KCl aqueous solution 4M-KCl aqueous solution
  • test calcium ion standard solution a necessary amount (50 g per sample) of a 0.001 mol / L aqueous solution was similarly prepared using calcium chloride dihydrate.
  • 10 mg of the test sample ((co) polymer) in a 100 mL beaker was weighed in terms of solid content, added with 50 g of the above-mentioned calcium ion standard solution for testing, and sufficiently stirred using a magnetic stirrer.
  • the (co) polymer used as a test sample was medium in a 48% aqueous sodium hydroxide solution (hereinafter also referred to as “48% NaOH”) so that the pH was 7.5 when the solid content was 40% by weight. The sum was used.
  • the calibration curve sample solution and the test sample solution thus prepared were measured with the Orion 9720BNWP Sure-Flow calcium composite electrode manufactured by Thermo Fisher Scientific Co. using a titration device COM-1700 manufactured by Hiranuma Sangyo Co., Ltd. .
  • Example 16 A 1 L four-necked flask equipped with a stirring blade, a thermometer, and a condenser tube was charged with 400 g of IPN10, 351.7 g of epichlorohydrin, and 94.9 g of 48% NaOH, and allowed to react by stirring for 6 hours while maintaining at 50 ° C. After the reaction, the generated salt is removed, and then the epichlorohydrin and water are removed from the remaining organic layer to contain an intermediate [A] (a compound having a structure where n is an average of 10 in the general formula (31)). 451.2g of reaction liquid was obtained. As a result of analysis by liquid chromatography, 324.9 g of intermediate [A] and 64.1 g of IPN10 were contained.
  • the polymerization reaction solution was stirred and allowed to cool, and 8.1 g of 48% NaOH was gradually added dropwise to the polymerization reaction solution while stirring to neutralize. In this way, an aqueous solution of the polymer (12) was obtained.
  • the weight average molecular weight of the polymer (12) was 48,000.
  • each solution was 120 minutes for 80% AA and 15% NaPS and 75 minutes for 35% H 2 O 2 . Moreover, the dropping rate of each solution was made constant, and each solution was dropped continuously. After completion of the dropwise addition of the 80% AA solution, the polymerization reaction solution was maintained (ripened) at the boiling point reflux for 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool, and 8.1 g of 48% NaOH was gradually added dropwise to the polymerization reaction solution while stirring to neutralize. In this way, an aqueous solution of the polymer (13) was obtained.
  • the dropping time of each solution was 180 minutes for the monomer (11) solution, 80% AA and 48% NaOH, 210 minutes for 15% NaPS, and 170 minutes for 40% SBS. Moreover, the dropping rate of each solution was made constant, and each solution was dropped continuously. After completion of the dropwise addition of 15% NaPS, the polymerization reaction solution was kept (ripened) at 90 ° C. for 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool, and 427.5 g of 48% NaOH was gradually added dropwise to the polymerization reaction solution while stirring to neutralize. In this way, an aqueous solution of the polymer (14) was obtained.
  • each solution was 120 minutes for 30% IPN10, 80% AA and 15% NaPS, and 75 minutes for 35% H 2 O 2 . Moreover, the dropping rate of each solution was made constant, and each solution was dropped continuously. After completion of the dropwise addition of the 80% AA solution, the polymerization reaction solution was maintained (ripened) at the boiling point reflux for 30 minutes to complete the polymerization. After completion of the polymerization, the polymerization reaction solution was stirred and allowed to cool, and 8.1 g of 48% NaOH was gradually added dropwise to the polymerization reaction solution while stirring to neutralize. In this way, an aqueous solution of the comparative polymer (4) was obtained.
  • Example 17 The polymer (12) and the comparative polymer (4) obtained in Polymerization Example 12 and Comparative Polymerization Example 3 were evaluated for gelation resistance and calcium ion scavenging ability according to the above methods. The results are shown in Table 5.
  • the sulfonic acid group-containing polymer in the present invention has significantly superior gelation resistance while having the same calcium scavenging ability as compared with the conventional comparative polymer. Yes. It became clear that the sulfonic acid group-containing monomer of the present invention can be preferably used as a raw material for these polymers.
  • a sulfonic acid group-containing monomer having a specific structure is used as one kind of monomer component in the synthesis of the polymer, but it is represented by the general formula (16).
  • the mechanism in which a polymer synthesized using a sulfonic acid group-containing monomer as a monomer component exhibits excellent gelation resistance and metal ion scavenging ability is the sulfonic acid group represented by the general formula (16).
  • the organic ether group-containing monomer, the reaction intermediate, and the ethylene oxide adduct of isoprenol were quantified by liquid chromatography under the following conditions to determine the reaction yield and the raw material conversion rate.
  • Detector RI, UV (detection wavelength 210 nm)
  • Example 18 Next, in a 200 mL four-necked flask equipped with a stirring blade, a thermometer, and a cooling tube, 150.0 g of the reaction solution containing the intermediate [A], 159.9 g of n-butanol, and granular potassium hydroxide. 4 g was charged and stirred for 2 hours while maintaining at 80 ° C. After the reaction, undissolved potassium hydroxide was removed, then n-butanol was removed from the remaining organic layer, and monomer (12) (in the general formula (36) shown below, n had an average of 10 structures). Compound (154.1 g) was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Compounds (AREA)

Abstract

重合性の末端二重結合を有し、水溶性重合体の製造に好適に用いられる、水溶性重合体を高収率で製造可能な水溶性のポリアルキレングリコール系単量体の製造に好適に用いることができる水溶性単量体用中間体を含む組成物、その製造方法、及び、それによって得られる水溶性単量体を含む組成物を提供する。また、高硬度下においても、優れたカルシウムイオンやマグネシウムイオン等の金属イオンの捕捉能、耐ゲル化能を発揮し、再汚染防止能にも優れ、更に、従来よりも染料移行防止能に優れ、界面活性剤との相溶性にも優れた水溶性重合体の原料として用いることができる水溶性単量体、及び、そのような水溶性単量体を従来よりも高収率かつ高選択率(高純度)に製造することができる製造方法を提供する。 特定の構造を有する化合物(A)を含む水溶性単量体用中間体含有組成物であって、該組成物は、特定の構造を有する化合物(B)を特定量含む水溶性単量体用中間体含有組成物。又は、特定の構造を有する水溶性単量体。

Description

水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体含有組成物、水溶性単量体用中間体、水溶性単量体及びその製造方法
本発明は、水溶性単量体用中間体含有組成物、その製造方法、及び、それによって得られる水溶性単量体含有組成物、並びに、水溶性単量体用中間体に関する。より詳しくは、水溶性重合体の原料単量体となり得る化合物を製造するための中間体として好適に用いることができる水溶性単量体用中間体を含む組成物、その製造方法、及び、それによって得られる水溶性単量体含有組成物、並びに、水溶性単量体用中間体に関する。また、本発明は、水溶性単量体、及び、その製造方法に関する。
水溶性単量体は、通常では重合体原料として重合体に水溶性や水分散性を付与するために用いられる。中でも、ポリアルキレングリコール系単量体が水溶性単量体として工業的に汎用されている有用な工業原料の一つであって、例えば、カルボン酸(塩)系単量体と共重合して多様な用途に用いることのできる重合体が得られる。そしてこのような水溶性重合体は、例えば、分散剤、洗剤組成物、スケール防止剤、セメント添加剤、増粘剤等の原料として好適に用いられている。このような水溶性単量体において、重合性二重結合と共に、特定の官能基を有するポリアルキレングリコール系単量体が注目され、その開発が行われている。これによって得られる重合体に官能基を与え、それによる機能性付与等が活発に検討されているところである。
ところで、特定の官能基を有する水溶性単量体の製造においては、水溶性等の特性を発現するポリアルキレングリコール鎖と共に、特定の官能基を導入するため、その合成スキームを工夫しなければならず、いくつかの合成手法が開示されている。
例えば、従来の特定の官能基をもつポリアルキレングリコール系単量体の合成方法としては、カルボキシル基及び/又はカルボキシル基の塩を有し、特定の構造を有するポリアルキレングリコール系化合物の製造方法の一つとして、不飽和アルコールにアルキレンオキサイドを付加した化合物とエピクロルヒドリンとを反応させ、それによって得られた反応物に、特定の反応性基とカルボキシル基とを有する化合物を反応させる方法が開示されている(例えば、特許文献1参照。)。
また、上述した不飽和アルコールにアルキレンオキサイドを付加した化合物とエピクロルヒドリンとを反応させることによって得られる反応物と同様の構造を有する化合物としては、例えば、ポリエーテル共重合体の単量体成分の一つとして、特定の構造を有する単量体が開示されている(例えば、特許文献2、3、4参照。)。その他、オリゴオキシエチレン側鎖を有する特定のポリエーテルポリマーを合成するための単量体成分として、特定の構造を有する単量体が開示されている(例えば、特許文献5参照。)。
一方、特定の官能基を有する水溶性単量体の一つであるカチオン性基含有単量体を重合することにより得られるカチオン性重合体、アミノ基含有単量体を重合することにより得られるアミノ基含有重合体は、従来より、凝固剤、凝集剤、印刷インク、接着剤、洗剤用添加剤、土壌調整(改質)剤、難燃剤、シャンプー・ヘアースプレー・石鹸・化粧品用添加剤、アニオン交換樹脂、繊維・写真用フィルムの染料媒染剤や助剤、製紙における顔料展着剤、紙力増強剤、乳化剤、防腐剤、織物・紙の柔軟剤、潤滑油の添加剤など、幅広い分野で用いられている。
例えば、特定の単量体成分に由来する主鎖を有する重合体が開示されており、代表的なカチオン性単量体である、ジアリルジメチルアンモニウムクロリドと疎水性コモノマーのコポリマーが、繊維からの色流れ及び/又は染料移動を防止するための洗濯用添加剤として使用できることが開示されている(例えば、特許文献6参照。)。また、アルキレンイミン構成単位を有する特定の変性アルキレンイミン系重合体が開示されており、そのような重合体が、洗浄剤等の用途において優れた性能を発揮することが開示されている(例えば、特許文献7参照。)。非イオン界面活性剤及び非石鹸系アニオン界面活性剤を特定量含み、ビニルピリジン部を有する単量体に由来した構成単位を含む高分子化合物と、アルカノールアミンとを含有する洗浄剤組成物が高い洗浄力を示すことが開示されている(例えば、特許文献8参照。)。その他、組成物に含まれる特定のシロキサンとして、アミノ基含有単量体が開示されている(例えば、特許文献9参照。)。
また、特定の官能基を有する水溶性単量体の一つであるスルホン酸基含有単量体を重合することにより得られるスルホン酸基含有重合体は、従来より、水処理剤、洗剤用ビルダー、洗剤組成物、分散剤、洗浄剤など、幅広い分野で用いられている。
例えば、分子内に、末端二重結合と、スルホン酸基を含む特定の構造部分とを有するポリアルキレングリコール系化合物が開示されており、そのような重合体が、分散剤、洗剤用ビルダーなどの水系用途において高い性能を発揮することが開示されている(例えば、特許文献10参照。)。
更には、特定の官能基を有する水溶性単量体の一つである疎水性部分を含有するポリアルキレングリコール系単量体を原料とするポリアルキレングリコール系重合体は、疎水性相互作用によって疎水性物質を吸着し、ポリアルキレングリコール鎖の分散性とあいまって、疎水性粒子の分散性、疎水性汚れの再汚染防止能、洗浄力に優れるという特性を発揮し、洗剤組成物や繊維処理剤、水処理剤、顔料等の各種分散剤等の様々な用途に好適に適用することができることが知られている。そのような単量体として、例えば、アリルグリシジルエーテルに由来する重合性二重結合とポリアルキレングリコール鎖とを有するポリアルキレングリコール系単量体であって、ポリアルキレングリコール鎖中及び/又は末端に疎水性部分を有する単量体や、イソプレノール、アリルアルコール、又は、メタリルアルコールに由来する重合性二重結合とポリアルキレングリコール鎖とを有するポリアルキレングリコール系単量体であって、ポリアルキレングリコール鎖中及び/又は末端に炭素数1~20のグリシジルエーテルに由来する疎水性部分を有する単量体が開示されている。また、これらのポリアルキレングリコール系単量体の製造方法として、イソプレノール、アリルアルコール、又は、メタリルアルコールにポリアルキレングリコール鎖を付加した付加物と、炭素数1~20のグリシジルエーテルとを反応させることにより製造する方法が開示されている(例えば、特許文献11参照。)。
近年、消費者の環境問題への意識の高まりにより、洗濯用添加剤(洗剤添加剤)に要求される性能が変化しつつある。すなわち、節水を目的として、風呂の残り湯を洗濯に使用する等の洗濯が定着してきた。これによって、風呂の残り湯に含まれる汚れ成分が洗濯中に繊維等に付着したり、風呂の追い焚きによって硬水成分が濃縮してしまうといったことが問題となるため、より高硬度下においても、洗浄力を悪化させる原因となる水中のカルシウムイオンやマグネシウムイオン等の金属イオンを捕捉する能力や耐ゲル化能、洗濯中に汚れ成分の繊維への再付着を抑制する性能(「再汚染防止能」という)等が従来よりも厳しく求められるようになってきている。また、消費者が節水を図ったり、排水を低減することへの志向により、ドラム型洗濯機を使用する家庭が増加している。節水条件下での洗濯により、これまで以上に、洗濯時に衣料から衣料への染料の移行が問題となるため、従来より優れた染料の移行を抑制する性能(染料移行防止能)が、要求されているのが現状である。
また、ドラム型洗濯機の使用に適していることを始めとした理由から現在需要の増大している洗剤は、液体洗剤、とりわけ界面活性剤の含有量が50%以上であるような濃縮液体洗剤であるため、洗剤添加剤にはこのような濃縮液体洗剤への配合に適したものであることが必要とされ、従来よりも界面活性剤との相溶性に優れた洗剤添加剤が求められている。
特開2010-132814号公報(第1-2、15-17頁) 欧州特許公開第0838487号公報(第1-2頁) 再公表特許WO98/007772号公報(第47頁) 再公表特許WO97/042251号公報(第50頁) 特開昭63-241026号公報(第1-2頁) 国際公開第04/056888号パンフレット(第6-7、37頁) 特開2005-170977号公報(第2-3頁) 特開2008-1770号公報(第2-3頁) 国際公開第97/32475号パンフレット(第19頁) 特開2008-303347号公報(第2、8頁) 特表2009-510175号公報(第2、11頁)
このような現状のもと、上述した洗剤組成物にも用いられる重合体やその原料となる水溶性単量体について、種々の検討が行われている。例えば、上述した特許文献1のように、水溶性を示すポリアルキレングリコール系単量体の製造方法について検討が行われているが、種々の重合体の重合原料として更に好適に用いるためには、更なる改善の余地があるものであった。
すなわち、水溶性単量体においては、その末端に重合性の二重結合を有することが好ましく、更に特定の官能基を他の末端に有することが好適である。これによって、単量体の重合性を確保しつつ、重合体を形成したときに特定の官能基が重合体側鎖の末端部に位置することになり、特定の官能基に由来する特性を発揮させやすいという利点がある。
従って、そのような構造を有する水溶性単量体を調製することが検討されているが、重合性の末端二重結合を有し、かつ他の末端に官能基を有し、ポリアルキレングリコール鎖によって水溶性を示す水溶性単量体としてのポリアルキレングリコール系単量体を重合して水溶性重合体を製造すると、ゲル化がおこってしまい、水溶性重合体の収率が低くなるということがわかった。
このようなポリアルキレングリコール系単量体を調製するには、その原料となる中間体が必要であり、その中間体が得られる水溶性単量体の重合特性に影響し、そこに水溶性重合体製造時に不具合を生じる課題があることを見出したものである。
また、上述したように、従来、様々な水溶性重合体が報告されているにもかかわらず、それらは、上述したような水系用途の性能に関して、例えば、洗剤添加剤として使用したときに高い染料移行防止能を発現する重合体に対する需要者のニーズ等の最近の厳しい要求を必ずしも充分に満足させることができるものとは言い切れず、このような新たなニーズに対応し、より高い性能を発揮して、洗剤添加剤等の用途に好適に用いることができる重合体について更なる改良の余地があった。
その他、疎水性部分を含有するポリアルキレングリコール系単量体の製造方法に関して、上述した特許文献11のように検討が行われているが、特許文献11に開示の製造方法を用いた場合には、2分子以上の炭素数1~20のグリシジルエーテルがポリアルキレングリコール鎖と重合性二重結合を有する単量体と反応して、副生物が生じてしまうため、反応の選択率が低く、得られるポリアルキレングリコール系単量体の純度が低くなる、という課題があった。そしてその結果、そのようにして得られたポリアルキレングリコール系単量体を重合することにより得られるポリアルキレングリコール系重合体の性能が充分に発揮されないおそれがあった。
本発明は、上記現状に鑑みてなされたものであり、重合性の末端二重結合を有し、水溶性重合体の製造に好適に用いられる、水溶性重合体を高収率で製造可能な水溶性のポリアルキレングリコール系単量体の製造に好適に用いることができる水溶性単量体用中間体を含む組成物、その製造方法、及び、それによって得られる水溶性単量体を含む組成物を提供することを目的とするものである。また、高硬度下においても、優れたカルシウムイオンやマグネシウムイオン等の金属イオンの捕捉能や耐ゲル化能を発揮する、再汚染防止能に優れる、及び、従来よりも染料移行防止能に優れ、界面活性剤との相溶性にも優れる、といった特性に優れる水溶性重合体の原料として用いることができる水溶性単量体、及び、そのような水溶性単量体を従来よりも高収率かつ高選択率(高純度)に製造することができる製造方法を提供することを目的とするものでもある。
本発明者は、重合性の末端二重結合を有し、かつ特定の官能基を有し、ポリアルキレングリコール鎖によって水溶性を示す水溶性単量体としてのポリアルキレングリコール系単量体を重合して水溶性重合体を製造する場合に、先ず、上述したようにゲル化がおこってしまうために水溶性重合体の収率が低下することを突き止めたものである。そして、ポリアルキレングリコール系単量体を合成するための中間体に着目し、その中間体を製造する際に、構造中に2つの不飽和結合を有する特定の構造の副生物が同時に生成し、この副生物が水溶性重合体の製造時に架橋成分として働くことが、ゲル化の大きな原因であることを見出した。そして、この特定の副生物の含有量について種々検討し、中間体を含む組成物中における該特定の構造を有する化合物の含有量を特定の範囲とすると、該中間体含有組成物から単量体を誘導し、水溶性重合体を製造した場合に、重合反応時のゲル化反応を充分に抑制することが可能となり、水溶性重合体を収率良く製造することが可能となることを見出したものである。そしてまた、該特定の構造を有する化合物の含有量を特定の範囲とすると、水溶性重合体を収率良く製造することができるだけでなく、製造される水溶性重合体に更に泥や布に対する吸着能を付与することや、高分子量の重合体としても粘度の低い重合体とすることが可能となるなどの新たな機能を付与することができることも見出した。
このように、水溶性単量体用中間体含有組成物において、特定の成分の含有量を特定の範囲とし、中間体を特定量含有するものとすることによって、上記課題を見事に解決し、更にそれらの中間体含有組成物から得られる水溶性重合体に新たな機能を付与することができることに想到し、本発明に到達したものである。
本発明者は更に、上記目的を達成するために様々な水溶性重合体/共重合体の原料となる水溶性単量体について検討を行った。その結果、特定の構造を有する水溶性単量体を原料とする重合体は、例えば洗剤添加剤として使用したときに、高硬度下においても、優れたカルシウムイオンやマグネシウムイオン等の金属イオンの捕捉能や耐ゲル化能を発揮する、再汚染防止能に優れる、及び、従来よりも染料移行防止能に優れ、界面活性剤との相溶性にも優れる、といった特性に優れたものとなり、洗剤添加物の用途において求められる特性に優れたものとなることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
本発明者はまた、上述した課題を解決するために様々な水溶性単量体の製造方法について検討を行ったところ、グリシジル基含有ポリアルキレングリコール系化合物と官能基含有化合物とを反応させることにより副生物が生成することなく、高収率かつ高選択率(高純度)に水溶性単量体を製造することができることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、下記一般式(1);
Figure JPOXMLDOC01-appb-C000014
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(A)を含む水溶性単量体用中間体含有組成物であって、上記組成物は、下記一般式(2);
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、同一若しくは異なって、水素原子又はメチル基を表す。Rは、同一若しくは異なって、メチレン基、エチレン基又は直接結合を表す。Xは、-CH-CH(OR´)-CH-O-、又は、直接結合を表し、R´は、水素原子又はグリシジル基を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、同一若しくは異なって、1~300の数を表す。)で表される化合物(B)を更に含み、上記化合物(B)の含有量が、化合物(A)の含有量に対して0.1~6.0モル%であり、上記化合物(A)の含有量は、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%である水溶性単量体用中間体含有組成物である。
本発明はまた、下記一般式(11);
Figure JPOXMLDOC01-appb-C000016
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Rは、下記一般式(7)~(9)のいずれかの構造を表す。)で表される水溶性単量体でもある。
Figure JPOXMLDOC01-appb-C000017
式中、*は、*の付された原子が一般式(11)におけるRと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。
本発明は更に、下記一般式(6);
Figure JPOXMLDOC01-appb-C000018
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Qは、下記一般式(7)~(10)のいずれかの構造を表す。)で表される水溶性単量体を製造する方法であって、上記製造方法は、(i)下記一般式(I);
Figure JPOXMLDOC01-appb-C000019
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとアルカリ化合物とを反応させる工程、又は、上記一般式(I)で表される化合物(I)とエピハロヒドリンとを触媒存在下反応させる工程のいずれかの工程と、(ii)上記(i)の工程で得られた反応物と、三級アミン塩、二級アミン、亜硫酸化合物、又は、水酸基含有化合物のいずれかとを反応させる工程、又は、上記(i)の工程で得られた反応物と二級アミンとを反応させ、該反応によって得られた反応物と四級化剤とを反応させる工程とを含む水溶性単量体の製造方法でもある。
Figure JPOXMLDOC01-appb-C000020
式中、*は、*の付された原子が一般式(6)におけるQと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。Rは、炭素数1~20の有機基を表す。
以下に本発明を詳述する。
本発明の水溶性単量体用中間体含有組成物は、下記一般式(1);
Figure JPOXMLDOC01-appb-C000021
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(A)、及び、下記一般式(2);
Figure JPOXMLDOC01-appb-C000022
(式中、Rは、同一若しくは異なって、水素原子又はメチル基を表す。Rは、同一若しくは異なって、メチレン基、エチレン基又は直接結合を表す。Xは、-CH-CH(OR´)-CH-O-、又は、直接結合を表し、R´は、水素原子又はグリシジル基を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、同一若しくは異なって、1~300の数を表す。)で表される化合物(B)を含むものであり、それらはそれぞれ1種であってもよく、2種以上であってもよい。また、上記中間体含有組成物は、化合物(A)及び化合物(B)を含む限りその他の成分を含んでいてもよい。
上記化合物(A)は、下記一般式(1);
Figure JPOXMLDOC01-appb-C000023
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表されるグリシジル基含有ポリアルキレングリコール系化合物であるが、該化合物は、末端のグリシジル基を適宜修飾することにより様々な官能基を有する化合物とすることができる。そして、様々な官能基を有する該化合物を重合性の炭素-炭素二重結合により重合することができ、様々な官能基を側鎖の末端に有し、側鎖のオキシアルキレン基によって水溶性を示す重合体を得ることができる。また、例えば、該様々な官能基を有する化合物とアクリル酸エステルとを共重合させた場合には、得られる共重合体中においてアクリル酸エステル由来の官能基と、該様々な官能基を有する化合物由来の側鎖末端の官能基とが、側鎖のオキシアルキレン基によって共重合体の構造中で離れた位置に存在することとなり、そのような官能基の位置関係に起因して得られる共重合体に新たな物性が付与される可能性が期待される。このように、化合物(A)は、側鎖末端に様々な官能基を有する水溶性重合体を合成するために用いられる単量体を合成する際の元となる水溶性単量体用中間体として有用な化合物である。
すなわち、下記一般式(1);
Figure JPOXMLDOC01-appb-C000024
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される水溶性単量体用中間体もまた、本発明の1つである。
なお、上記水溶性単量体用中間体は、側鎖末端に様々な官能基を有する水溶性重合体を合成するために用いられる単量体を合成する場合には、その単量体を合成するための中間体として用いることができるが、そのものを重合させることで重合体を合成することも可能である。すなわち、上記水溶性単量体用中間体は、重合体を合成するための単量体として用いることも可能なものである。したがって更には、上記水溶性単量体用中間体を含む本発明の水溶性単量体用中間体含有組成物についても、この組成物を用いて重合体を合成することが可能であり、単量体含有組成物として用いることも可能なものである。
上記一般式(1)において、Rは、水素原子又はメチル基を表し、Rは、メチレン基、エチレン基又は直接結合を表す。
ここで、本明細書中において、上記Rが直接結合を表すとは、上記一般式(1)中のHC=C(R)-R-O-で表される構造において、HC=C(R)-O-で表される構造であることを表している。すなわち、HC=C(R)-R-は、Rがメチル基、Rがメチレン基の場合にはメタリル基、Rがメチル基、Rがエチレン基の場合にはイソプレニル基、Rがメチル基、Rが直接結合の場合にはイソプロペニル基、Rが水素原子、Rがメチレン基の場合にはアリル基、Rが水素原子、Rがエチレン基の場合にはブテニル基、Rが水素原子、Rが直接結合の場合にはビニル基を意味するものである。
上記一般式(1)において、化合物(A)から誘導される単量体を重合させる際に重合することとなる炭素-炭素二重結合を有する基、すなわち、HC=C(R)-R-としては、重合性の観点から、イソプレニル基、メタリル基、アリル基、ビニル基が好ましい。より好ましくは、イソプレニル基、メタリル基、アリル基であり、重合性が高くなるにつれてゲル化する懸念が高くなることから、本発明のゲル化を抑制する効果が最も高くなるため、イソプレニル基、メタリル基が特に好ましい。
上記一般式(1)において、Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表すが、化合物(A)から誘導される単量体の水溶性が向上することから、Yは、エチレン基、プロピレン基、ブチレン基であることが好ましく、エチレン基、プロピレン基であることが特に好ましい。
上記アルキレン基としては、1種であってもよいし、2種以上であってもよいが、2種以上である場合には、(-Y-O-)のオキシアルキレン構造は、ランダム状に連続していても、交互に連続していても、ブロック状に連続していてもよい。
上記一般式(1)において、nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表すが、nは2以上が好ましい。化合物(A)のオキシアルキレン基(-Y-O-)の平均付加モル数がそのような範囲であった場合には、化合物(A)、更には化合物(A)から誘導される単量体は、沸点が高くなってしまうため、蒸留等により化合物(A)、又は、化合物(A)から誘導される単量体を精製することができず、化合物(A)の合成時に同時に生成する副生物と分離することが困難である。そのため、一般式(1)におけるnの数が大きく、化合物(A)の精製が困難であるような場合において、生成する副生物のうちの特定成分の含有量を特定量とした本発明の水溶性単量体用中間体含有組成物を用いることによって得られる、水溶性重合体を収率よく製造することが可能となる、という本発明の効果がより顕著に表れることとなるためである。上記nとしては5以上であることがより好ましい。また、更には化合物(A)から誘導される単量体の水溶性、流動性に起因する取り扱いやすさという観点からも、nは2以上であることが好ましい。より好ましくは、5以上であり、更に好ましくは、10以上である。特に好ましくは、20以上である。また、化合物(A)から誘導される単量体の重合性が良好となることから、nは200以下が好ましく、150以下がより好ましく、120以下が更に好ましく、100以下が特に好ましい。最も好ましくは、50以下である。
本発明において用いられる化合物(A)は、後述するように、下記一般式(I);
Figure JPOXMLDOC01-appb-C000025
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとを反応原料として、合成することが可能であるが、その反応の際に副生物の一種として、下記一般式(2);
Figure JPOXMLDOC01-appb-C000026
(式中、Rは、同一若しくは異なって、水素原子又はメチル基を表す。Rは、同一若しくは異なって、メチレン基、エチレン基又は直接結合を表す。Xは、-CH-CH(OR´)-CH-O-、又は、直接結合を表し、R´は、水素原子又はグリシジル基を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、同一若しくは異なって、1~300の数を表す。)で表される化合物(B)が生成することとなる。化合物(B)は、反応原料である化合物(I)が一般式(2)中のXで表される基を介して二量化した構造を有するものであり、したがって、一般式(2)において、R、R、Y、nは、一般式(1)におけるR、R、Y、nと同様である。
上記一般式(2)において、Xは、-CH-CH(OR´)-CH-O-、又は、直接結合を表し、R´は、水素原子又はグリシジル基を表すが、化合物(B)に含まれる副生物としては、Xが-CH-CH(OH)-CH-O-である下記一般式(3);
Figure JPOXMLDOC01-appb-C000027
(式中、R、R、Y、nは、一般式(2)と同様である。)で表される化合物(B-1)、Xが-CH-CH(OR´´)-CH-O-(ただし、R´´は、グリシジル基を表す。)である下記一般式(4);
Figure JPOXMLDOC01-appb-C000028
(式中、R、R、Y、nは、一般式(2)と同様である。)で表される化合物(B-2)、及び、Xが直接結合である下記一般式(5);
Figure JPOXMLDOC01-appb-C000029
(式中、R、R、Y、nは、一般式(2)と同様である。)で表される化合物(B-3)が挙げられる。上記化合物(B-1)は、化合物(I)とエピハロヒドリンとから化合物(A)を合成する際に、反応原料である化合物(I)と反応生成物である化合物(A)とが反応することで生成する化合物であり、上記化合物(B-2)は、副生物として生成した化合物(B-1)とエピハロヒドリンとが反応することで生成する化合物であり、また、上記化合物(B-3)は、反応原料である化合物(I)が二量化することで生成する化合物である。
本発明の水溶性単量体用中間体含有組成物は、上記化合物(B)の含有量が、化合物(A)の含有量に対して0.1~6.0モル%であり、上記化合物(A)の含有量が、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%であるものである。ここで、水溶性単量体用中間体含有組成物の不揮発分とは、130℃、1気圧、1時間の条件下において揮発しない成分を表しており、したがって、該組成物に溶媒が含まれるような形態においては、当該条件下において揮発する水等の溶媒は含まれないこととなる。これは、化合物(A)が充分に含まれる組成物中において、化合物(A)の合成工程において同時に生成する副生物のうちの一種である化合物(B)の含有量を特定量とした組成物を表している。本発明の水溶性単量体用中間体含有組成物を用いて水溶性単量体を誘導し、重合させることで重合体を得る場合において、該組成物中に含まれる化合物(B)の含有量を特定量に制御することによって、水溶性重合体が重合反応時にゲル化することを充分に抑制することが可能となる。そして更には製造される水溶性重合体に泥や布に対する吸着能を付与することが可能となったり、高分子量の重合体としても粘度の低い重合体とすることが可能となるように、水溶性重合体に新たな機能を付与することができる。これは、構造中に2つの不飽和結合を有するために水溶性重合体の製造時に架橋成分として働き得る化合物(B)を、該組成物は最適量含むことによって、製造される水溶性重合体が一部架橋されたグラフトポリマーとなるためであると推察される。例えば、このように製造される水溶性重合体に泥に対する吸着能を付与することによって、該水溶性重合体を洗剤組成物等に含有させることとした場合に、分散した泥汚れに重合体成分が吸着して、再度衣類等へ泥汚れが付着するのを効果的に防止することが可能な洗剤組成物とすることができる。このように、水溶性単量体用中間体含有組成物において、化合物(B)の含有量を特定の範囲とすることにより、高機能を有する水溶性重合体を高収率に製造することが可能となる。化合物(B)の含有量としては、化合物(A)の含有量に対して0.3~4.5モル%であることが好ましく、0.5~3.0モル%であることがより好ましく、製造される水溶性重合体に機能を付与することのできる効果が最も高いため、0.7~2.5モル%が特に好ましい。
また、化合物(A)の含有量としては、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%であれば、水溶性単量体用中間体含有組成物として充分に化合物(A)を含んでおり、本発明の水溶性単量体用中間体含有組成物を用いて水溶性単量体を誘導するのに充分なものということができる。化合物(A)の含有量としては、好ましくは、55~95質量%であり、より好ましくは、60~90質量%である。
本発明の水溶性単量体用中間体含有組成物においては、化合物(B)の含有量が、化合物(A)及び化合物(A)を合成する際の反応原料である化合物(I)の合計の含有量に対して、0.1~5.0モル%であることもまた、本発明の好適な実施形態の1つである。すなわち、化合物(A)が、下記一般式(I);
Figure JPOXMLDOC01-appb-C000030
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとを反応させて得られ、水溶性単量体中間体含有組成物は、化合物(B)の含有量が、化合物(A)及び化合物(I)の合計の含有量に対して0.1~5.0モル%であり、上記化合物(A)及び化合物(I)の合計の含有量は、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%であることもまた、本発明の好適な実施形態の1つである。そして更には、化合物(B)の含有量としては、化合物(A)及び化合物(I)の合計の含有量に対して0.25~4.0モル%であることが好ましく、0.35~3.0モル%であることがより好ましく、製造される水溶性重合体に機能を付与することのできる効果が最も高いため、0.5~2.0モル%が特に好ましい。
また、化合物(A)及び化合物(I)の合計の含有量としては、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%であれば、水溶性単量体用中間体含有組成物として充分に化合物(A)及び化合物(I)を含んでおり、本発明の水溶性単量体用中間体含有組成物を用いて水溶性単量体を誘導するのに充分なものということができる。化合物(A)及び化合物(I)の合計の含有量としては、好ましくは、60~98質量%であり、より好ましくは、70~96質量%である。
次に、化合物(A)を含む水溶性単量体用中間体含有組成物の製造方法について説明する。
化合物(A)を含む水溶性単量体用中間体含有組成物は、化合物(I)とエピハロヒドリンとを1/2~1/15(化合物(I)の有する水酸基(水酸基価換算)/エピハロヒドリン)のモル比で反応させることによって得ることができる。すなわち、下記一般式(1);
Figure JPOXMLDOC01-appb-C000031
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(A)を含む水溶性単量体用中間体含有組成物を製造する方法であって、上記製造方法は、下記一般式(I);
Figure JPOXMLDOC01-appb-C000032
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとを1/2~1/15(化合物(I)の有する水酸基/エピハロヒドリン)のモル比で反応させる工程を含む水溶性単量体用中間体含有組成物の製造方法もまた、本発明の1つである。
なお、本発明の水溶性単量体用中間体含有組成物の製造方法は、上記反応工程を含む限り、その他の工程を含んでいてもよい。
上記反応工程は、化合物(I)とエピハロヒドリンとを反応させる際に通常用いられる反応方法により行うことができるが、次の(i-a)又は(i-b)の反応工程により行うことが好ましい。(i-a)化合物(I)とエピハロヒドリンとをアルカリ化合物の存在下で反応させる工程、(i-b)化合物(I)にエピハロヒドリンとルイス酸触媒とを加え反応させ、次に、アルカリ化合物を加えて反応させる工程。すなわち、上記反応工程が、化合物(I)とエピハロヒドリンとをアルカリ化合物の存在下で反応させる工程を含むこともまた、本発明の好適な実施形態の1つである。また、上記反応工程が、化合物(I)にエピハロヒドリンとルイス酸触媒とを加え反応させ、次に、アルカリ化合物を加えて反応させる工程を含むこともまた、本発明の好適な実施形態の1つである。上記反応工程の中でも、反応工程中に触媒などの影響による化合物(I)の分解反応などの副反応が起こりにくい点から、反応工程(i-a)の方法により化合物(A)を含む水溶性単量体用中間体含有組成物を製造することが好ましい。
上記一般式(I)で表される化合物(I)において、R、R、Y、nは、合成される化合物(A)におけるR、R、Y、nと同様である。化合物(I)としては、1種を単独で用いてもよいし、2種以上を併用してもよい。
また、上記化合物(I)は、アルキレングリコールモノビニルエーテル、(メタ)アリルアルコール、イソプレノール又はそれらのアルキレンオキシド付加構造を有するアルコールに、アルキレンオキシドを通常用いられる方法で付加させることにより、製造することができる。製造された化合物(I)は上記反応工程前に前処理などの工程を行って、化合物(I)を製造する際に使用した触媒や含有する酸およびアルカリなどを除去してもよいし、しなくてもよい。
上記化合物(I)の反応系への添加方法は特に制限されず、反応前又は反応中に一度に添加してもよく、反応前及び/又は反応中に複数回に渡って断続的に添加してもよい。
上記エピハロヒドリンとしては、下記一般式(II);
Figure JPOXMLDOC01-appb-C000033
(式中、Zは、ハロゲン原子を表す。)で表されるものが好ましく、具体的には、エピクロルヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられる。これらの中でも、工業的に安価なことから、エピクロルヒドリンが特に好ましい。
これらエピハロヒドリンは、1種を単独で用いてもよいし、2種以上を併用してもよい。
上記化合物(I)及びエピハロヒドリンの使用量は、それらのモル比が1/2~1/15(化合物(I)の有する水酸基(水酸基価換算)/エピハロヒドリン)であるものであるが、このようなモル比で化合物(I)とエピハロヒドリンとを反応させることによって、上記化合物(B)や化合物(C)といった副生物の生成を抑制することが可能となる。上記化合物(I)及びエピハロヒドリンの使用量として好ましくは、それらのモル比が1/2.5~1/12(化合物(I)の有する水酸基/エピハロヒドリン)であることであり、より好ましくは、1/3~1/10であり、更に好ましくは、1/4~1/7である。
上記エピハロヒドリンの反応系への添加方法は特に制限されず、反応前又は反応中に一度に添加してもよく、反応前及び/又は反応中に複数回に渡って断続的に添加してもよい。
上記反応工程(i-a)は、化合物(I)とエピハロヒドリンとをアルカリ化合物の存在下で反応させる工程を含むものである。上記反応工程(i-a)における反応の反応式を図1に示す。図1から、反応工程(i-a)においては、生成物である化合物(A)と共に、上記化合物(B-1)及び上記化合物(B-2)が副生物として生成してくることが分かる。
上記アルカリ化合物としては、特に制限されず、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が好ましい。これらアルカリ化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
上記アルカリ化合物の使用量としては、アルカリ化合物が反応系中に多く存在し過ぎると、反応の進行が速くなり、化合物(A)の生成とともに、副生物である化合物(B)が多く生成してしまう恐れがあり、一方、アルカリ化合物が反応系中に少なく存在し過ぎると、アルカリ化合物を添加した効果が充分に得られない恐れがあることから、化合物(I)の有する水酸基(水酸基価換算)とアルカリ化合物とのモル比が、15/1~1/15(化合物(I)の有する水酸基/アルカリ化合物)であることが好ましい。より好ましくは、5/1~1/5であり、更に好ましくは、3/1~1/3である。
上記アルカリ化合物の反応系への添加方法は特に制限されず、反応前又は反応中に一度に添加してもよく、反応前及び/又は反応中に複数回に渡って断続的に添加してもよい。添加する際の形態としては、水溶液の状態であってもよく、溶媒に溶かさずにフレーク状であってもよい。ただし、反応系中のアルカリ化合物の濃度が一度に高くなりすぎずに、反応全般に渡って存在することとなるようにすることにより、化合物(A)の合成反応をゆっくり進行させることが可能となり、副生する架橋成分の量を特定の範囲に制御することが可能となることから、上述した添加方法の中でも、複数回に渡って添加する方法が好ましい。より好ましくは、水溶液の状態で滴下して加えることである。
なお、水溶液の状態で加える場合には、水(反応の進行に伴い副生する水を含む)を通常用いられる方法により除去しながら反応を行ってもよい。
上記反応工程(i-a)においては、エピハロヒドリンの使用量としては、上述した中でも、化合物(I)の有する水酸基(水酸基価換算)とエピハロヒドリンとのモル比が、1/2.5~1/12(化合物(I)の有する水酸基/エピハロヒドリン)であることが好ましい。より好ましくは、1/3~1/10であり、更に好ましくは、1/4~1/7である。
上記反応工程(i-a)は、必要に応じて相間移動触媒を用いて行うことが好ましい。上記相間移動触媒としては、特に制限されないが、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラプロピルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラオクチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、オクチルトリメチルアンモニウムクロリド、セチルトリメチルアンモニウムクロリド等の塩化四級アンモニウム塩;トリメチルアンモニウムクロリド、トリエチルアンモニウムクロリド等の塩化三級アンモニウム塩;テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラプロピルアンモニウムブロミド、テトラブチルアンモニウムブロミド、テトラオクチルアンモニウムブロミド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムブロミド、オクチルトリメチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド等の臭化四級アンモニウム塩;トリメチルアンモニウムブロミド、トリエチルアンモニウムブロミド等の臭化三級アンモニウム塩;テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド等のホスホニウム塩;15-クラウン-5、18-クラウン-6等のクラウンエーテル類;等が挙げられる。これらの中でも、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドが好ましく、より好ましくは、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラブチルアンモニウムブロミドであり、更に好ましくは、テトラブチルアンモニウムブロミドである。これら相間移動触媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
上記相間移動触媒を用いる場合における、相間移動触媒の使用量としては、少なすぎると充分な触媒効果が得られない恐れがあり、多すぎても、使用量に見合うだけの効果が得られず経済的に不利となる恐れがあることから、化合物(I)の有する水酸基(水酸基価換算)と相間移動触媒とのモル比が、1/0.0001~1/0.3(化合物(I)の有する水酸基/相間移動触媒)であることが好ましい。より好ましくは、1/0.001~1/0.2であり、更に好ましくは、1/0.005~1/0.1である。
上記反応工程(i-a)における各反応材料の添加方法としては、上述したような各成分における好ましい添加方法を適宜組み合わせて用いることが可能である。それらの中でも、化合物(I)及びエピハロヒドリンを反応前に一括して投入し、アルカリ化合物を反応中に水溶液の状態で滴下する方法、又は、反応中にフレーク状で複数回に渡って断続的に添加する方法により行うことが好適である。
上記反応工程(i-b)は、化合物(I)にエピハロヒドリンとルイス酸触媒とを加え反応させ、次に、アルカリ化合物を加えて反応させる工程を含むものである。上記反応工程(i-b)における反応の反応式を図2に示す。図2中、Zは、エピハロヒドリンに由来するハロゲン原子を表している。図2から、反応工程(i-b)においては、生成物である化合物(A)と共に、上記化合物(B-3)が副生物として生成してくることが分かる。
上記ルイス酸としては、通常ルイス酸として用いられるものであれば、特に制限されないが、例えば、三フッ化ホウ素、四塩化錫、二塩化錫、塩化亜鉛、塩化第二鉄、塩化アルミニウム、四塩化チタン、塩化マグネシウム、五塩化アンチモン等が挙げられる。これらの中でも、三フッ化ホウ素、四塩化錫、二塩化錫が好ましい。これらルイス酸触媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
上記ルイス酸触媒の使用量としては、少なすぎると充分な触媒効果が得られない恐れがあり、多すぎても、使用量に見合うだけの効果が得られず経済的に不利となる恐れがあることから、化合物(I)の有する水酸基(水酸基価換算)とルイス酸触媒とのモル比が、1/0.0001~1/0.1(化合物(I)の有する水酸基/ルイス酸触媒)であることが好ましい。より好ましくは、1/0.0005~1/0.05であり、更に好ましくは、1/0.001~1/0.03である。
上記反応工程(i-b)におけるエピハロヒドリンの使用量は、上記反応工程(i-a)におけるエピハロヒドリンの使用量と同様である。また、上記反応工程(i-b)において加えるアルカリ化合物も、上記反応工程(i-a)におけるアルカリ化合物と同様である。
上記反応工程(i-b)におけるアルカリ化合物の使用量は、化合物(I)にエピハロヒドリンとルイス酸とを加え反応させることで得られる反応物のハロゲン基とアルカリ化合物とのモル比が、1/1~1/100(ハロゲン基/アルカリ化合物)であることが好ましい。より好ましくは、1/1~1/50であり、更に好ましくは、1/1~1/20である。
上記反応工程(i-a)及び(i-b)は、溶媒の非存在下に実施することで効率よく反応が進行するため、容積効率の観点から溶媒を用いずに行うことが好ましいが、溶媒の存在下においても実施することができる。上記溶媒としては、反応に悪影響を与えない限り特に制限されないが、例えば、ヘキサン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルメチルケトン等のケトン類;ジクロロメタン、ジクロロエタン等の塩素系炭化水素類;水;メタノール、エタノール、イソプロパノールなどの等のアルコール類が挙げられる。これら溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
上記溶媒を用いる場合における、溶媒の使用量としては、特に制限されないが、化合物(I)に対して、0.005~5倍質量であることが好ましく、0.01~3倍質量であることがより好ましい。
上記反応工程(i-a)及び(i-b)は、空気雰囲気下で行ってもよいし、不活性ガス雰囲気下で行ってもよい。また、減圧下、大気圧下、加圧下いずれの圧力下で行ってもよい。反応温度としては、0~200℃であることが好ましく、15~150℃であることがより好ましく、30~100℃であることが更に好ましい。反応原料である化合物(I)の流動性の観点から、攪拌に問題が生じない温度で反応を行うことが好ましい。また、反応時間としては、0.1~50時間であることが好ましく、0.5~30時間であることがより好ましく、1~15時間であることが更に好ましい。
上記反応工程は、いわゆるスラリー反応を含み、通常用いられる攪拌装置を有する反応装置を用いて反応を実施することができる。例えば、攪拌槽式反応装置を用いて、回分型、半回分型、連続槽型のいずれの反応装置も用いることができる。
上記反応工程を行った後、脱塩や、過剰なエピハロヒドリンの除去等を行った後に化合物(A)からの各種単量体の誘導化反応工程を行うことが好ましい。上記脱塩工程は、沈降分離、遠心分離、ろ過等の通常脱塩に用いられる方法により行うことができ、塩が充分に取り除かれるように適宜設定して実施することができるが、充分な分離速度を得るため、15~100℃の温度で行うことが好ましい。また、過剰なエピハロヒドリンを除去する方法としては、除去することができれば、特に制限されず、例えば、蒸留や蒸発操作等を行うことにより容易に取り除くことができる。
次に、本発明の水溶性単量体用中間体含有組成物を用いて誘導される水溶性単量体含有組成物について説明する。
本発明の水溶性単量体用中間体含有組成物は、化合物(A)を含んでおり、該化合物(A)の末端グリシジル基を適宜修飾することにより様々な官能基を有する化合物を含有する組成物を得ることができる。そのような様々な官能基を有する該化合物は、重合性の末端二重結合により重合することができることから、様々な官能基を側鎖の末端に有し、側鎖のオキシアルキレン基によって水溶性を示す重合体を得ることが可能となる。このことから該化合物は、水溶性単量体として有用なものである。
上記様々な官能基を有する化合物としては、化合物(A)の末端グリシジル基を修飾することにより得られるものであれば、最終的に合成する水溶性重合体に付与したい物性に応じて適宜その官能基を選択して用いることができる。そのような様々な官能基を有する化合物を含む組成物としては、例えば、本発明の水溶性単量体用中間体含有組成物と、官能基含有化合物とを反応させて得られる水溶性単量体含有組成物であって、上記水溶性単量体が、上記官能基含有化合物として三級アミン塩を用いて得られるカチオン性基含有単量体である水溶性単量体含有組成物、本発明の水溶性単量体用中間体含有組成物と、官能基含有化合物とを反応させて得られる水溶性単量体含有組成物であって、上記水溶性単量体が、上記官能基含有化合物として二級アミンを用いて得られるアミノ基含有単量体である水溶性単量体含有組成物、本発明の水溶性単量体用中間体含有組成物と、官能基含有化合物とを反応させて得られる水溶性単量体含有組成物であって、上記水溶性単量体が、上記官能基含有化合物として亜硫酸化合物を用いて得られるスルホン酸基含有単量体である水溶性単量体含有組成物、本発明の水溶性単量体用中間体含有組成物と、官能基含有化合物とを反応させて得られる水溶性単量体含有組成物であって、上記水溶性単量体が、上記官能基含有化合物として水酸基含有化合物を用いて得られる有機エーテル基含有単量体である水溶性単量体含有組成物等が挙げられ、これらの水溶性単量体含有組成物、及び、これらの水溶性単量体もまた、本発明の1つである。
すなわち、本発明の水溶性単量体用中間体含有組成物と、官能基含有化合物とを反応させて得られる水溶性単量体含有組成物であって、上記水溶性単量体が、上記官能基含有化合物として三級アミン塩、二級アミン、亜硫酸化合物、又は、水酸基含有化合物のいずれかを用いて得られる下記一般式(6);
Figure JPOXMLDOC01-appb-C000034
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Qは、下記一般式(7)~(10)のいずれかの構造を表す。)で表される水溶性単量体である水溶性単量体含有組成物もまた、本発明の1つである。
Figure JPOXMLDOC01-appb-C000035
式中、*は、*の付された原子が一般式(6)におけるQと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。Rは、炭素数1~20の有機基を表す。
上記官能基含有化合物として、三級アミン塩を用いた場合には、上記水溶性単量体含有組成物としてカチオン性基含有単量体が得られることとなる。この合成反応は、三級アミン塩と化合物(A)のグリシジル基とを反応させて、化合物(A)の末端を四級アンモニウム塩化し、カチオン性基含有単量体を得る反応であり、そのような反応に通常用いられる反応方法を適宜用いて合成することが可能である。
上記官能基含有化合物として、二級アミンを用いた場合には、上記水溶性単量体含有組成物としてアミノ基含有単量体が得られることとなる。この合成反応は、二級アミンと化合物(A)のグリシジル基とを反応させて、化合物(A)の末端を三級アミン化し、アミノ基含有単量体を得る反応であり、そのような反応に通常用いられる反応方法を適宜用いて合成することが可能である。
なお、上記アミノ基含有単量体は、アミノ基含有単量体の末端にアミノ基を含有するものであるが、該アミノ基の窒素原子に結合する置換基としては、アルキル基や、水酸基、カルボキシル基等の官能基を有する基等が挙げられる。
上記官能基含有化合物として、亜硫酸化合物を用いた場合には、上記水溶性単量体含有組成物としてスルホン酸基含有単量体が得られることとなる。この合成反応は、亜硫酸化合物と化合物(A)のグリシジル基とを反応させて、化合物(A)の末端をスルホン化し、スルホン酸基含有単量体を得る反応であり、そのような反応に通常用いられる反応方法を適宜用いて合成することが可能である。
上記官能基含有化合物として、水酸基含有化合物を用いた場合には、上記水溶性単量体含有組成物として有機エーテル基含有単量体が得られることとなる。この合成反応は、該水酸基含有化合物の水酸基と化合物(A)のグリシジル基とを反応させて、末端に有機エーテル基を含有する有機エーテル基含有単量体を合成する反応であり、そのような反応に通常用いられる反応方法を適宜用いて合成することが可能である。
なお、上記有機エーテル基含有単量体は、有機エーテル基含有単量体の末端にアルキルエーテル基を含有する形態の他に、該アルキルエーテル基中の炭素原子にカルボキシル基等の官能基が結合している形態も含むものである。
なお、上記カチオン性基含有単量体、アミノ基含有単量体、スルホン酸基含有単量体及び有機エーテル基含有単量体の構造については、後で詳述する。
上記水溶性単量体含有組成物は、得られた後、必要に応じて精製を行ってもよい。該精製工程としては、抽出や洗浄等の通常精製工程として行われる手法により行うことが可能である。
上述したように、本発明の水溶性単量体用中間体含有組成物を用いて水溶性単量体含有組成物が誘導されるが、該水溶性単量体含有組成物に含まれる水溶性単量体もまた、本発明の1つである。
すなわち、下記一般式(11);
Figure JPOXMLDOC01-appb-C000036
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Rは、下記一般式(7)~(9)のいずれかの構造を表す。)で表される水溶性単量体もまた、本発明の1つである。
Figure JPOXMLDOC01-appb-C000037
式中、*は、*の付された原子が一般式(11)におけるRと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。
上記水溶性単量体は、一般式(11)におけるRが一般式(7)で表される場合には、後述するカチオン性基含有単量体となり、一般式(11)におけるRが一般式(8)で表される場合には、後述するアミノ基含有単量体となり、一般式(11)におけるRが一般式(9)で表される場合には、後述するスルホン酸基含有単量体となる。
以降、上記水溶性単量体について、末端に結合した官能基ごとに順に説明する。
〔本発明のカチオン性基含有単量体〕
上述したように、特定の官能基を有する水溶性単量体の1つとしてカチオン性基含有単量体が挙げられるが、下記一般式(12);
Figure JPOXMLDOC01-appb-C000038
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。X-はカウンターアニオンを表す。)で表される構造を有するカチオン性基含有単量体もまた、本発明の1つである。
上記一般式(12)において、Rが直接結合である場合とは、上記一般式(12)のHC=C(R)-R-O-において、HC=C(R)-O-で表されることを意味する。すなわちHC=C(R)-R-は、Rがメチル基、Rがメチレン基の場合はメタリル基、Rがメチル基、Rがエチレン基の場合はイソプレニル基、Rがメチル基、Rが直接結合の場合はイソプロペニル基、Rが水素原子、Rがメチレン基の場合はアリル基、Rが水素原子、Rがエチレン基の場合はブテニル基、Rが水素原子、Rが直接結合の場合はビニル基を意味する。
上記一般式(12)のHC=C(R)-R-O-としては、重合性の観点から、イソプレニル基、メタリル基、アリル基、ビニル基であることが好ましく、より好ましくは、イソプレニル基、メタリル基、アリル基であり、更に好ましくは、イソプレニル基、メタリル基である。
上記一般式(12)におけるR、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基である。炭素数1~20の有機基は全体として炭素数が1~20であれば、制限はないが、アルキル基、アリール基、アルケニル基であることが好ましい。当該アルキル基、アリール基、アルケニル基は、無置換の基であっても、水素原子の1又は2以上が他の有機基によって置換されていても良い。この場合の置換基となる他の有機基としては、アルキル基(上記炭素数1~20の有機基がアルキル基の場合は全体としてアルキル基となるので、該有機基は無置換のアルキル基に該当する。)、アリール基、アルケニル基、アルコキシ基、水酸基、アシル基、エーテル基、アミド基、エステル基、ケトン基等が挙げられる。
上記R、R、及び、Rは、炭素数が1~8のものがより好ましく、炭素数が1~5のものが更に好ましく、炭素数が1~2のものが特に好ましい。上記範囲にあれば、高い収率で本発明のカチオン性基含有単量体を製造することができる。
上記R、R、及び、Rとして具体的には、メチル基、エチル基、イソプロピル基、n-プロピル基、n-ブチル基、イソブチル基、オクチル基、ラウリル基、ステアリル基、シクロヘキシル基、2-エチルヘキシル基等のアルキル基;ブチレン基、オクチレン基、ノニレン基等のアルケニル基;フェニル基、ベンジル基、フェネチル基、2、3-若しくは2、4-キシリル基、メシチル基、ナフチル基等のアリール基;ヒドロキシエチル基、ヒドロキシプロピル基等の上記アルキル基、アルケニル基、アリール基の水素原子の一部が、アルコキシ基、カルボキシエステル基、アミノ基、アミド基、水酸基等で置換された基;等が挙げられる。中でも、高い収率で本発明のカチオン性基含有単量体を製造することができることから、メチル基、エチル基であることが好ましい。
上記一般式(12)において、R及びRが結合して環状構造を形成していても構わないが、この場合、環状構造の安定性の観点から、窒素原子、R及びRで形成される環状構造は3~7員環であること、すなわち、R及びRの炭素数の合計は2~6であることが好ましい。
上記一般式(12)において、Yは、同一若しくは異なって、炭素数2~20のアルキレン基であるが、本発明のカチオン性基含有単量体の重合性が良好となることから、Yは炭素数2~4のアルキレン基であることが好ましく、炭素数2~3のアルキレン基であることが特に好ましい。具体的にはエチレン基、プロピレン基、ブチレン基等の炭素数2~4のアルキレン基であることが好ましく、エチレン基、プロピレン基等の炭素数2~3のアルキレン基であることが特に好ましい。アルキレン基は、1種でも2種以上でも構わないが、2種以上の場合は、-Y-O-の構造はランダムに連続していても、交互に連続していても、ブロック状に連続していても良い。
上記一般式(12)において、nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表すが、重合体にポリアルキレングリコール鎖を多く導入できるという観点から、nは2以上が好ましく、5以上がより好ましく、10以上が更に好ましい。20以上が特に好ましい。また、本発明のカチオン性基含有単量体の重合性が良好になるという観点から、nは200以下が好ましく、150以下がより好ましく、120以下が更に好ましい。100以下が特に好ましく、50以下が最も好ましい。
本発明のカチオン性基含有単量体は、四級化した窒素原子近傍に、カウンターアニオンX-が存在することになる。カウンターアニオンX-の種類に特に限定はないが、ハロゲン原子のイオン、アルキル硫酸イオンが好ましい。ハロゲン原子のイオンとしては、具体的には、塩素原子、臭素原子、ヨウ素原子、フッ素原子のイオン等が挙げられる。中でも、塩素原子、臭素原子、ヨウ素原子のイオンが好ましく、塩素原子のイオンが特に好ましい。アルキル硫酸イオンとしては、具体的には、メチル硫酸イオン、エチル硫酸イオン等が挙げられる。中でも、メチル硫酸イオンが好ましい。
本発明のカチオン性基含有単量体を重合することにより、得られる重合体は、本発明のカチオン性基含有単量体由来の構造を有することになる。カチオン性基含有単量体由来の構造は、本発明のカチオン性基含有単量体の炭素-炭素二重結合が単結合になった構造であり、下記一般式(13);
Figure JPOXMLDOC01-appb-C000039
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。X-はカウンターアニオンを表す。)で表すことができる。
〔本発明のアミノ基含有単量体〕
上述したように、特定の官能基を有する水溶性単量体の1つとしてアミノ基含有単量体が挙げられるが、下記一般式(14);
Figure JPOXMLDOC01-appb-C000040
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される構造を有するアミノ基含有単量体もまた、本発明の1つである。
上記一般式(14)におけるR及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基である。該炭素数1~20の有機基としては、上記一般式(12)のR、R、及び、Rにおける炭素数1~20の有機基と同様のものが挙げられる。これらの中でも、炭素数が1~8のものがより好ましく、炭素数が1~5のものが更に好ましい。上記範囲であれば、高い収率で本発明のアミノ基含有単量体を製造することができる。具体的には、メチル基、エチル基、n-ブチル基、ヒドロキシエチル基であることが好ましい。
上記一般式(14)において、R及びRが結合して環状構造を形成していても構わないが、この場合、環状構造の安定性の観点から、窒素原子、R及びRで形成される環状構造は3~7員環であること、すなわち、R及びRの炭素数の合計は2~6であることが好ましい。
上記一般式(14)において、R、R、Y及びnについては、上記一般式(12)と同様である。
本発明のアミノ基含有単量体の好ましい形態としては、上述した通りであるが、特に、一般式(14)におけるRが水素原子かつRがメチレン基を表す時、すなわち、アリル系アミノ基含有単量体である場合には、Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表し、nは20~300の数を表し、R及びRは、同一若しくは異なって、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、アリール基、又は、アルケニル基を表すのが好ましい。一方、一般式(14)におけるR及びRの組み合わせが、Rが水素原子かつRがメチレン基以外の組み合わせである時、すなわち、アリル系アミノ基含有単量体以外である場合には、Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表し、nは1~300の数を表し、R及びRは、同一若しくは異なって、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、アリール基、又は、アルケニル基を表すのが好ましい。
本発明のアミノ基含有単量体を重合することにより、得られるアミノ基含有重合体は、本発明のアミノ基含有単量体由来の構造を有することになる。アミノ基含有単量体由来の構造は、本発明のアミノ基含有単量体の炭素-炭素二重結合が単結合になった構造であり、下記一般式(15);
Figure JPOXMLDOC01-appb-C000041
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表すことができる。
本発明のアミノ酸基含有単量体の重合する炭素-炭素二重結合を有する基、すなわちHC=C(R)-R-としては、イソプレニル基、メタリル基、アリル基、ビニル基が好ましい。重合性の観点から、イソプレニル基、メタリル基が特に好ましい。
〔本発明のスルホン酸基含有単量体〕
上述したように、特定の官能基を有する水溶性単量体の1つとしてスルホン酸基含有単量体が挙げられるが、下記一般式(16);
Figure JPOXMLDOC01-appb-C000042
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Mは、水素原子又は1価の陽イオンを表す。)で表される構造を有するスルホン酸基含有単量体もまた、本発明の1つである。
上記一般式(16)において、Mは水素原子又は1価の陽イオンを表す。上記1価の陽イオンとしては、ナトリウム、カリウム、リチウムなどのアルカリ金属イオン;アンモニウムイオン、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩などの四級アンモニウム塩;が挙げられ、ナトリウム、カリウム、リチウムなどのアルカリ金属イオンが好ましく、ナトリウムイオンが特に好ましい。
上記一般式(16)において、R、R、Y及びnについては、上記一般式(12)と同様である。
本発明のスルホン酸基含有単量体を重合することにより、得られるスルホン酸基含有重合体は、本発明のスルホン酸基含有単量体由来の構造を有することになる。スルホン酸基含有単量体由来の構造は、本発明のスルホン酸基含有単量体の炭素-炭素二重結合が単結合になった構造であり、下記一般式(17);
Figure JPOXMLDOC01-appb-C000043
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Mは、水素原子又は1価の陽イオンを表す。)で表すことができる。
本発明のスルホン酸基含有単量体の重合する炭素-炭素二重結合を有する基、すなわちHC=C(R)-R-としては、イソプレニル基、メタリル基、アリル基、ビニル基が好ましい。重合性の観点から、イソプレニル基、メタリル基が特に好ましい。
〔有機エーテル基含有単量体〕
上述した特定の官能基を有する水溶性単量体の1つとして、有機エーテル基含有単量体が挙げられ、例えば、下記一般式(18);
Figure JPOXMLDOC01-appb-C000044
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Rは、炭素数1~20の有機基を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される構造を有する有機エーテル基含有単量体が挙げられる。
上記一般式(18)におけるRは、炭素数1~20の有機基を表す。上記有機基は、置換基を有していてもよく、全体として炭素数が1~20であれば特に制限されないが、上記有機基としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシル基やこれらの基を組み合わせてできる基等が挙げられる。これらの中でも、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アルコキシル基やこれらの基を組み合わせてできる基が好ましく、より好ましくは、アルキル基、アリール基、アルコキシル基やこれらの基を組み合わせてできる基である。上記炭素数1~20の有機基における置換基としては、例えばハロゲン原子、ジアルキル基、アミノ基、ニトロ基、カルボニル基、カルボキシル基、アルコキシ基、アセトキシ基、水酸基、メルカプト基、スルホン基、メチレンビスカルボニル基等が挙げられる。有機基の炭素数は、1~18であることが好ましい。より好ましくは1~16であり、更に好ましく1~14である。
上記有機基としては、具体的には、メチル基、エチル基、イソプロピル基、n-プロピル基、n-ブチル基、イソブチル基、t-ブチル基、オクチル基、ラウリル基、ステアリル基、シクロペンチル基、シクロヘキシル基、2-エチルヘキシル基等のアルキル基;アリル基、イソプレニル基等のアルケニル基;フェニル基、ベンジル基、ナフチル基等のアリール基、又はこれらの水素原子の一部が、アルコキシ基、カルボキシエステル基、アミノ基、アミド基、水酸基等で置換された基、例えば2-メトキシエチル基、2-エトキシエチル基、p-メトキシフェニル基等が挙げられる。中でも、高い収率で有機エーテル基含有単量体(以下、有機エーテル基含有ポリアルキレングリコール系単量体ともいう。)を製造することができることから、メチル基、エチル基、n-ブチル基、オクチル基、ラウリル基、2-エチルヘキシル基であることが好ましい。
上記一般式(18)において、R、R、Y及びnについては、上記一般式(12)と同様である。
上記有機エーテル基含有単量体を重合することにより、得られる重合体は、上記有機エーテル基含有単量体由来の構造を有することになる。有機エーテル基含有単量体由来の構造は、上記有機エーテル基含有単量体の炭素-炭素二重結合が単結合になった構造であり、下記一般式(19);
Figure JPOXMLDOC01-appb-C000045
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Rは、炭素数1~20の有機基を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表すことができる。
次に、本発明の水溶性単量体を製造するための好適な方法について説明する。
本発明の水溶性単量体は、適用可能な通常用いられる製造方法を用いることができ、特に制限されないが、下記製造方法により製造することが好ましい。当該方法によれば、高い収率で本発明の水溶性単量体を製造することができる。
すなわち、下記一般式(6);
Figure JPOXMLDOC01-appb-C000046
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Qは、下記一般式(7)~(10)のいずれかの構造を表す。)で表される水溶性単量体を製造する方法であって、上記製造方法は、(i)下記一般式(I);
Figure JPOXMLDOC01-appb-C000047
(式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとアルカリ化合物とを反応させる工程、又は、上記一般式(I)で表される化合物(I)とエピハロヒドリンとを触媒存在下反応させる工程のいずれかの工程と、(ii)上記(i)の工程で得られた反応物と、三級アミン塩、二級アミン、亜硫酸化合物、又は、水酸基含有化合物のいずれかとを反応させる工程、又は、上記(i)の工程で得られた反応物と二級アミンとを反応させ、上記反応によって得られた反応物と四級化剤とを反応させる工程とを含む水溶性単量体の製造方法もまた、本発明の1つである。
なお、本発明の水溶性単量体の製造方法は、上記(i)の工程、及び、(ii)の工程を含む限り、その他の工程を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000048
式中、*は、*の付された原子が一般式(6)におけるQと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。Rは、炭素数1~20の有機基を表す。
上記製造方法において製造される上記一般式(6)で表される水溶性単量体は、一般式(6)におけるQが一般式(7)で表される場合には、上述したカチオン性基含有単量体であり、一般式(6)におけるQが一般式(8)で表される場合には、上述したアミノ基含有単量体であり、一般式(6)におけるQが一般式(9)で表される場合には、上述したスルホン酸基含有単量体であり、また、一般式(6)におけるQが一般式(10)で表される場合には、上述した有機エーテル基含有単量体である。ただし、上記製造方法により製造される水溶性単量体は、上述した各水溶性単量体の好ましい形態であることが好ましい。
以降、上記水溶性単量体の製造方法について、各水溶性単量体に分けて順に説明する。
〔本発明のカチオン性基含有単量体の製造方法〕
本発明のカチオン性基含有単量体は、上述した方法により製造することができ、通常知られている製造方法によっても製造することができるが、下記製造方法(1-1)~(1-6)の方法で製造することが好ましい。当該方法によれば、高い収率で本発明のカチオン性基含有単量体を製造することができる。
すなわち、本発明のカチオン性基含有単量体の好ましい製造方法(1-1)は、(イ)上記一般式(I)で表される化合物(I)(以下、ポリアルキレングリコール鎖含有単量体ともいう。)とエピハロヒドリンとアルカリ化合物とを反応させる工程(工程A)と、(ロ)工程Aで得られた反応物と三級アミン塩とを反応させる工程(工程B)と、を含むカチオン性基含有単量体の製造方法である。
本発明のカチオン性基含有単量体の好ましい製造方法(1-2)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとアルカリ化合物とを反応させる工程(工程A)と、(ロ)工程Aで得られた反応物と二級アミンとを反応させる工程(工程C)と、(ハ)工程Cで得られた反応物と四級化剤とを反応させる工程(工程D)と、を含むカチオン性基含有単量体の製造方法である。
本発明のカチオン性基含有単量体の好ましい製造方法(1-3)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程E)と、(ロ)工程Eで得られた反応物と三級アミンとを反応させる工程(工程F)と、を含むカチオン性基含有単量体の製造方法である。
本発明のカチオン性基含有単量体の好ましい製造方法(1-4)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とグリシジルトリアルキルアンモニウム塩とを反応させる工程(工程G)を含むカチオン性基含有単量体の製造方法である。
本発明のカチオン性基含有単量体の好ましい製造方法(1-5)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程E)と、(ロ)工程Eで得られた反応物とアルカリ化合物とを反応させる工程(工程H)と、(ハ)工程Hで得られた反応物と三級アミン塩とを反応させる工程(工程B)と、を含むカチオン性基含有単量体の製造方法である。
本発明のカチオン性基含有単量体の好ましい製造方法(1-6)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程E)と、(ロ)工程Eで得られた反応物とアルカリ化合物とを反応させる工程(工程H)と、(ハ)工程Hで得られた反応物と二級アミンとを反応させる工程(工程C)と、(ニ)工程Cで得られた反応物と四級化剤とを反応させる工程(工程D)と、を含むカチオン性基含有単量体の製造方法である。
上記製造方法(1-1)~(1-6)における、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体において、R、R、Y及びnの好ましい態様は、上記一般式(12)におけるR、R、Y及びnの好ましい態様と同様である。
上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体は、アルキレングリコールモノビニルエーテル、(メタ)アリルアルコール、イソプレノール又はそれらのアルキレンオキシド付加構造を有するアルコールに、アルキレンオキシドを通常用いられる方法により付加させて製造したものを使用することができ、単量体の純度を高くすることができることから好ましい。
上記製造方法(1-1)~(1-3)、(1-5)及び(1-6)における、エピハロヒドリンとしては、上記一般式(II)で表されるものが好ましい。
上記エピハロヒドリンとして、具体的には、エピクロルヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられる。中でも、工業的に安価なことから、エピクロルヒドリンが好ましい。
上記製造方法(1-1)及び(1-5)における、三級アミン塩としては、下記一般式(20);
Figure JPOXMLDOC01-appb-C000049
(式中、R、R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。X-はカウンターアニオンを表す。)で表されるものが好ましい。
上記一般式(20)中、R、R、R及びX-の好ましい態様は、上記一般式(12)におけるR、R、R及びX-の好ましい態様と同じである。
上記三級アミン塩として、具体的には、トリメチルアミン、ジメチルエチルアミン、ジメチルイソプロピルアミン、ジメチル-n-プロピルアミン、ジメチルシクロヘキシルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリブチルアミン、トリラウリルアミン、トリステアリルアミン、トリシクロヘキシルアミン、トリ-2-エチルヘキシルアミン、トリエタノールアミン、トリス(2-ヒドロキシプロピル)アミン等の三級アミンの塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、酢酸塩、過塩素酸塩、パラトルエンスルホン酸塩等が挙げられる。中でも高い収率で本発明のカチオン性基含有単量体を製造することができることからトリメチルアミン塩酸塩、トリエチルアミン塩酸塩、ジメチルエチルアミン塩酸塩が好ましい。
上記製造方法(1-2)及び(1-6)における、二級アミンとしては、下記一般式(21);
Figure JPOXMLDOC01-appb-C000050
(式中、R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。)で表されるものが好ましい。
上記一般式(21)中、R及びRの好ましい態様は、上記一般式(12)におけるR及びRの好ましい態様と同じである。
上記二級アミンとして、具体的には、ジメチルアミン、メチルエチルアミン、ジエチルアミン、ジイソプロピルアミン、ジ-n-プロピルアミン、ジ-n-ブチルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジシクロヘキシルアミン、ジ-2-エチルヘキシルアミン等のジアルキルアミン類;ジエタノールアミン、ビス(2-ヒドロキシプロピル)アミン等のジアルカノールアミン類;モルホリン、ピロール等の環状アミン類が挙げられる。中でも高い収率で本発明のカチオン性基含有単量体を製造することができ、工業的にも安価であることから、ジメチルアミン、メチルエチルアミン、ジエチルアミン、ジエタノールアミンが好ましい。
上記製造方法(1-2)及び(1-6)における四級化剤としては、塩化メチル、塩化エチル、臭化メチル、臭化エチル、ヨウ化メチル、ヨウ化エチル等のハロゲン化アルキル;塩化ベンジル、臭化ベンジル、ヨウ化ベンジル等のハロゲン化ベンジル;ジメチル硫酸、ジエチル硫酸等のジアルキル硫酸;パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル等のスルホン酸アルキルが挙げられる。中でも工業的に入手が容易なことから、塩化メチル、塩化ベンジル、ジメチル硫酸が好ましい。
上記製造方法(1-3)における三級アミンとしては、下記一般式(22);
Figure JPOXMLDOC01-appb-C000051
(式中、R、R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。)で表されるものが好ましい。
上記一般式(22)中、R、R及びRの好ましい態様は、上記一般式(12)におけるR、R、及びRの好ましい態様と同じである。
上記三級アミンとして、具体的には、トリメチルアミン、ジメチルエチルアミン、ジメチルイソプロピルアミン、ジメチル-n-プロピルアミン、ジメチルシクロヘキシルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリブチルアミン、トリラウリルアミン、トリステアリルアミン、トリシクロヘキシルアミン、トリ-2-エチルヘキシルアミン等のトリアルキルアミン類;トリエタノールアミン、トリス(2-ヒドロキシプロピル)アミン等のトリアルカノールアミン類が挙げられる。中でも、高い収率で本発明のカチオン性基含有単量体を製造することができることから、トリメチルアミン、ジメチルエチルアミン、トリエチルアミン、トリエタノールアミンが好ましい。
上記製造方法(1-4)におけるグリシジルトリアルキルアンモニウム塩としては、下記一般式(23);
Figure JPOXMLDOC01-appb-C000052
(式中、R、R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。X-はカウンターアニオンを表す。)で表されるものが好ましい。
上記一般式(23)中、R、R、R及びX-の好ましい態様は、上記一般式(12)におけるR、R、R及びX-の好ましい態様と同じである。
上記グリシジルトリアルキルアンモニウム塩としては、具体的には、グリシジルトリメチルアンモニウムクロリド、グリシジルトリエチルアンモニウムクロリド、グリシジルトリメチルアンモニウムブロミド、グリシジルトリエチルアンモニウムブロミド等が挙げられる。中でも工業的に入手が容易なことから、グリシジルトリメチルアンモニウムクロリドが好ましい。
つまり、上記製造方法(1-1)~(1-6)は下記反応式で表される。
Figure JPOXMLDOC01-appb-C000053
製造方法(1-1)~(1-6)にそれぞれ必須の工程A~Hの反応条件及び実施形態を以下に詳述する。
工程A、B、C、D、E、F、G、及び、Hの反応は、溶媒非存在下に実施することが、効率よく反応が進行し、容積効率の観点からより好ましいが、溶媒の存在下でも実施できる。溶媒は一種のみを単独で使用しても良いし、二種以上を併用しても良い。その使用量に特に制限はないが、工程A、E、及び、Gの場合には、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体に対して、また、工程B、C、D、F、及び、Hの場合には、前の工程で得られた反応物に対して、通常は0.005~5倍質量の範囲であり、好ましくは0.01~3倍質量の範囲である。
工程A、E、及び、Gの反応において使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、ヘキサン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;ジクロロメタン、ジクロロエタン等の塩素系炭化水素類を挙げることができる。
工程B、C、D、F、及び、Hの反応において使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類を挙げることができる。
工程A、B、C、D、E、F、G、及び、Hの反応は、空気雰囲気下で行っても良いし、不活性ガス雰囲気下で行っても良い。また、減圧下、大気圧下、加圧下いずれでも実施できる。反応温度としては、通常は0~200℃であり、好ましくは15~150℃であり、より好ましくは30~100℃である。原料である、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体や前の工程で得られた化合物の流動性の観点から、攪拌に問題が生じない温度で実施することが好ましい。また、反応時間としては、通常は0.1~50時間であり、好ましくは0.5~30時間であり、より好ましくは1~15時間である。
工程B、C、D、F、及び、Hの反応は、前の工程において触媒を使用した場合には、そのまま残存触媒下で行っても良い。
工程Aはいわゆるスラリー反応であり、一般的な攪拌装置を有する反応装置で実施することができる。例えば、攪拌槽式反応装置を用いて、回分、半回分、連続槽型反応器のいずれの装置でも実施することができる。工程Aの反応後、脱塩や過剰なエピハロヒドリンの除去などの工程を行ってから次の工程を実施することが好ましい。脱塩工程は沈降分離、遠心分離、ろ過などにより実施することができ、特に限定されるものではない。上記脱塩工程の実施条件は、塩が充分に取り除かれるように適宜実施すれば良く、充分な分離速度が得られる点で、15℃~100℃の温度で実施することが好ましい。過剰なエピハロヒドリンは蒸留、蒸発操作などによって容易に取り除くことができる。
工程B、C、D、E、F、G、及び、Hの反応はバッチで行っても、連続で行っても良く、例えば、槽型、管型反応器のいずれの装置でも実施することができる。
また、工程Eの反応後、洗浄などの工程を行ってから工程F、又は、Hを実施しても良い。
工程Aの反応はアルカリ化合物と、必要に応じて触媒及び/又は溶媒の存在下行われる。上記アルカリ化合物としては、特に限定されないが、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物が好ましい。上記アルカリ化合物の使用量は上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対するモル比で、通常は(水酸基)/(アルカリ化合物)=15/1~1/15であり、好ましくは5/1~1/5であり、より好ましくは3/1~1/3である。アルカリ化合物は水溶液の状態で使用しても良い。この場合、水(反応の進行に伴い副生する水も含む)を除去しながら反応を行っても良い。
また、上記触媒の種類に特に限定はないが、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラプロピルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラオクチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、オクチルトリメチルアンモニウムクロリド、セチルトリメチルアンモニウムクロリド、トリメチルアンモニウムクロリド、トリエチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラプロピルアンモニウムブロミド、テトラブチルアンモニウムブロミド、テトラオクチルアンモニウムブロミド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムブロミド、オクチルトリメチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、トリメチルアンモニウムブロミド、トリエチルアンモニウムブロミド等の四級アンモニウム塩;テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド等のホスホニウム塩;15-クラウン-5、18-クラウン-6等のクラウンエーテル類が挙げられる。
上記触媒を使用する場合のその使用量は、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、通常は(水酸基)/(触媒)=1/0.0001~1/0.3であり、好ましくは1/0.001~1/0.2であり、より好ましくは1/0.005~1/0.1である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
工程A、及び、Eの反応に用いるエピハロヒドリンの使用量としては、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対するモル比で、通常は(水酸基)/(エピハロヒドリン)=1/1~1/15であり、好ましくは1/1~1/10であり、より好ましくは1/1~1/5である。範囲外では架橋成分が生じる場合があり、重合時にゲル化してしまう恐れがある。
工程Bの反応に用いる三級アミン塩の使用量としては、前の工程で得られた反応物のグリシジル基のモル数に対して、モル比で、通常は(グリシジル基)/(三級アミン塩)=2/1~1/2であり、好ましくは1.5/1~1/1.5であり、より好ましくは1.3/1~1/1.3である。上記三級アミン塩は水溶液の状態で使用しても良いが、通常は三級アミン塩が30質量%以上含有する水溶液であり、好ましくは40質量%以上含有する水溶液であり、より好ましくは50質量%以上含有する水溶液である。30質量%未満の場合は反応で得られるカチオン性基含有単量体の選択率が低下する場合がある。
工程Cの反応に用いる二級アミンの使用量としては、前の工程で得られた反応物のグリシジル基のモル数に対して、モル比で、通常は(グリシジル基)/(二級アミン)=2/1~1/2であり、好ましくは1.5/1~1/1.5であり、より好ましくは1.3/1~1/1.3である。
工程Dの反応に用いる四級化剤の使用量としては、前の工程で得られた反応物のアミノ基のモル数に対して、モル比で、通常は(アミノ基)/(四級化剤)=2/1~1/2であり、好ましくは1.5/1~1/1.5であり、より好ましくは1.3/1~1/1.3である。
工程Eの反応は触媒としては、酸でも塩基でも構わないが、酸が好ましい。上記酸としては、ルイス酸でもブレンステッド酸でも構わないが、ルイス酸が好ましい。上記ルイス酸としては、一般的にルイス酸と呼ばれるものは使用できるが、例えば、三フッ化ホウ素、四塩化錫、二塩化錫、塩化亜鉛、塩化第二鉄、塩化アルミニウム、四塩化チタン、塩化マグネシウム、五塩化アンチモンなどが挙げられる。その使用量は上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、通常は(水酸基)/(触媒)=1/0.0001~1/0.1であり、好ましくは1/0.0005~1/0.05であり、より好ましくは1/0.001~1/0.03である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
工程Fの反応に用いる三級アミンの使用量としては、前の工程で得られた反応物のハロゲン基のモル数に対して、モル比で、通常は(ハロゲン基)/(三級アミン)=2/1~1/2であり、好ましくは1.5/1~1/1.5であり、より好ましくは1.3/1~1/1.3である。
工程Gの反応は必要に応じて触媒の存在下行われる。反応に用いる触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム等のアルカリ金属塩;テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等の四級アンモニウム塩などが挙げることができる。その使用量は上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、通常は(水酸基)/(触媒)=1/0.0001~1/0.3であり、好ましくは1/0.001~1/0.2であり、より好ましくは1/0.005~1/0.1である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
工程Gの反応に用いるグリシジルトリアルキルアンモニウム塩の使用量としては、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、通常は(水酸基)/(グリシジルトリアルキルアンモニウム塩)=5/1~1/5であり、好ましくは3/1~1/3であり、より好ましくは1.5/1~1/1.5である。
工程Hの反応に用いるアルカリ化合物としては、工程Aにおいて用いられるアルカリ化合物と同様のものを用いることができる。
また、工程Hにおけるアルカリ化合物の使用量としては、工程Eで得られた反応物のハロゲン基とアルカリ化合物とのモル比が、1/1~1/100(ハロゲン基/アルカリ化合物)であることが好ましい。より好ましくは、1/1~1/50であり、更に好ましくは、1/1~1/20である。
本発明のカチオン性基含有単量体は上記の方法により製造することができるが、必要に応じて精製工程を設けても良い。抽出や洗浄による精製工程を行うことにより重合時にゲル化を引き起こす原因となる架橋成分の量を低減することができる点で好ましい。
上記製造方法(1-1)~(1-6)のうち、原料が安価であり、製造面でも簡便であることから、上記製造方法(1-1)~(1-3)、(1-5)及び(1-6)が好ましい。さらに、上記製造方法(1-1)は重合時にゲル化を引き起こす原因となる架橋成分の生成を抑えられることから好ましく、上記製造方法(1-2)はカチオン性基含有単量体中のカウンターアニオンを選択しやすいことから好ましく、上記製造方法(1-3)は反応で出る廃棄物が少ないことから好ましい。中でも、上記製造方法(1-1)がより好ましい。
本発明のカチオン性基含有単量体中のカウンターアニオンは上記製法で得た後にイオン交換法により所望のアニオン種に変換することができるが、各製法で使用する原料を適宜選択することにより所望のアニオン種を導入することが、簡便であるため好ましい。すなわち、上記製造方法(1-1)及び(1-5)では、上記工程(B)で使用する三級アミン塩のアニオンが、上記製造方法(1-2)及び(1-6)では、上記工程(D)の四級化剤により、上記製造方法(1-3)では上記工程(E)のエピハロヒドリンのハロゲン原子が、上記製造方法(1-4)では上記工程(G)のグリシジルトリアルキルアンモニウム塩のカウンターアニオンがカチオン性基含有単量体中のカウンターアニオンとして導入できる。
〔本発明のアミノ基含有単量体の製造方法〕
本発明のアミノ基含有単量体は、適用可能な通常用いられる製造方法により製造することができ、特に制限されないが、下記製造方法(2-1)~(2-4)の方法で製造することが好ましい。当該方法によれば、高い収率で本発明のアミノ基含有単量体を製造することができる。
すなわち、本発明のアミノ基含有単量体の好ましい製造方法(2-1)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとアルカリ化合物とを反応させる工程(工程I)と、(ロ)工程Iで得られた反応物と二級アミンとを反応させる工程(工程J)と、を含むアミノ基含有単量体の製造方法である。
本発明のアミノ基含有単量体の好ましい製造方法(2-2)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程K)と、(ロ)工程Kで得られた反応物とアルカリ化合物とを反応させる工程(工程L)と、(ハ)工程Lで得られた反応物と二級アミンとを反応させる工程(工程J)と、を含むアミノ基含有単量体の製造方法である。
本発明のアミノ基含有単量体の好ましい製造方法(2-3)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程K)と、(ロ)工程Kで得られた反応物と二級アミンとを反応させる工程(工程M)と、を含むアミノ基含有単量体の製造方法である。
本発明のアミノ基含有単量体の好ましい製造方法(2-4)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とN-(ジアルキルアミノメチル)オキシランとを反応させる工程(工程N)、を含むアミノ基含有単量体の製造方法である。
上記製造方法(2-1)~(2-4)における、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体において、R、R、Y及びnの好ましい態様は、上記一般式(14)におけるR、R、Y及びnの好ましい態様と同様である。
上記アミノ基含有単量体の製造方法において用いられる、一般式(I)で表されるポリアルキレングリコール鎖含有単量体、エピハロヒドリン、アルカリ化合物及び二級アミンとしては、上述した本発明のカチオン性基含有単量体の製造方法において用いられる、一般式(I)で表されるポリアルキレングリコール鎖含有単量体、エピハロヒドリン、アルカリ化合物及び二級アミンと同様のものを用いることができる。
上記製造方法(2-4)におけるN-(ジアルキルアミノメチル)オキシランとしては、下記一般式(24);
Figure JPOXMLDOC01-appb-C000054
(式中、R及びRは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びRは結合して環状構造を形成しても良い。)で表される構造を有するものが好ましい。
上記一般式(24)中、R及びRの好ましい態様は、上記一般式(14)におけるR及びRの好ましい態様と同じである。
上記N-(ジアルキルアミノメチル)オキシランとしては、具体的には、N-(ジメチルアミノメチル)オキシラン、N-(ジエチルアミノメチル)オキシラン、N-(ジ-n-ブチルアミノメチル)オキシラン、N-(ジヒドロキシエチルアミノメチル)オキシラン等が挙げられる。
つまり、上記製造方法(2-1)~(2-4)は下記反応式で表される。
Figure JPOXMLDOC01-appb-C000055
製造方法(2-1)~(2-4)にそれぞれ必須の工程I~Nの反応条件及び実施形態を以下に詳述する。
工程I、J、K、及び、Lの好ましい反応条件及び実施形態は、それぞれ上記カチオン性基含有単量体の製造方法における工程A、C、E、及び、Hの好ましい反応条件及び実施形態と同様である。
工程M、及び、Nの反応は、溶媒非存在下に実施することが、効率よく反応が進行し、容積効率の観点からより好ましいが、溶媒の存在下でも実施できる。溶媒は一種のみを単独で使用しても良いし、二種以上を併用しても良い。その使用量に特に制限はないが、工程Mの場合には、工程Kで得られた反応物に対して、また、工程Nの場合には、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体に対して、通常は0.005~5倍質量の範囲であり、好ましくは0.01~3倍質量の範囲である。
工程Mの反応において使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類を挙げることができる。
工程Nの反応において使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、ヘキサン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;ジクロロメタン、ジクロロエタン等の塩素系炭化水素を挙げることができる。
工程Mの反応は、工程Kで触媒を使用した場合には、そのまま残存触媒下で行っても良い。
工程M、Nの反応は、空気雰囲気下で行っても良いし、不活性ガス雰囲気下で行っても良い。また、減圧下、大気圧下、加圧下いずれでも実施できる。反応温度としては、通常は0~200℃であり、好ましくは15~150℃であり、より好ましくは30~100℃である。原料である、工程Kで得られた反応物や上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の流動性の観点から、攪拌に問題が生じない温度で実施することが好ましい。また、反応時間としては、通常は0.1~50時間であり、好ましくは0.5~30時間であり、より好ましくは1~15時間である。
工程M、及び、Nの反応は、バッチで行っても、連続で行っても良く、例えば、槽型、管型反応器のいずれの装置でも実施することができる。工程Mの反応後、脱塩などの工程を行うことが好ましい。脱塩工程は沈降分離、遠心分離、ろ過、洗浄などにより実施することができ、特に限定されるものではない、上記脱塩工程の実施条件は、塩が充分に取り除かれるように適宜実施すれば良く、充分な分離速度が得られる点で、15℃~100℃の温度で実施することが好ましい。
工程Mの反応に用いる二級アミンの使用量としては、工程Kで得られた反応物のハロゲン基のモル数に対し、モル比で、(ハロゲン基)/(二級アミン)=2/1~1/2であることが好ましく、より好ましくは1.7/1~1/1.7であり、更に好ましくは1.4/1~1/1.4である。
工程Nの反応は必要に応じて触媒の存在下行われる。反応に用いる触媒としては、工程Gにおいて用いられる触媒と同様のものを用いることができる。その使用量は上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、(水酸基)/(触媒)=1/0.0001~1/0.3であることが好ましく、より好ましくは1/0.001~1/0.2であり、更に好ましくは1/0.005~1/0.1である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
工程Nの反応に用いるN-(ジアルキルアミノメチル)オキシランの使用量としては、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、(水酸基)/(N-(ジアルキルアミノメチル)オキシラン)=5/1~1/5であることが好ましく、より好ましくは3/1~1/3であり、更に好ましくは1.5/1~1/1.5である。
本発明のアミノ基含有単量体は上記の方法により製造することができるが、必要に応じて精製工程を設けても良い。抽出や洗浄による精製工程を行うことにより重合時にゲル化を引き起こす原因となる架橋成分の量を低減することができる点で好ましい。
上記製造方法(2-1)~(2-4)のうち、原料や触媒が安価であり、製造面でも簡便であることから、上記製造方法(2-1)~(2-3)が好ましい。中でも、上記製造方法(2-1)が重合時にゲル化を引き起こす原因となる架橋成分の生成を抑えられることから特に好ましい。
〔本発明のスルホン酸基含有単量体の製造方法〕
上記スルホン酸基含有単量体は、適用可能な通常用いられる製造方法により製造することができ、特に制限されないが、下記製造方法(3-1)~(3-4)の方法で製造することが好ましい。当該方法によれば、高い収率で本発明のスルホン酸基含有単量体を製造することができる。
すなわち、本発明のスルホン酸基含有単量体の好ましい製造方法(3-1)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとアルカリ化合物とを反応させる工程(工程O)と、(ロ)工程Oで得られた反応物と亜硫酸化合物とを反応させる工程(工程P)と、を含むスルホン酸基含有単量体の製造方法である。
本発明のスルホン酸基含有単量体の好ましい製造方法(3-2)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程Q)と、(ロ)工程Qで得られた反応物とアルカリ化合物とを反応させる工程(工程R)と、(ハ)工程Rで得られた反応物と亜硫酸化合物とを反応させる工程(工程P)と、を含むスルホン酸基含有単量体の製造方法である。
本発明のスルホン酸基含有単量体の好ましい製造方法(3-3)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程Q)と、(ロ)工程Qで得られた反応物と亜硫酸化合物とを反応させる工程(工程S)と、を含むスルホン酸基含有単量体の製造方法である。
本発明のスルホン酸基含有単量体の好ましい製造方法(3-4)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とオキシランメタンスルホン酸(塩)とを反応させる工程(工程T)を含むスルホン酸基含有単量体の製造方法である。
上記製造方法(3-1)~(3-4)における、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体において、R、R、Y及びnの好ましい態様は、上記一般式(16)におけるR、R、Y及びnの好ましい態様と同様である。
上記スルホン酸基含有単量体の製造方法において用いられる、一般式(I)で表されるポリアルキレングリコール鎖含有単量体、エピハロヒドリン及びアルカリ化合物としては、上述した本発明のカチオン性基含有単量体の製造方法において用いられる、一般式(I)で表されるポリアルキレングリコール鎖含有単量体、エピハロヒドリン及びアルカリ化合物と同様のものを用いることができる。
上記製造方法(3-1)~(3-3)における、亜硫酸化合物としては、亜硫酸、亜硫酸水素、亜二チオン酸、メタ重亜硫酸、およびこれらの塩が好ましい。上記亜硫酸化合物は、酸として使用(すなわち亜硫酸などを使用)することもできるが、取り扱いの面から、また収率向上の観点からは塩として使用することが好ましい。上記塩としては、ナトリウム、カリウム、リチウム、アンモニウム、四級アンモニウム塩などが好ましい。
上記亜硫酸化合物としては、例えば、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム等の低級酸化物およびその塩等が挙げられる。中でも、工業的に安価であることから、亜硫酸水素ナトリウム、メタ重亜硫酸ナトリウムが特に好ましい。
上記製造方法(3-4)におけるオキシランメタンスルホン酸(塩)としては、下記一般式(25);
Figure JPOXMLDOC01-appb-C000056
(式中、Mは水素原子又は1価の陽イオンを表す。)で表される構造を有するものが好ましい。
上記一般式(25)中、Mの好ましい態様は、上記一般式(16)におけるMの好ましい態様と同じである。
上記オキシランメタンスルホン酸(塩)としては、具体的には、オキシランメタンスルホン酸、オキシランメタンスルホン酸ナトリウム、オキシランメタンスルホン酸カリウム、オキシランメタンスルホン酸アンモニウム、オキシランメタンスルホン酸テトラブチルアンモニウム等が挙げられる。
つまり、上記製造方法(3-1)~(3-4)は下記反応式で表される。
Figure JPOXMLDOC01-appb-C000057
製造方法(3-1)~(3-4)に必須の工程O~Tの反応条件及び実施形態を以下に詳述する。
工程O、Q、及び、Rの好ましい反応条件及び実施形態は、それぞれ上記カチオン性基含有単量体の製造方法における工程A、E、及び、Hの好ましい反応条件及び実施形態と同様である。
工程P、S、及び、Tの反応は、必要に応じて溶媒の存在下行われる。溶媒は一種のみを単独で使用しても良いし、二種以上を併用しても良い。その使用量に特に制限はないが、工程P、及び、Sの場合には、前の工程で得られた反応物に対して、また、工程Tの場合には、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体に対して、通常は0.005~5倍質量の範囲であり、好ましくは0.01~3倍質量の範囲である。
工程P、及び、Sの反応において使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類を挙げることができる。
工程Tの反応において使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、ヘキサン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;ジクロロメタン、ジクロロエタン等の塩素系炭化水素を挙げることができる。
工程P、及び、Sの反応は、前の工程で触媒を使用した場合には、そのまま残存触媒下で行っても良い。
工程P、S、及び、Tの反応は、空気雰囲気下で行っても良いし、不活性ガス雰囲気下で行っても良い。また、減圧下、大気圧下、加圧下いずれでも実施できる。反応温度としては、通常は0~200℃であり、好ましくは15~150℃であり、より好ましくは30~100℃である。原料である前の工程で得られた反応物や上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の流動性の観点から、攪拌に問題が生じない温度で実施することが好ましい。また、反応時間としては、通常は0.1~50時間であり、好ましくは0.5~30時間であり、より好ましくは1~15時間である。
また、上記工程P、S、及び、Tの反応はバッチで行っても、連続で行っても良く、例えば、槽型、管型反応器のいずれの装置でも実施することができる。
工程Sの反応後、脱塩などの工程を行うことが好ましい。脱塩工程は沈降分離、遠心分離、ろ過、洗浄などにより実施することができ、特に限定されるものではない、上記脱塩工程の実施条件は、塩が充分に取り除かれるように適宜実施すれば良く、充分な分離速度が得られる点で、15℃~100℃の温度で実施することが好ましい。
工程P、及び、Sの反応は、必要に応じてpHを調整して行われる。pHの調整は反応前、反応中にしても良く、アルカリ性化合物を添加して行うことが好ましい。上記アルカリ性化合物としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、水酸化カルシウムなどのアルカリ土類金属の水酸化物、アンモニア、アミン類が挙げられる。
工程P、及び、Sの反応に用いる亜硫酸化合物の使用量としては、工程Pの場合には、前の工程で得られた反応物のグリシジル基のモル数に対して、また、工程Sの場合には、前の工程で得られた反応物のハロゲン基のモル数に対して、モル比で、(グリシジル基、又は、ハロゲン基)/(亜硫酸化合物)=2/1~1/2であることが好ましく、より好ましくは1.7/1~1/1.7であり、更に好ましくは1.4/1~1/1.4である。上記亜硫酸化合物は水溶液の状態で使用しても良い。
工程Tの反応は必要に応じて触媒の存在下行われる。反応に用いる触媒としては、工程Gにおいて用いられる触媒と同様のものを用いることができる。その使用量は上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、(水酸基)/(触媒)=1/0.0001~1/0.3であることが好ましく、より好ましくは1/0.001~1/0.2であり、更に好ましくは1/0.005~1/0.1である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
工程Tの反応に用いるオキシランメタンスルホン酸(塩)の使用量としては、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体の水酸基(水酸基価換算)に対して、モル比で、(水酸基)/(オキシランメタンスルホン酸(塩))=5/1~1/5であることが好ましく、より好ましくは3/1~1/3であり、更に好ましくは1.5/1~1/1.5である。
本発明のスルホン酸基含有単量体は上記の方法により製造することができるが、必要に応じて精製工程を設けても良い。抽出や洗浄による精製工程を行うことにより重合時にゲル化を引き起こす原因となる架橋成分の量を低減することができる点で好ましい。
上記製造方法(3-1)~(3-4)のうち、原料や触媒が安価であり、製造面でも簡便であることから、上記製造方法(3-1)~(3-3)が好ましい。中でも、上記製造方法(3-1)が重合時にゲル化を引き起こす原因となる架橋成分の生成を抑えられることから特に好ましい。
〔本発明の有機エーテル基含有単量体の製造方法〕
上記有機エーテル基含有単量体は、適用可能な通常用いられる製造方法により製造することができ、特に制限されないが、下記製造方法(4-1)~(4-2)の方法で製造することが好ましい。当該方法によれば、高い収率で有機エーテル基含有単量体を製造することができる。
すなわち、本発明の有機エーテル基含有単量体の好ましい製造方法(4-1)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとアルカリ化合物とを反応させる工程(工程U)と、(ロ)工程Uで得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)と水酸基含有化合物とを反応させる工程(工程V)と、を含む有機エーテル基含有単量体の製造方法である。
本発明の有機エーテル基含有単量体の好ましい製造方法(4-2)は、(イ)上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体とエピハロヒドリンとを触媒存在下反応させる工程(工程W)と、(ロ)工程Wで得られた反応物とアルカリ化合物とを反応させる工程(工程X)と、(ハ)工程Xで得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)と水酸基含有化合物とを反応させる工程(工程V)と、を含む有機エーテル基含有単量体の製造方法である。
すなわち、上記一般式(1)で表されるグリシジル基含有ポリアルキレングリコール系単量体と水酸基含有化合物とを反応させることを特徴とする上記一般式(19)で表される有機エーテル基含有ポリアルキレングリコール系単量体の製造方法もまた、本発明の1つである。
上記製造方法(4-1)~(4-2)における、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体において、R、R、Y及びnの好ましい態様は、上記一般式(18)におけるR、R、Y及びnの好ましい態様と同様である。
上記有機エーテル基含有単量体の製造方法において用いられる、一般式(I)で表されるポリアルキレングリコール鎖含有単量体、エピハロヒドリン及びアルカリ化合物としては、上述した本発明のカチオン性基含有単量体の製造方法において用いられる、一般式(I)で表されるポリアルキレングリコール鎖含有単量体、エピハロヒドリン及びアルカリ化合物と同様のものを用いることができる。
上記製造方法(4-1)~(4-2)における、水酸基含有化合物としては、下記一般式(26);
-OH     (26)
(式中、Rは、炭素数1~20の有機基を表す。)で表される構造を有するものが好ましい。
上記一般式(26)中、Rの好ましい態様は、上記一般式(18)におけるRの好ましい態様と同様である。
上記水酸基含有化合物としては、具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、オクタノール、ラウリルアルコール、ステアリルアルコール、2-エチルヘキサノール等のアルキルアルコール類;シクロペンタノール、シクロヘキサノール等のシクロアルキルアルコール類;ベンジルアルコール等のアリールアルコール類;2-メトキシエタノール、2-エトキシエタノール、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコールモノメチルエーテル、等のアルキレングリコールモノアルキルエーテル類、フェノール、p-メトキシフェノール、ナフトール等のフェノール類;グリコール酸、乳酸、リンゴ酸、クエン酸などのヒドロキシカルボン酸類等が挙げられる。中でも、高い収率で有機エーテル基含有ポリアルキレングリコール系単量体を製造することができることから、メタノール、エタノール、n-ブタノール、オクタノール、ラウリルアルコール、2-エチルヘキサノール、グリコール酸であることが好ましい。
つまり、上記製造方法(4-1)~(4-2)は下記反応式で表される。
Figure JPOXMLDOC01-appb-C000058
製造方法(4-1)~(4-2)に必須の工程U~Xの反応条件及び実施形態を以下に詳述する。
工程U、W、及び、Xの好ましい反応条件及び実施形態は、それぞれ上記カチオン性基含有単量体の製造方法における工程A、E、及び、Hの好ましい反応条件及び実施形態と同様である。
工程Vに用いる上記水酸基含有化合物の使用量としては、前の工程で得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)のグリシジル基に対するモル比で、(グリシジル基)/(水酸基含有化合物)=1/1~1/100が好ましく、1/2~1/50がより好ましく、より高純度に上記一般式(18)で表される有機エーテル基含有ポリアルキレングリコール系単量体が製造できるという観点から1/3~1/20が特に好ましい。
工程Vの反応は、触媒を用いて行っても良く、該触媒としては、酸を用いても良く、アルカリを用いても良い。
上記酸としては、ルイス酸でもブレンステッド酸でも構わないが、ルイス酸が好ましい。ルイス酸としては、一般的にルイス酸と呼ばれるものは使用できるが、例えば、三フッ化ホウ素、四塩化錫、二塩化錫、塩化亜鉛、塩化第二鉄、塩化アルミニウム、四塩化チタン、塩化マグネシウム、五塩化アンチモンなどが挙げられる。その使用量は、前の工程で得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)のグリシジル基に対して、モル比で、(グリシジル基)/(酸)=1/0.0001~1/0.1であることが好ましく、より好ましくは1/0.0005~1/0.05であり、更に好ましくは1/0.001~1/0.03である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
上記アルカリとしては、特に限定されないが、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物が好ましい。アルカリ化合物の使用量は、前の工程で得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)のグリシジル基に対するモル比で、(グリシジル基)/(アルカリ化合物)=1/0.001~1/1であることが好ましく、より好ましくは1/0.005~1/0.75であり、更に好ましくは1/0.01~1/0.5である。上記アルカリとしては、上記アルカリ金属水酸化物の水溶液を用いても良い。
工程Vの反応は、必要に応じて相間移動触媒及び/又は溶媒の存在下に行っても良い。
上記相間移動触媒の種類は特に限定されないが、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等の四級アンモニウム塩;テトラブチルホスホニウムクロリド等のホスホニウム塩;15-クラウン-5、等のクラウンエーテル類が挙げられる。
上記相間移動触媒を使用する場合の、その使用量は、前の工程で得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)のグリシジル基に対して、モル比で、(グリシジル基)/(相間移動触媒)=1/0.0001~1/0.3であることが好ましく、より好ましくは1/0.001~1/0.2であり、更に好ましくは1/0.005~1/0.1である。触媒量が少なすぎると十分な触媒効果は得られず、多過ぎても、それ以上の効果はなく、経済的に不利である。
工程Vの反応は、溶媒非存在下に実施することが、効率よく反応が進行し、容積効率の観点からより好ましいが、溶媒の存在下でも実施できる。使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば、ヘキサン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;ジクロロメタン、ジクロロエタン等の塩素系炭化水素類を挙げることができる。これらは一種のみを単独で使用しても良いし、二種以上を併用しても良い。その使用量に特に制限はないが、前の工程で得られた反応物(グリシジル基含有ポリアルキレングリコール系単量体)に対して、通常は0.005~5倍質量の範囲であり、好ましくは0.01~3倍質量の範囲である。
工程Vの反応は、前の工程で触媒を使用した場合には、そのまま残存触媒下で行っても良い。また、工程Vの反応は、空気雰囲気下で行っても良いし、不活性ガス雰囲気下で行っても良い。また、減圧下、大気圧下、加圧下いずれでも実施できる。反応温度としては、通常は0~200℃であり、好ましくは15~160℃であり、より好ましくは30~120℃である。また、反応時間としては、通常は0.1~50時間であり、好ましくは0.5~30時間であり、より好ましくは1~15時間である。工程Vの反応は、バッチで行っても、連続で行っても良く、例えば、槽型、管型反応器のいずれの装置でも実施することができる。反応後、過剰な水酸基含有化合物の除去工程を実施することが好ましい。過剰な水酸基含有化合物は洗浄、蒸留、蒸発操作等によって容易に取り除くことができる。また、反応後、触媒の除去工程を実施しても良い。
本発明の有機エーテル基含有単量体は上記の方法により製造することができるが、必要に応じて精製工程を設けても良い。抽出や洗浄による精製工程を行うことにより重合時にゲル化を引き起こす原因となる架橋成分の量を低減することができる点で好ましい。
上記製造方法(4-1)~(4-2)のうち、上記製造方法(4-1)が重合時にゲル化を引き起こす原因となる架橋成分の生成を抑えられることから特に好ましい。
次に本発明の水溶性単量体を重合して得られる水溶性重合体について説明する。
まず、本発明のカチオン性基含有単量体を重合して得られるカチオン性重合体について説明する。
〔本発明のカチオン性重合体〕
本発明のカチオン性基含有重合性単量体を原料とするカチオン性重合体は、(i)上記一般式(13)で表される本発明のカチオン性基含有単量体由来の構造(構造A)を必須とし、必要に応じて、(ii)その他の単量体由来の構造(構造B)を有している。
上記その他の単量体由来の構造(構造B)は、本発明のカチオン性基含有単量体以外の単量体が重合することにより形成される構造であり、単量体の重合性炭素-炭素不飽和二重結合が単結合になった構造である。例えば、アクリル酸メチル(CH=CHCOOCH)の場合、その他の単量体由来の構造(構造B)は、-CH-CH(COOCH)-となる。
<本発明のカチオン性重合体の組成>
本発明のカチオン性重合体は、上記の通り、(i)構造Aを必須とし、必要に応じて(ii)構造Bを有するものであるが、それらの含有割合としては、本発明のカチオン性重合体を構成する全単量体由来の構造(構造Aと構造B)100質量%に対し、構造Aが1以上99質量%以下、構造Bが0以上99質量%以下の割合であることが好ましく、構造Aが5以上95質量%以下、構造Bが0以上95質量%以下の割合であることが更に好ましく、構造Aが10以上95質量%以下、構造Bが0以上90質量%以下の割合であることが特に好ましい。
なお、本発明において、カチオン性基含有単量体の全単量体由来の構造に対する質量割合(質量%)を計算する場合は、カウンターアニオンは計算に入れないこととし、アミノ基含有単量体の全単量体由来の構造に対する質量割合(質量%)を計算する場合は、アミン塩の場合は対応するアミンとして計算することとする。
次に、本発明のカチオン性基含有単量体を重合して得られるカチオン性重合体の製造方法について説明する。
〔本発明のカチオン性重合体の製造方法〕
本発明のカチオン性重合体の製造方法は、特に断りの無い限りは、通常知られている重合方法と同様にしてあるいはそれを修飾した方法が使用でき、本発明のカチオン性重合体は、(i)本発明のカチオン性基含有単量体(単量体aともいう。)と、必要に応じて(ii)その他の単量体(単量体bともいう。)とを重合することにより製造することができる。なお、単量体a、単量体bとしては、それぞれ1種を用いてもよいし、2種以上を用いてもよい。
具体的な重合方法としては、例えば、水中油型乳化重合法、油中水型乳化重合法、懸濁重合法、分散重合法、沈澱重合法、溶液重合法、水溶液重合法、塊状重合法等を採用することができる。上記例示の重合方法の中でも、安全性が高く、また、生産コスト(重合コスト)を低減化することができることから、水溶液重合法、乳化重合法を採用することが好ましい。
<重合開始剤>
上記重合方法においては、重合開始剤として、通常重合開始剤として使用されるものを使用することができ、例えば、過酸化水素;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;2、2’-アゾビス(2-アミジノプロパン)塩酸塩、4、4’-アゾビス-4-シアノパレリン酸、アゾビスイソブチロニトリル、2、2’-アゾビス(4-メトキシ-2、4-ジメチルバレロニトリル)等のアゾ系化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、ジ-t-ブチルパーオキシド、クメンヒドロパーオキシド等の有機過酸化物等が好適である。これらの重合開始剤は、単独で使用されてあるいは2種以上の混合物の形態で使用されても良い。例えば、過酸化水素と過硫酸塩の組み合わせは好ましい形態である。
<連鎖移動剤>
本発明のカチオン性重合体の製造方法は、必要に応じ、重合に悪影響を及ぼさない範囲内で、重合体の分子量調整剤として連鎖移動剤を用いても良い。上記連鎖移動剤としては、具体的には、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン際、3-メルカプトプロピオン際、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル、2-メルカプトエタンスルホン酸、n-ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレート等の、チオール系連鎖移動剤;四塩化炭素、塩化メチレン、ブロモホルム、ブロモトリクロロエタン等の、ハロゲン化物;イソプロパノール、グリセリン等の、第2級アルコール;亜リン酸、次亜リン酸、及びその塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)や、亜硫酸、亜硫酸水素、亜二チオン酸、メタ重亜硫酸、及びその塩(亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム等)等の、低級酸化物およびその塩などが挙げられる。上記連鎖移動剤は、単独で使用されてもあるいは2種以上の混合物の形態で使用されても良い。
本発明の製造方法において、上述したように、亜硫酸及び/又は亜硫酸塩(以下、単に「亜硫酸(塩)」と記載する)を連鎖移動剤として使用することは好ましい形態であるが、その場合、亜硫酸(塩)に加えて開始剤を使用する。さらに、反応促進剤として、重金属イオンを併用しても良い。
<反応促進剤>
本発明のカチオン性重合体の製造方法は、開始剤などの使用量を低減する等の目的で反応促進剤を加えても良い。上記反応促進剤としては、重金属イオンが例示される。本発明で重金属イオンとは、比重が4g/cm以上の金属を意味する。上記金属イオンとしては、例えば、鉄、コバルト、マンガン、クロム、モリブデン、タングステン、銅、銀、金、鉛、白金、イリジウム、オスミウム、パラジウム、ロジウム、ルテニウム等が好ましい。これらの重金属は1種又は2種以上を用いることができる。これらの中でも、鉄がより好ましい。上記重金属イオンのイオン価は特に限定されるものではなく、例えば、重金属として鉄が用いられる場合、開始剤における鉄イオンとしては、Fe2+であっても、Fe3+であってよく、これらが組み合わされていても良い。
上記重金属イオンの添加方法は特に限定されないが、単量体の滴下終了前までに添加することが好ましく、全量初期仕込することが特に好ましい。また、使用量としては反応液全量に対して100ppm以下であることが好ましい。
本発明のカチオン性重合体の製造方法において、重合の際には、上述した化合物等に加えて、重合開始剤の分解触媒や還元性化合物を反応系に添加しても良い。上記重合開始剤の分解触媒としては、例えば、塩化リチウム、臭化リチウム等のハロゲン化金属;酸化チタン、二酸化ケイ素等の金属酸化物;塩酸、臭化水素酸、過塩素酸、硫酸、硝酸等の無機酸の金属塩;ギ酸、酢酸、プロピオン酸、ラク酸、イソラク酸、安息香酸等のカルボン酸、そのエステル及びその金属塩;ピリジン、インドール、イミダゾール、カルバゾール等の複素環アミン及びその誘導体等が挙げられる。これらの分解触媒は1種のみが単独で用いられても良いし、2種以上が併用されても良い。
<重合溶媒>
本発明において、単量体a、bの共重合は、単量体a及びbを溶解可能な溶媒を使用して重合することが好ましく、使用する溶媒の50質量%以上に水を用いることが好ましい。用途によっては有機溶剤の混入が厳しく制限されることがあるが、使用する溶媒の50質量%以上に水を用いることによって、重合に使用される有機溶剤の量を抑制できるため、重合終了後の有機溶剤の留去が容易であるという利点がある。
水と混合して使用されうる溶剤としては、例えばメタノール、エタノール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン、ジエチルケトン等の低級ケトン類;ジメチルエーテル、ジオキサン等のエーテル類;ジメチルホルムアルデヒド等のアミド類が挙げられる。これらの溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で試用されても良い。上記観点からは、水の量は、使用する溶媒全量に対して、好ましくは80質量%以上であり、最も好ましくは水単独(即ち、100質量%)である。
水等の上記溶媒の使用量としては、単量体成分100質量%に対して40~200質量%が好ましい。より好ましくは、45質量%以上であり、更に好ましくは、50質量%以上である。また、より好ましくは、180質量%以下であり、更に好ましくは、150質量%以下である。溶媒の使用量が40質量%未満であると、得られる共重合体の分子量が高くなる恐れがあり、200質量%を超えると、得られる共重合体の濃度が低くなり、溶媒除去が必要となる恐れがある。なお、溶媒は、重合初期に一部又は全量を反応容器内に仕込んでおけば良いが、溶媒の一部を重合反応中に反応系内に添加(滴下)しても良いし、単量体成分や開始剤等を予め溶媒に溶解させた形で、これらの成分と共に重合反応中に反応系内に添加(滴下)しても良い。
上記重合方法において、単量体成分や重合開始剤等の反応容器への添加方法としては、反応容器に単量体成分の全てを仕込み、重合開始剤を反応容器内に添加することによって共重合を行う方法;反応容器に単量体成分の一部を仕込み、重合開始剤と残りの単量体成分を反応容器内に連続してあるいは段階的に(好ましくは連続して)添加することによって共重合を行う方法;反応容器に重合溶媒を仕込み、単量体成分と重合開始剤の全量を添加する方法;単量体a、bのうちの一種の内の一部を反応容器に仕込み、重合開始剤と残りの単量体成分を反応容器内に(好ましくは連続して)添加することによって重合を行う方法等が好適である。
上記重合方法は、回分式でも連続式でも行うことができる。
上記重合方法において、重合温度等の重合条件としては、用いられる重合方法、溶媒、重合開始剤により適宜定められるが、重合温度としては、通常、0℃以上であることが好ましく、また、150℃以下であることが好ましい。より好ましくは、40℃以上であり、更に好ましくは、60℃以上であり、特に好ましくは、80℃以上である。また、より好ましくは、120℃以下であり、更に好ましくは、110℃以下である。
<重合時間、重合圧力、重合pH>
重合時間は特に制限されないが、好ましくは30~420分である。
上記重合方法における反応系内の圧力としては、常圧(大気圧)下、減圧下、加圧下の何れであっても良いが、得られる共重合体の分子量の点で、常圧下、又は、反応系内を密閉し、加圧下で行うのが好ましい。反応系内の雰囲気としては、空気雰囲気でもよいが、不活性雰囲気とするのが好ましく、例えば、重合開始前に系内を窒素等の不活性ガスで置換することが好ましい。
上記重合における重合中のpHは、特に制限されない。
[本発明のアミノ基含有重合体、スルホン酸基含有重合体、有機エーテル基含有重合体]
本発明のアミノ基含有単量体から得られる重合体(または重合体組成物)、本発明のスルホン酸基含有単量体から得られる重合体(または重合体組成物)及び本発明の有機エーテル基含有単量体から得られる重合体(または重合体組成物)についても、その構成、組成、製造方法は、上述したカチオン性重合体(または重合体組成物)と同様であり、適宜設定することができる。
[重合体、重合体組成物の用途]
上記各水溶性単量体から得られる水溶性重合体(または重合体組成物)は、凝固剤、凝集剤、印刷インク、接着剤、土壌調整(改質)剤、難燃剤、スキンケア剤、ヘアケア剤、シャンプー・ヘアースプレー・石鹸・化粧品用添加剤、アニオン交換樹脂、繊維・写真用フィルムの染料媒染剤や助剤、製紙における顔料展着剤、紙力増強剤、乳化剤、防腐剤、織物・紙の柔軟剤、潤滑油の添加剤、水処理剤、繊維処理剤、分散剤、洗剤用添加剤、スケール防止剤(スケール抑制剤)、金属イオン封止剤、増粘剤、各種バインダー、乳化剤等として用いられうる。洗剤ビルダーとしては、衣料用、食器用、住居用、毛髪用、身体用、歯磨き用、及び自動車用など、様々な用途の洗剤に添加されて使用されうる。
本発明の水溶性単量体用中間体含有組成物は、上述の構成よりなり、これにより水溶性重合体を収率よく製造することができ、更に製造される水溶性重合体に泥や布に対する吸着能を付与することができることから、水溶性重合体の製造に好適に用いられる重合性の末端二重結合を有し、水溶性を示すポリアルキレングリコール系単量体の製造に好適に用いることができる。
また、本発明の水溶性単量体は、上述の構成よりなり、各種ノニオン性単量体やカチオン性単量体、アニオン性単量体と優れた共重合性を有する。そして、本発明の水溶性単量体から得られる重合体は、本発明の水溶性単量体由来の構造に起因して、例えば、洗浄時に優れた金属イオン捕捉能及び耐ゲル化能を発揮し、また、洗剤添加剤として使用した場合に、優れた再汚染防止能、染料移行防止能や界面活性剤との優れた相溶性といった特性を示す。
更に、本発明の水溶性単量体の製造方法は、上述の構成よりなり、これにより副生物の生成が抑制され、高収率かつ高選択率に水溶性単量体を製造することができる。
図1は、反応工程(i-a)における反応の概略を示した反応式である。 図2は、反応工程(i-b)における反応の概略を示した反応式である。 図3は、実施例4で得られた単量体(1)の中間体[A]のH-NMRチャート図である。 図4は、実施例4で得られた単量体(1)のH-NMRチャート図である。 図5は、実施例9で得られた単量体(5)のH-NMRチャート図である。 図6は、実施例10で得られた単量体(6)のH-NMRチャート図である。 図7は、実施例16で得られた単量体(11)のH-NMRチャート図である。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
以降の実施例においては、上記一般式(I)で表されるポリアルキレングリコール鎖含有単量体として下記化合物を使用した。
イソプレノールのエチレンオキシド平均10モル付加物(以下、「IPN10」とも称する。):水酸基価106.5(mgKOH/g)
イソプレノールのエチレンオキシド平均25モル付加物(以下、「IPN25」とも称する。):水酸基価47.3(mgKOH/g)
イソプレノールのエチレンオキシド平均50モル付加物(以下、「IPN50」とも称する。):水酸基価25.5(mgKOH/g)
下記実施例及び比較例においては、次のようにして分析し、評価を行った。
<中間体組成物の定量>
水溶性単量体用中間体含有組成物におけるIPN10、及び、IPN10の末端グリシジル化物(IPEG10)の定量は、以下の条件で高速液体クロマトグラフィーにより行った。また、カチオン性基含有単量体(IPEC10)は対応するIPEG10を定量することにより、その転化率から定量した。
測定装置:日立ハイテクノロジーズ社製
カラム:資生堂社製 CAPCELLPAK C18 MGII(内径:4.6mm×長さ:250mm、粒子径:5μm)
溶離液:0.1質量%ギ酸/アセトニトリル=6/4(体積比)
流速:1.0mL/min
カラム温度:40℃
検出器:RI、UV(210nm)
検量線:反応原料アルコールであるIPN10を用いて作成した。ただし、IPEG10の検出強度がIPN10と同じとして量を算出した。
<副生物の定量>
水溶性単量体用中間体含有組成物における副生物の定量は、以下の条件で高速液体クロマトグラフィーにより行った。
測定装置:Waters社製 2695
カラム:資生堂社製 CAPCELLPAK C18 MGII(内径:1.5mm×長さ:150mm、粒子径:5μm)
溶離液:0.1質量%ギ酸/アセトニトリル=6/4(体積比)
流速:0.2mL/min
カラム温度:30℃
UV検出器:210nm
検量線:反応原料アルコールであるIPN10を用いて作成し、副生物の検出強度がIPN10の2倍として量を算出した。
<重合試験>
IPEG10を含む中間体含有組成物と、トリメチルアミン塩酸塩とを反応させて、対応するIPEC10を含む水溶性単量体含有組成物を合成し、重合試験を行った。重合試験はIPEC10とヒドロキシエチルアクリレートとをモル比で1/2の組成比で仕込み、静置重合した。反応開始剤としては、過硫酸ナトリウムを用い、反応温度80℃で重合させ、得られた重合体について泥への吸着能試験を実施した。
<泥への吸着能試験>
固形分換算で0.3%の重合体含有水溶液を調製した。重合体含有水溶液にJIS Z 8901試験用粉体1の11種(関東ローム)を5%となるように仕込み、室温で20分間攪拌し、フィルターを用いてクレーをろ過した後、紫外可視分光光度計(測定装置:SHIMADZU社製 UV-1650PC)を用いて210nmでの吸光度を測定した。また、ブランクとして、重合体含有水溶液の代わりに純水を用いて同様の試験を行った。以上の測定結果から、下記式により泥への吸着能を求めた。
泥への吸着能(%)=[(試験後の重合体含有水溶液の吸光度-ブランクの吸光度)/試験前の重合体含有水溶液の吸光度]×100
また、事前に測定波長の210nmにおいて、水溶液中の重合体濃度と吸光度が比例関係にあることを確認した。
<固形分の測定>
窒素雰囲気下、130℃に加熱したオーブンで、本発明の重合体(本発明の重合体組成物1.0gに水1.0gを加えたもの)を1時間放置して乾燥処理した。乾燥前後の重量変化から、固形分(%)と揮発成分(%)を算出した。
(実施例1)
攪拌翼、温度計、冷却管を備えた1L四つ口フラスコに、下記化学式(27);
Figure JPOXMLDOC01-appb-C000059
で表されるIPN10を200.2g、エピクロルヒドリン(ECH)351.6gを一括で仕込み、攪拌混合しながら、内温50℃となるよう加温した。ここにフレーク状の水酸化ナトリウム15.2gを2時間かけて徐々に添加し、内温50℃を維持しながら、更に6時間攪拌した(処方B)。得られた溶液を室温まで冷却した後、析出した塩をろ過して除去し、更に減圧蒸留で混入しているエピクロルヒドリンと水を除去して、下記化学式(28);
Figure JPOXMLDOC01-appb-C000060
で表されるIPEG10、未反応のIPN10、下記化学式(29);
Figure JPOXMLDOC01-appb-C000061
で表される化合物(B-1)に相当する副生物1、及び、下記化学式(30);
Figure JPOXMLDOC01-appb-C000062
で表される化合物(B-2)に相当する副生物2を含む中間体含有組成物(1-1)を199.4g得た。
次に、攪拌翼、温度計、冷却管を備えた100mL四つ口フラスコに、中間体含有組成物(1-1)30.1g、30%トリメチルアミン塩酸塩水溶液14.5gを一括で仕込み、内温50℃で6時間攪拌し、IPEC10を含む水溶性単量体含有組成物(1-2)を44.6g得た。次に、スターラーを備えた100mLサンプル管に、IPEC10を含む水溶性単量体含有組成物(1-2)1.95g、ヒドロキシエチルアクリレート0.49g、純水9.40gを仕込み、攪拌混合しながら、内温80℃となるように加温した。ここに15%過硫酸ナトリウム水溶液0.42gを添加し、内温を80℃に維持しながら1時間攪拌し、重合体(1-3)を12.26g得た。得られた重合体はNMR、及び、ガスクロマトグラフィーを用いて単量体が消費されたことを確認した。得られた重合体を用いて、泥への吸着試験を行った。
中間体含有組成物(1-1)を得るために仕込んだ反応原料の仕込みモル比、処方を表1に、得られた中間体含有組成物(1-1)に含まれるIPN10、IPEG10、副生物1、副生物2の量、水溶性単量体含有組成物(1-2)を用いて行われた重合試験、及び、重合体(1-3)を用いて行われた泥への吸着試験の結果を表2に示す。
(実施例2)
攪拌翼、温度計、冷却管を備えた5L四つ口フラスコに、IPN10を1679.8g、エピクロルヒドリン(ECH)1406.0gを一括で仕込み、攪拌混合しながら、内温50℃となるよう加温した。ここに48%水酸化ナトリウム水溶液374.3gを2時間かけて滴下し、内温50℃を維持しながら、更に4時間攪拌した。反応中、系中を減圧にし、水を留去しながら反応を行った(処方A)。得られた溶液を室温まで冷却した後、析出した塩を水で洗浄して除去し、更に減圧蒸留で混入しているエピクロルヒドリンと水を除去して、IPEG10、未反応のIPN10、副生物1及び副生物2を含む中間体含有組成物(2-1)を1732.0g得た。
次に、攪拌翼、温度計、冷却管を備えた2L四つ口フラスコに、中間体含有組成物(2-1)1100.0g、30%トリメチルアミン塩酸塩水溶液532.6gを一括で仕込み、攪拌混合しながら、内温50℃で6時間攪拌し、IPEC10を含む水溶性単量体含有組成物(2-2)を1632.6g得た。次に、スターラーを備えた100mLサンプル管に、IPEC10を含む水溶性単量体含有組成物(2-2)2.03g、ヒドロキシエチルアクリレート0.51g、純水9.66gを仕込み、攪拌混合しながら、内温80℃となるように加温した。ここに15%過硫酸ナトリウム水溶液0.44gを添加し、内温を80℃に維持しながら1時間攪拌し、重合体(2-3)を12.64g得た。得られた重合体はNMR、及び、ガスクロマトグラフィーを用いて単量体が消費されたことを確認した。得られた重合体を用いて、泥への吸着試験を行った。
中間体含有組成物(2-1)を得るために仕込んだ反応原料の仕込みモル比、処方を表1に、得られた中間体含有組成物(2-1)に含まれるIPN10、IPEG10、副生物1、副生物2の量、水溶性単量体含有組成物(2-2)を用いて行われた重合試験、及び、重合体(2-3)を用いて行われた泥への吸着試験の結果を表2に示す。
(実施例3)
攪拌翼、温度計、冷却管を備えた2L四つ口フラスコに、IPN10を802.0g、エピクロルヒドリン(ECH)422.1gを一括で仕込み、攪拌混合しながら、内温50℃となるよう加温した。ここにフレーク状の水酸化ナトリウム91.2gを2時間かけて徐々に添加し、内温50℃を維持しながら、更に5時間攪拌した(処方B)。得られた溶液を室温まで冷却した後、析出した塩をろ過して除去し、更に減圧蒸留で混入しているエピクロルヒドリンと水を除去して、IPEG10、未反応のIPN10、副生物1及び副生物2を含む中間体含有組成物(3-1)を833.3g得た。
次に、攪拌翼、温度計、冷却管を備えた100mL四つ口フラスコに、中間体含有組成物(3-1)30.0g、30%トリメチルアミン塩酸塩水溶液16.5gを一括で仕込み、内温50で6時間攪拌し、IPEC10を含む水溶性単量体含有組成物(3-2)を46.5g得た。次に、スターラーを備えた100mLサンプル管に、IPEC10を含む水溶性単量体含有組成物(3-2)2.36g、ヒドロキシエチルアクリレート0.53g、純水10.25gを仕込み、攪拌混合しながら、内温80℃となるように加温した。ここに15%過硫酸ナトリウム水溶液0.46gを添加し、内温を80℃に維持しながら1時間攪拌し、重合体(3-3)を13.60g得た。得られた重合体はNMR、及び、ガスクロマトグラフィーを用いて単量体が消費されたことを確認した。得られた重合体を用いて、泥への吸着試験を行った。
中間体含有組成物(3-1)を得るために仕込んだ反応原料の仕込みモル比、処方を表1に、得られた中間体含有組成物(3-1)に含まれるIPN10、IPEG10、副生物1、副生物2の量、水溶性単量体含有組成物(3-2)を用いて行われた重合試験、及び、重合体(3-3)を用いて行われた泥への吸着試験の結果を表2に示す。
(比較例1)
攪拌翼、温度計、冷却管を備えた500mL四つ口フラスコに、IPN10を300.3g、エピクロルヒドリン(ECH)79.2gを一括で仕込み、攪拌混合しながら、内温50℃となるよう加温した。ここにフレーク状の水酸化ナトリウム22.8gを2時間かけて徐々に添加し、内温50℃を維持しながら、更に4時間攪拌した(処方B)。得られた溶液を室温まで冷却した後、析出した塩をろ過して除去し、更に減圧蒸留で混入しているエピクロルヒドリンと水を除去して、IPEG10、未反応のIPN10、副生物1及び副生物2を含む中間体含有組成物(4-1)を274.8g得た。
次に、攪拌翼、温度計、冷却管を備えた100mL四つ口フラスコに、中間体含有組成物(4-1)30.0g、30%トリメチルアミン塩酸塩水溶液13.3gを一括で仕込み、内温50℃で6時間攪拌し、IPEC10を含む水溶性単量体含有組成物(4-2)を43.3g得た。次に、スターラーを備えた100mLサンプル管に、IPEC10を含む水溶性単量体含有組成物(4-2)1.97g、ヒドロキシエチルアクリレート0.48g、純水9.04gを仕込み、攪拌混合しながら、内温80℃となるように加温した。ここに15%過硫酸ナトリウム水溶液0.41gを添加し、内温を80℃に維持しながら1時間攪拌し、重合体(4-3)を11.90g得た。得られた重合体はNMR、及び、ガスクロマトグラフィーを用いて単量体が消費されたことを確認した。得られた重合体を用いて、泥への吸着試験を行った。
中間体含有組成物(4-1)を得るために仕込んだ反応原料の仕込みモル比、処方を表1に、得られた中間体含有組成物(4-1)に含まれるIPN10、IPEG10、副生物1、副生物2の量、水溶性単量体含有組成物(4-2)を用いて行われた重合試験、及び、重合体(4-3)を用いて行われた泥への吸着試験の結果を表2に示す。
なお、表1及び2中の略号は、以下の通りである。
IPN10:イソプレノールのエチレンオキシド平均10モル付加物
ECH:エピクロルヒドリン
NaOH:水酸化ナトリウム
IPEG10:IPN10の末端グリシジル化物
IPEG10含量:中間体含有組成物中に含まれるIPEG10の質量割合
IPN10含量:中間体含有組成物中に含まれるIPN10の質量割合
副生物1:化合物(B-1)に相当する副生物1の、IPEG10に対するモル割合、及び、IPEG10とIPN10との合計量に対するモル割合
副生物2:化合物(B-2)に相当する副生物2の、IPEG10に対するモル割合、及び、IPEG10とIPN10との合計量に対するモル割合
total:中間体含有組成物中に含まれる副生物1と副生物2との合計量の、IPEG10に対するモル割合、及び、IPEG10とIPN10との合計量に対するモル割合
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
表1及び表2の結果から、以下のことが分かった。
化合物(A)を含む水溶性単量体用中間体含有組成物において、該組成物中の化合物(B)の含有量が、化合物(A)の含有量に対して0.1~6.0モル%であるものは、該組成物から誘導される単量体含有組成物を用いて重合体を製造した場合に、顕著にゲル化することを防ぐことが可能であることが実証された。そして更に、そのような組成物から誘導される単量体含有組成物を用いて製造される重合体が、泥に対して優れた吸着能を有することも実証された。
なお、上記実施例においては、化合物(A)の合成の際、化合物(I)として、IPN10を、エピハロヒドリンとしてエピクロルヒドリンを、アルカリ化合物として水酸化ナトリウムを、それぞれ用いて、相当する化合物(B)に含まれる副生物が生成しているが、化合物(A)の合成時に副生する化合物(B)の含有量を特定の範囲とすることによって、重合反応時のゲル化を防ぐことができる機構は、化合物(B)を特定量含む水溶性単量体用中間体含有組成物から誘導された単量体含有組成物を用いて重合反応を行った場合には全て同様であり、また、化合物(B)の含有量が特定の範囲である組成物から誘導される単量体含有組成物を用いて製造される重合体が泥に対して優れた吸着能を示す機構は、化合物(B)を特定量含む水溶性単量体用中間体含有組成物から誘導された単量体含有組成物を用いて製造された重合体においては全て同様である。従って、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
また、イソプレノールのエチレンオキシド付加物、カチオン性基含有単量体および反応中間体は、上記の<中間体組成物の定量>に記載した条件の液体クロマトグラフィーにより定量した。重合体の固形分の測定は、上記<固形分の測定>に記載した通りに行った。重合体の重量平均分子量及び染料移行防止能は、下記方法に従って測定した。
<N-ビニルピロリドンの定量>
N-ビニルピロリドンの測定は、下記条件にて液体クロマトグラフィーを用いて行った。
カラム:資生堂社製 CAPCELL PAK C18 TYPE UG120 5μm、1.5mmΦ×250mm
溶離液:メタノール/水=1/24(1-ヘプタンスルホン酸ナトリウム0.4質量%含有)
流量:100μL/min.
カラムオーブン:20℃
注入量:10μL
UV検出器:235nm
<重量平均分子量の測定条件>
装置:日立製作所社製 L-7000シリーズ
検出器:RI
カラム:昭和電工社製 SHODEX Asahipak GF-310-HQ、 GF-710-HQ、 GF-1G 7B
カラム温度:40℃
流速:0.5mL/min.
検量線:ジーエルサイエンス社製 POLYETHYLENGLYCOL STANDARD
溶離液:0.1N酢酸ナトリウム/アセトニトリル=3/1(質量比)
<移染防止能の測定方法>
(i)JIS綿布(5cm×5cm、財団法人日本規格協会より入手)を予め日本電色工業社製の測色色差計SE2000型を用いて、白色度を反射率にて測定した(試験前の試験布の白色度という)。
(ii)塩化カルシウム2水和物、塩化マグネシウム6水和物に純水を加えて硬水を調整した(カルシウムイオン150ppm(炭酸カルシウム換算)、マグネシウムイオン(炭酸マグネシウム換算)50ppm)。
(iii)ポリオキシエチレン(2)ラウリルエーテル硫酸ナトリウム3.2g、ポリオキシエチレン(7)ラウリルエーテル0.4g、ホウ酸ナトリウム0.4g、クエン酸1.0gに、純水を加えて、100.0gとし、界面活性剤水溶液を調製した。pHは、水酸化ナトリウムで8.5に調整した。
(iv)ターゴットメーターを40℃にセットし、硬水500mLとゼオライト0.7g、5質量%の炭酸ナトリウム水溶液7.7g、5質量%のLAS(花王株式会社より入手)水溶液3.5g、固形分換算で1%の重合体水溶液3.5g、染料としてクロラゾールブラックLF(試薬 東京化成工業 株式会社より入手)の0.25質量%水溶液2gをポットに入れ、100rpmで1分間撹拌した。その後、白布10枚を入れ、100rpmで30分間撹拌した。
(v)手で白布の水を切り、40℃にした水道水500mLをポットに入れ、100rpmで2分間撹拌した。これを2回行った。
(vi)白布に当て布をして、アイロンでしわを伸ばしながら乾燥させた後、上記測色色差計にて再度、白布の白度を反射率にて測定した(洗浄後の試験布の白色度という)。
(vii)以上の測定結果から、下式により移染防止能を求めた。
(viii)移染防止能(%)=〔(洗浄後の試験布の白色度)/(試験前の試験布の白色度)〕×100
<界面活性剤との相溶性の評価方法>
試験サンプル(重合体もしくは重合体組成物)を含む洗剤組成物を下記の配合で調製した。
SFT-70H(日本触媒(株)製、ポリオキシエチレンアルキルエーテル);40g
ネオペレックスF-65(花王(株)製、ドデシルベンゼンスルホン酸ナトリウム);7.7g(有効成分5g)
コータミン86W(花王(株)製、ステアリルトリメチルアンモニウムクロリド);17.9g(有効成分5g)
ジエタノールアミン;5g
エタノール;5g
プロピレングリコール;5g
試験サンプル(固形分換算);1.5g
イオン交換水;バランス(イオン交換水の量は、試験サンプルの量を実際の使用量として、上記全合計が100gとなるように適宜調整する。)
各成分が均一になる様に充分に攪拌し、25℃での濁度値を、濁度計(日本電色工業(株)製「NDH2000」)を用い、Turbidity(カオリン濁度:mg/l)で測定し、以下の評価基準に則り評価した。
評価基準
○:カオリン濁度0以上50未満(mg/L)、目視で分離、沈殿又は白濁していない。
△:カオリン濁度50以上200未満(mg/L)、目視で僅かに白濁している。
×:カオリン濁度200以上(mg/L)、目視で白濁している。
(実施例4)
攪拌翼、温度計、冷却管を備えた200ml4つ口フラスコに、IPN10 100g、エピクロルヒドリン52.7g(0.57mol)、テトラブチルアンモニウムブロミド3.1g(0.01mol)を一括で仕込み、撹拌混合しながら、内温40~50℃となるよう加温した。ここに、ペレット状の水酸化ナトリウム(以下、「NaOH」とも称する。)7.6g(0.19mol)を30分間かけて徐々に添加し、内温45~50℃を維持しながら、さらに5.5時間撹拌した。得られた溶液を室温まで冷却した後、析出した塩を濾過して除去し、さらに減圧蒸留で混入しているエピクロルヒドリンと水を除去して中間体[A]78.5gを含む反応液を102g、収率70モル%で得た。また、H-NMRからも、図3に示した単量体(1)の中間体[A]の生成を確認した(すなわち、下記一般式(31)において、nが平均10である構造の化合物)。
次に、マグネチックスターラー、温度計、冷却管、滴下漏斗を備えた200ml4つ口フラスコに、トリメチルアミン塩酸塩13.0g(0.14mol)、純水7.0g(0.39mol)を仕込み、攪拌混合しながら、内温50℃に加温した。ここに、中間体[A]65.0gを含む反応液85.0gを内温50℃に維持しながら、3時間かけてゆっくりと滴下し、さらに3時間撹拌した。こうして、単量体(1)の水溶液を得た。高速液体クロマトグラフィーによる分析の結果、収率は95モル%であった。また、H-NMRからも、図4に示した単量体(1)の生成を確認した(すなわち、下記一般式(32)において、nが平均10である構造の化合物)。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
(実施例5)
攪拌翼、温度計、冷却管を備えた200ml4つ口フラスコに、IPN25 100g、エピクロルヒドリン23.3g(0.25mol)、テトラブチルアンモニウムブロミド1.4g(4.4mmol)を一括で仕込み、撹拌混合しながら、内温45~50℃となるよう加温した。ここに、ペレット状のNaOH3.4g(0.084mol)を30分間かけて徐々に添加し、内温40~50℃を維持しながら、さらに5.5時間撹拌した。得られた溶液を室温まで冷却した後、析出した塩を濾過して除去し、さらに減圧蒸留で混入しているエピクロルヒドリンと水を除去して中間体[B]73.4gを含む反応液を95.3g、収率70モル%で得た。実施例1と同様にH-NMRからも、その生成を確認した(すなわち、上記一般式(31)において、nが平均25である構造の化合物)。
次に、マグネチックスターラー、温度計、冷却管、滴下漏斗を備えた200ml4つ口フラスコに、トリメチルアミン塩酸塩5.6g(0.060mol)、純水3.1g(0.17mol)を仕込み、攪拌混合しながら、内温50℃に加温した。ここに、中間体[B]66gを含む反応液85.0gを内温50℃に維持しながら、3時間かけてゆっくりと滴下し、さらに3時間撹拌した。こうして、単量体(2)の水溶液を得た。高速液体クロマトグラフィーによる分析の結果、反応は定量的に進行しており、収率は95モル%であった。実施例4と同様にH-NMRからも、その生成を確認した(すなわち、上記一般式(32)において、nが平均25である構造の化合物)。
(実施例6)
攪拌翼、温度計、冷却管を備えた200ml4つ口フラスコに、IPN50 100g、エピクロルヒドリン12.3g(0.13mol)、テトラブチルアンモニウムブロミド0.72g(2.3mmol)を一括で仕込み、撹拌混合しながら、内温40~50℃となるよう加温した。ここに、ペレット状のNaOH1.8g(0.044mol)を30分間かけて徐々に添加し、内温40~50℃を維持しながら、さらに5.5時間撹拌した。得られた溶液を室温まで冷却した後、析出した塩を濾過して除去し、さらに減圧蒸留で混入しているエピクロルヒドリンと水を除去して中間体[C]72.5gを含む反応液を94.1g、収率70モル%で得た。実施例1と同様にH-NMRからも、その生成を確認した(すなわち、上記一般式(31)において、nが平均50である構造の化合物)。
次に、マグネチックスターラー、温度計、冷却管、滴下漏斗を備えた200ml4つ口フラスコに、トリメチルアミン塩酸塩3.0g(0.032mol)、純水1.6g(0.089mol)を仕込み、攪拌混合しながら、内温50℃に加温した。ここに、中間体[C]65.9gを含む反応液85.0gを内温50℃に維持しながら、3時間かけてゆっくりと滴下し、さらに3時間撹拌した。こうして、単量体(3)の水溶液を得た。高速液体クロマトグラフィーによる分析の結果、反応は定量的に進行しており、収率は95モル%であった。実施例4と同様にH-NMRからも、その生成を確認した(すなわち、上記一般式(32)において、nが平均50である構造の化合物)。
(実施例7)
マグネチックスターラー、温度計、冷却管、滴下漏斗を備えた200ml4つ口フラスコに、IPN10 100g、46%三フッ化ホウ素・ジエチルエーテル錯体0.306g(0.002mol)を入れ、窒素雰囲気下、内温80℃で撹拌しながら、エピクロルヒドリン18.2g(0.19mol)を2時間で滴下後、さらに4時間撹拌した。こうして、単量体(1)の中間体[D]を得た。高速液体クロマトグラフィーによる分析の結果、収率は60モル%であった。
次に、マグネチックスターラー、温度計、冷却管、滴下漏斗を備えた200ml4つ口フラスコに、単量体(1)の中間体[D]108.0gを仕込み、内温70℃で撹拌しながら30%トリメチルアミン水溶液35.5g(0.18mol)を1時間で滴下後、さらに6時間撹拌した。こうして、単量体(1)の水溶液を得た。高速液体クロマトグラフィーによる分析の結果、収率は62%であった。実施例1と同様にH-NMRからも、その生成を確認した(すなわち、上記一般式(32)において、nが平均10である構造の化合物)。
(重合例1)
還流冷却器、攪拌機(パドル翼)を備えた容量2000mLのガラス製セパラブルフラスコに、純水1040.5g、単量体(1)158.8g、IPN10 15.9gを仕込み、攪拌しながら、90℃まで昇温して重合反応系とした。次に、攪拌下、90℃に保持された重合反応系中に、N-ビニルピロリドン(以下、「NVP」とも称する。)333.4g、2、2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリドの15%水溶液(以下、「15%V50」とも称する。)112.9gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、NVPについては180分間、15%V50については190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。NVPの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(1)の水溶液を得た。
重合体(1)の重量平均分子量は18、500、数平均分子量は8、800であった。
(重合例2)
還流冷却器、攪拌機(パドル翼)を備えた容量2000mLのガラス製セパラブルフラスコに、純水972.3g、単量体(1)111.1g、IPN10 22.2gを仕込み、攪拌しながら、90℃まで昇温して重合反応系とした。次に、攪拌下、90℃に保持された重合反応系中に、NVP 333.4g、15%V50 109.7gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、NVPについては180分間、15%V50については190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。NVPの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(2)の水溶液を得た。
重合体(2)の重量平均分子量は19、800、数平均分子量は7、400であった。
(重合例3)
還流冷却器、攪拌機(パドル翼)を備えた容量2000mLのガラス製セパラブルフラスコに、純水906.9g、単量体(2)69.5g、IPN25 27.8gを仕込み、攪拌しながら、90℃まで昇温して重合反応系とした。次に、攪拌下、90℃に保持された重合反応系中に、NVP 333.4g、15%V50 103.3gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、NVPについては180分間、15%V50については190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。NVPの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(3)の水溶液を得た。
重合体(3)の重量平均分子量は16、400、数平均分子量は6、800であった。
(重合例4)
還流冷却器、攪拌機(パドル翼)を備えた容量2000mLのガラス製セパラブルフラスコに、純水909.7g、単量体(3)69.5g、IPN50 27.8gを仕込み、攪拌しながら、90℃まで昇温して重合反応系とした。次に、攪拌下、90℃に保持された重合反応系中に、NVP 333.4g、15%V50 101.8gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、NVPについては180分間、15%V50については190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。NVPの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(4)の水溶液を得た。
重合体(4)の重量平均分子量は15、100、数平均分子量は6、200であった。
(重合例5)
還流冷却器、攪拌機(パドル翼)を備えた容量3000mLのガラス製セパラブルフラスコに、純水1081.6g、単量体(3)555.7g、IPN50 55.6gを仕込み、攪拌しながら、90℃まで昇温して重合反応系とした。次に、攪拌下、90℃に保持された重合反応系中に、NVP 333.4g、15%V50 111.7gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、NVPについては180分間、15%V50については190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。NVPの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(5)の水溶液を得た。
重合体(5)の重量平均分子量は8、300、数平均分子量は3、500であった。
(重合例6)
還流冷却器、攪拌機を備えた容量2000mLのガラス製セパラブルフラスコに、純水448.5gを仕込み、攪拌しながら、90℃まで昇温させた。次に、90℃に保持された重合反応系中に、攪拌しながら、アクリル酸メチル(以下、AMとも称する。)258.0g、単量体(1)143.3g、IPN10 57.3g、15%過硫酸ナトリウム(以下、NaPSとも称する)68.6g、および、35%亜硫酸水素ナトリウム(以下、SBSとも称する)58.8gを、別々のノズルより、それぞれ滴下した。それぞれの滴下時間は、AMについては180分間、単量体(1)については120分間、IPN10については120分間、15%NaPS、および、35%SBSについては190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。AMの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(6)の水溶液を得た。
(重合例7)
還流冷却器、攪拌機を備えた容量2000mLのガラス製セパラブルフラスコに、純水219.6gを仕込み、攪拌しながら、90℃まで昇温させた。次に、90℃に保持された重合反応系中に、攪拌しながら、60%アクリルアミド水溶液(以下、60%AAmとも称する。)355.3g、単量体(1)118.5g、IPN10 47.4g、15%NaPS 67.1g、および、35%SBS 57.5gを、別々のノズルより、それぞれ滴下した。それぞれの滴下時間は、60%AAmについては180分間、単量体(1)については120分間、IPN10については120分間、15%NaPS、および、35%SBSについては190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。60%AAmの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(7)の水溶液を得た。
(重合例8)
還流冷却器、攪拌機を備えた容量3000mLのガラス製セパラブルフラスコに、純水900.9gを仕込み、攪拌しながら、90℃まで昇温させた。次に、90℃に保持された重合反応系中に、攪拌しながら、ヒドロキシエチルアクリレート(以下、HEAとも称する。)348.0g、単量体(3)580.0g、IPN50 58.0g、15%NaPS 67.3g、および、35%SBS 57.7gを、別々のノズルより、それぞれ滴下した。それぞれの滴下時間は、HEAについては180分間、単量体(3)については150分間、IPN50については150分間、15%NaPS、および、35%SBSについては190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。HEAの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(8)の水溶液を得た。
(重合例9)
還流冷却器、攪拌機を備えた容量2000mLのガラス製セパラブルフラスコに、純水623.6gを仕込み、攪拌しながら、65℃まで昇温させた。次に、65℃に保持された重合反応系中に、攪拌しながら、酢酸ビニル(以下、VAcとも称する。)333.4g、単量体(2)55.6g、IPN25 22.2g、および、15%V50 102.6gを、別々のノズルより、それぞれ滴下した。それぞれの滴下時間は、VAcについては180分間、単量体(2)については150分間、IPN25については150分間、15%V50については190分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。VAcの滴下終了後、更に30分間、上記反応溶液を65℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷した。このようにして、重合体(9)の水溶液を得た。
(比較重合例1)
還流冷却器、攪拌機(パドル翼)を備えた容量1000mLのガラス製セパラブルフラスコに、純水10.0g、ジアリルジメチルアンモニウムクロリドの60%水溶液(以下、60%DADMACとも称する。)475.0g、メタクリル酸メチル(以下、MMAとも称する。)15.0gを仕込み、攪拌しながら、沸点まで昇温して重合反応系とした。次に、攪拌下、沸点に保持された重合反応系中に、15%NaPS 38.3g、35%二亜硫酸二ナトリウム水溶液(以下、35%MBSとも称する。)16.4gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、15%NaPSについては190分間、35%MBSについては、15%NaPSの滴下終了後、95℃に調整した後、30分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。35%MBSの滴下終了後、更に30分間、上記反応溶液を95℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷しながら、純水335.3gを加えて希釈した。このようにして、比較重合体(1)の水溶液を得た。
(実施例8)
重合体(1)~(5)、及び比較重合体(1)、比較重合体(2)としての、N-ビニルピロリドン(NVP)のホモポリマーである、ポリビニルピロリドンK30(和光純薬社製)、について、上記方法に従って、界面活性剤との相溶性及び染料移行防止能について評価を行った。結果を表3にまとめた。
なお、表3中の略号は、以下の通りである。
IPN10:イソプレノールのエチレンオキシド平均10モル付加物
IPN25:イソプレノールのエチレンオキシド平均25モル付加物
IPN50:イソプレノールのエチレンオキシド平均50モル付加物
NVP:N-ビニルピロリドン
DADMAC:ジアリルジメチルアンモニウムクロリド
MMA:メタクリル酸メチル
Figure JPOXMLDOC01-appb-T000067
表3から明らかなように、本発明における重合体は、従来の比較重合体に比して、有意に優れた染料移行防止能および界面活性剤との相溶性を有している。本発明のカチオン性基含有単量体は、これらの重合体の原料として、好ましく使用できることが明らかとなった。
なお、上記実施例においては、重合体の合成の際、特定の構造を有するカチオン性基含有単量体を単量体成分の1種として用いているが、上記一般式(12)で表されるカチオン性基含有単量体を単量体成分として合成される重合体が優れた染料移行防止能および界面活性剤との相溶性を示す機構は、上記一般式(12)で表されるカチオン性基含有単量体を単量体成分として合成される重合体においては全て同様である。従って、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
また、イソプレノールのエチレンオキシド付加物、アミノ基含有単量体及び反応中間体は、上記の<中間体組成物の定量>に記載した条件の液体クロマトグラフィーにより定量した。また、重合体の界面活性剤との相溶性及び固形分の測定は、上記<界面活性剤との相溶性の評価方法>及び<固形分の測定>に記載した通りに行った。重合体の重量平均分子量、及び、重合体の再汚染防止能は、下記方法に従って、測定、評価した。
<重量平均分子量の測定条件>
装置:日立製作所社製 L-7000シリーズ
検出器:RI
カラム:東ソー社製 TSK-guard column+TSK-GEL α-3000+ TSK-GEL α-2500
カラム温度:40℃
流速:0.4mL/min.
検量線:ジーエルサイエンス社製 POLYETHYLEN GLYCOL STANDARD
溶離液:ホウ酸100mM(pH9.2)/アセトニトリル=4/1(質量比)
<再汚染防止能試験>
カーボンブラックを用いた再汚染防止能試験は、下記の手順に従って行った。
(1)Test fabric社より入手したポリエステル布を5cm×5cmに切断し、白布を作成した。この白布を予め日本電色工業社製の測色色差計SE2000型を用いて、白色度を反射率にて測定した。
(2)塩化カルシウム2水和物1.1gに純水を加えて15kgとし、硬水を調製した。
(3)ポリオキシエチレン(20)ラウリルエーテル4.0g、に、純水を加えて、100.0gとし、界面活性剤水溶液を調製した。pHは、水酸化ナトリウムで8.5に調整した。
(4)ターゴットメーターを25℃にセットし、硬水1Lと界面活性剤水溶液5g、固形分換算で5%の重合体水溶液1g、カーボンブラック1.0gをポットに入れ、150rpmで1分間撹拌した。その後、白布5枚を入れ、100rpmで10分間撹拌した。
(5)手で白布の水を切り、25℃にした水道水1Lをポットに入れ、100rpmで2分間撹拌した。
(6)白布に当て布をして、アイロンでしわを伸ばしながら乾燥させた後、上記測色色差計にて再度白布の白度を反射率にて測定した。
(7)以上の測定結果から下式により再汚染防止率を求めた。
再汚染防止率(%)=(洗浄後の白色度)/(原白布の白色度)×100
(実施例9)
攪拌翼、温度計、冷却管を備えた1L4つ口フラスコに、IPN10 400g、エピクロルヒドリン351.7g、48%水酸化ナトリウム水溶液(以下、「48%NaOH」とも称する。)94.9gを仕込み、50℃に保ちながら6時間攪拌させて、反応させた。反応後、生成する塩を除去した後、残った有機層からエピクロルヒドリンと水を除去して、中間体[A](上記一般式(31)において、nが平均10である構造の化合物)を含む反応液を451.2gを得た。液体クロマトグラフィーによる分析の結果、中間体[A]が324.9g、IPN10が64.1g含まれていた。
次に、攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、上記中間体[A]を含む反応液を100.0gとジエタノールアミン17.4gを仕込み、80℃に保ちながら8時間攪拌させた。こうして、単量体(5)(下記一般式(33)において、nが平均10である構造の化合物)の溶液を117.4g得た。液体クロマトグラフィーによる分析の結果、単量体(5)が80.8g、IPN10が10.2g含まれていた。また、図5に示すようにH-NMRからも、単量体(5)の生成を確認した。
Figure JPOXMLDOC01-appb-C000068
(実施例10)
攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、実施例9において合成した中間体[A]を含む反応液を100.0gとジブチルアミン23.2gを仕込み、100℃に保ちながら8時間攪拌させた。こうして、単量体(6)(下記一般式(34)において、nが平均10である構造の化合物)の溶液を123.2g得た。液体クロマトグラフィーによる分析の結果、単量体(6)が83.6g、IPN10が10.2g含まれていた。また、図6に示すようにH-NMRからも、単量体(6)の生成を確認した。
Figure JPOXMLDOC01-appb-C000069
(実施例11)
攪拌翼、温度計、冷却管を備えた1L4つ口フラスコに、IPN25 500g、エピクロルヒドリン233.7g、ペレット状のNaOH25.3gを仕込み、50℃に保ちながら16時間攪拌させて、反応させた。反応後、生成する塩を除去した後、残った有機層からエピクロルヒドリンと水を除去して、中間体[B](上記一般式(31)において、nが平均25である構造の化合物)を含む反応液を499.4gを得た。液体クロマトグラフィーによる分析の結果、中間体[B]が389.1g、IPN25が43.5g含まれていた。
次に、攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、上記中間体[B]を含む反応液を100.0gとジエタノールアミン8.6gを仕込み、80℃に保ちながら8時間攪拌させた。こうして、単量体(7)(上記一般式(33)において、nが平均25である構造の化合物)の溶液を108.6g得た。液体クロマトグラフィーによる分析の結果、単量体(7)が80.3g、IPN25が6.8g含まれていた。実施例9と同様にH-NMRからも、その生成を確認した。
(実施例12)
攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、実施例11において合成した中間体[B]を含む反応液を100.0gとジブチルアミン11.3gを仕込み、100℃に保ちながら8時間攪拌させた。こうして、単量体(8)(上記一般式(34)において、nが平均25である構造の化合物)の溶液を111.3g得た。液体クロマトグラフィーによる分析の結果、単量体(8)が81.7g、IPN25が6.8g含まれていた。実施例10と同様にH-NMRからも、その生成を確認した。
(実施例13)
攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、IPN50 100g、エピクロルヒドリン25.0g、ペレット状のNaOH2.6gを仕込み、50℃に保ちながら16時間攪拌させて、反応させた。反応後、生成する塩を除去した後、残った有機層からエピクロルヒドリンと水を除去して、中間体[C](上記一般式(31)において、nが平均50である構造の化合物)を含む反応液を102.3gを得た。液体クロマトグラフィーによる分析の結果、中間体[C]が71.7g、IPN50が10.0g含まれていた。
次に、攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、上記中間体[C]を含む反応液を100.0gとジエタノールアミン4.1gを仕込み、80℃に保ちながら8時間攪拌させた。こうして、単量体(9)(上記一般式(33)において、nが平均50である構造の化合物)の溶液を104.1g得た。液体クロマトグラフィーによる分析の結果、単量体(9)が69.6g、IPN50が6.9g含まれていた。また、実施例9と同様にH-NMRからも、その生成を確認した。
(実施例14)
攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、実施例13において合成した中間体[C]を含む反応液を100.0gとジブチルアミン5.4gを仕込み、100℃に保ちながら8時間攪拌させた。こうして、単量体(10)(上記一般式(34)において、nが平均50である構造の化合物)の溶液を105.4g得た。液体クロマトグラフィーによる分析の結果、単量体(10)が70.3g、IPN50が9.8g含まれていた。また、実施例10と同様にH-NMRからも、その生成を確認した。
(重合例10)
還流冷却器、攪拌機(パドル翼)を備えた容量2000mLのガラス製セパラブルフラスコに、純水150.0g、および、モール塩0.0060gを仕込み、攪拌しながら、70℃まで昇温して重合反応系とした。次に、攪拌下、70℃に保持された重合反応系中に、HEA 144.8g、単量体(5)144.8g、80%IPN10 17.3g、15%NaPS 94.2g、35%SBS 17.3g、および、純水227.4gを、それぞれ別々のノズルより滴下した。
各溶液の滴下開始は同時とし、各溶液の滴下時間は、HEAについては180分間、単量体(5)については120分間、80%IPN10については120分間、15%NaPSについては190分間、35%SBSについては180分間、および、純水については180分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。15%NaPSの滴下終了後、更に30分間、上記反応溶液を70℃に保持(熟成)して重合を終了した。このようにして、固形分濃度45%の共重合体(10)を含む水溶液(共重合体組成物(10))を得た。
(重合例11)
還流冷却器、攪拌機(パドル翼)を備えた容量2000mLのガラス製セパラブルフラスコに、純水150.0g、および、モール塩0.0074gを仕込み、攪拌しながら、70℃まで昇温して重合反応系とした。次に、攪拌下、70℃に保持された重合反応系中に、ジメチルアミノエチルアクリレート(以下、「DAA」とも称する。)257.4g、単量体(5)178.5g、80%IPN10 21.3g、15%NaPS 96.5g、35%SBS 17.7g、および、純水328.6gを、それぞれ別々のノズルより滴下した。
各溶液の滴下開始は同時とし、各溶液の滴下時間は、DAAについては180分間、単量体(5)については120分間、80%IPN10については120分間、15%NaPSについては190分間、35%SBSについては180分間、および、純水については180分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。15%NaPSの滴下終了後、更に30分間、上記反応溶液を70℃に保持(熟成)して重合を終了した。このようにして、固形分濃度45%の共重合体(11)を含む水溶液(共重合体組成物(11))を得た。
(比較重合例2)
還流冷却器、温度計、攪拌機を備えたガラス製の100mLセパラブルフラスコにポリエチレンイミン(重量平均分子量(Mw);9、500、数平均分子量(Mn);6、500、以下、PEIとも称す。)を40g仕込み、攪拌しながらデナコールEX-121(ナガセケムテックス社製、2-エチルヘキシルグリシジルエーテル(以下、2EHGEとも称す。))10gを加えた。この重合体混合物を攪拌下60℃に昇温して4時間反応させ、比較共重合体(3)を得た。比較共重合体(3)は、水に対して任意の割合で完全に溶解し、しかも、DO中のH-NMRスペクトル測定において、3.5ppm付近にエポキシ環が開環して生ずるメチンプロトン由来のシグナルが検出されたことから、その生成が確認された。
共重合体(10)~(11)の水溶液を乾燥させ、H-NMR測定したところ、残存モノマーによるピークは検出されず、仕込み量通りの組成の重合体(表4参照)が得られたことが確認できた。
(実施例15)
重合例10~11及び比較重合例2で得た共重合体(10)~(11)及び比較共重合体(3)について、上記方法に従って、界面活性剤との相溶性および再汚染防止能を評価した。結果を表4に示す。
なお、表4中の略号は、以下の通りである。
IPN10:イソプレノールのエチレンオキシド平均10モル付加物
HEA:ヒドロキシエチルアクリレート
DAA:ジメチルアミノエチルアクリレート
PEI:ポリエチレンイミン
2EHGE:2-エチルヘキシルグリシジルエーテル
Figure JPOXMLDOC01-appb-T000070
表4から明らかなように、本発明におけるアミノ基含有重合体は、従来の比較重合体に比して、有意に優れた界面活性剤との相溶性および再汚染防止能を有している。本発明のアミノ基含有単量体は、これらの重合体の原料として、好ましく使用できることが明らかとなった。
なお、上記実施例においては、重合体の合成の際、特定の構造を有するアミノ基含有単量体を単量体成分の1種として用いているが、上記一般式(14)で表されるアミノ基含有単量体を単量体成分として合成される重合体が、優れた界面活性剤との相溶性及び再汚染防止能を示す機構は、上記一般式(14)で表されるアミノ基含有単量体を単量体成分として合成される重合体においては全て同様である。従って、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
また、スルホン酸基含有単量体及び反応中間体並びにイソプレノールのエチレンオキシド付加物は、上記の<中間体組成物の定量>に記載した条件の液体クロマトグラフィーにより定量した。また、重合体の固形分の測定は、上記<固形分の測定>に記載した通りに行った。重合体の重量平均分子量、耐ゲル化能及びカルシウムイオン捕捉能は、下記方法に従って、測定、評価した。
<重量平均分子量の測定条件>
装置:東ソー社製 HLC-8320GPC
検出器:RI
カラム:昭和電工社製 SHODEX Asahipak GF-310-HQ、 GF-710-HQ、 GF-1G 7B
カラム温度:40℃
流速:0.5mL/min.
検量線:創和科学社製 ポリアクリル酸標準
溶離液:0.1N酢酸ナトリウム水溶液
<耐ゲル化能の測定方法>
500mLトールビーカーに、脱イオン水、ほう酸-ほう酸ナトリウムpH緩衝液、共重合体の1%水溶液、塩化カルシウム溶液の順に加え、pH8.5、共重合体100mg固形分/L、カルシウム硬度120mgCaCO/Lの試験液500mLを調製した。このトールビーカーをポリエチレンフィルムでシールして、90℃の恒温水槽内に1時間静置した。そして、共重合体とカルシウムイオンが結合して生成するゲルによって生じる試験液の濁りを、UV波長380nm、50mmの石英セルで吸光度を測定することにより検出し、得られた吸光度値によって耐ゲル化能を評価した。値が小さいほど耐ゲル化能が優れることを示す。
<カルシウムイオン捕捉能>
検量線用カルシウムイオン標準液として、塩化カルシウム2水和物を用いて、0.01mol/L、0.001mol/L、0.0001mol/Lの水溶液を50g調製し、1.0%NaOH水溶液でpH9.9~10.2の範囲に調整し、更に4mol/Lの塩化カリウム水溶液(以下、4M-KCl水溶液と略す)を1mL添加し、更にマグネチックスターラーを用いて充分に撹拌して検量線用サンプル液を作製した。また、試験用カルシウムイオン標準液として、同じく塩化カルシウム2水和物を用いて、0.001mol/Lの水溶液を必要量(1サンプルにつき50g)調製した。
次いで、100mLビーカーに試験サンプル((共)重合体)を固形分換算で10mg秤量し、上記の試験用カルシウムイオン標準液50gを添加し、マグネチックスターラーを用いて充分に撹拌した。なお、試験サンプルとして用いた(共)重合体は、固形分40重量%の時にpH=7.5となるように48%水酸化ナトリウム水溶液(以下、「48%NaOH」とも称する。)で中和したものを用いた。次に、検量線用サンプルと同様に、1.0%水酸化ナトリウム水溶液でpH9.9~10.2の範囲に調整し、4M-KCl水溶液を1mL添加して、試験用サンプル液を作製した。
このようにして作製した検量線用サンプル液、試験用サンプル液を平沼産業社製滴定装置COM-1700を用いて、サーモフィッシャーサイエンティフィック社製Orion 9720BNWP Sure-Flow カルシウム複合電極により測定を行った。
(実施例16)
攪拌翼、温度計、冷却管を備えた1L4つ口フラスコに、IPN10 400g、エピクロルヒドリン351.7g、48%NaOH 94.9gを仕込み、50℃に保ちながら6時間攪拌させて、反応させた。反応後、生成する塩を除去した後、残った有機層からエピクロルヒドリンと水を除去して、中間体[A](上記一般式(31)において、nが平均10である構造の化合物)を含む反応液を451.2gを得た。液体クロマトグラフィーによる分析の結果、中間体[A]が324.9g、IPN10が64.1g含まれていた。
次に、攪拌機、温度計、窒素流入管と窒素流出口に冷却トラップを備えた容量1LのSUS製セパラブルフラスコに、窒素を導入しながら、純水129.5g、48%NaOH 6.0g、40%SBS 50.0gを仕込み、撹拌しながら、63℃まで昇温して反応系とした。次に、撹拌下、63℃に保持された反応系中に、上記中間体[A]を含む反応液140.0gを120分間かけて一定速度で連続的に滴下した。こうして、単量体(11)(下記一般式(35)において、nが平均10である構造の化合物)の溶液を325.5g得た。図7に示すようにH-NMRによる分析の結果、単量体(11)の生成を確認した。さらに、中間体[A]が完全に消費されたことを液体クロマトグラフィーによる分析により確認した。
Figure JPOXMLDOC01-appb-C000071
(重合例12)
還流冷却器、攪拌機(パドル翼)を備えた容量1LのSUS製セパラブルフラスコに、純水25.0g、無水マレイン酸(以下、「MA」とも称する。)45.1g、48%NaOH 60.5gを仕込み、攪拌しながら、沸点まで昇温して重合反応系とした。次に、攪拌下、沸点還流状態に保持された重合反応系中に、単量体(11)の溶液222.3g、80%アクリル酸水溶液(以下、「80%AA」とも称する。)41.4g、15%NaPS 16.3g、35%過酸化水素水(以下、「35%H」とも称する。)2.9gをそれぞれ別々のノズルより滴下した。各溶液は同時に滴下を開始した。各溶液の滴下時間は、単量体(11)の溶液、80%AAおよび15%NaPSについては120分間、35%Hについては75分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。80%AAの溶液の滴下終了後、更に30分間、上記重合反応溶液を沸点還流状態に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷し、48%NaOH 8.1gを撹拌下、重合反応液に徐々に滴下して中和した。このようにして、重合体(12)の水溶液を得た。重合体(12)の重量平均分子量は48、000であった。
(重合例13)
還流冷却器、攪拌機(パドル翼)を備えた容量1LのSUS製セパラブルフラスコに、純水25.0g、MA 45.1g、単量体(11)の溶液222.3g、48%NaOH 60.5gを仕込み、攪拌しながら、沸点まで昇温して重合反応系とした。次に、攪拌下、沸点還流状態に保持された重合反応系中に、80%AA 41.4g、15%NaPS 16.3g、35%H 2.9gをそれぞれ別々のノズルより滴下した。各溶液は同時に滴下を開始した。各溶液の滴下時間は、80%AAおよび15%NaPSについては120分間、35%Hについては75分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。80%AAの溶液の滴下終了後、更に30分間、上記重合反応溶液を沸点還流状態に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷し、48%NaOH 8.1gを撹拌下、重合反応液に徐々に滴下して中和した。このようにして、重合体(13)の水溶液を得た。
(重合例14)
還流冷却器、攪拌機(パドル翼)を備えた容量2.5LのSUS製セパラブルフラスコに、純水100.0gを仕込み、攪拌しながら、90℃まで昇温して重合反応系とした。次に、攪拌下、90℃に保持された重合反応系中に、単量体(11)の溶液653.7g、80%AA 513.0g、48%NaOH 23.8g、15%NaPS 160.0g、40%SBS 60.0gをそれぞれ別々のノズルより滴下した。各溶液の滴下時間は、単量体(11)の溶液、80%AAおよび48%NaOHについては180分間、15%NaPSについては210分間、40%SBSについては170分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。15%NaPSの滴下終了後、更に30分間、上記重合反応溶液を90℃に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷し、48%NaOH 427.5gを撹拌下、重合反応液に徐々に滴下して中和した。このようにして、重合体(14)の水溶液を得た。
(比較重合例3)
還流冷却器、攪拌機(パドル翼)を備えた容量1LのSUS製セパラブルフラスコに、純水25.0g、MA 45.1g、48%NaOH 60.5gを仕込み、攪拌しながら、沸点まで昇温して重合反応系とした。次に、攪拌下、沸点還流状態に保持された重合反応系中に、30%IPN10水溶液222.3g、80%AA 41.4g、15%NaPS 16.3g、35%H 2.9gをそれぞれ別々のノズルより滴下した。各溶液は同時に滴下を開始した。各溶液の滴下時間は、30%IPN10、80%AAおよび15%NaPSについては120分間、35%Hについては75分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。80%AAの溶液の滴下終了後、更に30分間、上記重合反応溶液を沸点還流状態に保持(熟成)して重合を終了した。重合終了後、重合反応液を攪拌、放冷し、48%NaOH 8.1gを撹拌下、重合反応液に徐々に滴下して中和した。このようにして、比較重合体(4)の水溶液を得た。
(実施例17)
重合例12及び比較重合例3で得た重合体(12)及び比較重合体(4)について、上記方法に従って、耐ゲル化能及びカルシウムイオン捕捉能について評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000072
表5から明らかなように、本発明におけるスルホン酸基含有重合体は、従来の比較重合体に比して、同等のカルシウム捕捉能を有しながら有意に優れた耐ゲル化能を有している。本発明のスルホン酸基含有単量体は、これらの重合体の原料として、好ましく使用できることが明らかとなった。
なお、上記実施例においては、重合体の合成の際、特定の構造を有するスルホン酸基含有単量体を単量体成分の1種として用いているが、上記一般式(16)で表されるスルホン酸基含有単量体を単量体成分として合成される重合体が、優れた耐ゲル化能及び金属イオン捕捉能を示す機構は、上記一般式(16)で表されるスルホン酸基含有単量体を単量体成分として合成される重合体においては全て同様である。従って、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
また、有機エーテル基含有単量体及び反応中間体並びにイソプレノールのエチレンオキシド付加物は、下記の条件で液体クロマトグラフィーにより定量し、反応の収率及び原料転化率を求めた。
測定装置:東ソー社製 HPLC8020システム
カラム:資生堂社製 CAPCELL PAK C1 UG120
温度:40.0℃
溶離液:アセトニトリル/10mmolリン酸水素ナトリウム水溶液(りん酸でpH7に調整)=55/45(体積比)
流速:1.0mL/min.
検出器:RI、UV(検出波長210nm)
(中間体合成例1)
攪拌翼、温度計、冷却管を備えた1L4つ口フラスコに、IPN10 400g、エピクロルヒドリン351.7g、48%NaOH 94.9gを仕込み、50℃に保ちながら6時間攪拌させて、反応させた。反応後、生成する塩を除去した後、残った有機層からエピクロルヒドリンと水を除去して、中間体[A](上記一般式(31)において、nが平均10である構造の化合物)を含む反応液を451.2gを得た。液体クロマトグラフィーによる分析の結果、中間体[A]が324.9g、IPN10が64.1g含まれていた。
(実施例18)
次に、攪拌翼、温度計、冷却管を備えた200mL4つ口フラスコに、上記中間体[A]を含む反応液150.0g、n-ブタノール159.9g、及び、粒状の水酸化カリウム2.4gを仕込み、80℃に保ちながら2時間攪拌させた。反応後、未溶解の水酸化カリウムを除去した後、残った有機層からn-ブタノールを除去して、単量体(12)(下記一般式(36)において、nが平均10である構造の化合物)の溶液を154.1g得た。液体クロマトグラフィーによる分析の結果、単量体(12)が95.4g、IPN10が11.1g含まれており、単量体(12)の収率は、原料の中間体[A]基準で74モル%であった。副生物A(下記一般式(37)においてnが平均10である構造の化合物)の生成は確認されなかった。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
(比較例2)
マグネチックスターラー、温度計、冷却管、滴下漏斗を備えた200mL4つ口フラスコに、IPN10 84.3g、ブチルグリシジルエーテル20.8g、粒状の水酸化カリウム1.1gを仕込み、90℃に保ちながら4時間攪拌させた。こうして、単量体(12)の溶液を106.2g得た。高速液体クロマトグラフィーによる分析の結果、単量体(12)が55.6g、IPN10が24.6g、副生物Aが19.3g含まれていた。単量体(12)の収率は、原料のIPN10基準で53モル%であった。
なお、上記実施例においては、原料、触媒、水酸基含有化合物として特定の化合物を用いて反応を行った例が示されているが、反応機構はすべて同様であることから、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
 

Claims (9)

  1. 下記一般式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(A)を含む水溶性単量体用中間体含有組成物であって、
    該組成物は、下記一般式(2);
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、同一若しくは異なって、水素原子又はメチル基を表す。Rは、同一若しくは異なって、メチレン基、エチレン基又は直接結合を表す。Xは、-CH-CH(OR´)-CH-O-、又は、直接結合を表し、R´は、水素原子又はグリシジル基を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、同一若しくは異なって、1~300の数を表す。)で表される化合物(B)を更に含み、該化合物(B)の含有量が、化合物(A)の含有量に対して0.1~6.0モル%であり、
    該化合物(A)の含有量は、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%であることを特徴とする水溶性単量体用中間体含有組成物。
  2. 前記化合物(A)は、下記一般式(I);
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとを反応させて得られ、
    前記水溶性単量体中間体含有組成物は、前記化合物(B)の含有量が、化合物(A)及び化合物(I)の合計の含有量に対して0.1~5.0モル%であり、
    該化合物(A)及び化合物(I)の合計の含有量は、水溶性単量体用中間体含有組成物の不揮発分100質量%に対して、50~100質量%であることを特徴とする請求項1に記載の水溶性単量体用中間体含有組成物。
  3. 下記一般式(1);
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(A)を含む水溶性単量体用中間体含有組成物を製造する方法であって、
    該製造方法は、下記一般式(I);
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとを1/2~1/15(化合物(I)の有する水酸基/エピハロヒドリン)のモル比で反応させる工程を含むことを特徴とする水溶性単量体用中間体含有組成物の製造方法。
  4. 前記反応工程は、化合物(I)とエピハロヒドリンとをアルカリ化合物の存在下で反応させる工程を含むことを特徴とする請求項3に記載の水溶性単量体用中間体含有組成物の製造方法。
  5. 前記反応工程は、化合物(I)にエピハロヒドリンとルイス酸触媒とを加え、次に、アルカリ化合物を加えて反応させる工程を含むことを特徴とする請求項3に記載の水溶性単量体用中間体含有組成物の製造方法。
  6. 請求項1又は2に記載の水溶性単量体用中間体含有組成物と、官能基含有化合物とを反応させて得られる水溶性単量体含有組成物であって、
    該水溶性単量体は、該官能基含有化合物として三級アミン塩、二級アミン、亜硫酸化合物、又は、水酸基含有化合物のいずれかを用いて得られる下記一般式(6);
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Qは、下記一般式(7)~(10)のいずれかの構造を表す。)で表される水溶性単量体であることを特徴とする水溶性単量体含有組成物。
    Figure JPOXMLDOC01-appb-C000007
    式中、*は、*の付された原子が一般式(6)におけるQと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。Rは、炭素数1~20の有機基を表す。
  7. 下記一般式(1);
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表されることを特徴とする水溶性単量体用中間体。
  8. 下記一般式(11);
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Rは、下記一般式(7)~(9)のいずれかの構造を表す。)で表されることを特徴とする水溶性単量体。
    Figure JPOXMLDOC01-appb-C000010
    式中、*は、*の付された原子が一般式(11)におけるRと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。
  9. 下記一般式(6);
    Figure JPOXMLDOC01-appb-C000011
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nはオキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。Qは、下記一般式(7)~(10)のいずれかの構造を表す。)で表される水溶性単量体を製造する方法であって、
    該製造方法は、(i)下記一般式(I);
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは、水素原子又はメチル基を表す。Rは、メチレン基、エチレン基又は直接結合を表す。Yは、同一若しくは異なって、炭素数2~20のアルキレン基を表す。nは、オキシアルキレン基(-Y-O-)の平均付加モル数であって、1~300の数を表す。)で表される化合物(I)とエピハロヒドリンとアルカリ化合物とを反応させる工程、又は、上記一般式(I)で表される化合物(I)とエピハロヒドリンとを触媒存在下反応させる工程のいずれかの工程と、
    (ii)上記(i)の工程で得られた反応物と、三級アミン塩、二級アミン、亜硫酸化合物、又は、水酸基含有化合物のいずれかとを反応させる工程、又は、上記(i)の工程で得られた反応物と二級アミンとを反応させ、該反応によって得られた反応物と四級化剤とを反応させる工程とを含むことを特徴とする水溶性単量体の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    式中、*は、*の付された原子が一般式(6)におけるQと結合している炭素原子と結合していることを表す。R、R、R、R、及び、Rは、同一若しくは異なって、水素原子又は炭素数1~20の有機基を表し、R及びR、R及びRはそれぞれ結合して環状構造を形成していても良い。X-はカウンターアニオンを表す。Mは、水素原子又は1価の陽イオンを表す。Rは、炭素数1~20の有機基を表す。
PCT/JP2010/071703 2009-12-03 2010-12-03 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体含有組成物、水溶性単量体用中間体、水溶性単量体及びその製造方法 WO2011068209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10834659.4A EP2508516B1 (en) 2009-12-03 2010-12-03 Composition containing intermediate for water-soluble monomer and process for production thereof, composition containing water-soluble monomer, intermediate for water-soluble monomer, and water-soluble monomer and process for production thereof
CN201080054692.8A CN102639519B (zh) 2009-12-03 2010-12-03 含有水溶性单体用中间体的组合物及其制造方法、含水溶性单体组合物、水溶性单体用中间体、水溶性单体及其制造方法
US13/512,845 US8921584B2 (en) 2009-12-03 2010-12-03 Composition containing intermediate for water-soluble monomer and process for production thereof, composition containing water-soluble monomer, intermediate for water-soluble monomer, and water-soluble monomer and process for production thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009275841 2009-12-03
JP2009-275841 2009-12-03
JP2010203743A JP5765903B2 (ja) 2010-09-10 2010-09-10 スルホン酸基含有単量体およびその製造方法
JP2010-203745 2010-09-10
JP2010203769A JP5763899B2 (ja) 2009-12-03 2010-09-10 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体用中間体、カチオン性基含有単量体及びその製造方法
JP2010-203746 2010-09-10
JP2010203745A JP5765904B2 (ja) 2010-09-10 2010-09-10 アミノ基含有単量体およびその製造方法
JP2010-203769 2010-09-10
JP2010203746A JP2012056912A (ja) 2010-09-10 2010-09-10 ポリアルキレングリコール系単量体の製造方法
JP2010-203743 2010-09-10

Publications (1)

Publication Number Publication Date
WO2011068209A1 true WO2011068209A1 (ja) 2011-06-09

Family

ID=46623150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071703 WO2011068209A1 (ja) 2009-12-03 2010-12-03 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体含有組成物、水溶性単量体用中間体、水溶性単量体及びその製造方法

Country Status (4)

Country Link
US (1) US8921584B2 (ja)
EP (1) EP2508516B1 (ja)
CN (1) CN102639519B (ja)
WO (1) WO2011068209A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137135A (ja) * 2009-12-03 2011-07-14 Nippon Shokubai Co Ltd 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体用中間体、カチオン性基含有単量体及びその製造方法
JP2012057096A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd ポリアルキレングリコール系重合体及びその製造方法
JP2012057106A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd スルホン酸基含有単量体およびその製造方法
JP2012056911A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd アミノ基含有単量体およびその製造方法
JP2012057094A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd アミノ基含有重合体及びその製造方法
WO2012081729A1 (en) * 2010-12-17 2012-06-21 Nippon Shokubai Co., Ltd. Amphoteric polymer and process for producing the same
US20120231991A1 (en) * 2010-12-17 2012-09-13 Koushik Mukherjee Cleaning Compositions With Amphoteric Polycarboxylate Polymers
JP2014065665A (ja) * 2012-09-24 2014-04-17 Nippon Shokubai Co Ltd 不飽和ポリアルキレングリコール誘導体、その製造方法及び中間体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016006616A (es) 2013-11-22 2017-01-16 Construction Research & Technology Gmbh Mezcla reductora de grietas para composiciones cementosas.
US12116193B2 (en) * 2015-12-02 2024-10-15 Nippon Shokubai Co., Ltd. Water-soluble film and manufacturing method therefor
EP3786201A4 (en) * 2018-04-27 2022-01-19 Nippon Shokubai Co., Ltd. COPOLYMER AND METHOD FOR PRODUCTION

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949474A (en) * 1956-02-06 1960-08-16 Rohm & Haas New unsaturated glycidyl ethers, polymers thereof and methods for producing them
SU1129208A1 (ru) * 1983-02-22 1984-12-15 Иркутский институт органической химии СО АН СССР Способ получени винилоксиэтилового эфира глицидола
JPS63241026A (ja) * 1986-11-17 1988-10-06 Osaka Soda Co Ltd オリゴオキシエチレン側鎖を有するポリエ−テルポリマ−
JPH03179024A (ja) * 1989-09-29 1991-08-05 Kuraray Co Ltd 共重合ポリエステル、それに用いるジオール化合物およびそれからなる繊維
WO1997042251A1 (en) * 1996-05-08 1997-11-13 Daiso Co., Ltd. Cross-linked solid polyelectrolyte and use thereof
WO1998007772A1 (en) * 1996-08-20 1998-02-26 Daiso Co., Ltd. Solid polyelectrolyte
EP0838487A2 (en) * 1996-10-28 1998-04-29 Daiso Co., Ltd. Polyether copolymer and polymer solid electrolyte
JP2001513750A (ja) * 1996-03-06 2001-09-04 クロンプトン・コーポレーション オルガノアミンシロキサンアルコキシラート界面活性剤
WO2007037469A1 (en) * 2005-09-29 2007-04-05 Nippon Shokubai Co., Ltd. Polyalkylene glycol monomer, polyalkylene glycol polymer containing the same, and application thereof
JP2008303347A (ja) * 2007-06-11 2008-12-18 Nippon Shokubai Co Ltd ポリアルキレングリコール系化合物とその製造方法ならびにその用途
JP2009208982A (ja) * 2008-03-03 2009-09-17 Nippon Shokubai Co Ltd セメント混和剤及びセメント組成物
JP2010132814A (ja) * 2008-12-05 2010-06-17 Nippon Shokubai Co Ltd ポリアルキレングリコール系化合物とその製造方法ならびにその用途
JP2010209133A (ja) * 2009-03-06 2010-09-24 Nippon Shokubai Co Ltd ポリオキシアルキレン系重合体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403714B1 (en) * 2001-03-28 2002-06-11 Arco Chemical Technology, L.P. Preparation of epoxy-functional resins
BR0316878B1 (pt) 2002-12-23 2012-08-21 polìmeros hidrofobicamente modificados, produto de limpeza, formulação de processo têxtil, auxiliares de tingimento ou impressão e/ou agentes de acabamento, e método para processamento têxtil.
JP4431375B2 (ja) 2003-12-08 2010-03-10 株式会社日本触媒 変性アルキレンイミン系重合体
JP2008001770A (ja) 2006-06-21 2008-01-10 Lion Corp 洗浄剤組成物および洗浄方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949474A (en) * 1956-02-06 1960-08-16 Rohm & Haas New unsaturated glycidyl ethers, polymers thereof and methods for producing them
SU1129208A1 (ru) * 1983-02-22 1984-12-15 Иркутский институт органической химии СО АН СССР Способ получени винилоксиэтилового эфира глицидола
JPS63241026A (ja) * 1986-11-17 1988-10-06 Osaka Soda Co Ltd オリゴオキシエチレン側鎖を有するポリエ−テルポリマ−
JPH03179024A (ja) * 1989-09-29 1991-08-05 Kuraray Co Ltd 共重合ポリエステル、それに用いるジオール化合物およびそれからなる繊維
JP2001513750A (ja) * 1996-03-06 2001-09-04 クロンプトン・コーポレーション オルガノアミンシロキサンアルコキシラート界面活性剤
WO1997042251A1 (en) * 1996-05-08 1997-11-13 Daiso Co., Ltd. Cross-linked solid polyelectrolyte and use thereof
WO1998007772A1 (en) * 1996-08-20 1998-02-26 Daiso Co., Ltd. Solid polyelectrolyte
EP0838487A2 (en) * 1996-10-28 1998-04-29 Daiso Co., Ltd. Polyether copolymer and polymer solid electrolyte
WO2007037469A1 (en) * 2005-09-29 2007-04-05 Nippon Shokubai Co., Ltd. Polyalkylene glycol monomer, polyalkylene glycol polymer containing the same, and application thereof
JP2008303347A (ja) * 2007-06-11 2008-12-18 Nippon Shokubai Co Ltd ポリアルキレングリコール系化合物とその製造方法ならびにその用途
JP2009208982A (ja) * 2008-03-03 2009-09-17 Nippon Shokubai Co Ltd セメント混和剤及びセメント組成物
JP2010132814A (ja) * 2008-12-05 2010-06-17 Nippon Shokubai Co Ltd ポリアルキレングリコール系化合物とその製造方法ならびにその用途
JP2010209133A (ja) * 2009-03-06 2010-09-24 Nippon Shokubai Co Ltd ポリオキシアルキレン系重合体およびその製造方法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ATAVIN, A. S.: "Vinyl ethers containing an epoxy group. III. Synthesis and cholinelike properties of vinyl (2-hydroxy-3-aminopropoxy) alkyl ethers", IZVESTIYA AKADEMII NAUK SSSR, 1969, pages 428 - 434 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 20392-37-4 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 20392-38-5 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 22703-87-3 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 22703-88-4 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 22703-89-5 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 22703-90-8 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 22721-52-4 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 22721-53-5 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 28632-53-3 *
DATABASE CAPLUS [online] 13 January 2011 (2011-01-13), XP008162107, retrieved from STN Database accession no. 1969:114527 *
DATABASE CAPLUS Database accession no. 70: 114527 *
KUKHAREV, B. F. ET AL.: "Condensation of 1-Alkylamino-3-(2-vinyloxyethoxy)propan-2-ols with Carbonyl Compounds", RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 39, no. 11, 2003, pages 1557 - 1560, XP008156386 *
KUKHAREV, B. F. ET AL.: "Reaction of Glycidyl Vinyloxyalkyl Ethers with Primary Amines", RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 36, no. 4, 2000, pages 560 - 564, XP008156388 *
NEDOLYA, N. A. ET AL.: "Vinylic ethers containing an epoxy group. XIX. Vinyl (2-hydroxy-3-aminopropoxy)alkyl ethers", ZHURNAL ORGANICHESKOI KHIMII, vol. 25, no. 10, 1989, pages 2083 - 2089, XP008161533 *
RASKULOVA, T. V. ET AL.: "Formation of Diol Divinyl Diethers in the Synthesis of 1,2-Epoxy- 3-(vinyloxyalkoxy)propanes", RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 38, no. 5, 2002, pages 754 - 755, XP009159136 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137135A (ja) * 2009-12-03 2011-07-14 Nippon Shokubai Co Ltd 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体用中間体、カチオン性基含有単量体及びその製造方法
JP2012057096A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd ポリアルキレングリコール系重合体及びその製造方法
JP2012057106A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd スルホン酸基含有単量体およびその製造方法
JP2012056911A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd アミノ基含有単量体およびその製造方法
JP2012057094A (ja) * 2010-09-10 2012-03-22 Nippon Shokubai Co Ltd アミノ基含有重合体及びその製造方法
WO2012081729A1 (en) * 2010-12-17 2012-06-21 Nippon Shokubai Co., Ltd. Amphoteric polymer and process for producing the same
US20120231991A1 (en) * 2010-12-17 2012-09-13 Koushik Mukherjee Cleaning Compositions With Amphoteric Polycarboxylate Polymers
US8541357B2 (en) * 2010-12-17 2013-09-24 The Procter & Gamble Company Cleaning compositions with amphoteric polycarboxylate polymers
JP2013538877A (ja) * 2010-12-17 2013-10-17 株式会社日本触媒 両性重合体及びその製造方法
JP2014506264A (ja) * 2010-12-17 2014-03-13 ザ プロクター アンド ギャンブル カンパニー 両性ポリカルボキシレートポリマーを有する洗浄組成物
JP2014065665A (ja) * 2012-09-24 2014-04-17 Nippon Shokubai Co Ltd 不飽和ポリアルキレングリコール誘導体、その製造方法及び中間体

Also Published As

Publication number Publication date
CN102639519B (zh) 2015-03-25
EP2508516B1 (en) 2019-03-20
EP2508516A1 (en) 2012-10-10
US8921584B2 (en) 2014-12-30
US20120238717A1 (en) 2012-09-20
EP2508516A4 (en) 2015-08-05
CN102639519A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2011068209A1 (ja) 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体含有組成物、水溶性単量体用中間体、水溶性単量体及びその製造方法
JP5643427B2 (ja) 両性重合体及びその製造方法
EP2890774B1 (en) Carboxyl group-containing polymer and composition containing the same
JP5506615B2 (ja) スルホン酸基含有重合体、スルホン酸基含有単量体及びそれらの製造方法
JP5765903B2 (ja) スルホン酸基含有単量体およびその製造方法
JP5763899B2 (ja) 水溶性単量体用中間体含有組成物及びその製造方法、水溶性単量体用中間体、カチオン性基含有単量体及びその製造方法
JP5815536B2 (ja) アミノ基含有重合体及びその製造方法、並びに、洗剤組成物
JP5506616B2 (ja) ポリアルキレングリコール系重合体及びその製造方法
EP3546491B1 (en) Carboxyl-group-containing copolymer, and method for producing same
TW202136199A (zh) 聚烷二醇單(甲基)丙烯酸酯及其聚合物、以及薄膜用組成物
JP5606230B2 (ja) アミノ基含有重合体及びその製造方法
JP5765904B2 (ja) アミノ基含有単量体およびその製造方法
JP4018473B2 (ja) 粉末からなる架橋性イオン性水溶性高分子
US20120157649A1 (en) Amphoteric polymer and process for producing the same
JP3917857B2 (ja) アミノ基含有重合体とその製造方法、ならびに用途
JP4337594B2 (ja) ポリカルボン酸マクロモノマー組成物の製造方法
JP6077902B2 (ja) 両性重合体及びその製造方法
JP5606229B2 (ja) エーテル結合含有重合体及びその製造方法
CN104311736B (zh) 一种多羟基聚两性电解质及其制备方法
JP6465842B2 (ja) カルボキシル基含有重合体及びその組成物
JP2012057092A (ja) ポリアルキレングリコール系重合体及びその製造方法
JP2015067632A (ja) スルホン酸(塩)基含有共重合体およびその製造方法およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054692.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13512845

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010834659

Country of ref document: EP