WO2011068110A1 - ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体 - Google Patents

ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体 Download PDF

Info

Publication number
WO2011068110A1
WO2011068110A1 PCT/JP2010/071430 JP2010071430W WO2011068110A1 WO 2011068110 A1 WO2011068110 A1 WO 2011068110A1 JP 2010071430 W JP2010071430 W JP 2010071430W WO 2011068110 A1 WO2011068110 A1 WO 2011068110A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
polymer
mixture
hydrogen atom
polymerization
Prior art date
Application number
PCT/JP2010/071430
Other languages
English (en)
French (fr)
Inventor
文紀 中谷
野田 哲也
啓一 坂下
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020127016813A priority Critical patent/KR101766504B1/ko
Priority to US13/513,332 priority patent/US8912287B2/en
Priority to CN201080054263.0A priority patent/CN102639576B/zh
Priority to EP10834560.4A priority patent/EP2508542B1/en
Priority to JP2010547889A priority patent/JP5747507B2/ja
Publication of WO2011068110A1 publication Critical patent/WO2011068110A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • C08F220/346Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links and further oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a polymer by polymerizing a monomer having a piperidine skeleton or a mixture containing the polymer, and a molded product obtained by the method.
  • Patent Document 1 discloses that various hindered amine light stabilizers having a piperidine skeleton (hereinafter referred to as “HALS”) have various OR groups on the nitrogen atom. It has been proposed to add a substance substituted with (hereinafter referred to as “NOR-HALS”) to the paint component. Although NOR-HALS has an effect of improving the weather resistance of the polymer material, it has a problem that it is gradually lost from the polymer material due to migration or volatilization, and the effect decreases with time.
  • HALS hindered amine light stabilizers having a piperidine skeleton
  • NOR-HALS a substance substituted with
  • Patent Document 2 a polymerizable NOR-HALS having a vinyl group in the molecule (hereinafter referred to as “polymerizable NOR-HALS”) is copolymerized and added to the paint component. It has been proposed.
  • Patent Document 2 proposes that a polymerizable NOR-HALS copolymer is added to a coating component, but does not show that a polymerizable NOR-HALS copolymer is used as a molded product. If a copolymer of polymerizable NOR-HALS can be used as a molded body and the weather resistance of the molded body itself can be improved, it is meaningful from the viewpoint of reducing the maintenance cost of equipment and reducing the environmental load.
  • An object of the present invention is to provide a molded article that is excellent in weather resistance, the effect of which does not decrease with time, and is not colored.
  • the present inventors have appropriately selected R bonded to nitroxide and polymerized in an appropriate temperature range, so that the weather resistance is excellent and the effect thereof does not decrease with time. It has been found that no molded body can be obtained.
  • the present invention comprises a monomer (a1) represented by the following general formula (1) in an amount of 0.01 to 35 mol% and a monomer (a2) mainly composed of methyl methacrylate (65 to 99.99 mol%).
  • a monomer (a1) represented by the following general formula (1) in an amount of 0.01 to 35 mol%
  • a monomer (a2) mainly composed of methyl methacrylate (65 to 99.99 mol%).
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom, an imino group, the following general formula (2) or the following general formula (3)
  • R 2 and R 3 represent a hydrogen atom or carbon.
  • n represents an integer of 1 to 10.
  • R 4 and R 5 represent a hydrogen atom or a methyl group, and at least one of R 4 and R 5 is a hydrogen atom.
  • n an integer of 1 to 10.
  • the present invention also relates to a polymer comprising a monomer (a2) unit comprising methyl methacrylate as a main component, a monomer (a1) represented by the general formula (1) and a monomer comprising methyl methacrylate as a main component.
  • This is a method for producing a polymer in which a mixture containing the body (a2) and having a monomer (a1) content of 0.01 to 35 mol% is polymerized at a temperature of 210 ° C. or lower.
  • a monomer mixture containing the monomer (a1) represented by the general formula (1) and the monomer (a2) mainly composed of methyl methacrylate is polymerized at a temperature of 210 ° C. or lower.
  • the present invention is a molded article obtained by the above method when the monomer mixture is polymerized by cast polymerization.
  • the present invention is a top cover for a photovoltaic power generation module using the above molded body.
  • the production method of the present invention it is possible to obtain a molded article that is excellent in weather resistance, the effect of which does not deteriorate with time, and no coloring.
  • the molded article of the present invention is excellent in weather resistance, its effect does not decrease with time, is not colored, and is suitably used as a top cover for a photovoltaic power generation module.
  • the top cover for a solar power generation module of the present invention does not decrease the transmittance even when used for a long period of time, and does not decrease the power generation efficiency of the solar power generation module.
  • the monomer (a1) used in the present invention is polymerizable NOR-HALS and is represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom, an imino group, the following general formula (2) or the following general formula (3)
  • R 2 and R 3 represent a hydrogen atom or carbon.
  • n represents an integer of 1 to 10.
  • R 4 and R 5 represent a hydrogen atom or a methyl group, and at least one of R 4 and R 5 is a hydrogen atom.
  • n an integer of 1 to 10.
  • X is preferably an oxygen atom because the monomer (a1) can be easily synthesized.
  • R 2 and R 3 are preferably a linear alkyl group having 1 to 8 carbon atoms or a branched alkyl group having 1 to 8 carbon atoms.
  • Examples of the monomer (a1) include 1-octyloxy-2,2,6,6-tetramethyl-4- (meth) acryloyloxypiperidine, 1-octyloxy-2,2,6,6-tetra Methyl-4- (meth) acrylamide piperidine, 1-propyloxy-2,2,6,6-tetramethyl-4- (meth) acryloyloxypiperidine, 1-propyloxy-2,2,6,6-tetramethyl -4- (meth) acrylamide piperidine, 1-cyclohexyloxy-2,2,6,6-tetramethyl-4- (meth) acryloyloxypiperidine, 1-cyclohexyloxy-2,2,6,6-tetramethyl- 4- (meth) acrylamide piperidine, 1-methyloxy-2,2,6,6-tetramethyl-4- (meth) acryloyloxypiperidine, 1-methyloxy- , 2,6,6-Tetramethyl-4- (meth) acrylamide piper
  • the monomer (a1) one type may be used alone, or two or more types may be used in combination.
  • (meth) acryl represents acryl or methacryl
  • (meth) acryloyl represents acryloyl or methacryloyl
  • the monomer (a1) can be synthesized by a known method.
  • 1-octyloxy-2,2,6,6-tetramethyl-4-methacryloyloxypiperidine (hereinafter referred to as “monomer (a1-1)”) is 4-hydroxy-2,2,6.
  • 6-Tetramethylpiperidine was oxidized with 30% aqueous hydrogen peroxide in the presence of sodium tungstate, and the resulting 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxide was dehydrated.
  • the monomer (a1-1) can be synthesized by the method described in JP-T-2008-519003. Specifically, triacetoneamine is oxidized with 30% aqueous hydrogen peroxide in the presence of sodium tungstate dihydrate to convert to triacetoneamine-N-oxide, and then 1-octene and t- 4-hydroxy-1- (1-octyloxy) -2,2,6,6-tetramethylpiperidine obtained by reacting with butyl hydroperoxide and reducing with Ru-supported charcoal and hydrogen, and 4-hydroxy It can be synthesized by reacting a mixture with -1- (3-octyloxy) -2,2,6,6-tetramethylpiperidine with methacryloyl chloride.
  • 1-octyloxy-2,2,6,6-tetramethyl-4- (2- (2-methacryloyloxy) ethoxy) ethoxypiperidine hereinafter referred to as “monomer (a1-3)”.
  • 2,2,6,6-Tetramethyl-4- (2- (2-hydroxyethoxy) ethoxypiperidine-N-oxide is acetic anhydride to protect the hydroxyl group with acetyl, and octane as solvent It can be synthesized by reacting with tert-butyl hydroperoxide as an agent to deprotect acetyl protection and then reacting with methacryloyl chloride.
  • 1-methyloxy-2,2,6,6-tetramethyl-4-methacryloyloxypiperidine (hereinafter referred to as “monomer (a1-5)”) is described in JP-T-2009-541428.
  • 1-methyloxy-2,2,6,6-tetramethyl-4-hydroxypiperidine can be synthesized and then reacted with methacryloyl chloride.
  • 2,2,6,6-tetramethyl-4-hydroxypiperidine-N-oxide was obtained by reacting with acetone and a 30% aqueous hydrogen peroxide solution in the presence of copper (I) chloride. It can be synthesized by reacting 1-methyloxy-2,2,6,6-tetramethyl-4-hydroxypiperidine with methacryloyl chloride.
  • the monomer (a2) used in the present invention contains methyl methacrylate as a main component. In the present invention, 50% by mass or more based on the whole is referred to as “main component”.
  • the monomer (a2) contains 50% by mass or more of methyl methacrylate, preferably 75% by mass or more, and more preferably 90% by mass or more. However, the monomer (a2) is 100% by mass.
  • the monomer (a2) contains 50% by mass or more of methyl methacrylate, the appearance, mechanical strength, and weather resistance of the resulting molded article are improved.
  • the monomer (a2) can contain a monomer other than methyl methacrylate.
  • the monomer (a2) contains a monomer other than methyl methacrylate in an amount of 50% by mass or less, preferably 25% by mass or less, and more preferably 10% by mass or less.
  • the monomer (a2) contains a monomer other than methyl methacrylate in an amount of 50 mass or less, the appearance, mechanical strength, and weather resistance of the resulting molded article are improved.
  • monomers other than methyl methacrylate contained in the monomer (a2) for example, methyl acrylate, ethyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl ( (Meth) acrylates such as meth) acrylate; aromatic vinyl monomers such as styrene and ⁇ -methylstyrene; silicon-containing monomers such as vinyltrimethoxysilane; maleic anhydride, maleic acid, maleic acid monoalkyl esters, etc.
  • Maleic acid monomers such as fumaric acid and fumaric acid monoalkyl esters; maleimide monomers such as maleimide and N-methylmaleimide; vinyl cyanide monomers such as (meth) acrylonitrile Body; ethylene glycol di (meth) acrylate, di Crosslinking monomers such Nirubenzen like. These may be used alone or in combination of two or more. Among these, an aromatic vinyl monomer such as styrene and a vinyl cyanide monomer are preferable because the appearance, mechanical strength, and weather resistance of the obtained molded body are improved.
  • the polymer of the present invention can be produced by the following three methods.
  • Method 1 A monomer mixture containing 0.01 to 35 mol% of monomer (a1) and 65 to 99.99 mol% of monomer (a2) is polymerized at a temperature of 210 ° C. or lower.
  • Method 2 A polymer comprising the monomer (a2) unit, the monomer (a1) and the monomer (a2) are contained, and the content of the monomer (a1) is 0.01 to 35 mol%.
  • a mixture is polymerized at a temperature below 210 ° C.
  • Method 3 A monomer comprising a monomer mixture containing monomer (a1) and monomer (a2) polymerized at a temperature of 210 ° C. or lower, and monomer (a2) (A1)
  • a mixture having a unit content of 0.01 to 35 mol% is polymerized at a temperature of 210 ° C. or lower.
  • the monomer mixture used in Method 1 contains 0.01 to 35 mol% of monomer (a1) and 65 to 99.99 mol% of monomer (a2). However, the monomer mixture is 100 mol%.
  • the monomer mixture preferably contains 0.03 to 1 mol% of monomer (a1) and 99 to 99.97 mol% of monomer (a2). If the content of the monomer (a1) in the monomer mixture is 0.01 mol% or more, the effect of improving the weather resistance is sufficiently exhibited, and if it is 35 mol% or less, the molded article obtained can be obtained. Appearance and mechanical strength are improved.
  • the monomer mixture is polymerized at a temperature of 210 ° C. or lower.
  • the maximum processing temperature in the polymerization step is referred to as “polymerization temperature”.
  • the polymerization temperature is preferably in the range of 40 to 210 ° C., more preferably in the range of 110 to 210 ° C., and particularly preferably in the range of 110 to 180 ° C. Further, it is particularly preferable to perform polymerization at a two-stage polymerization temperature in which the first stage is 40 to 90 ° C. and the second stage is 100 to 140 ° C. When the polymerization temperature is 210 ° C.
  • R bonded to the nitroxide of the monomer (a1) is not dissociated during the polymerization, and the resulting molded product is not colored. Moreover, if superposition
  • Examples of the polymerization method of the monomer mixture include solution polymerization, suspension polymerization, emulsion polymerization, and cast polymerization.
  • cast polymerization is preferable because a molded body can be obtained directly. If it is cast polymerization, it is not necessary to apply heat again in the process of producing a molded product, such as injection molding or extrusion molding, and a molded product using the monomer (a1) can be produced without coloring. it can.
  • Method 2 first, a polymer comprising the monomer (a2) unit, separately prepared monomer (a1) and monomer (a2) are mixed to obtain a mixture.
  • the polymer used in Method 2 is obtained by polymerizing the monomer (a2).
  • the polymerization method of the monomer (a2) is not particularly limited, and a known polymerization method can be used.
  • the ratio of the polymer and the monomer (a1 + a2) in the mixture is preferably 0.1 to 80% by mass of the polymer and 20 to 99.9% by mass of the monomer (a1 + a2). However, the mixture is 100% by mass. More preferably, the mixture contains 1 to 50% by mass of the polymer and 50 to 99% by mass of the monomer (a1 + a2).
  • the content of the polymer in the mixture is in the range of 0.1 to 80% by mass, the viscosity of the mixture can be adjusted to a range in which workability is good. Furthermore, volume shrinkage of the molded body accompanying the progress of polymerization can be suppressed.
  • the mixture has a monomer (a1) content of 0.01 to 35 mol% and other components of 65 to 99.99 mol%. However, the total of the total number of moles of monomers in the mixture and the total number of moles of monomer units constituting the polymer is 100 mol%.
  • the mixture preferably contains 0.03 to 1 mol% of monomer (a1) and 99 to 99.97 mol% of other components. If the content of the monomer (a1) in the mixture is 0.01 mol% or more, the effect of improving the weather resistance is sufficiently exhibited, and if it is 35 mol% or less, the appearance and machine of the resulting molded product The mechanical strength is good.
  • the obtained mixture is polymerized at a temperature of 210 ° C. or lower.
  • the definition of the polymerization temperature is the same as the polymerization temperature of the monomer mixture shown in Method 1.
  • Examples of the polymerization method of the mixture include solution polymerization, suspension polymerization, and cast polymerization. Among these, cast polymerization is preferable because a molded body can be obtained directly.
  • Method 3 first, a polymer obtained by polymerizing a monomer mixture containing the monomer (a1) and the monomer (a2) at a temperature of 210 ° C. or lower, and a monomer (a2) separately prepared ) To obtain a mixture.
  • the monomer mixture is polymerized at a temperature of 210 ° C. or lower.
  • the definition of the polymerization temperature is the same as the polymerization temperature of the monomer mixture shown in Method 1.
  • the polymerization method is not particularly limited.
  • the ratio of the polymer to the monomer (a2) in the mixture is preferably 0.1 to 80% by mass of the polymer and 20 to 99.9% by mass of the monomer (a2). However, the mixture is 100% by mass. It is more preferable that the mixture contains 1 to 50% by mass of the polymer and 50 to 99% by mass of the monomer (a2).
  • the content of the polymer in the mixture is in the range of 0.1 to 80% by mass, the viscosity of the mixture can be adjusted to a range in which workability is good. Furthermore, volume shrinkage of the molded body accompanying the progress of polymerization can be suppressed.
  • the mixture can contain a polymer composed of the monomer (a2) unit, if necessary.
  • the mixture has a monomer (a1) unit content of 0.01 to 35 mol% and other components of 65 to 99.99 mol%. However, the total of the total number of moles of monomers in the mixture and the total number of moles of monomer units constituting the polymer is 100 mol%.
  • the mixture preferably contains 0.03 to 1 mol% of monomer (a1) units and 99 to 99.97 mol% of other components. If the content of the monomer (a1) unit in the mixture is 0.01 mol% or more, the effect of improving the weather resistance is sufficiently exhibited, and if it is 35 mol% or less, the appearance of the resulting molded article and Mechanical strength is good.
  • the obtained mixture is polymerized at a temperature of 210 ° C. or lower.
  • the definition of the polymerization temperature is the same as the polymerization temperature of the monomer mixture shown in Method 1.
  • Examples of the polymerization method of the mixture include solution polymerization, suspension polymerization, and cast polymerization. Among these, cast polymerization is preferable because a molded body can be obtained directly.
  • the cast polymerization method is specifically described. Cast polymerization is performed in a mold after adding a polymerization initiator or the like to the monomer mixture. As described in methods 2 and 3, a mixture of a polymer and a monomer may be used instead of the monomer mixture.
  • Examples of the polymerization method for cast polymerization in the mold include radical polymerization and anionic polymerization, and radical polymerization is preferable.
  • Examples of the radical polymerization initiator include organic peroxides such as benzoyl peroxide, di-t-butyl peroxide, t-hexyl peroxypivalate, and t-hexyl peroxyisopropyl carbonate; 2,2′-azobis Isobutyronitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis-2-methyl An azo initiator such as butyronitrile can be used.
  • radical polymerization initiators benzoyl peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, t-hexylperperoxide are excellent because of easy handling. Oxypivalate is preferred.
  • the amount of radical polymerization initiator used is preferably from 0.001 to 1 mol, more preferably from 0.01 to 1 mol, based on 100 mol of the monomer.
  • a chain transfer agent such as mercaptan may be used in order to adjust the molecular weight of the resulting molded product.
  • the cast polymerization is preferably performed in an oxygen-free atmosphere.
  • UV absorbers During cast polymerization, UV absorbers, light stabilizers, antioxidants, antistatic agents, antibacterial agents, flame retardants, impact modifiers, light diffusing agents, chain transfer agents, fillers, reinforcing agents, etc. You may mix
  • 2- (2′-hydroxyphenyl) benzotriazoles For example, 5 ′ methyl derivative (TV-P manufactured by Ciba Japan Co., Ltd.), 3 ′, 5′-di-t-butyl-, 5′-t-butyl-, 5 ′-(1,1,3 , 3-tetramethylbutyl)-, 5-chloro-3 ′, 5′-di-t-butyl-, 5-chloro-3′-t-butyl-5′-methyl, 3′-s-butyl-5 '-T-butyl, 4'-octoxy-, 3', 5'-di-tert-amyl-, 3 ', 5'-bis ( ⁇ , ⁇ -dimethylbenzyl)-, 3'-t-butyl-5 '-2- ( ⁇ -hydroxy-octa- (ethyleneoxy) -carbonylethyl)-, 3'-dodec
  • 2-Hydroxy-benzophenones For example, 4-hydroxy-, 4-methoxy-, 4-octoxy-, 4-decyloxy-, 4-dodecyloxy-, 4-benzyloxy-, 4,2 ', 4'-trihydroxy-2,2'-hydroxy -4,4'-dimethoxy derivative. Sterically hindered amines.
  • bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (LS770 manufactured by ADEKA Corporation), bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate (TV-292 manufactured by Ciba Japan Co., Ltd.), bis (1-octyloxy-2,2,6,6-pentamethyl-4-piperidyl) sebacate (TV-123 manufactured by Ciba Japan Co., Ltd.), 2, 4-Bis [N-butyl-N- (1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) amino] -6- (2-hydroxyethylamine) -1,3,5- Triazine (TV-152 manufactured by Ciba Japan Co., Ltd.), bis (1,2,2,6,6-pentamethylpiperidyl) n-butyl-3,5-di-t-butyl-4-hydroxybenzylmalonate 1-hydroxyethyl-2 , 2,6,6-T
  • antioxidant Alkylated monophenols; For example, 2,6-di-t-butyl-4-methylphenol, 2-t-butyl-4,6-dimethylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6-diphenol -T-butyl-4-n-butylphenol, 2,6-di-t-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2- ( ⁇ -methylcyclohexyl) -4,6 -Dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-t-butyl-4-methoxymethylphenol.
  • Alkylated hydroquinones For example, 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-di-phenyl-4-octadecyl Oxyphenol.
  • the mold for example, a plate made of tempered glass, chrome plated plate, stainless steel plate and the like, and a gasket made of soft vinyl chloride, etc .; two endless belts that run in the same direction at the same speed
  • the endless belt may be composed of a gasket that travels at the same speed as the endless belt at both ends on the opposite surface side.
  • peeling temperature when taking out the obtained molded body from the mold is preferably in the range of 70 to 110 ° C.
  • the lower limit of the peeling temperature is more preferably 75 ° C. or higher, and further preferably 80 ° C. or higher. If peeling temperature is 70 degreeC or more, when taking out a molded object from a type
  • the thickness is preferably in the range of 0.5 to 15 mm.
  • the molded body is preferably composed of a polymer having a number average molecular weight of 1,000 to 1,000,000, and more preferably composed of a polymer having a number average molecular weight of 2,000 to 500,000.
  • the number average molecular weight of the polymer constituting the molded body is 1000 or more, volatilization of the polymer is suppressed.
  • the molded article of the present invention has high weather resistance, it is useful as an article used outdoors, such as building materials, and is particularly useful as a top cover for a photovoltaic power generation module.
  • Glass plates and transparent resin plates are the mainstream materials used for the top cover that covers the outermost surface (light receiving surface side) of the photovoltaic power generation module.
  • a transparent resin plate is used for the top cover, there is an advantage that the module can be reduced in weight as compared with the case where a glass plate is used.
  • the conventional transparent resin plate has a problem that the resin deteriorates due to long-term use, and the power generation efficiency decreases due to the decrease in transparency.
  • the molded body of the present invention has high weather resistance, when used as a top cover for a photovoltaic power generation module, the resin does not deteriorate even when used for a long period of time, and the power generation efficiency is reduced due to a decrease in transparency. It does not occur.
  • the top cover for a photovoltaic power generation module of the present invention can be used for a known solar cell.
  • Tg Glass transition temperature
  • DSC 6220 (trade name) manufactured by SII Nano Technology. The measurement was melt-quenched at 200 ° C. for 3 minutes in a nitrogen atmosphere, and the temperature was increased from 20 ° C. to 250 ° C. at 10 ° C./min.
  • the step of washing with water for 18 seconds was repeated 18 times, and a weather resistance test for 432 hours was conducted.
  • Transmission spectra before and after the weather resistance test were measured with a spectrophotometer MCPD-3000 (trade name, manufactured by Otsuka Electronics Co., Ltd.), and yellowness was measured.
  • the mixture was concentrated with a rotary evaporator, 200 mL of water was added to the residue, and the mixture was extracted with a total of 200 mL of dichloromethane.
  • the organic layer was concentrated with a rotary evaporator, dissolved in 20 mL of dichloromethane and 10 mL of triethylamine, and 10.5 g (100 mmol) of methacryloyl chloride was added at 0 ° C. and reacted for 1 hour.
  • the mixture was concentrated with a rotary evaporator, 200 mL of water was added to the residue, and the mixture was extracted with a total of 200 mL of ethyl acetate.
  • the structure of the monomer (a1-1) is shown in the following formula (4).
  • Oc is a structure of the following formulas (5) to (7).
  • the following formulas (5) to (7) are represented as “Oc”.
  • Synthesis Example 2 Synthesis of Monomer (a1-2) 48.6 g (480 mmol) of triethylamine and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxide (TEMPOL) in 100 mL of dichloromethane To a solution in which 68.9 g (400 mmol) was dissolved, 47.8 g (440 mmol) of trimethylsilyl chloride was added at 0 ° C. After raising the temperature to 25 ° C. and reacting for 2 hours, the mixture was concentrated by a rotary evaporator. 500 ml of water was added to the residue, and extraction was performed using a total of 500 ml of ethyl acetate.
  • TMPOL 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxide
  • the structure of the monomer (a1-2) is shown in the following formula (8).
  • the mixture was concentrated with a rotary evaporator, 100 mL of water was added to the residue, and the mixture was extracted with a total of 100 mL of dichloromethane.
  • the organic layer was concentrated with a rotary evaporator and then dissolved in 10 mL of triethylamine, and 1.1 g (10 mmol) of methacryloyl chloride was added at 0 ° C. and reacted for 1 hour.
  • the mixture was concentrated with a rotary evaporator, 50 mL of water was added to the residue, and the mixture was extracted with a total of 50 mL of ethyl acetate.
  • the mixture was concentrated with a rotary evaporator, 100 mL of water was added to the residue, and the mixture was extracted with a total of 100 mL of dichloromethane. The organic layer was concentrated on a rotary evaporator. To the residue, 20 ml of tetrahydrofuran, 4.0 g (40 mmol) of triethylamine, and 3.0 g (30 mmol) of succinic anhydride were added, and stirring was continued at 70 ° C. for 4 hours.
  • the organic layer was concentrated using a rotary evaporator, and 3.9 g (30 mmol) of 2-hydroxyethyl methacrylate, 0.24 g (2 mmol) of N, N′-dimethyl-4-aminopyridine and 5 ml of dichloromethane were added to the residue.
  • a solution prepared by dissolving 6.2 g (30 mmol) of N, N′-dicyclohexylcarbodiimide in 20 ml of dichloromethane was dropped and reacted for 4 hours. After 4 hours, the precipitated solid was filtered off, and the filtrate was concentrated on a rotary evaporator.
  • the obtained 1-methyloxy-2,2,6,6-tetramethyl-4-hydroxypiperidine was dissolved in 50 ml of dichloromethane and 50 ml of triethylamine, and 10.4 g (100 mmol) of methacryloyl chloride was slowly added at 0 ° C. The reaction was allowed to proceed for 1 hour while gradually warming to room temperature. After 1 hour, the reaction mixture was concentrated on a rotary evaporator, 300 ml of water was added to the residue, and the mixture was extracted with 300 ml of ethyl acetate.
  • Synthesis Example 6 Synthesis of Monomer (a1-6) 4.3 g of 4-acetyloxy-2,2,6,6-tetramethylpiperidine-N-oxide synthesized by the method described in Synthesis Example 1 ( 20 mmol) was dissolved in 200 ml of cumene, and 11.7 g (80 mmol) of t-butyl peroxide was slowly added. After bubbling with nitrogen for 30 minutes, it was transferred to a UV physicochemical reactor (System 1) manufactured by Heraeus. Light was irradiated for 10 minutes using a TQ150 type lamp to cause the reaction.
  • System 1 UV physicochemical reactor
  • the obtained 1-cumyloxy-2,2,6,6-tetramethyl-4-acetyloxypiperidine was dissolved in 30 ml of methanol, 1.0 g (25 mmol) of sodium hydroxide was added, and the mixture was stirred at room temperature for 40 minutes. 100 ml of water was added to the residue and extracted with 200 ml of ethyl acetate. The organic layer was concentrated with a rotary evaporator, and the residue was dissolved in 4 ml of triethylamine. 1.9 g (18 mmol) of methacryloyl chloride was slowly added at 0 ° C. and reacted for 1 hour while gradually warming to room temperature.
  • MMA and the monomer (a1) were mixed at a ratio shown in Table 1 to obtain a monomer mixture.
  • Table 1 shows the content (mol%) of the monomer (a1) in the monomer mixture.
  • 0.35 part of t-hexyl peroxypivalate as a polymerization initiator and 0.015 part of di (2-ethylhexyl) sodium sulfosuccinate as a releasing agent were added to the monomer mixture.
  • the mixture was degassed under reduced pressure and then poured into a mold formed of two tempered glass plates facing each other at a spacing of 1.2 mm through a polyvinyl chloride gasket.
  • the mold was immersed in warm water at 80 ° C. for 30 minutes to perform the first stage polymerization, and then heat treated in an air heating furnace at 130 ° C. for 30 minutes to perform the second stage polymerization. After cooling to 80 ° C., the mold was removed to obtain molded bodies (1) to (3) having a plate thickness of 1.0 ⁇ 0.2 mm.
  • Table 1 shows the polymerization conversion, appearance, and weather resistance test (Condition 1) of the molded bodies (1) to (3). In Example 3, no weather resistance test was performed.
  • Molded bodies (4) to (8) were obtained in the same manner as in Example 1 except that the monomer (a1) was not used and the HALS shown in Table 1 was used.
  • Table 1 shows the polymerization conversion, appearance, and weather resistance test (Condition 1) of the molded products (4) to (8).
  • LA-87 2,2,6,6-tetramethyl-4-methacryloyloxypiperidine (LA-87 manufactured by ADEKA Corporation)
  • LA-82 1,2,2,6,6-pentamethyl-4-methacryloyloxypiperidine (LA-82, manufactured by ADEKA Corporation)
  • LS770 bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (LS770 manufactured by ADEKA Corporation)
  • TV-292 Bis sebacate (1,2,2,6,6-pentamethyl-4-piperidyl) (TV-292 manufactured by Ciba Japan Co., Ltd.) * LS-770 and TV-292 have two hindered amine structures (hereinafter referred to as “HALS sites”) having a piperidine skeleton in the molecule, and therefore are added at 0.10 mol% as HALS sites.
  • HALS sites hindered amine structures
  • Examples 4 to 25, Comparative Examples 6 to 11 Except for using the raw materials shown in Table 2 and Table 3, the interval between the tempered glass plates was 3.6 mm, and the amount of t-hexylperoxypivalate was 0.19 part, the same as in Example 1. Molded bodies (9) to (36) having a plate thickness of 3.0 ⁇ 0.2 mm were obtained.
  • Tables 2 and 3 show the polymerization conversion ratio, appearance, Tg, and yellowness of the molded bodies (9) to (36) according to the weather resistance test (condition 2). In addition, the location which has not shown the result of Tg and a weather resistance test is unmeasured.
  • PMMA MMA polymer (Mitsubishi Rayon Co., Ltd., VHK000)
  • TV-123 Bis (1-octyloxy-2,2,6,6-pentamethyl-4-piperidyl) sebacate (TV-123, manufactured by Ciba Japan Co., Ltd.)
  • TV-152 2,4-bis [N-butyl-N- (1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) amino] -6- (2-hydroxyethylamine)- 1,3,5-triazine (Ciba Japan Co., Ltd.
  • TV-152) TV-P: 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (TV-P manufactured by Ciba Japan Co., Ltd.) * Since TV-123 and TV-152 have two HALS sites in the molecule, the number of moles of HALS sites is twice the number of moles added. ** In addition to coloring, the molded body 26 was turbid (Comparative Example 9).
  • Example 26 The transmission spectrum of the obtained molded body was measured in the same manner as in Example 26, and the yellowness (correction value) was obtained. In Reference Examples 1 to 3, the yellowness corresponding to a plate thickness of 3 mm was determined by correction. Table 4 shows the appearance and yellowness of the molded body produced by injection molding.
  • PMMA MMA polymer (Mitsubishi Rayon Co., Ltd., VHK000)
  • TV-123 Bis (1-octyloxy-2,2,6,6-pentamethyl-4-piperidyl) sebacate (TV-123, manufactured by Ciba Japan Co., Ltd.) * Since TV-123 has two HALS sites in the molecule, 0.30 mol% is added as a HALS site.
  • Example 30 to 37 Using the raw materials shown in Table 5, molded bodies (51) to (58) having a thickness of 3.0 ⁇ 0.2 mm were obtained in the same manner as in Example 4. The transmission spectrum of the obtained molded body was measured in the same manner as in Example 26, and the yellowness (correction value) was obtained. Table 5 shows the polymerization conversion, appearance, and yellowness of the molded bodies (51) to (58).
  • the molded product obtained by the production method of the present invention had a low yellowness and a good appearance.
  • those using the monomer (a1) had a high yellowness and a poor appearance (Comparative Example 12).
  • those using the monomer (a1) had a high yellowness and a poor appearance (Reference Examples 1 and 2).
  • the molded body using the monomer (a1-6) having a structure different from that of the monomer (a1) of the present invention has a high yellowness and appearance even when the polymerization temperature is 130 ° C. It was defective (Comparative Example 6).
  • the molded product obtained by the production method of the present invention had a small yellowness displacement before and after the weather resistance test and exhibited good weather resistance.
  • those not using the monomer (a1) had a large yellowness shift before and after the weather resistance test and poor weather resistance (Comparative Examples 1 to 5, 7, 8, 10, 11). .
  • the molded body using the non-polymerizable NOR-HALS TV-123 or TV152 is a monomer (a1) that is a polymerizable NOR-HALS. )
  • the yellowness displacement before and after the weather resistance test was large and the weather resistance was poor as compared to those containing the same molar amount of HALS sites (Examples 5 and 6).
  • the production method of the present invention can produce a molded article having excellent weather resistance without causing coloring due to decomposition of polymerizable NOR-HALS, and the effect of which does not decrease over time.
  • the molded body produced in the present invention is useful as an article used outdoors such as building materials, and is particularly useful as a top cover for a photovoltaic power generation module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 式(1)で表されるピペリジン骨格を有する単量体又はその重合体を0.01~35モル%含む混合物を210℃以下の温度で重合する重合体の製造方法、及びその成型体が開示される。 (R1は水素原子又はメチル基、Xは酸素原子、イミノ基、又は特定の酸素原子含有炭化水素基、R2及びR3は水素原子、C1~C8の直鎖型アルキル基、C1~C8の分岐型アルキル基、C6~C8の脂環式炭化水素又はアリール基を表し、R2とR3とで環構造を形成してもよい)

Description

ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体
 本発明は、ピペリジン骨格を有する単量体又はその重合体を含む混合物を重合して重合体を製造する方法、及びその方法で得られた成型体に関する。
 近年、設備の維持費用低減や環境負荷低減の観点から、屋外等の過酷な環境下で用いられる高分子材料の耐候性向上が強く求められている。
 塗料として用いる高分子材料の耐候性向上を目的として、特許文献1では、ピペリジン骨格を有するヒンダードアミン型光安定剤(以下、「HALS」という。)の中でも、特に、窒素原子上が種々のOR基で置換されたもの(以下、「NOR-HALS」という。)を塗料成分中に添加することが提案されている。NOR-HALSは高分子材料の耐候性向上効果を有するものの、移行又は揮発によって高分子材料から徐々に失われ、その効果が経時的に低下するという課題を有する。
 この課題の解決を目的として、特許文献2では、分子内にビニル基を有する重合性のNOR-HALS(以下、「重合性NOR-HALS」という。)を共重合し、塗料成分中に添加することが提案されている。
特開平1-113368号公報 特開平2-281009号公報
 特許文献2では、重合性NOR-HALSの共重合体を塗料成分中に添加することが提案されているが、重合性NOR-HALSの共重合体を成型体として用いることは示されていない。重合性NOR-HALSの共重合体を成型体として用い、成型体自体の耐候性を向上させることができれば、設備の維持費用低減や環境負荷低減の観点から有意義である。
 本発明者らが検討した結果、重合性NOR-HALSの共重合体を押出成型又は射出成型した場合、成型加工時の加熱によってニトロキサイド(-NO-)に結合しているRが解離し、得られる成型体が着色することが確認された。
 本発明の目的は、耐候性に優れ、その効果が経時的に低下せず、着色のない成型体を提供することにある。
 本発明者らは鋭意検討した結果、ニトロキサイドに結合しているRを適切に選択し、適切な温度範囲で重合することにより、耐候性に優れ、その効果が経時的に低下せず、着色のない成型体が得られることを見出した。
 即ち本発明は、下記一般式(1)で表される単量体(a1)0.01~35モル%及びメチルメタクリレートを主成分とする単量体(a2)65~99.99モル%を含有する単量体混合物を、210℃以下の温度で重合する重合体の製造方法である。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Rは水素原子又はメチル基、Xは酸素原子、イミノ基、下記一般式(2)又は下記一般式(3)を表す。R及びRは水素原子、炭素数1~8の直鎖型アルキル基、炭素数1~8の分岐型アルキル基、置換基を有してもよい炭素数6~8の脂環式炭化水素、又は置換基を有してもよいアリール基を表し、互いに同一でも異なってもよい。また、RとRとで環構造を形成してもよく、環構造は置換基を有してもよい。)
Figure JPOXMLDOC01-appb-C000011
(式(2)中、nは1~10の整数を表す。R及びRは水素原子又はメチル基を表し、R及びRの少なくとも一方は水素原子である。)
Figure JPOXMLDOC01-appb-C000012
(式(3)中、nは1~10の整数を表す。)
 また本発明は、メチルメタクリレートを主成分とする単量体(a2)単位からなる重合体、上記一般式(1)で表される単量体(a1)及びメチルメタクリレートを主成分とする単量体(a2)を含有し、単量体(a1)の含有率が0.01~35モル%である混合物を、210℃以下の温度で重合する重合体の製造方法である。
 また本発明は、上記一般式(1)で表される単量体(a1)及びメチルメタクリレートを主成分とする単量体(a2)を含有する単量体混合物を210℃以下の温度で重合した重合体と、メチルメタクリレートを主成分とする単量体(a2)とを含有し、単量体(a1)単位の含有率が0.01~35モル%である混合物を、210℃以下の温度で重合する重合体の製造方法である。
 更に本発明は、上記各方法において単量体混合物の重合をキャスト重合で行なう場合、その方法で得られた成型体である。
 更に本発明は、上記の成型体を用いた、太陽光発電モジュール用トップカバーである。
 本発明の製造方法によれば、耐候性に優れ、その効果が経時的に低下せず、着色のない成型体を得ることができる。本発明の成型体は、耐候性に優れ、その効果が経時的に低下せず、着色がなく、太陽光発電モジュール用トップカバーとして好適に用いられる。本発明の太陽光発電モジュール用トップカバーは、長期間の使用でも透過率が低下せず、太陽光発電モジュールの発電効率を低下させることがない。
 本発明で用いる単量体(a1)は、重合性NOR-HALSであり、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Rは水素原子又はメチル基、Xは酸素原子、イミノ基、下記一般式(2)又は下記一般式(3)を表す。R及びRは水素原子、炭素数1~8の直鎖型アルキル基、炭素数1~8の分岐型アルキル基、置換基を有してもよい炭素数6~8の脂環式炭化水素、又は置換基を有してもよいアリール基を表し、互いに同一でも異なってもよい。また、RとRとで環構造を形成してもよく、環構造は置換基を有してもよい。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、nは1~10の整数を表す。R及びRは水素原子又はメチル基を表し、R及びRの少なくとも一方は水素原子である。)
Figure JPOXMLDOC01-appb-C000015
(式(3)中、nは1~10の整数を表す。)
 一般式(1)中、単量体(a1)の合成が容易であることから、Xは酸素原子であることが好ましい。また、成型体の耐候性が良好となることから、R及びRは炭素数1~8の直鎖型アルキル基、又は炭素数1~8の分岐型アルキル基であることが好ましい。
 単量体(a1)としては、例えば、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリロイルオキシピペリジン、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリルアミドピペリジン、1-プロピルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリロイルオキシピペリジン、1-プロピルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリルアミドピペリジン、1-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリロイルオキシピペリジン、1-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリルアミドピペリジン、1-メチルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリロイルオキシピペリジン、1-メチルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリルアミドピペリジン、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(2-(2-(メタ)アクリロイルオキシ)エトキシ)エトキシピペリジン、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(4-(2-(メタ)アクリロイルオキシ)エトキシ-1,4-ジオキソ)ブトキシピペリジンが挙げられる。
 これらの中では、得られる成型体の耐候性が良好となることから、1-メチルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリロイルオキシピペリジン、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(メタ)アクリロイルオキシピペリジンが好ましい。
 単量体(a1)は1種を単独で用いてもよく2種以上を併用してもよい。
 尚、本発明において、(メタ)アクリルは、アクリル又はメタクリルを、(メタ)アクリロイルは、アクリロイル又はメタクリロイルを示す。
 単量体(a1)は、公知の方法により合成することができる。例えば、1-オクチルオキシ-2,2,6,6-テトラメチル-4-メタクリロイルオキシピペリジン(以下、「単量体(a1-1)」という。)は、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンに、タングステン酸ナトリウム存在下、30%過酸化水素水による酸化を行ない、得られた4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシドに、無水酢酸を用いて、ヒドロキシル基のアセチル保護を行ない、オクタンを溶媒兼反応剤として、t-ブチルハイドロパーオキサイドにより反応させ、アセチル保護を脱保護した後に、メタクリロイルクロリドと反応させて合成することができる。
 また、単量体(a1-1)は、特表2008-519003号公報に記載の方法で合成することができる。具体的には、トリアセトンアミンを、タングステン酸ナトリウム二水和物の存在下、30%過酸化水素水溶液により酸化して、トリアセトンアミン-N-オキシドに変換した後、1-オクテン及びt-ブチルハイドロパーオキサイドにより反応させ、Ru担持木炭及び水素により還元して、得られた4-ヒドロキシ-1-(1-オクチルオキシ)-2,2,6,6-テトラメチルピペリジンと、4-ヒドロキシ-1-(3-オクチルオキシ)-2,2,6,6-テトラメチルピペリジンとの混合物を、メタクリロイルクロリドと反応させることで合成することができる。
 また、1-プロピルオキシ-2,2,6,6-テトラメチル-4-メタクリロイルオキシピペリジン(以下、「単量体(a1-2)」という。)は、特表2008-519003号公報に記載の方法に従い、1-オクテンの代わりにプロピレンを用いて合成することができる。
 また、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(2-(2-メタクリロイルオキシ)エトキシ)エトキシピペリジン(以下、「単量体(a1-3)」という。)は、2,2,6,6-テトラメチル-4-(2-(2-ヒドロキシエトキシ)エトキシピペリジン-N-オキシドに、無水酢酸を用いて、ヒドロキシル基のアセチル保護を行ない、オクタンを溶媒兼反応剤として、t-ブチルハイドロパーオキサイドにより反応させ、アセチル保護を脱保護した後に、メタクリロイルクロリドと反応させて合成することができる。
 また、1-オクチルオキシ-2,2,6,6-テトラメチル-4-(4-(2-メタクリロイルオキシ)エトキシ-1,4-ジオキソ)ブトキシピペリジン(以下、「単量体(a1-4)」という。)は、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンに、タングステン酸ナトリウム存在下、30%過酸化水素水による酸化を行ない、得られた4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシドに、無水酢酸を用いて、ヒドロキシル基のアセチル保護を行ない、オクタンを溶媒兼反応剤として、t-ブチルハイドロパーオキサイドにより反応させ、アセチル保護を脱保護した後に、無水コハク酸を付加させ、得られたカルボン酸と、2-ヒドロキシエチルメタクリレートとを、脱水縮合して合成することができる。
 また、1-メチルオキシ-2,2,6,6-テトラメチル-4-メタクリロイルオキシピペリジン(以下、「単量体(a1-5)」という。)は、特表2009-541428号公報に記載の方法に従い、1-メチルオキシ-2,2,6,6-テトラメチル-4-ヒドロキシピペリジンを合成した後、メタクリロイルクロリドと反応させて合成することができる。具体的には、2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-N-オキシドを、塩化銅(I)の存在下、アセトン及び30%過酸化水素水溶液と反応させ、得られた1-メチルオキシ-2,2,6,6-テトラメチル-4-ヒドロキシピペリジンを、メタクリロイルクロリドと反応させることで合成することができる。
 本発明で用いる単量体(a2)は、メチルメタクリレートを主成分とする。本発明では、全体に対して50質量%以上であることを「主成分」という。単量体(a2)は、メチルメタクリレートを50質量%以上含有し、75質量%以上含有することが好ましく、90質量%以上含有することがより好ましい。但し、単量体(a2)を100質量%とする。単量体(a2)がメチルメタクリレートを50質量%以上含有すれば、得られる成型体の外観、機械的強度及び耐候性が良好となる。
 単量体(a2)は、メチルメタクリレート以外の単量体を含有することができる。単量体(a2)は、メチルメタクリレート以外の単量体を50質量%以下含有し、25質量%以下含有することが好ましく、10質量%以下含有することがより好ましい。単量体(a2)が、メチルメタクリレート以外の単量体を50質量以下含有すれば、得られる成型体の外観、機械的強度及び耐候性が良好となる。
 単量体(a2)が含有するメチルメタクリレート以外の単量体としては、例えば、メチルアクリレート、エチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等の(メタ)アクリレート;スチレン、α-メチルスチレン等の芳香族ビニル単量体;ビニルトリメトキシシラン等の珪素含有単量体;無水マレイン酸、マレイン酸、マレイン酸モノアルキルエステル等のマレイン酸系単量体;フマル酸、フマル酸モノアルキルエステル等のフマル酸系単量体;マレイミド、N-メチルマレイミド等のマレイミド系単量体;(メタ)アクリロニトリル等のシアン化ビニル単量体;エチレングリコールジ(メタ)アクリレート、ジビニルベンゼン等の架橋性単量体が挙げられる。これらは、1種を単独で用いてもよく2種以上を併用してもよい。これらの中では、得られる成型体の外観、機械的強度及び耐候性が良好となることから、スチレン等の芳香族ビニル単量体、シアン化ビニル単量体が好ましい。
 本発明の重合体は、以下の3種類の方法で製造することができる。
 方法1:単量体(a1)0.01~35モル%及び単量体(a2)65~99.99モル%を含有する単量体混合物を、210℃以下の温度で重合する。
 方法2:単量体(a2)単位からなる重合体、単量体(a1)及び単量体(a2)を含有し、単量体(a1)の含有率が0.01~35モル%である混合物を、210℃以下の温度で重合する。
 方法3:単量体(a1)及び単量体(a2)を含有する単量体混合物を210℃以下の温度で重合した重合体と、単量体(a2)とを含有し、単量体(a1)単位の含有率が0.01~35モル%である混合物を、210℃以下の温度で重合する。
 以下、方法1について説明する。
 方法1で用いる単量体混合物は、単量体(a1)0.01~35モル%及び単量体(a2)65~99.99モル%を含有する。但し、単量体混合物を100モル%とする。単量体混合物は、単量体(a1)0.03~1モル%及び単量体(a2)99~99.97モル%を含有することが好ましい。単量体混合物中の単量体(a1)の含有率が0.01モル%以上であれば、耐候性の向上効果が充分に発現し、35モル%以下であれば、得られる成型体の外観及び機械的強度が良好となる。
 単量体混合物は210℃以下の温度で重合する。尚、本発明では、重合工程での最高処理温度を「重合温度」という。重合温度は、40~210℃の範囲であることが好ましく、110~210℃の範囲であることがより好ましく、110~180℃の範囲であることが特に好ましい。また、第1段目を40~90℃、第2段目を100~140℃とする2段階の重合温度で重合することが特に好ましい。重合温度が210℃以下であれば、単量体(a1)のニトロキサイドに結合しているRが重合時に解離することなく、得られる成型体が着色することがない。また、重合温度が40℃以上であれば、用いた単量体の重合添加率が向上する。
 単量体混合物の重合方法としては、例えば、溶液重合、懸濁重合、乳化重合、キャスト重合が挙げられる。これらの中では、成型体が直接得られることから、キャスト重合が好ましい。キャスト重合であれば、射出成型や押出成型等のように、成型体を製造する工程で再び熱をかける必要がなく、単量体(a1)を用いた成型体を、着色なく製造することができる。
 次に、方法2について説明する。
 方法2では、先ず、単量体(a2)単位からなる重合体と、別に用意した単量体(a1)及び単量体(a2)を混合して、混合物を得る。方法2で用いる重合体は、単量体(a2)を重合して得られる。単量体(a2)の重合方法は特に限定されるものではなく、公知の重合方法を用いることができる。
 混合物中の重合体と単量体(a1+a2)の比率は、重合体0.1~80質量%及び単量体(a1+a2)20~99.9質量%であることが好ましい。但し、混合物を100質量%とする。混合物は、重合体1~50質量%及び単量体(a1+a2)50~99質量%を含有することがより好ましい。混合物中の重合体の含有率が0.1~80質量%の範囲であれば、混合物の粘度を作業性が良好となる範囲に調整することができる。更に、重合の進行に伴う成型体の体積収縮を抑制することができる。
 混合物は、単量体(a1)の含有率が0.01~35モル%であり、その他の成分の含有率が65~99.99モル%である。但し、混合物中の単量体の全モル数と重合体を構成している単量体単位の全モル数の合計を100モル%とする。混合物は、単量体(a1)0.03~1モル%及びその他の成分99~99.97モル%を含有することが好ましい。混合物中の単量体(a1)の含有率が0.01モル%以上であれば、耐候性の向上効果が充分に発現し、35モル%以下であれば、得られる成型体の外観及び機械的強度が良好となる。
 得られた混合物は、210℃以下の温度で重合する。重合温度の規定は、方法1で示した単量体混合物の重合温度と同様である。混合物の重合方法としては、例えば、溶液重合、懸濁重合、キャスト重合が挙げられる。これらの中では、成型体が直接得られることから、キャスト重合が好ましい。
 次に、方法3について説明する。
 方法3では、先ず、単量体(a1)及び単量体(a2)を含有する単量体混合物を210℃以下の温度で重合して得た重合体と、別に用意した単量体(a2)とを混合して、混合物を得る。
 単量体混合物は210℃以下の温度で重合する。重合温度の規定は、方法1で示した単量体混合物の重合温度と同様である。重合方法は特に限定されるものではない。
 混合物中の重合体と単量体(a2)の比率は、重合体0.1~80質量%及び単量体(a2)20~99.9質量%であることが好ましい。但し、混合物を100質量%とする。混合物は、重合体1~50質量%及び単量体(a2)50~99質量%を含有することがより好ましい。混合物中の重合体の含有率が0.1~80質量%の範囲であれば、混合物の粘度を作業性が良好となる範囲に調整することができる。更に、重合の進行に伴う成型体の体積収縮を抑制することができる。
 混合物は、必要に応じて、単量体(a2)単位からなる重合体を含有することもできる。
 混合物は、単量体(a1)単位の含有率が0.01~35モル%であり、その他の成分の含有率が65~99.99モル%である。但し、混合物中の単量体の全モル数と重合体を構成している単量体単位の全モル数の合計を100モル%とする。混合物は、単量体(a1)単位0.03~1モル%及びその他の成分99~99.97モル%を含有することが好ましい。混合物中の単量体(a1)単位の含有率が0.01モル%以上であれば、耐候性の向上効果が充分に発現し、35モル%以下であれば、得られる成型体の外観及び機械的強度が良好となる。
 得られた混合物は、210℃以下の温度で重合する。重合温度の規定は、方法1で示した単量体混合物の重合温度と同様である。混合物の重合方法としては、例えば、溶液重合、懸濁重合、キャスト重合が挙げられる。これらの中では、成型体が直接得られることから、キャスト重合が好ましい。
 キャスト重合の方法について、具体的に記載する。キャスト重合は、単量体混合物に重合開始剤等を添加した後、型内で重合する。方法2及び3で記したように、単量体混合物に替えて、重合体と単量体の混合物を用いてもよい。
 型内でキャスト重合する際の重合方法としては、例えば、ラジカル重合、アニオン重合が挙げられ、ラジカル重合が好ましい。ラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキシピバレート、t-ヘキシルパーオキシイソプロピルカーボネート等の有機過酸化物;2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス-2,4-ジメチルバレロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス-2-メチルブチロニトリル等のアゾ系開始剤が挙げられる。ラジカル重合開始剤の中では、取り扱い性が優れることから、ベンゾイルパーオキサイド、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス-2,4-ジメチルバレロニトリル、t-ヘキシルパーオキシピバレートが好ましい。
 ラジカル重合開始剤の使用量は、単量体100モルに対して0.001~1モルが好ましく、0.01~1モルがより好ましい。
 キャスト重合する際には、得られる成型体の分子量を調節するため、メルカプタン等の連鎖移動剤を用いてもよい。また、キャスト重合は、酸素不存在雰囲気で行なうことが好ましい。
 キャスト重合の際には、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、抗菌剤、難燃剤、耐衝撃改質剤、光拡散剤、連鎖移動剤、充填剤、強化剤等の添加剤を配合してもよい。添加剤の配合量は用途により異なるが、全体に対して5質量%以下が好ましい。添加剤の配合量が5質量%以下であれば、得られる成型体のガラス転移温度の低下が小さく、成型体の耐熱性が良好になる。
 紫外線吸収剤及び光安定剤としては、以下のものが挙げられる。
 2-(2'-ヒドロキシフェニル)ベンゾトリアゾール類。例えば、5'メチル-誘導体(チバ・ジャパン(株)製 TV-P)、3',5'-ジ-t-ブチル-、5'-t-ブチル-、5'-(1,1,3,3-テトラメチルブチル)-、5-クロロ-3',5'-ジ-t-ブチル-、5-クロロ-3'-t-ブチル-5'-メチル、3'-s-ブチル-5'-t-ブチル、4'-オクトキシ-、3',5'-ジ-第三アミル-、3',5'-ビス(α,α-ジメチルベンジル)-、3'-t-ブチル-5'-2-(ω-ヒドロキシ-オクタ-(エチレンオキシ)-カルボニルエチル)-、3'-ドデシル-5'-メチル-、3'-t-ブチル-5'-(2-オクチルオキシカルボニル)-エチル、ドデシル化-5'-メチル-誘導体。
 2-ヒドロキシ-ベンゾフェノン類。例えば、4-ヒドロキシ-、4-メトキシ-、4-オクトキシ-、4-デシルオキシ-、4-ドデシルオキシ-、4-ベンジルオキシ-、4,2',4'-トリヒドロキシ-、2'-ヒドロキシ-4,4'-ジメトキシ誘導体。
 立体障害性アミン類。例えば、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)((株)ADEKA製 LS770)、セバシン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)(チバ・ジャパン(株)製 TV-292)、ビス(1-オクチルオキシ-2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(チバ・ジャパン(株)製 TV-123)、2,4-ビス[N-ブチル-N-(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ]-6-(2-ヒドロキシエチルアミン)-1,3,5-トリアジン(チバ・ジャパン(株)製 TV-152)、ビス(1,2,2,6,6-ペンタメチルピペリジル)n-ブチル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルマロネート、1-ヒドロキシエチル-2,2,6,6-テトラメチル-4-ヒドロキシピペリジンとコハク酸との縮合生成物、N,N'-ビス(2,2,6,6-テトラメチルピペリジル)ヘキサメチレンジアミンと4-第三オクチルアミノ-2,6-ジクロロ-s-トリアジンとの縮合生成物、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ニトリロトリアセテート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボン酸、1,1'-(1,2-エタンジイル)-ビス(3,3,5,5-テトラメチルピペラジノン)。
 ヒドロキシフェニル-s-トリアジン類。例えば、2,6-ビス-(2,4-ジメチルフェニル)-4-(2-ヒドロキシ-4-オクチルオキシフェニル)-s-トリアジン、2,6-ビス-(2,4-ジメチルフェニル)-4-(2,4-ジヒドロキシフェニル)-s-トリアジン、2,4-ビス-(2,4-ジヒドロキシフェニル)-6-(4-クロロフェニル)-s-トリアジン、2,4-ビス-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-6-(4-クロロフェニル)-s-トリアジン、2,4-ビス-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-6-フェニル-s-トリアジン、2,4-ビス-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-6-(2,4-ジメチルフェニル)-s-トリアジン、2,4-ビス-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-6-(4-ブロモフェニル)-s-トリアジン、2,4-ビス-〔2-ヒドロキシ-4-(2-アセトキシエトキシ)フェニル〕-6-(4-クロロフェニル)-s-トリアジン、2,4-ビス(2,4-ジヒドロキシフェニル)-6-(2,4-ジメチルフェニル)-s-トリアジン。
 その他、2-ヒドロキシ-ベンゾフェノン誘導体、ニッケル化合物、シュウ酸ジアミド類。
 酸化防止剤としては、以下のものが挙げられる。
 アルキル化モノフェノール類。例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2-t-ブチル-4,6-ジメチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジ-t-ブチル-4-n-ブチルフェノール、2,6-ジ-t-ブチル-4-イソブチルフェノール、2,6-ジシクロペンチル-4-メチルフェノール、2-(α-メチルシクロヘキシル)-4,6-ジメチルフェノール、2,6-ジオクタデシル-4-メチルフェノール、2,4,6-トリシクロヘキシルフェノール、2,6-ジ-t-ブチル-4-メトキシメチルフェノール。
 アルキル化ハイドロキノン類。例えば、2,6-ジ-t-ブチル-4-メトキシフェノール、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-第三アミルハイドロキノン、2,6-ジ-フェニル-4-オクタデシルオキシフェノール。
 その他、ヒドロキシル化ジチオフェニルエーテル類、アルキリデンビスフェノール類、ベンジル化合物、アシルアミノフェノール類。
 型としては、例えば、強化ガラス、クロムメッキ板、ステンレス板等の板状体と、軟質塩化ビニル等のガスケットで構成したもの;相対して同一方向へ同一速度で走行する2枚のエンドレスベルトと、エンドレスベルトの相対する面側の両端部においてエンドレスベルトと同一速度で走行するガスケットで構成したものが挙げられる。
 キャスト重合の後、得られた成型体を型から取り出す際の温度(以下、「剥離温度」という。)は、70~110℃の範囲が好ましい。剥離温度の下限値は、75℃以上がより好ましく、80℃以上が更に好ましい。剥離温度が70℃以上であれば、成型体を型から取り出す際に、表面に傷が付き難い。また、剥離温度が110℃以下であれば、成型体表面にスジ状の欠陥を生じることがない。
 成型体が板状物である場合、その厚さは0.5~15mmの範囲内であることが好ましい。
 成型体は、数平均分子量が1000~100万の重合体で構成されることが好ましく、数平均分子量が2000~50万の重合体で構成されることがより好ましい。成型体を構成する重合体の数平均分子量が1000以上であれば、重合体の揮発が抑制される。
 本発明の成型体は高い耐候性を有することから、建材等、屋外で使用される物品として有用であり、特に太陽光発電モジュール用トップカバーとして有用である。
 太陽光発電モジュールの最表面(受光面側)を被うトップカバーに用いられる材料は、硝子板と透明樹脂板が主流である。トップカバーに透明樹脂板を用いた場合には、硝子板を用いた場合に比べてモジュールの軽量化が可能になるという利点がある。しかし、従来の透明樹脂板では、長期間の使用により樹脂が劣化し、透明性の低下による発電効率の低下が生じるという問題があった。本発明の成型体は高い耐候性を有することから、太陽光発電モジュール用トップカバーとして用いた場合、長期間の使用によっても樹脂が劣化することがなく、透明性の低下による発電効率の低下を生じることがない。本発明の太陽光発電モジュール用トップカバーは、公知の太陽電池に用いることができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例中の「部」及び「%」は、「質量部」及び「質量%」を表す。
(1)単量体(a1)の同定
 単量体(a1)の構造の確認には、H-NMR JNM-EX270(日本電子(株)製、商品名)を用いた。単量体(a1)を重水素化クロロホルムに溶解させ、ピークの積分強度及びピーク位置から、化合物を同定した。測定温度は25℃、積算回数は16回である。
(2)重合転化率
 単量体の重合転化率の確認には、H-NMR JNM-EX270(日本電子(株)製、商品名)を用いた。単量体(a1)とメチルメタクリレートとの共重合では、単量体と重合体由来のアルコキシル基の水素と、単量体由来のC-C二重結合の水素に帰属されるピークの積分比から重合転化率を計算した。
(3)外観
 成型体を目視で観察し、着色の有無を判断した。
(4)ガラス転移温度(Tg)
 Tgは、SIIナノテクノロジー社製、DSC6220(商品名)を使用した。測定は窒素雰囲気下、200℃で3分間メルトクエンチし、20℃から250℃まで、10℃/分で昇温した。
(5)数平均分子量(Mn)及び分子量分布(PDI)
 GPC(東ソー(株)製、HLC-8220(商品名)、カラム:TSK GUARD COLUMN SUPER HZ-L(4.6×35mm)、TSK-GEL SUPER HZM-N(6.0×150mm)×2直列接続、溶離液:クロロホルム、測定温度:40℃、流速:0.6mL/分)を用い、ポリメチルメタクリレートをスタンダードとして測定した。
(6)耐候性試験(条件1)
 成型体を40mm×40mmに切断し、表面を中性洗剤で洗浄後、メタルウェザー KU-R5N-A(ダイプラ・ウィンテス社製、商品名)により、照射強度80mw/cm、63℃で344時間、耐候性試験を行なった。耐候性試験前後の透過スペクトルを、分光光度計 MCPD-3000(大塚電子(株)製、商品名)により測定し、黄色度を測定した。測定値は、以下の式に従い、サンプルの厚さにより補正を行なった。
  黄色度(補正値)=黄色度(測定値)/板厚(mm)
 また、耐候性試験前後の黄色度(補正値)の差を求め、黄色度の「変位」とした。
(7)耐候性試験(条件2)
 成型体を30mm×30mmに切断し、表面を中性洗剤で洗浄後、メタルウェザー KW-R5TP-A(ダイプラ・ウィンテス社製、商品名)により、照射強度110mw/cm、65℃で16時間保持した後、照射強度0mw/cm、65℃で2時間保持し、その後、試験片表面を10秒間水洗し、照射強度0mw/cm、30℃で6時間保持し、試験片表面を10秒間水洗する工程を18回繰り返し、432時間の耐候性試験を行なった。耐候性試験前後の透過スペクトルを、分光光度計 MCPD-3000(大塚電子(株)製、商品名)により測定し、黄色度を測定した。測定値は、以下の式に従い、サンプルの厚さにより補正を行なった。
  黄色度(補正値)=黄色度(測定値)×3/板厚(mm)
 また、耐候性試験前後の黄色度(補正値)の差を求め、黄色度の「変位」とした。
(合成例1)単量体(a1-1)の合成
 テトラヒドロフラン(THF)200mL中、トリエチルアミン30.3g(300mmol)及び、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド(TEMPOL)34.4g(200mmol)が溶解した溶液に、無水酢酸25.5g(250mmol)を0℃で添加した。25℃に昇温して12時間反応させた後、回転エバポレーターで濃縮した。残渣を氷水1リットルに投入し、析出した橙色固体を濾取して、4-アセチルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド33.8gを得た。
 4-アセチルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド21.4g(100mmol)を、オクタン200mLに溶解し、酸化モリブデン(VI)0.9g(6mmol)を加え、加熱還流して脱水した。共沸により脱水しつつ、t-ブチルハイドロパーオキサイド70%水溶液19.2g(150mmol)を9時間かけて滴下し、反応させた。室温まで冷却後、飽和重亜硫酸ナトリウム水溶液30mlを徐々に加え、未反応の過酸化物を失活させた。有機層を回転エバポレーターで濃縮した後、残渣をエタノール100mLに溶解させ、6.7g(150mmol)の水酸化カリウムを加えて、25℃で2時間反応させた。
 混合物を回転エバポレーターで濃縮し、残渣に水200mLを加え、総計200mLのジクロロメタンを用いて抽出した。有機層を回転エバポレーターで濃縮した後、ジクロロメタン20mL及びトリエチルアミン10mLに溶解させ、メタクリロイルクロリド10.5g(100mmol)を、0℃で添加し、1時間反応させた。混合物を回転エバポレーターで濃縮し、残渣に水200mLを加え、総計200mLの酢酸エチルを用いて抽出した。有機層を回転エバポレーターで濃縮し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=20/1 体積比)によって精製し、無色の液体を26.3g得た(収率74.4%)。
 H-NMRの測定により、生成物が単量体(a1-1)であることを確認した。
 H-NMR(CDCl):δ(ppm):0.89(m、6H),1.17(m、10H),1.18(s、6H),1.21(s、6H),1.61(m、2H),1.85(m、2H),1.92(s、3H),3.60-3.93(m、1H),5.07(m、1H),5.53(s、1H),6.03(s、1H)
 単量体(a1-1)の構造を、下記式(4)に示す。
Figure JPOXMLDOC01-appb-C000016
(式(4)中、Ocは下式(5)~(7)の構造である。以下、下式(5)~(7)を「Oc」と表す。)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(合成例2)単量体(a1-2)の合成
 ジクロロメタン100mL中、トリエチルアミン48.6g(480mmol)及び、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド(TEMPOL)68.9g(400mmol)が溶解した溶液に、トリメチルシリルクロリド47.8g(440mmol)を0℃で添加した。25℃に昇温して2時間反応させた後、回転エバポレーターで濃縮した。残渣に水500mlを加え、総計500mlの酢酸エチルを用いて抽出した。有機層を回転エバポレーターで濃縮し、残渣をヘキサンに溶解し、再結晶により、4-トリメチルシリルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド96.2gを得た。
 切削屑状マグネシウム4.6g(190mmol)、脱水THF100ml、ヨウ素10mgを反応容器に入れ、容器内をアルゴンで置換した後、1-ブロモプロパン23.4g(190mmol)を、容器内の温度を55℃から65℃に保ちつつ滴下し、Grignard反応剤を調製した。
 別の反応容器中で、4-トリメチルシリルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド96.2g(394mmol)を、脱水THF100mlに溶解し、調製したGrignard反応剤を0℃で滴下した。3時間反応させた後、溶液を回転エバポレーターで濃縮した。残渣に500mlの水を加え、総計500mlの酢酸エチルで抽出し、有機層を回転エバポレーターで濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=20/1 体積比))によって精製し、1-(1-プロピル)オキシ-2,2,6,6-テトラメチル-4-トリメチルシリルオキシピペリジン38.5gを得た。
 1-(1-プロピル)オキシ-2,2,6,6-テトラメチル-4-トリメチルシリルオキシピペリジン38.5gをメタノール300mlに溶解し、炭酸カリウム0.14g(0.1mmol)を加えて3時間反応させた後、溶液を回転エバポレーターで濃縮した。残渣に水300mlを加え、総計300mlの酢酸エチルで抽出した。有機層を回転エバポレーターで濃縮し、残渣をジクロロメタン20ml、トリエチルアミン20mlに溶解し、メタクリロイルクロリド14.1g(135mmol)を0℃で滴下した。1時間反応させた後、析出したトリエチルアミン塩酸塩を濾別し、溶液を回転エバポレーターで濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=20/1 体積比)によって精製し、無色の液体を29.7g得た(収率26.2%)。
 H-NMRの測定により、生成物が単量体(a1-2)であることを確認した。
 H-NMR(CDCl):δ(ppm):0.94(t、3H),1.21(s、12H),1.53(m、2H),1.61(m、2H),1.86(m、2H),1.92(s、3H),3.70(t、2H),5.07(m、1H),5.53(s、1H),6.06(s、1H)
 単量体(a1-2)の構造を、下記式(8)に示す。
Figure JPOXMLDOC01-appb-C000020
(合成例3)単量体(a1-3)の合成
 THF100mL中、トリエチルアミン20.2g(200mmol)及び、2,2,6,6-テトラメチル-4-(2-(2-ヒドロキシ)エトキシ)エトキシピペリジン-N-オキシド26.0g(100mmol)が溶解した溶液に、無水酢酸12.3g(120mmol)を0℃で添加した。25℃に昇温して12時間反応させた後、回転エバポレーターで濃縮した。残渣に水500mlを加え、総計500mlの酢酸エチルを用いて抽出した。有機層を回転エバポレーターで濃縮した後、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=1/1 体積比)によって精製し、2,2,6,6-テトラメチル-4-(2-(2-アセチルオキシ)エトキシ)エトキシピペリジン-N-オキシド5.6g(22mmol)を得た。
 2,2,6,6-テトラメチル-4-(2-(2-アセチルオキシ)エトキシ)エトキシピペリジン-N-オキシド3.0g(10mmol)を、オクタン100mLに溶解し、酸化モリブデン(VI)0.07g(0.5mmol)を加え、加熱還流して脱水した。共沸により脱水しつつ、t-ブチルハイドロパーオキサイド70%水溶液12.8g(100mmol)を6時間かけて滴下し、反応させた。室温まで冷却後、飽和重亜硫酸ナトリウム水溶液20mlを徐々に加え、未反応の過酸化物を失活させた。有機層を回転エバポレーターで濃縮した後、残渣をエタノール15mLに溶解させ、0.6g(15mmol)の水酸化ナトリウムを加えて、25℃で2時間反応させた。
 混合物を回転エバポレーターで濃縮し、残渣に水100mLを加え、総計100mLのジクロロメタンを用いて抽出した。有機層を回転エバポレーターで濃縮した後、トリエチルアミン10mLに溶解させ、メタクリロイルクロリド1.1g(10mmol)を、0℃で添加し、1時間反応させた。混合物を回転エバポレーターで濃縮し、残渣に水50mLを加え、総計50mLの酢酸エチルを用いて抽出した。有機層を回転エバポレーターで濃縮し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=3/1 体積比)によって精製し、無色の液体を1.9g(3.1mmol)得た(収率3.1%)。
 H-NMRの測定により、生成物が単量体(a1-3)であることを確認した。
 H-NMR(CDCl):δ(ppm):0.89(m、6H),1.14(s、12H),1.28(m、10H),1.35-1.47(m、2H),1.63-1.84(m、2H),1.95(s、3H),3.54-3.87(m、2H),3.61(m、4H),3.75(t、2H),4.30(t、2H),5.57(s、1H),6.14(s、1H)
 単量体(a1-3)の構造を、下記式(9)に示す。
Figure JPOXMLDOC01-appb-C000021
(合成例4)単量体(a1-4)の合成
 合成例1に記載の方法で合成した4-アセチルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド6.4g(30mmol)を、オクタン100mLに溶解し、酸化モリブデン(VI)0.1g(0.7mmol)を加え、加熱還流して脱水した。共沸により脱水しつつ、t-ブチルハイドロパーオキサイド70%水溶液12.8g(100mmol)を6時間かけて滴下し、反応させた。室温まで冷却後、飽和重亜硫酸ナトリウム水溶液50mlを徐々に加え、未反応の過酸化物を失活させた。有機層を回転エバポレーターで濃縮した後、残渣をエタノール50mLに溶解させ、2.8g(50mmol)の水酸化カリウムを加えて、25℃で4時間反応させた。
 混合物を回転エバポレーターで濃縮し、残渣に水100mLを加え、総計100mLのジクロロメタンを用いて抽出した。有機層を回転エバポレーターで濃縮した。残渣に、テトラヒドロフラン20ml、トリエチルアミン4.0g(40mmol)、無水コハク酸3.0g(30mmol)を加え、70℃にて4時間撹拌を続けた。4時間後、回転エバポレーターで濃縮し、残渣に飽和塩化アンモニウム水溶液を100ml加え、総計100mlの酢酸エチルで抽出した。
 有機層を回転エバポレーターで濃縮し、残渣に2-ヒドロキシエチルメタクリレート3.9g(30mmol)、N,N'-ジメチル-4-アミノピリジン0.24g(2mmol)、ジクロロメタン5mlを加え、0℃において、N,N'-ジシクロヘキシルカルボジイミド6.2g(30mmol)をジクロロメタン20mlに溶解した溶液を滴下し、4時間反応させた。4時間後、析出した固体を濾別し、濾液を回転エバポレーターで濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=5/1 体積比)によって精製し、無色の液体を5.58g得た(収率56.1%)。
 H-NMRの測定により、生成物が単量体(a1-4)であることを確認した。
 H-NMR(CDCl):δ(ppm):0.89(m、6H),1.15(s、6H),1.18(s、6H),1.29(m、10H),1.30-1.41(m、2H),1.59-1.82(m、2H),1.95(s、3H),2.62(m、4H),3.73(m、1H),4.35(s、4H),5.02(m、1H),5.60(s、1H),6.13(s、1H)
 単量体(a1-4)の構造を、下記式(10)に示す。
Figure JPOXMLDOC01-appb-C000022
(合成例5)単量体(a1-5)の合成
 2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-N-オキシド17.8g(100mmol)をアセトン100mlに溶解し、30%過酸化水素水溶液34g(300mmol)を10分以上かけてゆっくり添加した。5℃まで冷却しながら、塩化銅(I)0.49g(5.0mol%)を添加し、反応混合物の温度を5℃から55℃の間に保持した。15分後、35%塩酸を0.5g添加し、反応混合物を室温において2時間撹拌した。2時間後、4mol/Lの重亜硫酸ナトリウム水溶液50ml、飽和炭酸水素カリウム水溶液100mlを加え、300mlの酢酸エチルで抽出した。有機層を回転エバポレーターで濃縮し、1-メチルオキシ-2,2,6,6-テトラメチル-4-ヒドロキシピペリジンを得た。
 得られた1-メチルオキシ-2,2,6,6-テトラメチル-4-ヒドロキシピペリジンをジクロロメタン50ml、トリエチルアミン50mlに溶解し、メタクリロイルクロリド10.4g(100mmol)を0℃にてゆっくり添加した。徐々に室温まで昇温しつつ、1時間反応させた。1時間後、反応混合物を回転エバポレーターで濃縮し、残渣に水300mlを加え、酢酸エチル300mlで抽出した。有機層を回転エバポレーターで濃縮し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=10/1体積比)によって精製して、無色の液体を19.0g得た(収率74.3%)。
 H-NMRの測定により、生成物が単量体(a1-5)であることを確認した。
 H-NMR(CDCl):δ(ppm):1.19(s、6H),1.23(s、6H),1.60(m、2H),1.87(m、2H),1.92(s、3H),3.62(s、3H),5.07(m、1H),5.53(s、1H),6.06(s、1H)
 単量体(a1-5)の構造を、下記式(11)に示す。
Figure JPOXMLDOC01-appb-C000023
(合成例6)単量体(a1-6)の合成
 合成例1に記載の方法で合成した、4-アセチルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシド4.3g(20mmol)をクメン200mlに溶解し、t-ブチルパーオキサイド11.7g(80mmol)をゆっくり添加した。30分間窒素バブリングした後、Heraeus社製UV理化学反応装置(System1)に移した。TQ150型のランプを用いて10分間光照射を行ない、反応させた。反応混合物を回転エバポレーターで濃縮し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=5/1体積比)によって精製して、1-クミルオキシ-2,2,6,6-テトラメチル-4-アセチルオキシピペリジン5.5gを得た(収率82.3%)。
 得られた1-クミルオキシ-2,2,6,6-テトラメチル-4-アセチルオキシピペリジンをメタノール30mlに溶解し、水酸化ナトリウム1.0g(25mmol)を加えて室温で40分間撹拌した。残渣に水100mlを加え、200mlの酢酸エチルで抽出した。有機層を回転エバポレーターで濃縮し、残渣を4mlのトリエチルアミンに溶解した。メタクリロイルクロリド1.9g(18mmol)を0℃にてゆっくり添加し、徐々に室温まで昇温しつつ、1時間反応させた。1時間後、反応混合物を回転エバポレーターで濃縮し、残渣に水100mlを加え、酢酸エチル200mlで抽出した。有機層を回転エバポレーターで濃縮し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=10/1体積比)によって精製して、無色の結晶を3.5g得た。(収率65.3%)
 H-NMRの測定により、生成物が単量体(a1-6)であることを確認した。
 H-NMR(CDCl):δ(ppm):0.89(s、6H),1.21(s、6H),1.56(t、2H),1.61(s、6H),1.87(m、2H),1.91(s、3H),5.06(m、1H),5.52(s、1H),6.05(s、1H),7.20(t、1H),7.30(t、2H),7.47(d、2H)
 単量体(a1-6)の構造を、下記式(12)に示す。
Figure JPOXMLDOC01-appb-C000024
(製造例1)単量体(a1-1)とメチルメタクリレートの共重合体(b-1)
 単量体(a1-1)17.7g(50mmol)、メチルメタクリレート(MMA)45.1g(450mmol)、オクチルメルカプタン0.6g、2,2'-アゾビスイソブチロニトリル0.3gを、トルエン200mlに溶解し、75℃にて、窒素雰囲気下で4時間重合した。得られた重合体溶液をメタノールで再沈殿し、85℃で減圧乾燥し、重合体(b-1)を得た。重合体(b-1)は、Mn1.68万、PDI1.44であり、収量35.7gであった(収率56.9%)。
(製造例2)単量体(a1-2)とMMAの共重合体(b-2)
 単量体(a1-2)12.8g(50mmol)、MMA45.1g(450mmol)、オクチルメルカプタン0.6g、2,2'-アゾビスイソブチロニトリル0.3gを、トルエン200mlに溶解し、75℃にて、窒素雰囲気下で4時間重合した。得られた重合体溶液をメタノールで再沈殿し、85℃で減圧乾燥し、重合体(b-2)を得た。重合体(b-2)は、Mn1.89万、PDI1.39であり、収量27.7gであった(収率47.9%)。
(製造例3)単量体(a1-2)とMMAの共重合体(b-3)
 単量体(a1-2)7.7g(30mmol)、MMA27.0g(270mmol)、オクチルメルカプタン0.6g、2,2'-アゾビスイソブチロニトリル0.16gを、トルエン100mlに溶解し、75℃にて、窒素雰囲気下で4時間重合した。得られた重合体溶液をメタノールで再沈殿し、85℃で減圧乾燥し、重合体(b-3)を得た。重合体(b-3)は、Mn0.83万、PDI1.66であり、収量22.1gであった(収率63.8%)。
(製造例4)単量体(a1-2)とMMAの共重合体(b-4)
 単量体(a1-2)7.7g(30mmol)、MMA27.0g(270mmol)、オクチルメルカプタン1.5g、2,2'-アゾビスイソブチロニトリル0.16gを、トルエン100mlに溶解し、75℃にて、窒素雰囲気下で4時間重合した。得られた重合体溶液をメタノールで再沈殿し、85℃で減圧乾燥し、重合体(b-4)を得た。重合体(b-4)は、Mn0.52万、PDI1.42であり、収量19.8gであった(収率57.1%)。
(実施例1~3)
 MMA、単量体(a1)を、表1に記載の比率で混合して単量体混合物とした。単量体混合物中の単量体(a1)の含有率(モル%)を表1に示す。単量体混合物に、重合開始剤としてt-ヘキシルパーオキシピバレートを0.35部、離型剤としてスルホコハク酸ジ(2-エチルヘキシル)ナトリウム0.015部を添加した。この混合物を減圧脱気した後、ポリ塩化ビニル製ガスケットを介して1.2mmの間隔で相対する2枚の強化ガラス板で形成した型に注入した。
 型を80℃の温水中に30分間浸漬して第1段目の重合を行ない、130℃の空気加熱炉中で30分間熱処理して第2段目の重合を行なった。80℃に冷却した後、型枠を脱枠して板厚1.0±0.2mmの成型体(1)~(3)を得た。
 成型体(1)~(3)の重合転化率、外観、耐候性試験(条件1)による黄色度を表1に示す。尚、実施例3は、耐候性試験を実施していない。
(比較例1~5)
 単量体(a1)を用いず、表1に示したHALSを用いたこと以外は、実施例1と同様にして、成型体(4)~(8)を得た。成型体(4)~(8)の重合転化率、外観、耐候性試験(条件1)による黄色度を表1に示す。
Figure JPOXMLDOC01-appb-T000025
 表1中の略号:
  LA-87:2,2,6,6-テトラメチル-4-メタクリロイルオキシピペリジン((株)ADEKA製 LA-87)
  LA-82:1,2,2,6,6-ペンタメチル-4-メタクリロイルオキシピペリジン((株)ADEKA製 LA-82)
  LS770:セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)((株)ADEKA製 LS770)
  TV-292:セバシン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)(チバ・ジャパン(株)製 TV-292)
 *LS-770、TV-292は、ピペリジン骨格を有するヒンダードアミン構造(以下、「HALS部位」という。)を分子内に2つ持つため、HALS部位として0.10モル%添加されている。
(実施例4~25、比較例6~11)
 表2及び表3に示した各原料を用い、強化ガラス板の間隔を3.6mmとし、t-ヘキシルパーオキシピバレートの量を0.19部とする以外は、実施例1と同様にして、板厚3.0±0.2mmの成型体(9)~(36)を得た。
 成型体(9)~(36)の重合転化率、外観、Tg、耐候性試験(条件2)による黄色度を表2及び表3に示す。尚、Tg及び耐候性試験の結果を示していない箇所は、未測定である。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 表2及び3中の略号:
  PMMA:MMA重合体(三菱レイヨン(株)製、VHK000)
  TV-123:ビス(1-オクチルオキシ-2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(チバ・ジャパン(株)製 TV-123)
  TV-152:2,4-ビス[N-ブチル-N-(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ]-6-(2-ヒドロキシエチルアミン)-1,3,5-トリアジン(チバ・ジャパン(株)製 TV-152)
  TV-P:2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール(チバ・ジャパン(株)製 TV-P)
 * TV-123,TV-152は、HALS部位を分子内に2つ持つため、HALS部位のモル数は添加モル数の2倍である。
 ** 成型体26は、着色に加えて、濁りが見られた(比較例9)。
(実施例26~29、比較例12~18)
 表4に示した各原料を用い、第2段目の重合温度を130℃×30分に替えて、表4に記載の重合温度×30分としたこと以外は、実施例4と同様にして、成型体を得た。
 得られた成型体の透過スペクトルを、分光光度計 MCPD-3000(大塚電子(株)製、商品名)により測定し、黄色度を測定した。測定値は、以下の式に従い、サンプルの厚さにより補正を行なった。
  黄色度(補正値)=黄色度(測定値)×3/板厚(mm)
 成型体の外観、黄色度を表4に示す。
(参考例1~3)
 表4に示した各原料を混合して混合体を得た。混合体に重合開始剤としてt-ヘキシルパーオキシピバレート0.35部を添加した。これを、ガラス性容器に投入し、減圧脱気した後、容器内を窒素置換し、80℃で2時間加熱して重合した。得られた重合体を適宜切断した後、小型射出成型機 CS-183-MMX(カスタム・サイエンティフィック・インスツルメンツ社製)に供給し、シリンダー温度260℃の条件で10分間保持した後、10mm×20mm×2mmの金型を用いて、金型温度60℃にて射出成型し、成型体を作製した。
 得られた成型体の透過スペクトルを、実施例26と同様に測定し、黄色度(補正値)を求めた。参考例1~3では、補正により、成型体の板厚3mm相当での黄色度を求めた。
 射出成型で作成した成型体の外観、黄色度を表4に示す。
Figure JPOXMLDOC01-appb-T000028
 表4中の略号:
  PMMA:MMA重合体(三菱レイヨン(株)製、VHK000)
 TV-123:ビス(1-オクチルオキシ-2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(チバ・ジャパン(株)製 TV-123)
 * TV-123は、HALS部位を分子内に2つ持つため、HALS部位として0.30モル%添加されている。
(実施例30~37)
 表5に示した各原料を用い、実施例4と同様にして、板厚3.0±0.2mmの成型体(51)~(58)を得た。
 得られた成型体の透過スペクトルを、実施例26と同様に測定し、黄色度(補正値)を求めた。
 成型体(51)~(58)の重合転化率、外観、黄色度を表5に示す。
Figure JPOXMLDOC01-appb-T000029
 表5中の略号:
  PMMA:MMA重合体(三菱レイヨン(株)製、VHK000)
 表1~5から明らかなように、本発明の製造方法で得られた成型体は、黄色度が低く、外観が良好であった。一方、210℃を超える温度で重合した成型体の中で、単量体(a1)を用いたものは、成型体の黄色度が高く、外観が不良であった(比較例12)。210℃を超える温度で射出成型して得た成型体の中で、単量体(a1)を用いたものは、成型体の黄色度が高く、外観が不良であった(参考例1、2)。本発明の単量体(a1)とは異なる構造の、単量体(a1-6)を用いた成型体は、重合温度が130℃であっても、成型体の黄色度が高く、外観が不良であった(比較例6)。
 表1~3から明らかなように、本発明の製造方法で得られた成型体は、耐候性試験前後での黄色度の変位が小さく、良好な耐候性を示した。一方、単量体(a1)を用いなかったものは、耐侯性試験前後での黄色度の変位が大きく、耐侯性が不良であった(比較例1~5、7、8、10、11)。
 表2から明らかなように、非重合性のNOR-HALSであるTV-123又はTV152を用いた成型体(比較例7、8、10)は、重合性NOR-HALSである単量体(a1)を用いた成型体のうち、HALS部位を同じモル量含有するもの(実施例5、6)に比べて、耐候性試験前後での黄色度の変位が大きく、耐候性が不良であった。
 表2から明らかなように、本発明の製造方法で得られた成型体(実施例7、14)は、非重合性のNOR-HALSであるTV123を含有する成型体(比較例9)に比べてTgの低下が少なく、耐熱性が良好であった。
 本発明の製造方法は、重合性NOR-HALSの分解による着色を生じることなく、耐候性に優れ、その効果が経時的に低下しない成型体を製造することができる。本発明で製造される成型体は、建材等、屋外で使用される物品として有用であり、特に太陽光発電モジュール用トップカバーとして有用である。

Claims (9)

  1.  下記一般式(1)で表される単量体(a1)0.01~35モル%及びメチルメタクリレートを主成分とする単量体(a2)65~99.99モル%を含有する単量体混合物を、210℃以下の温度で重合する重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子又はメチル基、Xは酸素原子、イミノ基、下記一般式(2)又は下記一般式(3)を表す。R及びRは水素原子、炭素数1~8の直鎖型アルキル基、炭素数1~8の分岐型アルキル基、置換基を有してもよい炭素数6~8の脂環式炭化水素、又は置換基を有してもよいアリール基を表し、互いに同一でも異なってもよい。また、RとRとで環構造を形成してもよく、環構造は置換基を有してもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、nは1~10の整数を表す。R及びRは水素原子又はメチル基を表し、R及びRの少なくとも一方は水素原子である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、nは1~10の整数を表す。)
  2.  メチルメタクリレートを主成分とする単量体(a2)単位からなる重合体、下記一般式(1)で表される単量体(a1)及びメチルメタクリレートを主成分とする単量体(a2)を含有し、単量体(a1)の含有率が0.01~35モル%である混合物を、210℃以下の温度で重合する重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは水素原子又はメチル基、Xは酸素原子、イミノ基、下記一般式(2)又は下記一般式(3)を表す。R及びRは水素原子、炭素数1~8の直鎖型アルキル基、炭素数1~8の分岐型アルキル基、置換基を有してもよい炭素数6~8の脂環式炭化水素、又は置換基を有してもよいアリール基を表し、互いに同一でも異なってもよい。また、RとRとで環構造を形成してもよく、環構造は置換基を有してもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、nは1~10の整数を表す。R及びRは水素原子又はメチル基を表し、R及びRの少なくとも一方は水素原子である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、nは1~10の整数を表す。)
  3.  下記一般式(1)で表される単量体(a1)及びメチルメタクリレートを主成分とする単量体(a2)を含有する単量体混合物を210℃以下の温度で重合した重合体と、メチルメタクリレートを主成分とする単量体(a2)とを含有し、単量体(a1)単位の含有率が0.01~35モル%である混合物を、210℃以下の温度で重合する重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(1)中、Rは水素原子又はメチル基、Xは酸素原子、イミノ基、下記一般式(2)又は下記一般式(3)を表す。R及びRは水素原子、炭素数1~8の直鎖型アルキル基、炭素数1~8の分岐型アルキル基、置換基を有してもよい炭素数6~8の脂環式炭化水素、又は置換基を有してもよいアリール基を表し、互いに同一でも異なってもよい。また、RとRとで環構造を形成してもよく、環構造は置換基を有してもよい。)
    Figure JPOXMLDOC01-appb-C000008
    (式(2)中、nは1~10の整数を表す。R及びRは水素原子又はメチル基を表し、R及びRの少なくとも一方は水素原子である。)
    Figure JPOXMLDOC01-appb-C000009
    (式(3)中、nは1~10の整数を表す。)
  4.  単量体混合物の重合がキャスト重合である請求項1に記載の重合体の製造方法。
  5.  混合物の重合がキャスト重合である請求項2又は3に記載の重合体の製造方法。
  6.  請求項4に記載の製造方法で得られた成型体。
  7.  請求項5に記載の製造方法で得られた成型体。
  8.  請求項6に記載の成型体を用いた、太陽光発電モジュール用トップカバー。
  9.  請求項7に記載の成型体を用いた、太陽光発電モジュール用トップカバー。
PCT/JP2010/071430 2009-12-01 2010-12-01 ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体 WO2011068110A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127016813A KR101766504B1 (ko) 2009-12-01 2010-12-01 피페리딘 골격을 갖는 단량체를 이용한 중합체의 제조 방법, 및 성형체
US13/513,332 US8912287B2 (en) 2009-12-01 2010-12-01 Method for producing polymer using monomer having piperidine skeleton, and molded body
CN201080054263.0A CN102639576B (zh) 2009-12-01 2010-12-01 使用了具有哌啶骨架的单体的聚合物的制造方法和成型体
EP10834560.4A EP2508542B1 (en) 2009-12-01 2010-12-01 Method of producing a polymer using monomers having a piperidine skeleton, and molded body
JP2010547889A JP5747507B2 (ja) 2009-12-01 2010-12-01 ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009273576 2009-12-01
JP2009-273576 2009-12-01
JP2010-001742 2010-01-07
JP2010001742 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011068110A1 true WO2011068110A1 (ja) 2011-06-09

Family

ID=44114956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071430 WO2011068110A1 (ja) 2009-12-01 2010-12-01 ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体

Country Status (7)

Country Link
US (1) US8912287B2 (ja)
EP (1) EP2508542B1 (ja)
JP (1) JP5747507B2 (ja)
KR (1) KR101766504B1 (ja)
CN (1) CN102639576B (ja)
TW (1) TWI492956B (ja)
WO (1) WO2011068110A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165482A1 (ja) * 2011-05-30 2012-12-06 三菱レイヨン株式会社 成形材料及び成形体
JP2012251139A (ja) * 2011-05-09 2012-12-20 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルおよびその重合体
WO2013058218A1 (ja) * 2011-10-17 2013-04-25 株式会社トクヤマ (メタ)アクリレート化合物、及び該(メタ)アクリレート化合物を含むフォトクロミック硬化性組成物
JP2013234266A (ja) * 2012-05-09 2013-11-21 Mitsubishi Rayon Co Ltd 重合体の分散液を製造する方法および重合体の分散液
US20140094581A1 (en) * 2011-05-31 2014-04-03 Mitsubishi Rayon Co., Ltd. Curable composition and polymer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141222A1 (ja) * 2012-03-19 2013-09-26 Jsr株式会社 レジストパターン形成方法及びフォトレジスト組成物
US10125206B1 (en) 2017-08-10 2018-11-13 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer impact modifiers
US10316165B2 (en) 2017-09-21 2019-06-11 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer cross-linkers
CN111808225B (zh) * 2020-06-22 2023-01-20 宿迁联盛科技股份有限公司 一种高分子量聚合型光稳定剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113368A (ja) 1987-09-21 1989-05-02 Ciba Geigy Ag N−置換立体障害性アミン安定剤
JPH02281009A (ja) 1989-03-21 1990-11-16 Ciba Geigy Ag 1―ヒドロカルビルオキシ―2,2,6,6―テトラメチルピペリジン部分を有するエチレン性不飽和化合物、ポリマー、コポリマーおよび安定化組成物
JP2008500307A (ja) * 2004-05-27 2008-01-10 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ラジカル重合性基を含有するアルコキシアミン
JP2008519003A (ja) 2004-11-02 2008-06-05 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド N−アルコキシアミンの合成方法
JP2008127527A (ja) * 2006-11-24 2008-06-05 Mitsubishi Rayon Co Ltd 水性塗料用架橋性耐候性向上材
JP2008231307A (ja) * 2007-03-22 2008-10-02 Mitsubishi Rayon Co Ltd アクリル系樹脂フィルム及びそれを積層した積層成型品
JP2009541428A (ja) 2006-07-05 2009-11-26 チバ ホールディング インコーポレーテッド 立体障害性ニトロキシルエーテルの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983737A (en) * 1989-03-21 1991-01-08 Ciba-Geigy Corporation Ethylenically unsaturated compounds containing 1-hydrocarbyloxy-2,2,6,6-tetramethylpiperidine moieties, and polymers, copolymers and stabilized compositions
DE4443355A1 (de) * 1994-12-06 1996-06-13 Roehm Gmbh Flugzeugverglasung mit erhöhter Lichtstabilität, verbesserter chemischer Stabilität und verbesserter Wärmeformbeständigkeit
JP2003040937A (ja) * 2001-07-27 2003-02-13 Ipposha Oil Ind Co Ltd 高分子光安定剤
WO2007105741A1 (ja) * 2006-03-10 2007-09-20 Teijin Chemicals Ltd. 積層体
GB0612803D0 (en) * 2006-06-28 2006-08-09 Lucite Int Uk Ltd Polymeric composition
KR101412264B1 (ko) 2006-11-24 2014-06-25 미츠비시 레이온 가부시키가이샤 폴리올레핀계 수지용 안정화제 및 안정화된 폴리올레핀계 수지 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113368A (ja) 1987-09-21 1989-05-02 Ciba Geigy Ag N−置換立体障害性アミン安定剤
JPH02281009A (ja) 1989-03-21 1990-11-16 Ciba Geigy Ag 1―ヒドロカルビルオキシ―2,2,6,6―テトラメチルピペリジン部分を有するエチレン性不飽和化合物、ポリマー、コポリマーおよび安定化組成物
JP2008500307A (ja) * 2004-05-27 2008-01-10 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ラジカル重合性基を含有するアルコキシアミン
JP2008519003A (ja) 2004-11-02 2008-06-05 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド N−アルコキシアミンの合成方法
JP2009541428A (ja) 2006-07-05 2009-11-26 チバ ホールディング インコーポレーテッド 立体障害性ニトロキシルエーテルの製造方法
JP2008127527A (ja) * 2006-11-24 2008-06-05 Mitsubishi Rayon Co Ltd 水性塗料用架橋性耐候性向上材
JP2008231307A (ja) * 2007-03-22 2008-10-02 Mitsubishi Rayon Co Ltd アクリル系樹脂フィルム及びそれを積層した積層成型品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508542A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251139A (ja) * 2011-05-09 2012-12-20 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルおよびその重合体
WO2012165482A1 (ja) * 2011-05-30 2012-12-06 三菱レイヨン株式会社 成形材料及び成形体
CN103562242A (zh) * 2011-05-30 2014-02-05 三菱丽阳株式会社 成型材料和成型体
US9534065B2 (en) 2011-05-30 2017-01-03 Mitsubishi Rayon Co., Ltd. Molding material and molding
CN103562242B (zh) * 2011-05-30 2018-07-27 三菱化学株式会社 成型材料和成型体
US20140094581A1 (en) * 2011-05-31 2014-04-03 Mitsubishi Rayon Co., Ltd. Curable composition and polymer
US9663603B2 (en) * 2011-05-31 2017-05-30 Mitsubishi Rayon Co., Ltd. Curable composition and polymer
US20170198076A1 (en) * 2011-05-31 2017-07-13 Mitsubishi Rayon Co., Ltd. Curable composition and polymer
WO2013058218A1 (ja) * 2011-10-17 2013-04-25 株式会社トクヤマ (メタ)アクリレート化合物、及び該(メタ)アクリレート化合物を含むフォトクロミック硬化性組成物
JPWO2013058218A1 (ja) * 2011-10-17 2015-04-02 株式会社トクヤマ (メタ)アクリレート化合物、及び該(メタ)アクリレート化合物を含むフォトクロミック硬化性組成物
JP2013234266A (ja) * 2012-05-09 2013-11-21 Mitsubishi Rayon Co Ltd 重合体の分散液を製造する方法および重合体の分散液

Also Published As

Publication number Publication date
US20120245318A1 (en) 2012-09-27
KR101766504B1 (ko) 2017-08-08
CN102639576A (zh) 2012-08-15
JP5747507B2 (ja) 2015-07-15
CN102639576B (zh) 2014-11-12
EP2508542A1 (en) 2012-10-10
TWI492956B (zh) 2015-07-21
EP2508542B1 (en) 2014-07-16
JPWO2011068110A1 (ja) 2013-04-18
KR20120105492A (ko) 2012-09-25
US8912287B2 (en) 2014-12-16
EP2508542A4 (en) 2013-05-15
TW201122007A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
JP5747507B2 (ja) ピペリジン骨格を有する単量体を用いた重合体の製造方法、及び成型体
JP5915528B2 (ja) 硬化用組成物および重合体
EP2065408B1 (en) Hyperbranched polymer and process for production thereof
TWI565720B (zh) 成形材料、成形方法及成形體
TWI542603B (zh) 含有(甲基)丙烯酸酯共聚物之黏著劑組成物及其製造方法,以及控制其物性之方法
KR102212537B1 (ko) 공중합체 및 성형체
JP6877707B2 (ja) ベンゾトリアゾール系重合体を含有する樹脂組成物
JP2009138090A (ja) ナフタレン化合物を重合して得られる重合体
WO2023157793A1 (ja) 熱可塑性樹脂組成物、成形材料及び成形体
JP2017210503A (ja) メタクリル酸エステル共重合体および成形体
JP6908629B2 (ja) メタクリル共重合体および成形体
CZ2006196A3 (cs) Kopolymerní stabilizátor obsahující derivát piperidinu a derivát fenolu, zpusob jeho výroby a použití
JP2012036235A (ja) 架橋性重合体及び架橋体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054263.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010547889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13513332

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010834560

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127016813

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5676/CHENP/2012

Country of ref document: IN