WO2011066727A1 - 混合材料反型模式全包围栅cmos场效应晶体管 - Google Patents

混合材料反型模式全包围栅cmos场效应晶体管 Download PDF

Info

Publication number
WO2011066727A1
WO2011066727A1 PCT/CN2010/070643 CN2010070643W WO2011066727A1 WO 2011066727 A1 WO2011066727 A1 WO 2011066727A1 CN 2010070643 W CN2010070643 W CN 2010070643W WO 2011066727 A1 WO2011066727 A1 WO 2011066727A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
region
gate
field effect
effect transistor
Prior art date
Application number
PCT/CN2010/070643
Other languages
English (en)
French (fr)
Inventor
肖德元
王曦
张苗
陈静
薛忠营
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to US12/810,619 priority Critical patent/US8350298B2/en
Publication of WO2011066727A1 publication Critical patent/WO2011066727A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Definitions

  • the present invention relates to the field of semiconductor manufacturing technologies, and in particular, to an inversion mode full-enclosed gate CMOS field effect transistor of a hybrid material.
  • CMOS Complementary Meta l Oxide Semiconductor
  • I. ff device leakage current
  • I.J device leakage current
  • I.J threshold voltage
  • Silicon-on-insulator refers to a substrate technology that replaces traditional bulk silicon with an "engineered" substrate.
  • the substrate is usually composed of the following three layers: a thin monocrystalline silicon top layer, An etched circuit is formed thereon; a relatively thin buried oxide layer (BOX, bur ied oxide), that is, an insulating silicon dioxide intermediate layer; a very thick body type bottom silicon village bottom layer, whose main function is to provide mechanical equipment for the upper two layers support. Since the oxide layer in the SOI structure separates the silicon film layer from the bottom layer of the bulk silicon substrate, the large-area ⁇ - ⁇ junction will be replaced by a dielectric lectr ici solat ion.
  • BOX bur ied oxide
  • the source region and the drain region extend down to the buried oxide layer, effectively reducing leakage current and junction capacitance.
  • this can be improved by reducing the thickness of the silicon, whether it is a partially depleted or fully depleted design.
  • Channel-based inversion mode compared to conventional planar CMOS devices Double-gate or triple-gate fin FETs with good gate control and scaling down capability
  • the inversion mode field effect transistor has different impurity doping types of the source region and the drain region than the channel impurity doping type, the conductive carriers are minority carriers (small children), and the source region and the drain region are respectively in the trench. There is a PN junction between the tracks. This structural device is currently the most widely used.
  • the hole mobility at the (110) Si village current is more than doubled in the ⁇ 110> crystal orientation compared with the conventional (100) Si substrate.
  • the electron mobility is the highest at the (100) Si village.
  • IBM et al. developed a new technology for manufacturing CMOS circuits using mixed crystal orientation Si. Yang M, leong M, Shi L et al. introduced their technology in the article "High performance CMOS fabricated on hybrid substrate with different crystal orientations" published in the Digest of Technical Paper of International Electron Devices Meeting, 2003.
  • the NMOS device is fabricated on the (100) crystal Si surface with buried oxide layer, while the PMOS device is fabricated on the (110) crystal plane Si, and the performance of the PMOS device is greatly improved.
  • I. Ff 100 ⁇ / ⁇ m
  • (110) PMOS device drive current on the bottom of the village increased by 45%.
  • the disadvantage is that the PMOS device fabricated on the epitaxial layer does not have a buried oxide layer to isolate it from the substrate, so device performance is still affected.
  • the technical problem to be solved by the present invention is to provide a hybrid material inversion mode full-enclosed gate CMO S field effect transistor.
  • a hybrid material inversion mode full-enclosed gate CMOS field effect transistor comprising: a semiconductor substrate, a MN region having a second channel above the semiconductor substrate, and a region on the MN layer a PMOS region having a first channel and a gate region, the PMOS region and the MOS region further comprising source and drain regions respectively located at opposite ends of the channel, wherein: the first channel and the second trench
  • the cross section of the track is a waist shape, which is composed of a semicircle at the left and right ends, and a rectangle which is connected to the semicircle at the left and right ends in the middle, and the first channel is an n-type Ge material, and the second channel is a p-type Si material; the gate region completely surrounds a surface of the first channel and the second channel; and between the PMOS region and the MN region, a first buried oxide layer is disposed; A second buried oxide layer is disposed between the reed OS region and the semiconductor substrate.
  • the present invention also provides a hybrid material inversion mode full-enclosed gate CMOS field effect transistor, comprising: a semiconductor substrate, a PMOS region having a first channel above a semiconductor substrate, and a second trench above the PMOS region a PMOS region and a gate region, the PMOS region and the MN region further comprising source and drain regions respectively located at opposite ends of the channel, wherein: the first channel and the second channel are horizontal
  • the cross section is a waist shape, and is composed of a semicircle at the left and right ends, and a rectangle which is connected to the semicircle at the left and right ends in the middle, and the first channel is an n-type Ge material, and the second channel is a P-type S.
  • the gate region completely surrounds the surfaces of the first channel and the second channel; between the PMOS region and the ⁇ OS region, a first buried oxide layer is disposed; in the PMOS region A second buried oxide layer is disposed between the semiconductor substrate and the semiconductor substrate.
  • the device structure of the invention has the advantages of single, compact and high integration. In the reverse working mode, the mixed material channel, the racetrack-shaped full-enclosed gate structure, the high dielectric constant gate dielectric and the metal gate have high carriers. Mobility can avoid polysilicon gate depletion and short channel effects.
  • FIG. la-lc is a schematic structural diagram of a device according to Embodiment 1 of the present invention:
  • Figure la is a top view
  • Figure lb is a cross-sectional view of Figure la along XX ';
  • Figure lc is a cross-sectional view of the figure la along the ZZ ' direction.
  • FIG. 2 is a perspective view showing a channel portion of a device structure according to Embodiment 1 of the present invention.
  • 3 is a schematic cross-sectional view of a channel structure of the present invention.
  • 4a is a top plan view of a transistor in the first embodiment of the present invention.
  • Figure 4b is a cross-sectional view along line XX' of Figure 4a.
  • 5a-5c are schematic diagrams showing the structure of a device according to a second embodiment of the present invention:
  • Figure 5a is a plan view
  • Figure 5b is a cross-sectional view along line XX' of Figure 5a;
  • Figure 5c is a cross-sectional view of Figure 5a taken along the line ZZ'.
  • 6a is a top plan view of a transistor in a second embodiment of the present invention.
  • Figure 6b is a cross-sectional view of Figure 6a taken along XX '.
  • the mixed material inversion mode full-enclosed gate CMOS field effect transistor of the present embodiment includes: a semiconductor substrate 100, a PMOS region 400 having a first channel 401, and a second channel 301.
  • the cross sections of the first channel 401 and the second channel 301 are both waist-shaped (racetrack shape).
  • the first channel 401 is preferably an n-type Ge material
  • the second channel 301 is preferably a p-type Si material.
  • the gate region 500 completely surrounds the surfaces of the first channel 401 and the second channel 301.
  • the shape of the cross section of the first channel 401 and the second channel 301 is formed by a semicircle at the left and right ends and a rectangle which is connected in a middle and a semicircle at the left and right ends. As shown in Figure 3, it can be decomposed into a dual gate channel structure and a cylindrical full-enclosed gate channel structure that operate independently in parallel.
  • d is the diameter of the semicircle at the left and right ends of the cross section
  • w is the width of the middle rectangle
  • the total width of the raceway cross section is d+w
  • x is the thickness of the gate dielectric layer.
  • a first buried oxide layer 201 (BOX) is provided to isolate them to avoid mutual interference between the regions.
  • a second buried oxide layer 202 is provided in addition to the portion covered by the gate region 500. The second buried oxide layer 202 can isolate the NMOS region 300 from the semiconductor substrate 100, effectively reducing leakage current, thereby improving device performance.
  • the PM0S region 400 and the MN region 300 further include source and drain regions respectively located at opposite ends of the channel.
  • the source region 403 of the PM0S region and the drain region 402 of the PMOS region are heavily doped p-type Ge materials or GeS i materials; the source region 303 of the ⁇ OS region and the drain region 302 of the ⁇ OS region are heavily doped n-type S i material or S iC material.
  • the length of the source/drain region located in the lower layer parallel to the channel direction is greater than the length of the source and drain regions located in the upper layer, so that the source and drain regions of the lower layer are exposed, thereby facilitating the extraction of the electrodes. Referring to FIG.
  • the width of both ends of the source/drain region perpendicular to the channel direction is greater than the width of the channel, that is, the PM0S region 400 and the MN region 300 are fin-shaped with a narrow central end.
  • the Ge material in the PM0S region 400 in this embodiment adopts a (111) crystal orientation Ge material; the S i material in the MN OS region 300 uses a (1 00) crystal orientation crystal S i material.
  • the gate region 500 includes: a gate dielectric layer 501 completely surrounding the surfaces of the first trench 401 and the second trench 301, and a gate completely surrounding the gate dielectric layer 501 Material layer 502.
  • the gate material layer 502 is a metal or an all-metal silicide; the metal or all-metal silicide is selected from the group consisting of titanium, nickel, tantalum, tungsten, tantalum nitride, tungsten nitride, titanium nitride, titanium silicide And one or a combination of tungsten silicide and nickel silicide; the material of the gate dielectric layer 502 may be one of a silicon dioxide, a silicon oxynitride compound, a silicon oxycarbide compound or a germanium-based high dielectric constant material.
  • the semiconductor substrate 100 is a S i village bottom, and may be other semiconductor materials such as Ge, Ga, and In.
  • the length L of the first channel 401 and the second channel 402 is 10-50 nm, and the diameter d of the semicircle at the left and right ends of the cross section is 10 -80 nm, the width of the middle rectangle is 10 - 200 nm.
  • the first buried oxide layer 201 and the second buried oxide layer 202 each have a thickness of 10 to 200 nm, and the materials thereof are all silicon dioxide. As a preferred embodiment of the present invention, The s. Draw).
  • a complete transistor can be obtained by subsequent semiconductor fabrication processes.
  • Fig. 4a is a plan view of the transistor of the embodiment, and
  • Fig. 4b is a cross-sectional view thereof.
  • the subsequent semiconductor manufacturing process includes: forming a gate on the gate material layer 502, a source region 403 in the PMOS region, a source region 303 in the MN region, a drain region 402 in the PMOS region, and a MN A source and a drain are formed on the drain region 302 of the region, respectively.
  • an insulating medium dielectric spacer structure 503 is further disposed on both sides of the gate, and the material thereof may be silicon dioxide, silicon nitride or the like.
  • the device structure of the hybrid material inversion mode full-enclosed gate CMOS field effect transistor of the present embodiment includes: a semiconductor substrate 100' having a first channel 401' The PM0S region 400', the NMOS region 300' having the second channel 301', and a gate region 500'.
  • the cross sections of the first channel 401 ′ and the second channel 301 ′ are both waist-shaped, and are formed by a semicircle at the left and right ends and a rectangle which is connected to the semicircle at the left and right ends in the middle portion.
  • the first channel 401 ' is preferably an n-type Ge material
  • the second channel 301 ' is preferably a p-type S i material.
  • the gate region 500' completely surrounds the surfaces of the first channel 401' and the second channel 30.
  • a first buried oxide layer 201' (BOX) is provided to isolate them to avoid mutual interaction between the regions. interference.
  • a second buried oxide layer 202' is provided in addition to the portion covered by the gate region 500'.
  • the PM0S region 400' and the MN region 300' further include source regions 403', 303' and drain regions 402', 302' at their ends, respectively.
  • the gate region 500' includes: a gate dielectric layer 50 completely surrounding the surfaces of the first trench 401' and the second trench 301', and a gate material layer 502' completely surrounding the gate dielectric layer 50.
  • a complete transistor can be obtained through subsequent semiconductor fabrication processes.
  • Fig. 6a is a plan view of the transistor of the embodiment, and Fig. 6b is a cross-sectional view thereof.
  • the subsequent semiconductor manufacturing process includes: forming a gate on the gate material layer 502', a source region 403' in the PMOS region, a source region 303' in the NMOS region, and a drain region 402' in the PM0S region.
  • the source and drain electrodes are respectively formed on the drain region 302' of the NM0S region.
  • An insulator dielectric spacer structure 503' is also formed on both sides of the gate, and the material thereof may be silicon dioxide, silicon nitride or the like.
  • the PM0S region and the MN region use different semiconductor materials (Ge, GeS i and S i , S iC ), in particular, the first channel uses an n-type (111) Ge material, and the second channel A p-type (100) S i material was used.
  • the conductive carriers are minority carriers (small sub-), that is, the conductive carriers of the first channel are holes in the n-type (111) Ge material, and the conduction of the second channel The carriers are electrons in the p-type (100) S i material. After many experiments, it is shown that the hole mobility is higher in the (111) Ge material than the conventional (100) S i or (110) S i material.
  • the invention replaces the traditional (100) S i or (110) S i material with the (111 ) Ge material, which is beneficial to further improve the carrier (hole) migration rate, and the device has better performance and further proportional
  • the PM0S area and the Li OS area also have a buried oxide layer to isolate it from the bottom of the village, which can effectively reduce leakage current.
  • the present invention also employs a full-enclosed gate channel structure having a waist-shaped (running-path) cross-section that can be decomposed into a double-gate channel structure and a cylindrical full-enclosed gate channel structure that operate independently in parallel.
  • the advantages of this structure are: cum increases the channel cross-sectional area (increased rectangular portion), increasing the drive current of the device while maintaining the electrical integrity of the device (round channel).
  • the present invention adopts a relatively accurate fluid dynamics model and a quantum mechanical density grading model, and considers and applies a mobility degradation model related to doping and surface roughness for three-dimensional.
  • Technical simulation. The simulation results show that the high carrier mobility can avoid the advantages of polysilicon gate depletion and short channel effect in the inversion mode.
  • the technical solutions of the scope and scope should be covered by the scope of the patent application of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

混合材料反型模式全包围栅 CMOS场效应晶体管
技术领域 本发明涉及半导体制造技术领域, 尤其涉及一种混合材料的反型模式全 包围栅 CMOS场效应晶体管。
背景技术 互补金属氧化物半导体 ( CMOS , Complementary Meta l Oxide Semiconductor )器件是在将 N型金属氧化物半导体晶体管(丽 OS )与 P型金 属氧化物半导体晶体管 (PM0S ) 集成在同一块硅片上的半导体器件。 随着器 件尺寸的不断缩小, CMOS技术将常规平面 CMOS器件沟道长度按比例继续缩小 所面临的日益严重的挑战是如何在控制器件漏电流(I。ff)的同时保持较高的电 流驱动能力(I。J并且阈值电压有 4艮好的稳定性。 短沟道效应 (SCE)成为所有常 规平面 CMOS器件按比例进一步缩小所难以逾越的一道障碍, 它导致器件特性 的退化, 为进一步缩小常规平面 CMOS器件设置限制。
绝缘体上硅(SOI , S i l icon On Insulator)是指以 "工程化的" 基板代替 传统的体型村底硅的基板技术, 这种基板通常由以下三层构成: 薄的单晶硅 顶层, 在其上形成蚀刻电路; 相当薄的埋层氧化层(BOX, bur ied oxide ) , 即绝缘二氧化硅中间层; 非常厚的体型村底硅村底层, 其主要作用是为上面 的两层提供机械支撑。 由于 S0I 结构中氧化层把其上的硅膜层与体型村底硅 村底层分隔开来,因此大面积的 ρ-η结将被介电隔离( die lectr i c i solat ion ) 取代。 源极 ( source region )和漏极 ( dra in region ) 向下延伸至埋层氧化 层, 有效减少了漏电流和结电容。 对于沟道长度以纳米为长度单位的器件来 讲, 主要由栅极电场来控制沟道电导而不受漏极散射电场影响变得非常重要。 对于 S0I 器件来讲, 不管是采用部分耗尽还是全耗尽设计, 均可以通过减小 硅的厚度改善上述问题。 与常规平面 CMOS器件相比, 基于沟道反型工作模式 的双栅或三栅鳍形场效应管具备 ^艮好的栅控制及按比例缩小能力, 可以作为
22 nm及以下节点可供选择的器件。 其中, 反型模式场效应晶体管, 其源区和 漏区的杂质掺杂类型与沟道杂质掺杂类型不同,导电载流子为少数载流子(少 子), 源区和漏区分别于沟道之间存在 PN结。此结构器件目前应用最为广泛。
另一方面, 在 Si材料中, 空穴迁移率在( 110) Si村底电流沿 <110>晶向 流动与传统的 (100) Si村底相比增加一倍以上。 而电子迁移率在 (100) Si 村底是最高的。 为充分利用载流子迁移率依赖于 Si表面晶向的优势, IBM公 司的 Yang等人开发出一种采用混合晶体取向 Si村底制造 CMOS电路的新技术。 Yang M, leong M, Shi L等人于 2003年在《Digest of Technical Paper of International Electron Devices Meeting》 杂志上发表的文章 《High performance CMOS fabricated on hybrid substrate with different crystal orientations》 中介绍了他们的技术。 其通过键合和选择性外延技术, 丽 OS 器件制作在具有埋层氧化层的(100)晶面 Si表面上, 而 PMOS器件制作在(110) 晶面 Si上, PMOS器件性能取得极大提高。 当 I。ff = 100 ηΑ/ μ m, (110)村底 上的 PMOS器件驱动电流提高了 45%。其缺点是制作在外延层上的 PMOS器件没 有埋层氧化层将其与村底隔离, 因而器件性能还是受到影响。
鉴于此, 本发明为了进一步提升器件性能, 提高器件进一步按比例缩小 的能力, 提出一种新型的工作于反型模式、 具有混合材料的全包围栅 CMOS场 效应晶体管。
发明内容 本发明要解决的技术问题在于提供一种混合材料反型模式全包围栅 CMO S 场效应晶体管。
为了解决上述技术问题, 本发明采用如下技术方案:
一种混合材料反型模式全包围栅 CMOS场效应晶体管, 其包括: 半导体村 底、 位于半导体村底之上具有第二沟道的丽 OS区域、 位于丽 OS 区域之上具 有第一沟道的 PM0S区域及一个栅区域, 所述 PM0S区域和丽 OS区域还包括分 别位于其沟道两端的源区及漏区, 其特征在于: 所述第一沟道及第二沟道的 横截面均为腰形, 由左右两端的半圓, 及中部的与左右两端半圓过渡连接的 矩形共同构成, 且所述第一沟道为 n型 Ge材料, 所述第二沟道为 p型 S i材 料; 所述栅区域将所述第一沟道及第二沟道的表面完全包围; 在所述 PM0S区 域与丽 OS 区域之间, 设有第一埋层氧化层; 在所述丽 OS区域与所述半导体 村底之间, 设有第二埋层氧化层。
本发明还提供一种混合材料反型模式全包围栅 CMOS场效应晶体管, 其包 括: 半导体村底、 位于半导体村底之上具有第一沟道的 PM0S区域、 位于 PM0S 区域之上具有第二沟道的丽 OS区域及一个栅区域, 所述 PM0S区域和丽 OS区 域还包括分别位于其沟道两端的源区及漏区, 其特征在于: 所述第一沟道及 第二沟道的横截面均为腰形, 由左右两端的半圓, 及中部的与左右两端半圓 过渡连接的矩形共同构成, 且所述第一沟道为 n型 Ge材料, 所述第二沟道为 P型 S i材料; 所述栅区域将所述第一沟道及第二沟道的表面完全包围; 在所 述 PM0S区域与匪 OS区域之间, 设有第一埋层氧化层; 在所述 PM0S区域与所 述半导体村底之间, 设有第二埋层氧化层。 本发明的器件结构筒单、 紧凑, 集成度高, 在反型工作模式下, 采用混 合材料的沟道、 跑道形全包围栅结构、 高介电常数栅介质和金属栅,具备高载 流子迁移率,可避免多晶硅栅耗尽及短沟道效应等。
附图说明 图 la-lc为本发明实施例一的器件结构示意图:
图 la为俯视图;
图 lb为图 la沿 XX ' 的剖面图;
图 lc为图 la沿 ZZ ' 方向的剖视图。
图 2为本发明实施例一的器件结构沟道部分的立体示意图。 图 3为本发明的沟道结构的横截面示意图。
图 4a为本发明实施例一中晶体管的俯视图。
图 4b为图 4a沿 XX ' 的剖视图。
图 5a-5c为本发明实施例二的器件结构示意图:
图 5a为俯视图;
图 5b为图 5a沿 XX ' 的剖面图;
图 5c为图 5a沿 ZZ ' 方向的剖视图。
图 6a为本发明实施例二中晶体管的俯视图。
图 6b为图 6a沿 XX ' 的剖视图。
具体实施方式 下面结合附图进一步说明本发明的器件结构, 为了示出的方便附图并未 按照比例绘制。
实施例一
如图 la-l c所示, 本实施例的混合材料反型模式全包围栅 CMOS场效应晶 体管包括: 半导体村底 100、 具有第一沟道 401的 PM0S区域 400、 具有第二 沟道 301的丽 OS区域 300及一个栅区域 500。 所述第一沟道 401及第二沟道 301的横截面均为腰形(跑道形)。 本发明的实施例中, 所述第一沟道 401优 选为 n型 Ge材料, 所述第二沟道 301优选为 p型 S i材料。 所述栅区域 500 将所述第一沟道 401及第二沟道 301的表面完全包围。 其中, 所述第一沟道 401及第二沟道 301横截面的形状,由左右两端的半圓以及中部的与左右两端 半圓过渡连接的矩形共同构成。 如图 3 所示, 其可分解成独立并行工作的一 个双栅沟道结构和一个圓柱体全包围栅沟道结构。 其中 d 为横截面左右两端 半圓的直径, w为中部矩形的宽度, 该跑道形横截面的总宽度则为 d+w, t。x 是栅介质层的厚度。 在所述 PMOS区域 400与丽 OS区域 300之间, 除了栅区域 500覆盖的区 域以外, 还设有第一埋层氧化层 201 ( BOX )将它们隔离, 以避免区域之间的 相互干扰。 在所述丽 OS区域 300与所述半导体村底 100 (即 S i村底)之间, 除了栅区域 500所覆盖的部分以外,还设有第二埋层氧化层 202。 所述的第二 埋层氧化层 202可以将所述丽 OS区域 300与所述半导体村底 1 00隔离, 有效 的减少漏电流, 从而提高器件性能。
其中, 所述 PM0S区域 400和丽 OS区域 300还包括分别位于其沟道两端 的源区及漏区。 PM0S区域的源区 403及 PM0S区域的漏区 402为重掺杂的 p型 Ge材料或 GeS i材料; 匪 OS区域的源区 303及匪 OS区域的漏区 302为重掺 杂的 n型 S i材料或 S iC材料。 位于下层的源漏区平行于沟道方向的长度大于 位于其上层源漏区的长度, 使下层的源漏区暴露出来, 从而方便电极的引出。 参看图 la , 所述的源漏区两端垂直于沟道方向的宽度大于沟道的宽度, 即所 述 PM0S区域 400和丽 OS区域 300呈中间细两端宽大的鳍形。 本实施例所述 PM0S区域 400中的 Ge材料采用 (111 ) 晶向的晶体 Ge材料; 所述丽 OS区域 300中的 S i材料采用 (1 00 ) 晶向的晶体 S i材料。
请继续参看图 lb、 l c , 所述栅区域 500包括: 将所述第一沟道 401及第 二沟道 301的表面完全包围的栅介质层 501以及将所述栅介质层 501完全包 围的栅材料层 502。 其中, 所述的栅材料层 502为金属或全金属硅化物; 所述 的金属或全金属硅化物选自钛、 镍、 钽、 钨、 氮化钽、 氮化钨、 氮化钛、 硅 化钛、 硅化钨、 硅化镍中的一种或其组合; 所述的栅介质层 502 的材料可以 是二氧化硅、 氮氧硅化合物、 碳氧硅化合物或铪基的高介电常数材料中的一 种。 另外, 所述半导体村底 100为 S i村底, 也可为 Ge、 Ga、 In等其他半导 体材料。
在器件尺寸设计上, 请参看图 l c、 图 2及图 3 , 所述第一沟道 401及第 二沟道 402长度 L为 10-50nm,其横截面左右两端半圓的直径 d均为 10-80nm, 中部矩形的宽度 W为 10 - 200nm。所述第一埋层氧化层 201和第二埋层氧化层 202 的厚度均为 10-200nm, 其材料均为二氧化硅。 作为本发明的优选方案, 在所述第一沟道 401表面与所述栅介质层 501之间还设有 S i钝化层,所述 S i 钝化层的厚度为 0. 5-1. 5nm (本附图中没有画出) 。
在上述图 lb所示器件结构的基础上, 经后续半导体制造工艺即可得到完 整的晶体管。 图 4a为本实施例晶体管的俯视图, 图 4b为其剖视图。 其中, 所述的后续半导体制造工艺包括: 在所述栅材料层 502 上制作栅极、 在所述 PM0S区域的源区 403、 丽 OS区域的源区 303、 PM0S区域的漏区 402、 丽 OS区 域的漏区 302 上分别制作源极、 漏极。 为优化器件性能, 栅极两侧还设有绝 缘体介质侧墙隔离结构 503 , 其材料可以是二氧化硅、 氮化硅等。
实施例二
本发明的另一种表示形态如图 5a-5c 所示, 本实施例的混合材料反型模 式全包围栅 CMOS场效应晶体管的器件结构包括: 半导体村底 100' 、 具有第 一沟道 401 ' 的 PM0S区域 400' 、 具有第二沟道 301 ' 的 NM0S区域 300' 及 一个栅区域 500' 。所述第一沟道 401 ' 及第二沟道 301 ' 的横截面均为腰形, 由左右两端的半圓, 及中部的与左右两端半圓过渡连接的矩形共同构成。 本 发明的实施例中,所述第一沟道 401 ' 优选为 n型 Ge材料,所述第二沟道 301 ' 优选为 p型 S i材料。 所述栅区域 500' 将所述第一沟道 401 ' 及第二沟道 30 的表面完全包围。 在所述 PM0S区域 400' 与 NM0S区域 300' 之间, 除 了栅区域 500' 覆盖的区域以外, 还设有第一埋层氧化层 201 ' ( BOX )将它 们隔离, 以避免区域之间的相互干扰。 在所述 PM0S区域 400' 与所述半导体 村底 100' (即 S i村底)之间, 除了栅区域 500' 所覆盖的部分以外, 还设 有第二埋层氧化层 202' 。 其中, 所述 PM0S区域 400' 和丽 OS区域 300' 还 包括分别位于其沟道两端的源区 403' , 303' 及漏区 402' , 302' 。 所述栅 区域 500' 包括: 将所述第一沟道 401 ' 及第二沟道 301 ' 的表面完全包围的 栅介质层 50 以及将所述栅介质层 50 完全包围的栅材料层 502' 。
与实施例一的不同之处在于: 实施例二的丽 OS 区域 300' 在 PM0S 区域 400' 之上, PM0S区域 400' 在半导体村底 100' 之上, 除此之外, 实施例二 与实施例一的其他技术方案相同。 在图 5c所示器件结构的基础上, 经后续半导体制造工艺即可得到完整的 晶体管。 图 6a为本实施例晶体管的俯视图, 图 6b为其剖视图。 其中, 所述 的后续半导体制造工艺包括:在所述栅材料层 502' 上制作栅极、在所述 PM0S 区域的源区 403' 、 NM0S 区域的源区 303' 、 PM0S 区域的漏区 402' 、 NM0S 区域的漏区 302' 上分别制作源极、 漏极。栅极两侧还制备有绝缘体介质侧墙 隔离结构 503' , 其材料可以是二氧化硅、 氮化硅等。
本发明实施例中混合材料反型模式全包围栅 CMOS场效应晶体管的有益效 果在于:
一方面, 其 PM0S区域和丽 OS 区域采用了不同的半导体材料(Ge、 GeS i 与 S i、 S iC ) , 特别是第一沟道采用了 η型的 (111 ) Ge材料, 第二沟道采 用了 p型的 ( 100 ) S i材料。 在反型模式的 CMOS器件中导电载流子为少数载 流子(少子), 即第一沟道的导电载流子为 n型(111 ) Ge材料中的空穴, 第 二沟道的导电载流子为 p型 (100 ) S i材料中的电子。 经过多次的实验表明: 空穴迁移率在( 111 ) Ge材料中与传统的(100) S i或(110) S i材料相比更高。 本发明采用 (111 ) Ge材料替代传统的(100) S i或(110) S i材料, 有利于进一 步提高其载流子 (空穴) 迁移速率, 使器件具备更好的性能及进一步按比例 缩小的能力; 另一方面, PM0S区域和丽 OS区域同时还具有埋层氧化层将其与 村底隔离, 能有效的减少漏电流。 此外, 本发明还采用了横截面为腰形 (跑 道形) 的全包围栅沟道结构, 其可分解成独立并行工作的一个双栅沟道结构 和一个圓柱体全包围栅沟道结构。 这种结构的优点在于: 暨增大了沟道横截 面积 (增加了矩形部分) , 提高了器件的驱动电流, 而同时又保持器件的电 完整性(圓形沟道) 。
为了进一步分析实施例一及实施例二中器件的性能, 本发明采用了较为 精准的流体力学模型和量子力学密度渐变模型, 考虑并应用了与掺杂以及表 面粗糙有关的迁移率退化模型进行三维技术仿真。 仿真结果表明, 在反型工 作模式下,本发明具备高载流子迁移率,可避免多晶硅栅耗尽及短沟道效应等 优点。 和范围的技术方案均应涵盖在本发明的专利申请范围当中。

Claims

权利要求书
1. 一种混合材料反型模式全包围栅 CMOS场效应晶体管,其包括: 半导体 村底、 位于半导体村底之上具有第二沟道的丽 OS区域、 位于匪 OS区 域之上具有第一沟道的 PM0S区域及一个栅区域,所述 PM0S区域和丽 OS 区域还包括分别位于其沟道两端的源区及漏区, 其特征在于:
所述第一沟道及第二沟道的横截面均为腰形,由左右两端的半圓, 及中部的与左右两端半圓过渡连接的矩形共同构成, 且所述第一沟道 为 n型 Ge材料, 所述第二沟道为 p型 S i材料;
所述栅区域将所述第一沟道及第二沟道的表面完全包围; 在所述 PM0S区域与丽 OS区域之间, 设有第一埋层氧化层; 在所述丽 OS区域与所述半导体村底之间, 设有第二埋层氧化层。
2. 根据权利要求 1所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述 PM0S区域的源区及漏区为重掺杂的 p型 Ge材料或 GeS i材料;所述丽 OS区域的源区及漏区为重掺杂的 n型 S i材料或 S iC 材料。
3. 根据权利要求 2所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述 PM0S区域中的 Ge材料为 ( 111 ) Ge; 所述 NM0S区 域中的 S i材料为 ( 100 ) S i。
4. 根据权利要求 1所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述栅区域包括: 将所述第一沟道及第二沟道的表面完 全包围的栅介质层以及将所述栅介质层完全包围的栅材料层。
5. 根据权利要求 4所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述的栅介质层的材料为二氧化硅、 氮氧硅化合物、 碳 氧硅化合物或铪基的高介电常数材料中的一种。
6. 根据权利要求 4所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述的栅材料层选自钛、 镍、 钽、 钨、 氮化钽、 氮化钨、 氮化钛、 硅化钛、 硅化钨或硅化镍中的一种或其组合。
7. 根据权利要求 1所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述第一埋层氧化层和第二埋层氧化层的材料均为二氧 化硅。
8. 根据权利要求 1所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于:在所述第一沟道表面与所述栅介质层之间还设有 S i钝化 层。
9. 根据权利要求 8所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述 S i钝化层的厚度为 0. 5-1. 5nm。
10.—种混合材料反型模式全包围栅 CMOS场效应晶体管,其包括: 半导体 村底、 位于半导体村底之上具有第一沟道的 PM0S区域、 位于 PM0S区 域之上具有第二沟道的丽 OS区域及一个栅区域,所述 PMOS区域和丽 OS 区域还包括分别位于其沟道两端的源区及漏区, 其特征在于:
所述第一沟道及第二沟道的横截面均为腰形,由左右两端的半圓, 及中部的与左右两端半圓过渡连接的矩形共同构成, 且所述第一沟道 为 n型 Ge材料, 所述第二沟道为 p型 S i材料;
所述栅区域将所述第一沟道及第二沟道的表面完全包围; 在所述 PM0S区域与丽 OS区域之间, 设有第一埋层氧化层; 在所述 PM0S区域与所述半导体村底之间, 设有第二埋层氧化层。
11.根据权利要求 1 0所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述 PM0S区域的源区及漏区为重掺杂的 p型 Ge材料或 GeS i材料;所述丽 OS区域的源区及漏区为重掺杂的 n型 S i材料或 S iC 材料。 根据权利要求 1 1所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述 PM0S区域中的 Ge材料为 ( 111 ) Ge; 所述 NM0S区 域中的 S i材料为 ( 100 ) S i。 根据权利要求 1 0所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述栅区域包括: 将所述第一沟道及第二沟道的表面完 全包围的栅介质层以及将所述栅介质层完全包围的栅材料层。 根据权利要求 1 3所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述的栅介质层的材料为二氧化硅、 氮氧硅化合物、 碳 氧硅化合物或铪基的高介电常数材料中的一种。 根据权利要求 1 3所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述的栅材料层选自钛、 镍、 钽、 钨、 氮化钽、 氮化钨、 氮化钛、 硅化钛、 硅化钨或硅化镍中的一种或其组合。 根据权利要求 1 0所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述第一埋层氧化层和第二埋层氧化层的材料均为二氧 化硅。 根据权利要求 1 0所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于:在所述第一沟道表面与所述栅介质层之间还设有 S i钝化 层。 根据权利要求 17所述混合材料反型模式全包围栅 CMOS场效应晶体管, 其特征在于: 所述 S i钝化层的厚度为 0. 5-1. 5nm。
PCT/CN2010/070643 2009-12-01 2010-02-11 混合材料反型模式全包围栅cmos场效应晶体管 WO2011066727A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/810,619 US8350298B2 (en) 2009-12-01 2010-02-11 Hybrid material inversion mode GAA CMOSFET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101997223A CN101719500B (zh) 2009-12-01 2009-12-01 混合材料反型模式全包围栅cmos场效应晶体管
CN200910199722.3 2009-12-01

Publications (1)

Publication Number Publication Date
WO2011066727A1 true WO2011066727A1 (zh) 2011-06-09

Family

ID=42434045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070643 WO2011066727A1 (zh) 2009-12-01 2010-02-11 混合材料反型模式全包围栅cmos场效应晶体管

Country Status (3)

Country Link
US (1) US8350298B2 (zh)
CN (1) CN101719500B (zh)
WO (1) WO2011066727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716441B (zh) * 2015-09-03 2021-01-21 美商應用材料股份有限公司 用於製造對於半導體應用的水平環繞式閘極裝置的奈米線的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719498B (zh) * 2009-12-01 2011-09-07 中国科学院上海微系统与信息技术研究所 混合材料反型模式圆柱体全包围栅cmos场效应晶体管
CN101719501B (zh) * 2009-12-01 2011-07-20 中国科学院上海微系统与信息技术研究所 混合晶向反型模式全包围栅cmos场效应晶体管
CN102683224B (zh) * 2012-05-04 2014-12-10 上海华力微电子有限公司 一种制备双层隔离混合晶向应变硅纳米线cmos方法
CN103426764B (zh) * 2012-05-24 2015-12-09 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
TWI478344B (zh) 2012-07-04 2015-03-21 E Ink Holdings Inc 電晶體與其製造方法
KR20140034347A (ko) * 2012-08-31 2014-03-20 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9281379B1 (en) 2014-11-19 2016-03-08 International Business Machines Corporation Gate-all-around fin device
CN107424994B (zh) * 2016-05-24 2019-12-17 上海新昇半导体科技有限公司 环栅iii-v量子阱晶体管及锗无结晶体管及其制造方法
WO2018029594A1 (en) * 2016-08-09 2018-02-15 King Abdullah University Of Science And Technology A semiconductor device including monolithically integrated pmos and nmos transistors
CN108172549B (zh) * 2017-12-27 2020-09-04 上海集成电路研发中心有限公司 一种堆叠式围栅纳米线cmos场效应管结构及制作方法
US10748935B2 (en) 2018-06-29 2020-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked vertically isolated MOSFET structure and method of forming the same
CN109273441B (zh) 2018-09-03 2020-12-08 芯恩(青岛)集成电路有限公司 半导体器件结构及其制作方法
CN109244073B (zh) * 2018-09-03 2020-09-29 芯恩(青岛)集成电路有限公司 半导体器件结构及其制作方法
CN109244072B (zh) * 2018-09-03 2021-05-18 芯恩(青岛)集成电路有限公司 半导体器件结构及其制作方法
CN109524042B (zh) * 2018-09-21 2020-03-17 浙江大学 一种基于反型模式阻变场效应晶体管的与非型存储阵列
CN110970432A (zh) * 2018-09-28 2020-04-07 芯恩(青岛)集成电路有限公司 全包围栅纳米片互补反相器结构及其制造方法
CN110970421A (zh) 2018-09-28 2020-04-07 芯恩(青岛)集成电路有限公司 全包围栅梯度掺杂纳米片互补反相器结构及其制造方法
CN110970369B (zh) * 2018-09-30 2022-08-02 中芯国际集成电路制造(上海)有限公司 Cmos反相器结构及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1893079A (zh) * 2005-06-28 2007-01-10 三星电子株式会社 互补金属氧化物半导体器件及其制法,及存储器
US20070075372A1 (en) * 2003-10-20 2007-04-05 Nec Corporation Semiconductor device and manufacturing process therefor
CN101427374A (zh) * 2006-04-28 2009-05-06 国际商业机器公司 高性能3d fet结构及其使用择优晶体蚀刻的形成方法
CN101432852A (zh) * 2006-04-26 2009-05-13 Nxp股份有限公司 非易失性存储器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023055B2 (en) * 2003-10-29 2006-04-04 International Business Machines Corporation CMOS on hybrid substrate with different crystal orientations using silicon-to-silicon direct wafer bonding
FR2881877B1 (fr) * 2005-02-04 2007-08-31 Soitec Silicon On Insulator Transistor a effet de champ multi-grille a canal multi-couche
FR2886761B1 (fr) * 2005-06-06 2008-05-02 Commissariat Energie Atomique Transistor a canal a base de germanium enrobe par une electrode de grille et procede de fabrication d'un tel transistor
JP4271210B2 (ja) * 2006-06-30 2009-06-03 株式会社東芝 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
FR2911721B1 (fr) * 2007-01-19 2009-05-01 St Microelectronics Crolles 2 Dispositif a mosfet sur soi
US8183628B2 (en) * 2007-10-29 2012-05-22 Unisantis Electronics Singapore Pte Ltd. Semiconductor structure and method of fabricating the semiconductor structure
CN101719498B (zh) * 2009-12-01 2011-09-07 中国科学院上海微系统与信息技术研究所 混合材料反型模式圆柱体全包围栅cmos场效应晶体管
CN101719501B (zh) * 2009-12-01 2011-07-20 中国科学院上海微系统与信息技术研究所 混合晶向反型模式全包围栅cmos场效应晶体管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075372A1 (en) * 2003-10-20 2007-04-05 Nec Corporation Semiconductor device and manufacturing process therefor
CN1893079A (zh) * 2005-06-28 2007-01-10 三星电子株式会社 互补金属氧化物半导体器件及其制法,及存储器
CN101432852A (zh) * 2006-04-26 2009-05-13 Nxp股份有限公司 非易失性存储器件
CN101427374A (zh) * 2006-04-28 2009-05-06 国际商业机器公司 高性能3d fet结构及其使用择优晶体蚀刻的形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO, DEYUAN ET AL.: "A novel accumulation mode complementary Gate-All-Around Cylindrical CMOSFET", CHINESE SCI BULL, vol. 54, no. 14, July 2009 (2009-07-01), pages 2051 - 2059 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716441B (zh) * 2015-09-03 2021-01-21 美商應用材料股份有限公司 用於製造對於半導體應用的水平環繞式閘極裝置的奈米線的方法

Also Published As

Publication number Publication date
US20110248354A1 (en) 2011-10-13
US8350298B2 (en) 2013-01-08
CN101719500B (zh) 2011-09-21
CN101719500A (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
WO2011066727A1 (zh) 混合材料反型模式全包围栅cmos场效应晶体管
WO2011066730A1 (zh) 混合晶向反型模式全包围栅cmos场效应晶体管
WO2011066725A1 (zh) 混合晶向积累型全包围栅cmos场效应晶体管
US8274118B2 (en) Hybrid material accumulation mode GAA CMOSFET
CN106449755B (zh) 全门n纳米丝器件以及该器件的制造方法
TWI658592B (zh) 熱離子-過驅動穿隧場效應電晶體及其製造與操作方法
WO2011066728A1 (zh) 混合材料积累型全包围栅cmos场效应晶体管
JP4493343B2 (ja) 歪みフィンfet構造および方法
CN100517759C (zh) 半导体器件及其制造方法
US7473967B2 (en) Strained channel finFET device
US8866266B2 (en) Silicon nanotube MOSFET
KR100598371B1 (ko) 전자칩 및 디바이스 제조 방법
US8330228B2 (en) Hybrid material inversion mode GAA CMOSFET
US8354721B2 (en) Gate-all-around CMOSFET devices
Zhang et al. New structure transistors for advanced technology node CMOS ICs
CN109326650B (zh) 半导体器件及其制造方法及包括该器件的电子设备
CN116825844A (zh) 一种半导体器件及其制备方法
CN116845108A (zh) 一种半导体器件及其制备方法
TWI628703B (zh) 環閘極iii-v族量子井電晶體及鍺無接面電晶體及其製造方法
KR102273935B1 (ko) 음성 트랜스 컨덕턴스 기반의 터널링 트랜지스터
Kim et al. 122 Mb high speed SRAM cell with 25 nm gate length multi-bridge-channel MOSFET (MBCFET) on bulk Si substrate
WO2024169417A1 (zh) 半导体器件及其制造方法
CN114823861B (zh) 一种漏区自对准垂直沟道mos集成电路单元结构及其实现方法
CN116705796A (zh) 一种纵向堆叠的栅极自对准hvtfet集成电路结构
TW202245065A (zh) 半導體裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12810619

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834160

Country of ref document: EP

Kind code of ref document: A1