WO2011067931A1 - 密閉型二次電池 - Google Patents

密閉型二次電池 Download PDF

Info

Publication number
WO2011067931A1
WO2011067931A1 PCT/JP2010/007023 JP2010007023W WO2011067931A1 WO 2011067931 A1 WO2011067931 A1 WO 2011067931A1 JP 2010007023 W JP2010007023 W JP 2010007023W WO 2011067931 A1 WO2011067931 A1 WO 2011067931A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
insulating plate
secondary battery
metal case
sealed secondary
Prior art date
Application number
PCT/JP2010/007023
Other languages
English (en)
French (fr)
Inventor
杉本修二
九之池直人
宮田恭介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/395,001 priority Critical patent/US20120171534A1/en
Priority to CN201080045340.6A priority patent/CN102549811B/zh
Priority to JP2011544195A priority patent/JP5379866B2/ja
Publication of WO2011067931A1 publication Critical patent/WO2011067931A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sealed secondary battery in which an electrode group in which a positive electrode plate and a negative electrode plate are wound or laminated via a porous insulator is housed in a metal case.
  • Sealed batteries particularly sealed secondary batteries used as power sources for driving small portable devices, are nonaqueous electrolyte secondary batteries typified by high-capacity alkaline storage batteries and non-representative lithium ion secondary batteries. Sealed secondary batteries such as water electrolyte secondary batteries are known.
  • an electrode group formed by laminating or winding a positive electrode plate and a negative electrode plate via a porous insulator is housed in a metal case together with an electrolytic solution via an insulating plate. It has a sealed structure in which the opening of the case is sealed with a sealing plate via a gasket. Further, by connecting positive and negative leads led from the electrode group to the sealing plate and the metal case, the sealing plate and the metal case also serve as either the positive or negative external terminal.
  • an insulating insulating ring is arranged between the positive electrode lead connected to the sealing plate that also serves as one external terminal (for example, the positive electrode terminal) and the electrode group, and the positive electrode lead and the electrode group.
  • the insulating ring is provided with a rising portion that rises in the direction of the opening of the metal case, thereby preventing the positive lead that is bent and stored from contacting the metal case (negative electrode) by mistake.
  • Patent Document 2 describes a technique in which an insulating plate disposed on an upper part of an electrode group is formed of a phenolic resin laminate including a glass cloth as a base material and containing an inorganic additive. Since the insulating plate having such a configuration has low shrinkage at the time of thermosetting, it has a uniform thickness and is not warped, and can prevent deformation of the electrode plate group at the time of overcharging.
  • the insulating ring having the structure described in Patent Document 1 is effective for electrically insulating the positive electrode lead and the electrode group, and the metal case (negative electrode) and the positive electrode lead.
  • a polyethylene resin, a polypropylene resin or the like excellent in punching processability is used for the ring.
  • a resin has low heat resistance (low softening temperature)
  • the insulating ring softens, There is a possibility that the electrode group breaks the sealing plate with high-pressure gas and jumps out of the battery.
  • the amount of gas generated at the time of abnormality is about three times larger than that of a cobalt-based material. There is a fear that such problems will become apparent.
  • the insulating plate described in Patent Document 2 is not only low in shrinkage during thermosetting but also excellent in heat resistance.
  • the insulating plate having such a configuration has low punchability, it is difficult to provide a rising portion as described in Patent Document 1.
  • the positive electrode lead that is bent and stored may accidentally contact the metal case (negative electrode) and short-circuit.
  • the outer diameter of the battery is reduced (for example, from 18 mm to 14 mm), there is a possibility that such a problem becomes apparent.
  • the present invention has been made in view of the above problems, and its main purpose is to prevent contact between the lead, the electrode group, and the metal case, and to prevent the electrode group from popping out even during an abnormality such as overcharge.
  • the next battery is to provide.
  • a sealed secondary battery is a sealed battery in which an electrode group in which a positive electrode plate and a negative electrode plate are wound or stacked via a porous insulator is accommodated in a metal case.
  • the opening of the metal case is sealed with a sealing plate that also serves as one electrode terminal, and either the positive electrode plate or the negative electrode plate is connected to the sealing plate via a lead.
  • an upper insulating plate in which a first insulating plate and a second insulating plate having a softening temperature higher than that of the first insulating plate are stacked is disposed above the electrode group.
  • the outer peripheral portion is arranged to engage with an engaging portion formed on a side surface of the metal case.
  • the upper insulating plate provided on the upper part of the electrode group prevents electrical insulation between the lead and the electrode group, and prevents the lead stored in a bent manner from accidentally contacting the metal case,
  • the second insulating plate having a high softening temperature as a constituent member of the upper insulating plate, the electrode group is sealed by the high-temperature and high-pressure gas generated in the battery at the time of abnormality such as overcharge of the secondary battery. Can be prevented from jumping out of the battery.
  • a sealed secondary battery that can prevent contact between the lead, the electrode group, and the metal case, and can prevent the electrode group from popping out even during an abnormality such as overcharge.
  • FIG. 1 is a schematic cross-sectional view of a cylindrical lithium secondary battery according to an embodiment of the present invention.
  • the perspective view of the heat-resistant protection board in one Embodiment of this invention The perspective view of the insulating board in one Embodiment of this invention
  • the perspective view of the insulation board and heat-resistant protection board in other embodiment of this invention Side view of insulating plate and heat-resistant protective plate according to another embodiment of the present invention
  • the perspective view of the insulation board and heat-resistant protection board in other embodiment of this invention The perspective view of the heat-resistant protection board in other embodiment of this invention.
  • the perspective view seen from the heat-resistant protection board side of the insulating board in other embodiments of the present invention The perspective view seen from the heat-resistant protection board side of the insulating board in other embodiments of the present invention
  • a sealed secondary battery is a sealed secondary battery in which an electrode group in which a positive electrode plate and a negative electrode plate are wound or laminated via a porous insulator is housed in a metal case.
  • the opening of the metal case is sealed with a sealing plate that also serves as one electrode terminal, and either the positive electrode plate or the negative electrode plate is connected to the sealing plate through a lead,
  • An upper insulating plate in which a first insulating plate and a second insulating plate having a softening temperature higher than that of the first insulating plate are stacked is disposed on the upper portion, and the outer peripheral portion of the upper insulating plate is made of metal. It engages and is arranged at the engaging part formed in the side of the case.
  • the softening temperature of the second insulating plate is 250 ° C. or higher.
  • the first insulating plate is made of a polyolefin-based resin or a polyimide-based resin
  • the second insulating plate is made of a glass-based substrate and a phenolic resin laminate containing an inorganic additive.
  • the inorganic additive is made of at least one material selected from the group consisting of alumina, silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, and calcium carbonate.
  • the first insulating plate has a rising portion that rises in the direction of the opening of the metal case.
  • the engaging portion is configured by a groove portion formed by plastic working on a side surface of the metal case, and an outer peripheral portion of the upper insulating plate is a lower portion of the groove portion formed on the side surface of the metal case. It is arranged to engage with.
  • the positive electrode active material of the positive electrode plate is a lithium-nickel oxide or a lithium-nickel-manganese oxide.
  • the outer diameter of the metal case is 14 mm or less.
  • a recess is formed on the surface of the first insulating plate, and the second insulating plate is fitted in the recess.
  • a gas vent hole or a gas vent path is formed on at least one laminated surface of the first insulating plate or the second insulating plate.
  • a sealed secondary battery includes an electrode group formed by laminating or winding a positive electrode plate and a negative electrode plate with a porous insulator interposed between them and a metal case through an insulating plate above and below the electrolyte.
  • the insulating plate and the heat-resistant protective plate are fitted and connected by a fitting portion.
  • the insulating plate is provided with a fitting recess, and the heat-resistant protective plate is fitted into the fitting recess so that the heat-resistant protective plate and the insulating plate are combined and integrated, and the liquid injection hole, lead extraction hole, and gas vent hole formed in the insulating plate are provided. There is an effect that the assembly can be easily performed without blocking.
  • the positioning is performed by positioning protrusions provided on the insulating plate and coupling holes provided on the heat-resistant protective plate.
  • the heat-resistant protective plate and the insulating plate are combined and integrated, and there is an effect that the assembly can be easily performed without blocking the liquid injection hole, the lead extraction hole, and the gas vent hole formed in the insulating plate.
  • a gas flow path is provided in the overlapping portion of the insulating plate and the heat-resistant protective plate.
  • a gas flow path is provided in at least one of the overlapping portions of the insulating plate or the heat-resistant protective plate.
  • a gas flow path is provided in the overlapping portion of the insulating plate and the heat-resistant protective plate, and when a large amount of gas is generated inside the battery in an abnormal state such as overcharging, there is an effect of efficiently discharging the gas.
  • At least one of the overlapping portions of the insulating plate or the heat-resistant protective plate is provided with a protruding portion.
  • FIG. 1 is a schematic cross-sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention.
  • an electrode group 1 in which a positive electrode plate and a negative electrode plate are wound or stacked via a porous insulator is accommodated in a metal case 4. .
  • the opening of the metal case 4 is sealed with a sealing plate 6 that also serves as one electrode terminal, and either the positive electrode plate or the negative electrode plate is connected to the sealing plate 6 via a lead 8.
  • a first insulating plate 2 and a second insulating plate 7 having a softening temperature higher than that of the first insulating plate 2 (hereinafter sometimes referred to as a “heat-resistant protective plate”) 7 are disposed on the electrode group 1.
  • Stacked upper insulating plates are arranged, and the outer peripheral portion of the upper insulating plate is arranged to engage with an engaging portion 9 formed on the side surface of the metal case 4.
  • the upper insulating plate provided on the upper side of the electrode group 1 causes the electrical insulation between the positive electrode lead 8 and the electrode group 1, and the positive electrode lead 8 that is bent and stored in contact with the metal case 4 by mistake.
  • the second insulating plate 7 having a high softening temperature as a constituent member of the upper insulating plate, the high temperature and high pressure generated in the battery at the time of abnormality such as overcharge of the secondary battery can be obtained.
  • the gas can prevent the electrode group 1 from breaking the sealing plate 6 and jumping out of the battery.
  • the softening temperature of the second insulating plate 7 is preferably 250 ° C. or higher.
  • the temperature of the gas generated in the battery at the time of abnormality such as overcharge rises to about 250 ° C., but the second insulating plate 7 having a softening temperature higher than this is high temperature gas. It does not soften even when exposed to. Therefore, since the outer peripheral part of the upper insulating plate is arranged to engage with the engaging part 9 formed on the side surface of the metal case 4, even if the inside of the battery becomes high voltage, the electrode group 1 jumps out. It can be blocked by the second insulating plate 7.
  • the gas generated at the time of abnormality may instantaneously become a high temperature of 250 ° C. or higher, the temperature in the battery is lowered by operating the safety valve of the battery even in this case. Therefore, even if a gas having a temperature equal to or higher than the softening temperature of the second insulating plate 7 is generated in the battery, the second insulating plate 7 is not immediately softened, and the pop-up of the electrode group 1 is prevented from the second insulation. The blocking effect is maintained by the plate 7.
  • the first insulating plate 2 is not particularly limited as long as it is a material having an electrolytic solution resistance.
  • the first insulating plate 2 is preferably made of a polyolefin resin or a polyimide resin. Since these materials are excellent in punching workability, a rising portion that rises in the direction of the opening of the metal case 4 can be easily formed on the first insulating plate 2. Thereby, it can prevent more effectively that the positive electrode lead 8 bent and accommodated contacts the metal case 4 accidentally.
  • the second insulating plate is not particularly limited as long as it is a material having an electrolytic solution resistance and a softening temperature of 250 ° C. or higher.
  • a glass cloth is used as a base material and includes an inorganic additive. It is preferably made of a laminate of phenolic resin. This material has a very high softening temperature of 250 ° C., for example, even if the secondary battery reaches thermal runaway and the temperature in the battery reaches a high temperature of about 250 ° C., It can be blocked by the insulating plate 7.
  • the engaging part 9 can be comprised by the groove part formed by extruding the side surface of the metal case 4, for example,
  • the outer peripheral part of the upper insulating board was formed in the side surface of the metal case 4 It engages with the lower part of the groove part 9 and is arrange
  • the type of sealed secondary battery is not particularly limited.
  • lithium-nickel oxide or lithium-nickel-manganese oxide is used as the positive electrode active material of the positive electrode plate. If so, the effect of the present invention is more exhibited.
  • nickel-based material is used as the positive electrode active material, the amount of gas generated at the time of abnormality is about three times larger than that of the cobalt-based material. Even in this case, the second insulating plate 7 can effectively block.
  • the outer diameter of the metal case 4 is not particularly limited. For example, when a small size of 14 mm or less is used, the effect of the present invention is more exhibited.
  • the second insulating plate 7 is made of the above-mentioned glass cloth as a base material and is composed of a phenolic resin laminated plate containing an inorganic additive, the punching workability is low, so that the second insulating plate 7 has a rising portion. It is difficult to provide However, when the first insulating plate 2 is made of a material such as the above-described polyolefin resin, since the punching processability is high, the rising portion can be easily provided on the first insulating plate 2.
  • the “softening temperature” refers to a temperature measured by thermomechanical analysis (TMA) described in JIS-K7196-1991.
  • FIG. 2 is a perspective view of the heat-resistant protective plate (second insulating plate) 7.
  • a chevron-shaped notch 7 c is provided in the center of the heat-resistant protective plate 7.
  • a straight portion 7 e is provided as a lead hole for the positive electrode lead 8.
  • the outer peripheral portion of the heat-resistant protective plate 7 is an arc portion 7d so as to conform to the inner diameter dimension of the cylindrical lithium ion secondary battery, and further, by providing a protruding portion 7b on the negative direction side of the outer peripheral portion, the cylindrical shape is obtained.
  • the heat-resistant protective plate 7 is configured to be positioned without rotating inside the lithium ion secondary battery.
  • FIG. 3 is a perspective view of the first insulating plate 2.
  • a circular injection hole 2a is provided in the center, and an electrolytic solution is injected into the electrode group from this location.
  • the positive electrode lead 8 extending from the electrode group 1 needs to be welded to the sealing plate 6, and the lead extraction hole 2 b of the first insulating plate 2 is provided for that purpose.
  • the reason why the three vent holes 2d are provided in the first insulating plate 2 is to efficiently discharge the gas when a large amount of gas is generated inside the battery in an abnormal state such as overcharge. Further, the cylindrical rising portion 2 c has an effect of electrically insulating the groove portion 9 of the metal case 4 and the positive electrode lead 8.
  • the heat-resistant protective plate 7 is preferably configured to be fitted and coupled to the first insulating plate 2 as shown in FIGS.
  • the first insulating plate 2 is provided with a fitting recess 2e so that the arc portions 7d at both ends of the heat-resistant protective plate 7 are fitted, and the heat-resistant protective plate 7 and the first insulating plate 2 are positioned, and the first insulating plate 2 is positioned.
  • the heat-resistant protective plate 7 is preferably configured to be positioned with the first insulating plate 2 provided with positioning protrusions 2f as shown in FIG. That is, the coupling hole 7f into which the positioning protrusion 2f of the first insulating plate 2 is fitted is provided in the heat-resistant protective plate 7, and the both are fitted and positioned. As a result, the heat-resistant protective plate 7 and the first insulating plate 2 are positioned, and the three holes are surely closed without blocking the liquid injection hole 2a, the lead extraction hole 2b, and the gas vent hole 2d formed in the first insulating plate 2. There is an effect that can be secured.
  • the gas flow path 7a is provided in the overlapping portion with the first insulating plate 2, which has an effect of efficiently discharging the gas when a large amount of gas is generated inside the battery in an abnormal state such as overcharge. .
  • a gas flow path 2g as shown in FIG. 8 in at least one of the first insulating plate 2 or the heat-resistant protective plate 7.
  • a gas flow path is provided in the overlapping portion of the first insulating plate 2 and the heat-resistant protective plate 7 so that when a large amount of gas is generated inside the battery in an abnormal state such as overcharge, the gas is efficiently discharged. Has the effect of discharging.
  • a protrusion 2h as shown in FIG. 9 on at least one of the first insulating plate 2 or the heat-resistant protective plate 7.
  • a gas flow path is provided in the overlapping portion of the first insulating plate 2 and the heat-resistant protective plate 7 so that when a large amount of gas is generated inside the battery in an abnormal state such as overcharge, the gas is efficiently discharged. Has the effect of discharging.
  • the cylindrical lithium secondary battery has been described, but it goes without saying that the same effect can be obtained not only with the lithium secondary battery but also with an alkaline storage battery.
  • Example 1 Embodiments of the present invention will be described below with reference to the drawings.
  • An electrode group 1 formed by laminating or winding a positive electrode plate and a negative electrode plate with a porous insulator interposed therebetween is housed in a metal case 4 via a first insulating plate 2 and 3 together with an electrolytic solution, and is cylindrical.
  • a lithium ion secondary battery was produced.
  • a heat-resistant protective plate 7 shown in FIG. 2 and a first insulating plate 2 shown in FIG. 3 were used as the insulating structure disposed on the upper part of the electrode group 1.
  • the metal case 4 having an outer diameter of 14 mm was used.
  • the positive electrode plate is coated with a positive electrode active material and a binder on one or both sides of the current collector, and if necessary, a slurry mixture in which a conductive agent and a thickener are kneaded and dispersed in a solvent, dried and rolled.
  • a slurry mixture in which a conductive agent and a thickener are kneaded and dispersed in a solvent, dried and rolled.
  • an active material layer is prepared, a solid portion is provided on the active material layer, and a positive electrode lead is welded.
  • LiNi 0.8 Co 0.15 Al 0.05 0 2 which is a lithium-nickel oxide was used as the positive electrode active material.
  • the negative electrode plate is coated with a negative electrode active material, a binder, and, if necessary, a slurry-like mixture in which a conductive additive is kneaded and dispersed in an organic solvent, dried, and then rolled and activated.
  • a material layer is prepared, a solid portion is provided on the active material layer, and a negative electrode lead is welded.
  • a polyethylene resin having a thickness of 15 ⁇ m to 30 ⁇ m, a polypropylene resin alone or a blend thereof is used as the separator as the porous insulator.
  • the non-aqueous electrolyte can be adjusted by dissolving an electrolyte in a non-aqueous solvent.
  • the non-solvent include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • the solvent can be used alone or as a mixed solvent of two or more.
  • a heat-resistant protective plate 7 is disposed above the electrode group 1, a first insulating plate 2 is disposed on the heat-resistant protective plate 7, and a lower insulating plate 3 is disposed below the electrode group 1.
  • the heat-resistant protective plate 7 is composed of a phenolic resin laminated plate containing a glass cloth as a base material and containing an inorganic additive.
  • the glass fiber diameter of the glass cloth is preferably about 4 to 15 ⁇ m from the viewpoint of strength, compoundability, price, and the like.
  • an inorganic additive what has an average particle diameter smaller than the glass fiber diameter of a glass cloth is used. When heated to heat cure the phenolic resin, it melts and flows. At this time, the inorganic additive is prevented from flowing into the fiber of the glass cloth by using an inorganic additive whose average particle diameter is smaller than the glass fiber diameter. Therefore, a phenol resin laminate having a uniform composition and no warpage can be obtained.
  • an inorganic additive capable of suppressing the thermosetting property of the phenol resin by using in combination with such a glass cloth 1 selected from alumina, silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide and calcium carbonate It is preferable that it is a seed or more.
  • varnish is preferable from the viewpoint of impregnation into glass phenol.
  • the phenolic resin laminate can be produced by preparing a prepreg in which a glass cloth is impregnated with a phenol varnish to which an inorganic additive is added, laminating a predetermined number of the prepregs, and heating and pressing.
  • the heating temperature is preferably 150 to 200 ° C.
  • the applied pressure is 3 to 7 MPa
  • the time is preferably 60 to 150 minutes.
  • the first insulating plate 2 is preferably a polyolefin resin such as a polyethylene resin or a polypropylene resin, which has a conventionally used electrolytic solution resistance and is excellent in punching workability.
  • Example 2 A lithium ion battery in which the first insulating plate 2 fitted and joined by the heat-resistant protective plate 7 and the fitting recess 2e as shown in FIGS.
  • Example 3 A lithium ion battery in which the heat-resistant protective plate 7 provided with the coupling hole 7f as shown in FIG. 6 and the first insulating plate 2 positioned by the positioning projection 2f are arranged on the upper part of the electrode group 1 was taken as Example 3.
  • Example 4 A lithium ion battery in which the first insulating plate 2 as shown in FIG. 3 and the heat-resistant protective plate 7 provided with the gas flow path 7a as shown in FIG. .
  • Example 5 A lithium ion battery in which an insulating plate provided with a gas flow path 2g for releasing gas as shown in FIG. 8 and a heat-resistant protective plate 7 as shown in FIG. did.
  • Example 6 A lithium ion battery in which a first insulating plate 2 provided with a protruding portion 2h as shown in FIG. 9 and a heat-resistant protective plate 7 as shown in FIG.
  • Comparative Example 1 A comparative example 1 was prepared in the same manner as in Example 1 except that the heat-resistant protective plate 7 was not used for the first insulating plate 2 disposed on the upper part of the electrode group 1.
  • test result is defined as “ruptured” when the sealing part is destroyed during the test and the electrode group 1 is protruding, and “ruptured” if the rupture occurred and “no rupture” if there was no rupture. Is shown in (Table 1).
  • the present invention is useful as a power source for driving automobiles, electric motorcycles, electric playground equipment and the like.
  • Electrode group 2 First insulating plate 2a Injection hole 2b Lead extraction hole 2c Rising part 2d vent hole 2e Mating recess 2f Positioning protrusion 2g gas flow path 2h Protrusion 3 Lower insulation plate 4 Metal case 5 Gasket 6 Sealing plate 7 Second insulating plate (heat-resistant protective plate) 7a Gas flow path 7b Projection 7d arc 7d Arc part 7e Straight section 7f Bond hole 8 Positive lead 9 Engagement part (groove part)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 正極板と負極板とが多孔質絶縁体を介して捲回または積層された電極群1が金属ケース4に収容された密閉型二次電池であって、金属ケース4の開口部は、一方の電極端子を兼ねる封口板6で封口されており、正極板または負極板のいずれか一方は、リードを介して封口板6に接続されている。電極群4の上部には、第1の絶縁板2と、第1の絶縁板2よりも軟化温度の高い第2の絶縁板7とが積層された上部絶縁板が配置されており、上部絶縁板の外周部は、金属ケース4の側面に形成された係合部9に係合して配置されている。

Description

密閉型二次電池
 本発明は、正極板と負極板とが多孔質絶縁体を介して捲回または積層された電極群が金属ケースに収容された密閉型二次電池に関する。
 密閉型電池、特に小型携帯機器等の駆動用電源として用いられる密閉型二次電池は、高容量のアルカリ蓄電池に代表される水系電解液二次電池や、リチウムイオン二次電池に代表される非水電解液二次電池などの密閉型二次電池が知られている。
 これら密閉型二次電池は、正極板と負極板とを多孔質絶縁体を介して積層または巻回して構成した電極群を電解液とともに上下に絶縁板を介して金属ケースに収納し、この金属ケースの開口部をガスケットを介して封口板で封口した密閉構造をしている。また、封口板と金属ケースに電極群から導出された正、負極リードを接続することにより、封口板と金属ケースは正、負極のどちらかの外部端子を兼ねている。
 このような密閉構造にした場合、一方の外部端子(例えば、正極端子)を兼ねた封口板に接続された正極リードと電極群の間に絶縁性の絶縁リングを配し、正極リードと電極群とを電気的に絶縁する技術が知られている(例えば、特許文献1参照)。なお、この絶縁リングに、金属ケースの開口部方向に立ち上がる立ち上がり部を設けることによって、折れ曲がって収納される正極リードが誤って金属ケース(負極)と接触するのを防止している。
 また、特許文献2には、電極群の上部に配置される絶縁板を、ガラスクロスを基材とし、無機添加剤を含むフェノール樹脂の積層板で構成する技術が記載されている。このような構成の絶縁板は、熱硬化時の収縮性が低いため、厚みが均一で反りがなく、過充電時の極板群の変形を防止することができる。
特開平11-31487号公報 特開2002-231314号公報
 特許文献1に記載されたような構造の絶縁リングは、正極リードと電極群、及び金属ケース(負極)と正極リードとを電気的に絶縁するには有効であるが、このような構造の絶縁リングは、打ち抜き加工性に優れたポリエチレン樹脂やポリプロピレン樹脂等が用いられる。しかしながら、このような樹脂は耐熱性が低い(軟化温度が低い)ため、二次電池の過充電などの異常時に、電池内で高温、高圧のガスが発生したとき、絶縁リングが軟化して、電極群が、高圧ガスにより封口板を破壊して、電池外に飛び出す畏れがある。特に、正極活物質として、コバルト系に比して、単位質量当たりの容量の大きなニッケル系を用いた場合、異常時のガス発生量は、コバルト系に比べて、3倍程度大きくなるため、このような問題が顕在化する畏れがある。
 また、特許文献2に記載された絶縁板は、熱硬化時の収縮性が低いだけでなく、耐熱性にも優れている。しかしながら、このような構成の絶縁板は、打ち抜き加工性が低いため、特許文献1に記載されているような、立ち上がり部を設けることが難しい。そのため、折れ曲がって収納される正極リードが誤って金属ケース(負極)と接触して短絡する畏れがある。特に、電池の外径が小さくなった場合(例えば、18mmから14mm)、このような問題が顕在化される畏れがある。
 本発明は、かかる課題に鑑みなされたもので、その主な目的は、リードと電極群及び金属ケースとの接触を防止するとともに、過充電などの異常時にも、電極群の飛び出しを防止できる二次電池を提供することにある。
 上記の課題を解決するために、本発明に係る密閉型二次電池は、正極板と負極板とが多孔質絶縁体を介して捲回または積層された電極群が金属ケースに収容された密閉型二次電池であって、金属ケースの開口部は、一方の電極端子を兼ねる封口板で封口されており、正極板または負極板のいずれか一方は、リードを介して封口板に接続されており、電極群の上部には、第1の絶縁板と、第1の絶縁板よりも軟化温度の高い第2の絶縁板とが積層された上部絶縁板が配置されており、上部絶縁板の外周部は、金属ケースの側面に形成された係合部に係合して配置されていることを特徴とする。
 このような構成により、電極群の上部に設けた上部絶縁板によって、リードと電極群との電気的な絶縁や、折れ曲がって収納されるリードが誤って金属ケースと接触するのを防止するとともに、上部絶縁板の構成部材として、軟化温度の高い第2の絶縁板を用いることによって、二次電池の過充電などの異常時に、電池内で発生した高温、高圧のガスにより、電極群が封口板を破壊して、電池外に飛び出すのを防止することができる。
 本発明によれば、リードと電極群及び金属ケースとの接触を防止するとともに、過充電などの異常時にも、電極群の飛び出しを防止できる密閉型二次電池を提供することができる。
本発明の一実施形態における円筒形リチウム二次電池の概略断面図 本発明の一実施形態における耐熱保護板の斜視図 本発明の一実施形態における絶縁板の斜視図 本発明の他の実施形態における絶縁板と耐熱保護板の斜視図 本発明の他の実施形態における絶縁板と耐熱保護板の側面図 本発明の他の実施形態における絶縁板と耐熱保護板の斜視図 本発明の他の実施形態における耐熱保護板の斜視図 本発明の他の実施形態における絶縁板の耐熱保護板側から見た斜視図 本発明の他の実施形態における絶縁板の耐熱保護板側から見た斜視図
 本発明の一実施形態における密閉型二次電池は、正極板と負極板とが多孔質絶縁体を介して捲回または積層された電極群が金属ケースに収容された密閉型二次電池であって、金属ケースの開口部は、一方の電極端子を兼ねる封口板で封口されており、正極板または負極板のいずれか一方は、リードを介して前記封口板に接続されており、電極群の上部には、第1の絶縁板と、第1の絶縁板よりも軟化温度の高い第2の絶縁板とが積層された上部絶縁板が配置されており、上部絶縁板の外周部は、金属ケースの側面に形成された係合部に係合して配置されている。
 ある好適な実施形態において、第2の絶縁板の軟化温度は、250℃以上である。
 ある好適な実施形態において、第1の絶縁板は、ポリオレフィン系樹脂またはポリイミド系樹脂からなり、第2の絶縁板は、ガラスクロスを基材とし、無機添加剤を含むフェノール樹脂の積層板からなる。
 ある好適な実施形態において、上記無機添加物は、アルミナ、シリカ、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、及び炭酸カルシウムからなる群より選ばれた少なくとも一種の材料からなる。
 ある好適な実施形態において、第1の絶縁板は、金属ケースの開口部方向に立ち上がる立ち上がり部を有している。
 ある好適な実施形態において、上記係合部は、金属ケースの側面を塑性加工により形成された溝部で構成されており、上部絶縁板の外周部は、金属ケースの側面に形成された溝部の下部に係合して配置されている。
 ある好適な実施形態において、正極板の正極活物質は、リチウム-ニッケル系酸化物またはリチウム-ニッケル-マンガン系酸化物である。
 ある好適な実施形態において、金属ケースの外径は、14mm以下である。
 ある好適な実施形態において、第1の絶縁板の表面に凹部が形成されており、第2の絶縁板は、凹部に嵌合されている。
 ある好適な実施形態において、第1の絶縁板または第2の絶縁板の少なくとも一方の積層面に、ガス抜き穴またはガス抜き経路が形成されている。
 ある好適な実施形態における密閉型二次電池は、正極板と負極板とを多孔質絶縁体を介して積層または巻回して構成した電極群を電解液とともに上下に絶縁板を介して金属ケースに収納し、この金属ケースの開口部をガスケットを介して封口板で封口することにより構成し、上記電極群の上部に配置される絶縁板の下面側に、この絶縁板に形成した注液孔、リード引出孔およびガス抜き孔を塞がない構成、形状の耐熱性に優れた絶縁材で形成される耐熱保護板を配置したことを特徴とする。この耐熱保護板を配置することにより、過充電などの異常状態の高温になっても、電極群の変形や飛び出しを防止できる効果がある。
 ある好適な実施形態において、絶縁板と耐熱保護板が嵌合部によって嵌合結合されていることを特徴とする。絶縁板に嵌合凹部を設け、耐熱保護板を嵌合凹部にはめることで、耐熱保護板と絶縁板が結合一体化され、絶縁板に形成した注液孔、リード引出孔、ガス抜き孔を塞ぐことなく、組立てが容易にできる効果がある。
 ある好適な実施形態において、絶縁板に設けた位置決め突起と耐熱保護板に設けた結合孔によって位置決めされていることを特徴とする。これにより耐熱保護板と絶縁板が結合一体化され、絶縁板に形成した注液孔、リード引出孔、ガス抜き孔を塞ぐことなく、組立てが容易にできる効果がある。
 ある好適な実施形態において、絶縁板と耐熱保護板の重合部にガス流路を設けたことを特徴する。これにより絶縁板と耐熱保護板との重合部にガス流路が設けられるため、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させる効果がある。
 ある好適な実施形態において、絶縁板または耐熱保護板の重合部の少なくとも一方にガス流路を設けたことを特徴する。これにより絶縁板と耐熱保護板との重合部にガス流路が設けられ、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させる効果がある。
 ある好適な実施形態において、絶縁板または耐熱保護板の重合部の少なくとも一方に、突出部を設けたことを特徴する。これにより絶縁板と耐熱保護板との重合部にガス流路が設けられ、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させる効果がある。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図1は、本発明の一実施形態における円筒形リチウムイオン二次電池の概略断面図である。
 図1に示すように、本実施形態におけるリチウムイオン二次電池は、正極板と負極板とが多孔質絶縁体を介して捲回または積層された電極群1が金属ケース4に収容されている。金属ケース4の開口部は、一方の電極端子を兼ねる封口板6で封口されており、正極板または負極板のいずれか一方は、リード8を介して封口板6に接続されている。電極群1の上部には、第1の絶縁板2と、第1の絶縁板2よりも軟化温度の高い第2の絶縁板(以下、「耐熱保護版」と言うときもある)7とが積層された上部絶縁板が配置されており、上部絶縁板の外周部は、金属ケース4の側面に形成された係合部9に係合して配置されている。
 なお、以下の説明では、説明を簡単にするために、封口板6が正極端子を兼ね、金属ケース4が負極端子を兼ねている場合を説明する。
 このような構成により、電極群1の上部に設けた上部絶縁板によって、正極リード8と電極群1との電気的な絶縁や、折れ曲がって収納される正極リード8が誤って金属ケース4と接触するのを防止するとともに、上部絶縁板の構成部材として、軟化温度の高い第2の絶縁板7を用いることによって、二次電池の過充電などの異常時に、電池内で発生した高温、高圧のガスにより、電極群1が封口板6を破壊して、電池外に飛び出すのを防止することができる。
 ここで、第2の絶縁板7の軟化温度は、250℃以上であることが好ましい。リチウムイオン二次電池の場合、過充電などの異常時に、電池内で発生したガスの温度は、約250℃ぐらいまで上がるが、これより高い軟化温度を有する第2の絶縁板7は、高温ガスに曝されても軟化されない。従って、上部絶縁板の外周部が、金属ケース4の側面に形成された係合部9に係合して配置されているため、電池内が高圧になっても、電極群1の飛び出しを、第2の絶縁板7によって阻止することができる。
 なお、異常時に発生するガスは、瞬時には250℃以上の高温になる場合もあるが、この場合でも、電池の安全弁が作動することによって、電池内の温度が下がる。従って、電池内で、第2の絶縁板7の軟化温度以上のガスが発生しても、第2の絶縁板7がすぐに軟化することはなく、電極群1の飛び出しを、第2の絶縁板7によって阻止する効果は維持される。
 ここで、第1の絶縁板2は、耐電解液性を有する材料であれば特に制限されないが、例えば、ポリオレフィン系樹脂またはポリイミド系樹脂からなることが好ましい。これらの材料は、打ち抜き加工性に優れているため、第1の絶縁板2に、金属ケース4の開口部方向に立ち上がる立ち上がり部を容易に形成することができる。これにより、折れ曲がって収納される正極リード8が誤って金属ケース4と接触するのをより効果的に防止することができる。
 また、第2の絶縁板は、耐電解液性を有し、250℃以上の軟化温度を有する材料であれば特に制特に制限されないが、例えば、ガラスクロスを基材とし、無機添加剤を含むフェノール樹脂の積層板からなることが好ましい。この材料は、軟化温度が250℃と非常に高く、例えば、二次電池が熱暴走に至って、電池内の温度が250℃程度の高温になっても、電極群1の飛び出しを、第2の絶縁板7によって阻止することができる。
 また、係合部9は、例えば、金属ケース4の側面を押し出し加工により形成された溝部で構成することができ、この場合、上部絶縁板の外周部は、金属ケース4の側面に形成された溝部9の下部に係合して配置される。
 また、密閉型二次電池の種類は特に制限されないが、例えば、リチウムイオン二次電池の場合、正極板の正極活物質として、リチウム-ニッケル系酸化物またはリチウム-ニッケル-マンガン系酸化物を用いた場合、本発明の効果がより発揮される。正極活物質としてニッケル系の材料を用いた場合、異常時のガス発生量は、コバルト系に比べて、3倍程度大きくなるが、この場合でも、電極群1の飛び出しを、第2の絶縁板7によって効果的に阻止することができる。
 また、金属ケース4の外径は特に制限されないが、例えば、14mm以下の小さなサイズを用いた場合、本発明の効果がより発揮される。第2の絶縁板7が、上述のガラスクロスを基材とし、無機添加剤を含むフェノール樹脂の積層板で構成されている場合、打ち抜き加工性が低いため、第2の絶縁板7に立ち上がり部を設けることが難しい。しかし、第1の絶縁板2が、上述のポリオレフィン樹脂等の材料で構成されている場合、打ち抜き加工性が高いため、第1の絶縁板2に立ち上がり部を容易に設けることができる。従って、金属ケース4の外径が、14mm以下と小さくなっても、第1の絶縁板2に設けた立ち上がり部によって、折れ曲がって収納される正極リードが誤って金属ケース(負極)と接触して短絡するのを効果的に防止することができる。
 なお、本発明における「軟化温度」は、JIS-K7196-1991に記載の熱機械分析(TMA)により測定した温度をいう。
 以下、図2~図9を参照しながら、本実施形態におけるリチウムイオン二次電池の具体的な構成をさらに説明する。
 図2は、耐熱保護板(第2の絶縁板)7の斜視図である。第1の絶縁板2の注液孔2aを塞がないために、耐熱保護板7の中央に山形の切り欠き7cを設けている。さらに正極リード8の引き出し孔として直線部7eを設けている。また円筒形リチウムイオン二次電池の内径寸法に沿うように、耐熱保護板7の外周部は円弧部7dとなっており、さらに外周部のマイナス方向側に突出部7bを設けることにより、円筒形リチウムイオン二次電池内部で耐熱保護板7が回転することなく、位置決めされるような形状に構成されている。
 図3は、第1の絶縁板2の斜視図である。中央に円形の注液孔2aを設けており、この箇所より電極群の内部に電解液を注液する。電極群1から延びる正極リード8は封口板6と溶接する必要があり、第1の絶縁板2のリード引出孔2bはそのために設けている。第1の絶縁板2にガス抜き孔2dを3箇所設けているのは、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させるためである。さらに筒状の立ち上がり部2cは、金属ケース4の溝部9と正極リード8を電気的に絶縁する効果がある。
 また耐熱保護板7として、図4および図5に示すような第1の絶縁板2と嵌合結合された構成になっていることが好ましい。第1の絶縁板2に嵌合凹部2eを設けることにより耐熱保護板7の両端の円弧部7dを嵌合させて、耐熱保護板7と第1の絶縁板2が位置決めされ、第1の絶縁板2に形成した注液孔2a、リード引出孔2b、ガス抜き孔2dを塞ぐことなく、確実に確保できる効果がある。
 また耐熱保護板7として、図6に示すような位置決め突起2fを設けた第1の絶縁板2と位置決めされた構成になっていることが好ましい。すなわち、第1の絶縁板2の位置決め突起2fを嵌め込む結合孔7fを耐熱保護板7に設け、両者を嵌め合わせて位置決めするように構成する。これにより耐熱保護板7と第1の絶縁板2が位置決めされ、第1の絶縁板2に形成した注液孔2a、リード引出孔2b、ガス抜き孔2dを塞ぐことなく、確実に3つの孔を確保できる効果がある。
 また耐熱保護板7として、図7に示すようなガス流路7aを設けることが好ましい。これにより第1の絶縁板2との重合部にガス流路が設けられることで、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させる効果がある。
 また第1の絶縁板2もしくは耐熱保護板7の少なくとも一方に、図8に示すようなガス流路2gを設けることが好ましい。これにより第1の絶縁板2と耐熱保護板7との重合部にガス流路が設けられることで、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させる効果がある。
 また第1の絶縁板2もしくは耐熱保護板7の少なくとも一方に、図9に示すような突出部2hを設けることが好ましい。これにより第1の絶縁板2と耐熱保護板7との重合部にガス流路が設けられることで、過充電のような異常状態において電池内部でガスが大量に発生した際、効率よくガスを排出させる効果がある。
 また、本実施形態では、円筒形リチウム二次電池について説明したが、リチウム二次電池に限らずアルカリ蓄電池でも同様の効果が得られることはいうまでもない。
 (実施例1)
 以下、本発明の実施例について図面を用いて説明する。正極板と負極板とを多孔質絶縁体を介して積層または巻回して構成した電極群1を電解液とともに上下に第1の絶縁板2、3を介して金属ケース4に収納し、円筒形リチウムイオン二次電池を作製した。電極群1の上部に配置する絶縁構造として図2に示す耐熱保護板7および図3に示す第1の絶縁板2を使用した。ここで、金属ケース4は、外径が14mmのものを用いた。
 正極板は、集電体の片側または両面に正極活物質と結着剤、必要に応じて導電剤、増粘剤を溶剤に混練分散させたスラリー状の合剤を塗着、乾燥、圧延して活物質層を作製し、この活物質層に無地部を設けて、正極リードを溶接したものである。ここで、正極活物質は、リチウム-ニッケル系酸化物であるLiNi0.8Co0.15Al0.05を用いた。
 負極板は、集電体の一面に負極活物質、結着剤、必要に応じて導電助剤を有機溶剤に混練分散させたスラリー状の合剤を塗着、乾燥した後、圧延して活物質層を作製し、この活物質層に無地部を設け負極リードを溶接したものである。
 多孔質絶縁体としてのセパレータとしては、厚さ15μm~30μmのポリエチレン樹脂、ポリプロピレン樹脂の単独やこれらをブレンドしたもので構成したものを用いる。
 非水電解液としては、非水溶媒に電解質を溶解することにより調整することができ、前記非溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどを用いることができ、これらの非水溶媒は単独あるいは二種類以上の混合溶媒として使用することができる。
 電極群1の上部には耐熱保護板7が配置されており、耐熱保護板7の上には第1の絶縁板2が、電極群1の下部には下部絶縁板3が配置されている。
 耐熱保護板7は、ガラスクロスを基材とし無機添加剤を含むフェノール樹脂積層板にて構成する。ガラスクロスのガラス繊維径は4~15μm程度のものが強度、配合性、価格などの観点から望ましい。また、無機添加剤としては、平均粒径がガラスクロスのガラス繊維径よりも小さなものを用いる。フェノール樹脂を熱硬化させるために加熱すると溶融流動するが、このとき無機添加剤の平均粒径がガラス繊維径よりも小さいものを用いることにより、無機添加剤がガラスクロスの繊維に流動を阻止されることがないので、組成が均一で反りのないフェノール樹脂の積層板を得ることができる。このようなガラスクロスと併用することによってフェノール樹脂の熱硬化性を抑えることができる無機添加剤としては、アルミナ、シリカ、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、炭酸カルシウムから選ばれた1種以上であることが好ましい。
 フェノール樹脂としては、粉末状のもの、ワニス状のものがあるが、ワニス状のものがガラスフェノールへの含浸性から好ましい。
 フェノール樹脂の積層板は、無機添加剤を添加したフェノールワニスをガラスクロスに含浸したプリプレグを作製し、このプリプレグを所定の枚数積層し、加熱・加圧して作製することができる。このときの加熱温度は150~200℃、加圧力は3~7MPa、時間は60~150分の範囲が好ましい。
 第1の絶縁板2は、従来から用いられている耐電解液性を有し、打ち抜き加工性に優れたポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン樹脂であることが好ましい。
 (実施例2)
 図4、図5に示すような、耐熱保護板7と嵌合凹部2eによって嵌合結合された第1の絶縁板2を電極群1の上部に配置したリチウムイオン電池を実施例2とした。
 (実施例3)
 図6に示すような結合孔7fを設けた耐熱保護板7と位置決め突起2fにより位置決めされた第1の絶縁板2を電極群1の上部に配置したリチウムイオン電池を実施例3とした。
 (実施例4)
 図3に示すような第1の絶縁板2と、図7に示すようなガス流路7aを設けた耐熱保護板7とを電極群1の上部に配置したリチウムイオン電池を実施例4とした。
 (実施例5)
 図8に示すようなガス抜けのためのガス流路2gを設けた絶縁板と、図2に示すような耐熱保護板7とを電極群1の上部に配置したリチウムイオン電池を実施例5とした。
 (実施例6)
 図9に示すような突出部2hを設けた第1の絶縁板2と、図2に示すような耐熱保護板7とを電極群1の上部に配置したリチウムイオン電池を実施例6とした。
 (比較例1)
 電極群1の上部に配置する第1の絶縁板2に耐熱保護板7を用いないことの他は、実施例1と同様に作製したものを比較例1とした。
 比較方法としては、異常状態を想定した過充電試験および燃焼試験を各実施例、比較例それぞれ5セルずつ行った。試験中に封口部が破壊され、電極群1が飛び出している状態を「破裂」と定義づけ、破裂があったものを「破裂有り」、破裂がなかったものを「破裂なし」として、試験結果を(表1)に示す。
Figure JPOXMLDOC01-appb-T000001
 (表1)の結果からわかるように、電極群1の上部に第1の絶縁板2および耐熱保護板7を配置した実施例1から4においては、いずれも破裂が起こらなかった。これは過充電や燃焼など異常状態においても耐熱保護板7により、電極群1が抑えられていたためと考えられる。
 一方、耐熱保護板7を設けなかった比較例1は、電極群1の上昇を抑えきれず破裂に至ったものと考えられる。
 本発明は、自動車、電動バイク又は電動遊具等の駆動用電源として有用である。
 1   電極群 
 2   第1の絶縁板 
 2a  注液孔 
 2b  リード引出孔 
 2c  立ち上がり部 
 2d  ガス抜き孔 
 2e  嵌合凹部 
 2f  位置決め突起 
 2g  ガス流路 
 2h  突出部 
 3   下部絶縁板 
 4   金属ケース 
 5   ガスケット 
 6   封口板 
 7   第2の絶縁板(耐熱保護板) 
 7a  ガス流路 
 7b  突出部 
 7d  円弧状 
 7d  円弧部 
 7e  直線部 
 7f  結合孔 
 8   正極リード 
 9   係合部(溝部)

Claims (10)

  1.  正極板と負極板とが多孔質絶縁体を介して捲回または積層された電極群が金属ケースに収容された密閉型二次電池であって、
     前記金属ケースの開口部は、一方の電極端子を兼ねる封口板で封口されており、
     前記正極板または負極板のいずれか一方は、リードを介して前記封口板に接続されており、
     前記電極群の上部には、第1の絶縁板と、該第1の絶縁板よりも軟化温度の高い第2の絶縁板とが積層された上部絶縁板が配置されており、
     前記上部絶縁板の外周部は、前記金属ケースの側面に形成された係合部に係合して配置されている、密閉型二次電池。
  2.  前記第2の絶縁板の軟化温度は、250℃以上である、請求項1に記載の密閉型二次電池。
  3.  前記第1の絶縁板は、ポリオレフィン系樹脂またはポリイミド系樹脂からなり、
     前記第2の絶縁板は、ガラスクロスを基材とし、無機添加剤を含むフェノール樹脂の積層板からなる、請求項1に記載の密閉型二次電池。
  4.  前記無機添加物は、アルミナ、シリカ、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、及び炭酸カルシウムからなる群より選ばれた少なくとも一種の材料からなる、請求項3に記載の密閉型二次電池。
  5.  前記第1の絶縁板は、金属ケースの開口部方向に立ち上がる立ち上がり部を有している、請求項1に記載の密閉型二次電池。
  6.  前記係合部は、前記金属ケースの側面を塑性加工により形成された溝部で構成されており、
     前記上部絶縁板の外周部は、前記金属ケースの側面に形成された前記溝部の下部に係合して配置されている、請求項1に記載の密閉型二次電池。
  7.  前記密閉型二次電池は、リチウムイオン二次電池であって、
     前記正極板の正極活物質は、リチウム-ニッケル系酸化物またはリチウム-ニッケル-マンガン系酸化物である、請求項1に記載の密閉型二次電池。
  8.  前記金属ケースの外径は、14mm以下である、請求項1に記載の密閉型二次電池。
  9.  前記第1の絶縁板の表面に凹部が形成されており、前記第2の絶縁板は、前記凹部に嵌合されている、請求項1に記載の密閉型二次電池。
  10.  前記第1の絶縁板または前記第2の絶縁板の少なくとも一方の積層面に、ガス抜き穴またはガス抜き経路が形成されている、請求項1に記載の密閉型二次電池。
PCT/JP2010/007023 2009-12-04 2010-12-02 密閉型二次電池 WO2011067931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/395,001 US20120171534A1 (en) 2009-12-04 2010-12-02 Sealed secondary battery
CN201080045340.6A CN102549811B (zh) 2009-12-04 2010-12-02 密闭型二次电池
JP2011544195A JP5379866B2 (ja) 2009-12-04 2010-12-02 密閉型二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-276284 2009-12-04
JP2009276284 2009-12-04

Publications (1)

Publication Number Publication Date
WO2011067931A1 true WO2011067931A1 (ja) 2011-06-09

Family

ID=44114793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007023 WO2011067931A1 (ja) 2009-12-04 2010-12-02 密閉型二次電池

Country Status (4)

Country Link
US (1) US20120171534A1 (ja)
JP (1) JP5379866B2 (ja)
CN (1) CN102549811B (ja)
WO (1) WO2011067931A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381651B1 (ko) * 2012-10-15 2014-04-04 비나텍주식회사 가스 릴리즈 장치를 갖는 에너지 저장 장치
CN103718334A (zh) * 2011-09-29 2014-04-09 松下电器产业株式会社 密闭型二次电池
JPWO2016098291A1 (ja) * 2014-12-16 2017-09-28 三洋電機株式会社 円筒形電池
JPWO2019054312A1 (ja) * 2017-09-15 2020-10-15 三洋電機株式会社 円筒形非水電解質二次電池
WO2022202270A1 (ja) * 2021-03-24 2022-09-29 三洋電機株式会社 円筒形電池
WO2024116923A1 (ja) * 2022-11-30 2024-06-06 パナソニックエナジー株式会社 円筒形電池
JP7551999B2 (ja) 2020-09-29 2024-09-18 エルジー エナジー ソリューション リミテッド 二次電池およびこれを含むデバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870394B (zh) * 2015-01-22 2024-02-09 松下能源(无锡)有限公司 电池用绝缘板及包含该电池用绝缘板的电池和电池组
WO2016174811A1 (ja) * 2015-04-27 2016-11-03 三洋電機株式会社 円筒形電池、並びにそれに用いる集電部材及びその製造方法
US10707464B2 (en) * 2015-09-21 2020-07-07 Ford Global Technologies, Llc Battery cell venting system for electrified vehicle batteries
JP7006683B2 (ja) * 2017-03-29 2022-01-24 三洋電機株式会社 円筒形電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097573A (ja) * 1995-04-21 1997-01-10 Fuji Elelctrochem Co Ltd 防爆機能を有する電池
JPH1092443A (ja) * 1996-09-19 1998-04-10 Matsushita Electric Ind Co Ltd 円筒密閉型電池
JP2000348771A (ja) * 1999-06-02 2000-12-15 Sony Corp 非水電解液二次電池
JP2002231314A (ja) * 2000-11-28 2002-08-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008027635A (ja) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd 電気化学素子
JP2008103131A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153511A (ja) * 1994-11-29 1996-06-11 Matsushita Electric Ind Co Ltd 円筒形電池及びその製造方法
KR100386394B1 (ko) * 1996-02-16 2003-08-14 후지 덴키 가가쿠 가부시키가이샤 방폭기능을갖는전지
JPH1131487A (ja) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd 円筒密閉型電池及びその製造方法
DE69810587T2 (de) * 1997-09-08 2003-11-27 Matsushita Electric Industrial Co., Ltd. Batterie und verfahren zu deren herstellung
JP5322511B2 (ja) * 2008-06-25 2013-10-23 パナソニック株式会社 円筒形密閉電池
JP4748193B2 (ja) * 2008-09-01 2011-08-17 ソニー株式会社 非水電解質二次電池の絶縁板、非水電解質二次電池および非水電解質二次電池の絶縁板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097573A (ja) * 1995-04-21 1997-01-10 Fuji Elelctrochem Co Ltd 防爆機能を有する電池
JPH1092443A (ja) * 1996-09-19 1998-04-10 Matsushita Electric Ind Co Ltd 円筒密閉型電池
JP2000348771A (ja) * 1999-06-02 2000-12-15 Sony Corp 非水電解液二次電池
JP2002231314A (ja) * 2000-11-28 2002-08-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008027635A (ja) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd 電気化学素子
JP2008103131A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718334A (zh) * 2011-09-29 2014-04-09 松下电器产业株式会社 密闭型二次电池
KR101381651B1 (ko) * 2012-10-15 2014-04-04 비나텍주식회사 가스 릴리즈 장치를 갖는 에너지 저장 장치
JPWO2016098291A1 (ja) * 2014-12-16 2017-09-28 三洋電機株式会社 円筒形電池
JPWO2019054312A1 (ja) * 2017-09-15 2020-10-15 三洋電機株式会社 円筒形非水電解質二次電池
JP7171585B2 (ja) 2017-09-15 2022-11-15 三洋電機株式会社 円筒形非水電解質二次電池
JP7551999B2 (ja) 2020-09-29 2024-09-18 エルジー エナジー ソリューション リミテッド 二次電池およびこれを含むデバイス
WO2022202270A1 (ja) * 2021-03-24 2022-09-29 三洋電機株式会社 円筒形電池
WO2024116923A1 (ja) * 2022-11-30 2024-06-06 パナソニックエナジー株式会社 円筒形電池

Also Published As

Publication number Publication date
JP5379866B2 (ja) 2013-12-25
CN102549811A (zh) 2012-07-04
CN102549811B (zh) 2014-11-05
US20120171534A1 (en) 2012-07-05
JPWO2011067931A1 (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5379866B2 (ja) 密閉型二次電池
US9496540B2 (en) Secondary battery having electrode with self cutting part to be destructed on application of over-current
JP5271218B2 (ja) 二次電池
JP5319596B2 (ja) 電流遮断素子及びこれを備えた二次電池
WO2007023609A1 (ja) 電池パック
KR101653305B1 (ko) 파우치형 전지셀
KR101037042B1 (ko) 안전성이 개선된 파우치형 이차전지
KR20100123828A (ko) 전지 수납 트레이와 이를 이용한 전지 수납 트레이 집합체
EP2323199A2 (en) Safety element assembly
KR102242251B1 (ko) 이차 전지 및 이차 전지용 절연판
KR20090096349A (ko) 밀폐형 전지
JP6927629B2 (ja) 二次電池及び二次電池用絶縁板
KR101968345B1 (ko) 이차 전지
US10644345B2 (en) Short circuiting structure for lithium secondary battery having excellent stability against overcharge and pouch type lithium secondary batter comprising the same
CN204333097U (zh) 电池用绝缘板及包含该电池用绝缘板的锂离子电池和电池组
CN105870394B (zh) 电池用绝缘板及包含该电池用绝缘板的电池和电池组
KR101201081B1 (ko) 리튬 이차 전지
JP2003282038A (ja) 電池パック
JP2013062113A (ja) 二次電池およびそれを用いた組電池
KR100472511B1 (ko) 보호회로가 없는 리튬이차전지
WO2023026976A1 (ja) 円筒型電池
WO2024176792A1 (ja) 密閉電池
JP7065600B2 (ja) リチウムイオン二次電池
KR100749635B1 (ko) 이차전지
KR101686608B1 (ko) 커넥터가 형성된 보호회로 기판을 포함하는 전지팩

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045340.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544195

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13395001

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834384

Country of ref document: EP

Kind code of ref document: A1