WO2011065261A1 - インホイール型モータ内蔵センサ付き車輪用軸受装置 - Google Patents

インホイール型モータ内蔵センサ付き車輪用軸受装置 Download PDF

Info

Publication number
WO2011065261A1
WO2011065261A1 PCT/JP2010/070436 JP2010070436W WO2011065261A1 WO 2011065261 A1 WO2011065261 A1 WO 2011065261A1 JP 2010070436 W JP2010070436 W JP 2010070436W WO 2011065261 A1 WO2011065261 A1 WO 2011065261A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
wheel
wheel bearing
bearing device
motor
Prior art date
Application number
PCT/JP2010/070436
Other languages
English (en)
French (fr)
Inventor
高橋亨
柴田清武
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112010004587T priority Critical patent/DE112010004587T5/de
Priority to CN201080053235.7A priority patent/CN102686435B/zh
Publication of WO2011065261A1 publication Critical patent/WO2011065261A1/ja
Priority to US13/480,915 priority patent/US8581457B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an in-wheel type motor-equipped wheel bearing device in which a wheel bearing, a speed reducer, and an electric motor are combined.
  • the present invention relates to a wheel bearing device with a built-in sensor.
  • a sensor unit As a load sensor provided on the wheel bearing, a sensor unit is proposed in which a strain sensor is mounted on a thin plate-like strain generating member (Patent Document 2). There is no example used for a wheel bearing device with a built-in wheel type motor.
  • An object of the present invention is for a wheel with an in-wheel type motor-equipped sensor that can accurately detect a force in three axes acting on a contact point between a driving wheel and a road surface, and is effective in accurately controlling an electric motor or a vehicle. It is to provide a bearing device.
  • the in-wheel motor-equipped sensor-equipped wheel bearing device includes a wheel bearing that rotatably supports a hub of a driving wheel, an electric motor that serves as a rotational driving source of the driving wheel, and the electric motor and the wheel.
  • An in-wheel type motor-equipped wheel bearing device comprising a reduction gear interposed between the sensor bearing and a bearing unit, comprising a strain generating member and one or more measuring sensors attached to the strain generating member Is provided on an outer ring that is a stationary raceway of the wheel bearing, and the strain generating member is made of a thin plate material having two or more contact fixing portions that are fixed in contact with the outer diameter surface of the outer ring.
  • a sensor unit including a strain generating member and one or more measurement sensors attached to the strain generating member is provided on the outer ring serving as a stationary side race of the wheel bearing, and the strain generating member Is made of a thin plate material having two or more contact fixing portions fixed to the outer diameter surface of the outer ring, so that the outer ring of the wheel bearing is distorted by the force acting on the contact point between the driving wheel and the road surface. Can be accurately detected by the sensor unit. Therefore, by calculating and estimating the load using a plurality of sensor outputs obtained by the sensor unit, it is possible to accurately estimate the load in the three-axis direction acting on the driving wheel and the ground contact point of the road surface. Effective to control.
  • the sensor unit may be disposed on an upper surface portion, a lower surface portion, a right surface portion, and a left surface portion of the outer diameter surface of the outer ring, which are in a vertical position and a horizontal position with respect to a tire ground contact surface.
  • the sensor unit may have two contact fixing parts and one sensor.
  • the sensor unit may have three contact fixing parts and two sensors.
  • a resin mold or the like may be applied around the sensor unit installation portion to be waterproofed.
  • a cover that protects the outer peripheral surface of the outer ring of the outer ring of the wheel bearing on which the sensor unit is installed may be installed.
  • a signal processing unit having load estimating means for estimating a load applied to the driving wheel from a sensor output signal of the sensor unit is provided, and the signal processing unit is used as an outer ring of the wheel bearing, the speed reducer, or the electric You may arrange
  • the sensor output signal of the sensor unit is signal-processed by the signal processing unit installed in the wheel bearing device and output as load data to the outside, so that a minute sensor output signal is transmitted to the outside as it is. There is no need, and the electromagnetic shield of the cable to be used can be simply configured.
  • the signal processing unit is arranged at a stationary side portion that is not the outer ring of the wheel bearing, and a hole for taking out the sensor cable is provided in the flange for attaching the bearing outer ring to the casing of the speed reducer.
  • the output signal of the sensor unit may be wired through to the signal processing unit.
  • a groove through which the sensor cable is passed may be provided in the casing of the speed reducer.
  • the sensor cable taken out from the hole of the flange is connected to the signal processing unit via the groove of the casing of the speed reducer.
  • the sensor cable coming out of the hole is covered with a waterproof seal member, but since the sensor cable is routed through the groove of the casing, the waterproof seal member can be formed long along the groove, so the sensor cable is taken out in the radial direction. Longer distances will be sealed. For this reason, the sealing performance between the cable surface and the waterproof seal member can be further improved.
  • the signal processing unit includes at least a signal amplification function for amplifying the sensor output signal, and a filtering function for removing a noise component from the sensor output signal.
  • An AD conversion function for AD converting the sensor output signal may be provided.
  • the sensor output signal of the sensor unit is converted into a digital signal and used for load estimation, and the load data is also calculated and output as digital data, so the number of necessary wires is minimized and the cable used Cost can be reduced. At the same time, the risk of breakage is reduced and reliability is improved.
  • the signal processing unit further includes a correction function for correcting the sensor output signal, an average value extraction function for obtaining an average value of the sensor output signal, and an amplitude value extraction function for obtaining an amplitude value of the sensor output signal.
  • a memory for storing a correction parameter used for the correction, a calculation parameter used for the average value extraction and amplitude value extraction, and a calculation parameter of an arithmetic expression used by the load estimating means using the average value and the amplitude value as variables.
  • An arithmetic processing function including a function may be included.
  • the load is calculated from the average value and amplitude value of the sensor output signal, the influence of temperature can be reduced especially by the amplitude value, and an increase in load calculation error due to heat generated by the electric motor or reducer can be suppressed. Yes, the accuracy of load estimation can be increased accordingly.
  • the signal processing unit has such an arithmetic processing function, it is possible to easily adjust different correction parameters and calculation parameters for each wheel bearing device.
  • means for performing a part of the function of the signal processing unit may be incorporated in a motor control unit for controlling the electric motor.
  • parameters necessary for overall control of the electric motor can be stored in the same storage means together with various parameters used in the signal processing unit, and information necessary for the wheel bearing device is centrally managed. It becomes easy to do.
  • FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 7. It is sectional drawing which shows the other example of installation of a sensor unit. It is an enlarged plan view of another example of the sensor unit. It is an expanded sectional view of other examples of a sensor unit. It is a block diagram of the signal processing unit which processes the sensor output signal of the sensor unit. It is a wave form chart of a sensor output signal of the sensor unit.
  • FIG. 18 is a cross-sectional view taken along arrow XVIII-XVIII in FIG. It is sectional drawing which shows the other example of installation of a sensor unit. It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of a sensor unit.
  • A) is the front view which looked at the casing of the reduction gear of the wheel bearing device of 3rd Embodiment of this invention from the outboard side
  • (B) is a side view of the principal part of FIG. 21 (A). is there.
  • This in-wheel type sensor-equipped wheel bearing device with a built-in motor has a wheel bearing A that rotatably supports the hub of the drive wheel 70, an electric motor B as a rotational drive source, and the rotation of the electric motor B is reduced.
  • the speed reducer C that transmits to the hub and the brake D that applies braking force to the hub are arranged on the center axis O of the drive wheel 70.
  • the phrase “arranged on the central axis O” as used herein does not necessarily mean that each component is located on the central axis O, but that each component is functionally acting on the central axis O. That is.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side
  • the side closer to the center of the vehicle is referred to as the inboard side.
  • the wheel bearing A includes an outer ring 1 in which double-row rolling surfaces 3 are formed on the inner periphery, and an inner surface in which rolling surfaces 4 that face the respective rolling surfaces 3 are formed on the outer periphery. It comprises a member 2 and double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the outer ring 1 and the inner member 2.
  • the wheel bearing A is a double-row angular ball bearing type, and the rolling elements 5 are formed of balls and are held by a cage 6 for each row.
  • the rolling surfaces 3 and 4 have a circular arc shape in cross section, and the rolling surfaces 3 and 4 are formed so that the contact angles are aligned with the back surface.
  • the outboard side end and the inboard side end of the bearing space between the outer ring 1 and the inner member 2 are sealed by seal members 7 and 8, respectively.
  • the outer ring 1 is a stationary raceway, and has a flange 1a attached to the casing 33 of the speed reducer C on the outer periphery, and the whole is an integral part.
  • the flange 1a is provided with screw holes 14 at a plurality of locations in the circumferential direction.
  • the outer ring 1 is attached to the casing 33 by screwing the mounting bolts 15 inserted into the bolt insertion holes 33 a of the casing 33 into the screw holes 14.
  • the inner member 2 is a rotating raceway, and includes a hub wheel 9 having a hub flange 9a for mounting the drive wheel 70 and the brake wheel 46 in FIG. 1, and an inboard of the shaft portion 9b of the hub wheel 9.
  • the inner ring 10 is fitted to the outer periphery of the side end.
  • the hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows.
  • the hub wheel 9 corresponds to a “hub” in the claims.
  • An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12.
  • a through hole 11 is provided in the center of the hub wheel 10.
  • the hub flange 9a is provided with press-fitting holes 17 for hub bolts 16 at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 13 for guiding the drive wheel 70 and the brake wheel 46 of FIG. 1 protrudes toward the outboard side in the vicinity of the base portion of the hub flange 9a of the hub wheel 9.
  • a cap 18 that closes the outboard side end of the through hole 11 is attached to the inner periphery of the pilot portion 13.
  • the electric motor B is a radial gap type in which a radial gap is provided between a stator 23 fixed to a cylindrical casing 22 and a rotor 25 attached to an output shaft 24.
  • the output shaft 24 is supported on the casing 22 by two bearings 26.
  • the electric motor B is controlled by a motor control unit 137 including a control circuit including an inverter and the like.
  • the reduction gear C is configured as a cycloid reduction gear.
  • the speed reducer C has two curved plates 34a and 34b formed with wavy trochoidal curves having a gentle outer shape, mounted on the eccentric portions 32a and 32b of the input shaft 32 via bearings 35, respectively.
  • a plurality of outer pins 36 interposed between the inboard side wall and the outboard side wall of the casing 33 guide the eccentric movement of the curved plates 34a and 34b on the outer peripheral side, and are spline fitted into the through hole 11 of the hub wheel 9.
  • a plurality of inner pins 38 attached to the output shaft 37 that rotates integrally are inserted and inserted into a plurality of through holes 39 provided inside the curved plates 34a and 34b.
  • the input shaft 32 is spline-coupled with the output shaft 24 of the electric motor B so as to rotate integrally.
  • the input shaft 32 is supported at both ends by two bearings 40 on the inner surface of the casing 33 and the output shaft 37.
  • the trochoid curve that is the outer shape of the curved plates 34a and 34b is preferably a cycloid curve, but may be another trochoid curve.
  • the above-mentioned “cycloid speed reducer” includes the trochoidal speed reducer which is a speed reducer having an outer shape as described above.
  • the curved plates 34a and 34b attached to the input shaft 32 that rotates integrally therewith perform an eccentric motion.
  • the eccentric motion of each of the curved plates 34a and 34b is transmitted as rotational motion to the inner member 2 which is a wheel hub by the engagement of the inner pin 38 and the through hole 39.
  • the rotation of the inner member 2 is decelerated with respect to the rotation of the output shaft 24. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.
  • the two curved plates 34a and 34b are mounted on the eccentric portions 32a and 32b of the input shaft 32 so as to cancel the eccentric motion with respect to each other, and are respectively attached to both sides of the eccentric portions 32a and 32b.
  • a counterweight 41 that is eccentric in the direction opposite to the eccentric direction of each of the eccentric portions 32a and 32b is mounted so as to cancel the vibration caused by the eccentric movement of each of the curved plates 34a and 34b.
  • bearings 42 and 43 are mounted on the outer pins 36 and the inner pins 38, and the outer rings 42a and 43a of the bearings 42 and 43 are respectively connected to the outer circumferences of the curved plates 34a and 34b and the outer rings 42a and 34b. It comes into rolling contact with the inner periphery of the through hole 39. Therefore, the contact resistance between the outer pin 36 and the outer periphery of each curved plate 34a, 34b and the contact resistance between the inner pin 38 and the inner periphery of each through hole 39 are reduced, and the eccentric motion of each curved plate 34a, 34b is smooth. Can be transmitted to the inner member 2 as a rotational motion.
  • the brake D operates the brake pad 47 with the brake wheel 46 attached to the hub flange 9 a together with the drive wheel 70, the brake pad 47 capable of frictional contact with the brake wheel 46, and the brake pad 47.
  • the drive unit 49 is an electric brake using a brake electric motor 50 as a drive source of the drive unit 49.
  • the brake wheel 46 is composed of a brake disk.
  • a pair of brake pads 47 are provided so as to sandwich the brake wheel 46 therebetween.
  • One brake pad 47 is fixed to the brake frame 51, and the other brake pad 47 is attached to an advancing / retracting member 52 that is linearly movable on the brake frame 51.
  • the advancing / retracting direction of the advancing / retracting member 52 is a direction facing the brake wheel 46.
  • the advance / retreat member 52 is prevented from rotating with respect to the brake frame 51.
  • the drive unit 49 includes the brake electric motor 50, and a ball screw 53 that converts the rotation output of the electric motor 50 into a reciprocating linear motion and transmits it to the brake pad 47 as a braking force.
  • the output of the electric motor 50 is This is transmitted to the ball screw 53 via the deceleration transmission mechanism 58.
  • a screw shaft 54 is supported by the brake frame 51 via a bearing 57 so as to be rotatable only, and a nut 55 is fixed to the advance / retreat member 52.
  • the advancing / retracting member 52 and the nut 55 may be integrated with each other.
  • the ball screw 53 includes a screw shaft 54 and a nut 55, and a plurality of balls 56 interposed between screw grooves formed to face the outer peripheral surface of the screw shaft 54 and the inner peripheral surface of the nut 55.
  • the nut 55 has a circulating means (not shown) for circulating a ball 56 interposed between the screw shaft 54 and the nut 55 through an endless path.
  • the circulation means may be an external circulation type using a return tube or a guide plate or an internal circulation type using an end cap or a piece. Since the ball screw 53 reciprocates over a short distance, the ball screw 53 does not have the circulating means, for example, a plurality of balls 56 between the screw shaft 54 and the nut 55 are retained by a retainer (not shown). A retained retainer type may be used.
  • the deceleration transmission mechanism 58 is a mechanism that decelerates and transmits the rotation of the brake electric motor 50 to the screw shaft 54 of the ball screw 53, and is constituted by a gear train.
  • the speed reduction transmission mechanism 58 includes a gear 59 provided on the output shaft of the electric motor 50 and a gear 60 provided on the screw shaft 54 and meshing with the gear 59.
  • the deceleration transmission mechanism 58 may be composed of, for example, a worm and a worm wheel (not shown).
  • the brake D has an operation unit 62 that controls the electric motor 50 in accordance with an operation of an operation member 61 such as a brake pedal.
  • the operation unit 62 is provided with antilock control means 65.
  • the operation unit 62 includes the operation member 61, a sensor 64 that can detect the operation amount and the operation direction of the operation member 61, and a control device 63 that controls the electric motor 50 in response to a detection signal of the sensor 64.
  • the anti-lock control means 65 is provided in the control device 63.
  • the control device 63 includes means for generating a motor control signal and a motor drive circuit (none of which is shown) that can control the motor current by the motor control signal.
  • the anti-lock control means 65 shown in FIG. 5 adjusts the braking force by the electric motor 50 according to the rotation of the driving wheel 70 of FIG. It is a means to prevent.
  • the anti-lock control means 65 detects the rotational speed of the drive wheel 70 in FIG. 1 during braking, and when the rotational lock of the drive wheel 70 in FIG. 1 or an indication thereof is detected from the detected speed, the anti-lock control means 65 drives the electric motor 50.
  • a process of adjusting the braking force that is, the tightening force of the brake pad 47, is performed by reducing the current or temporarily generating a reverse rotation output.
  • the output of the rotational speed sensor 87 provided in the electric motor B is used for detection of the rotational speed of the drive wheel 70.
  • a drive wheel 70 is attached to the hub flange 9a of the wheel bearing A together with the brake wheel 46.
  • the drive wheel 70 is provided with a tire 72 around the wheel 71.
  • the hub bolt 16 press-fitted into the press-fitting hole 17 of the hub flange 9a is screwed into the wheel 71, whereby the drive wheel 70 and the brake wheel 46 are connected to the hub. It is fixed to the flange 9a.
  • FIG. 6 shows a front view of the outer ring 1 viewed from the outboard side.
  • these sensor units 120 are provided on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer ring 1 that is in the vertical position and the horizontal position with respect to the tire ground contact surface.
  • These sensor units 120 include a strain generating member 121 and a strain that is attached to the strain generating member 121 and detects the strain of the strain generating member 121, as shown in an enlarged plan view and an enlarged sectional view in FIGS. It consists of a sensor 122.
  • the strain generating member 121 is made of an elastically deformable metal plate having a thickness of 3 mm or less, such as a steel material, and has a planar shape of a strip having a uniform width over the entire length, and has notches 121b on both sides of the center. Further, the strain generating member 121 has two contact fixing portions 121a (FIG. 8) fixed to the outer diameter surface of the outer ring 1 through spacers 123 at both ends.
  • the strain sensor 122 is affixed to the strain generating member 121 at a location where the strain increases with respect to the load in each direction.
  • the location the central portion sandwiched between the notch portions 121b on both sides on the outer surface side of the strain generating member 121 is selected, and the strain sensor 122 measures the circumferential strain around the notch portion 121b. To detect.
  • the strain generating member 121 does not plastically deform even in a state where the maximum force assumed as an external force acting on the outer ring 1 that is the stationary side raceway or an acting force acting between the tire and the road surface is applied. It is desirable to be. This is because when the plastic deformation occurs, the deformation of the outer ring 1 is not transmitted to the sensor unit 120 and affects the measurement of strain.
  • the “maximum force expected” is the range in which the normal function as a wheel bearing excluding the sensor system is restored even if an abnormally large force is applied to the wheel bearing A. Is the greatest power of.
  • the two contact fixing portions 121a of the strain generating member 121 are positioned at the same size in the axial direction of the outer ring 1, and the two contact fixing portions 121a are located at positions separated from each other in the circumferential direction.
  • These contact fixing portions 121a are fixed to the outer diameter surface of the outer ring 1 by bolts 124 through spacers 123, respectively.
  • Each of the bolts 124 is inserted into a bolt insertion hole 126 of the spacer 123 through a bolt insertion hole 125 provided in the contact fixing portion 121a in the radial direction and screwed into a screw hole 127 provided in the outer peripheral portion of the outer ring 1.
  • the central portion having the notch portion 121b in the thin plate-shaped strain generating member 121 is the outer diameter surface of the outer ring 1. It becomes a state away from, and distortion deformation around the notch 121b becomes easy.
  • an axial position where the contact fixing portion 121a is arranged an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer ring 1 is selected here.
  • the periphery of the rolling surface 3 of the outboard side row is the rolling surface of the outboard side row from the middle position of the rolling surface 3 of the inboard side row and the outboard side row as shown in FIG. 3 is a range up to 3 formation parts.
  • a flat portion 1 b is formed at a location where the spacer 123 is fixed in contact with the outer diameter surface of the outer ring 1.
  • grooves 1 c are provided at two intermediate portions where the two contact fixing portions 121 a of the strain generating member 121 are fixed on the outer diameter surface of the external member 1.
  • the spacer 123 may be omitted, and the intermediate part of the two contact fixing parts 121a where the notch part 121b of the strain generating member 121 is located may be separated from the outer diameter surface of the outer ring 1.
  • the strain generating member 121 may be a belt having a monotonous plane outline and not forming the notch 121 b as in the example of FIG. 7.
  • strain sensors 122 can be used.
  • the strain sensor 122 can be composed of a metal foil strain gauge.
  • the distortion generating member 121 is usually fixed by adhesion.
  • the strain sensor 122 can be formed on the strain generating member 121 with a thick film resistor.
  • the structure of the sensor unit 120 in that case is shown in FIG.
  • an insulating layer 150 is formed on the sensor mounting surface 121 A of the strain generating member 121, and pairs of electrodes 151 and 151 are formed on both sides of the surface of the insulating layer 150.
  • a strain measuring resistor 152 serving as a strain sensor is formed on the insulating layer 150, and a protective film 153 is further formed on the electrodes 151 and 151 and the strain measuring resistor 152. .
  • the sensor unit 120 attached to the outer diameter surface of the outer ring 1 is covered with a protective cover 90 as shown in FIG. In FIG. 6, the protective cover 90 is omitted.
  • the protective cover 90 has a cylindrical shape whose inner diameter increases toward the inboard side.
  • the protective cover 90 has a cylindrical shape having a large-diameter portion on the inboard side and a small-diameter portion in which the half portion on the outboard side is reduced toward the inner diameter side.
  • the inboard side end of the protective cover 90 is attached to the outer diameter surface of the flange 1 a of the outer ring 1 via the O-ring 91, and the outboard side end of the protective cover 90 is fitted to the outer diameter surface of the outer ring 1.
  • a metal material such as stainless steel or a resin material such as PA66 + GF is used.
  • a groove 1d for fitting an O-ring extending in the circumferential direction is provided on the outer diameter surface of the flange 1a of the outer ring 1, and the O-ring 91 is positioned in the axial direction by fitting the O-ring 91 in the groove 1d.
  • the gap between the inboard side end of the protective cover 90 and the outer diameter surface of the flange 1a of the outer ring 1 is securely sealed.
  • a resin mold or the like is applied around the installation portion of the sensor unit 120 to perform waterproofing.
  • the sensor unit 120 is fixed to the outer diameter surface of the outer ring 1 in the protective cover 90, it is possible to prevent the fixing portions from being corroded by the external environment and becoming unstable.
  • the sensor unit 120 can operate normally while being a wheel bearing device used in a severe environment around the foot.
  • Each sensor unit 120 is connected to the signal processing unit 130 via a signal cable (sensor cable) 129.
  • the signal processing unit 130 is a signal processing device having load estimating means 133 (FIG. 12) that estimates the load applied to the drive wheel 70 from the sensor output signal of each sensor unit 120.
  • the signal processing unit 130 is out of the casing 33 of the speed reducer C. It is installed on the outer diameter surface of the board side end.
  • the signal processing unit 130 may be installed on the outer diameter surface of the outer ring 1 together with the sensor unit 120, or may be installed on the outer diameter surface of the casing 22 of the electric motor B.
  • the flange 1a of the outer ring 1 is provided with a cable insertion hole 92 through which the signal cable 129 of each sensor unit 120 is pulled out in the axial direction.
  • the hole 92 is filled with an elastic filler 93 such as a mold resin.
  • the signal cable 129 exiting the cable insertion hole 92 is drawn out to the signal processing unit 130 via a cable guide notch 33b formed at the outboard side end of the casing 33 of the speed reducer C.
  • the periphery of the signal cable 129 is waterproofed by a waterproof seal member 94.
  • the notch 33b may be a through hole that opens to the outer diameter surface. Thereby, it can prevent that muddy water, salt water, etc.
  • the wiring from the sensor unit 120 to the signal processing unit 130 is configured to pass through the inside of the casing 33 of the reduction gear C so that the signal cable 129 is connected to the signal processing unit 130 without going outside. May be.
  • the waterproof performance can be improved and the reliability can be improved.
  • FIG. 12 shows a schematic configuration of the signal processing unit 130 in a block diagram.
  • the signal processing unit 130 includes preprocessing means 131, average / amplitude extraction means 132, load estimation means 133, parameter storage means 134, and communication means 135 having an I / F function.
  • the preprocessing means 131 has a function of amplifying sensor output signals from each sensor unit 120, a filtering function for removing noise components from these sensor output signals, and an AD conversion function for AD converting the amplified and filtered sensor output signals. have. Thereby, since the weak sensor output signal from the sensor unit 120 is converted into a digital signal by the signal processing unit 130 installed nearby, it is less susceptible to noise, and the detection accuracy can be improved.
  • the average / amplitude extraction unit 132 has a function of extracting an average value and an amplitude value, which will be described later, from the sensor output signal that has passed through the preprocessing unit 131, and a function of correcting the extracted average value and the like.
  • the load estimation unit 133 has a function of estimating a load applied to the drive wheel 70 using the average value and the amplitude value extracted by the average / amplitude extraction unit 132.
  • the output signal of the strain sensor 122 passes through the vicinity of the installation portion of the sensor unit 120. Influenced by 5. That is, when the rolling element 5 passes the position closest to the strain sensor 122 in the sensor unit 120, the amplitude of the sensor output signal becomes the maximum value, and decreases as the rolling element 5 moves away from the position. Thereby, at the time of bearing rotation, a sensor output signal becomes a waveform close
  • AC component amplitude value
  • DC component DC component
  • the average value calculated by the average / amplitude extraction means 132 includes the temperature characteristics of the strain sensor 122 itself, the temperature distortion of the outer ring 1, and a drift amount due to other causes. Therefore, the average / amplitude extraction unit 132 corrects the drift of the sensor output signal. Parameters for the correction are stored in the parameter storage unit 134, read out from the parameter storage unit 134, and used for correcting the drift.
  • the parameter storage unit 134 is composed of, for example, a nonvolatile memory.
  • a temperature sensor 128 is provided in the strain generating member 121 of at least one sensor unit 120 as indicated by an imaginary line in FIG. 7, and an output signal of the temperature sensor 128 is supplied to the sensor unit 120.
  • the sensor output signal may be input to the average / amplitude extraction means 132 via the preprocessing means 131 and used for drift correction.
  • information necessary for the temperature sensor 128 may also be stored in the parameter storage unit 134.
  • the arithmetic expressions and correction parameters used in the average / amplitude extraction means 132 are determined in advance by tests and simulations and set.
  • the average value and the amplitude value calculated and extracted by the average / amplitude extraction means 132 are used as variables, and a load (vertical) applied to the drive wheels 70 from a linear expression obtained by multiplying these variables by a predetermined correction coefficient.
  • the direction load Fz, the load Fx serving as the driving force and braking force, and the axial load Fy) are estimated.
  • the correction coefficient in the linear expression is also stored in the parameter storage unit 134 and is read out from the parameter storage unit 134 and used. In this case, the correction coefficient is also obtained and set in advance by a test or simulation.
  • the load data obtained by the load estimating means 133 is electrically controlled by communication (for example, via a CAN bus) with a host electric control unit (ECU) 85 (FIG. 15) installed on the vehicle body side via the communication means 135. It is output to the unit 85.
  • the load data may be output as an analog voltage as necessary.
  • Various parameters stored in the parameter storage unit 134 may be externally written through the communication unit 135.
  • FIG. 14 shows a schematic flow of processing until the loads Fx, Fy, and Fz are estimated by the load estimating means 133 from the sensor output signal of the sensor unit 120.
  • the load When a load acts between the drive wheel 70 and the road surface, the load is also applied to the outer ring 1 that is a stationary side race of the wheel bearing A, and deformation occurs.
  • the two contact fixing portions 121 a of the strain generating member 121 made of a thin plate material in the sensor unit 120 are fixed in contact with the outer diameter surface of the outer ring 1, the distortion of the outer ring 1 expands to the strain generating member 121. The distortion is easily transmitted and the distortion sensor 122 detects the distortion with high sensitivity.
  • each sensor unit 120 is provided with an upper surface portion, a lower surface portion, a right surface portion of the outer diameter surface of the outer ring 1 that is in a vertical position and a horizontal position with respect to the tire ground contact surface.
  • the left surface portion is equally distributed with a phase difference of 90 degrees in the circumferential direction, the vertical load Fz acting on the wheel bearing A, the load Fx serving as a driving force and a braking force, and the axial load Fy are accurately estimated. can do.
  • the electric control unit 85 to which the load data is input is provided with an abnormality determining means 84 that determines from the load data that the road surface state and the grounding state of the driving wheel 70 and the road surface are abnormal. It has been. Further, the electric motor B, the electric motor 50 of the brake D, and the damping means 74 of the suspension 73 are connected to the output side of the electric control unit 85, and the electric control unit 85 is sent from the signal processing unit 130. Based on the load data, information on the road surface state and the grounding state of the driving wheel 70 and the road surface is output to the electric motor B, the electric motor 50 of the brake D, and the damping means 74 of the suspension 73.
  • the electric control unit 85 outputs information on the road surface state and the ground contact state between the driving wheel 70 and the road surface based on the load data sent from the signal processing unit 130.
  • the grounding state can be estimated more accurately.
  • Various information obtained in this way can be used for control of the electric motor B and vehicle attitude control, thereby improving safety and economy.
  • the rotation speed of the left and right drive wheels 70 is controlled by outputting the information to the electric motor B so that the vehicle turns smoothly.
  • the information is output to the electric motor 50 of the brake D to control the braking so that the driving wheel 70 is not locked during braking.
  • the information is output to the damping means 74 of the suspension 73 to perform suspension control.
  • the abnormality determination unit 84 outputs an abnormality signal when it is determined that the force in the three axial directions has exceeded an allowable value. This abnormal signal can also be used for vehicle control of an automobile. Furthermore, if the acting force between the driving wheel 70 and the road surface is output in real time, more fine attitude control becomes possible.
  • the sensor unit 120 including the strain generating member 121 and one strain sensor 122 attached to the strain generating member 121 is used as a stationary bearing for the wheel bearing A. Since the strain generating member 121 is made of a thin plate material having two contact fixing portions 121a fixed to the outer diameter surface of the outer ring 1 by being attached to the outer diameter surface of the outer ring 1 that is the side raceway, the driving wheel 70 is provided. The sensor unit 120 can accurately detect the distortion of the outer ring 1 of the wheel bearing A that is distorted by the force acting on the contact point of the road surface.
  • the loads Fx, Fy, and Fz ⁇ acting on the driving wheel 70 and the ground contact point on the road surface are accurately calculated by calculating and estimating the load using a plurality of sensor output signals obtained by the sensor unit 120. It can be estimated and is effective in controlling the electric motor B and the vehicle with high accuracy.
  • a signal processing unit 130 having load estimating means 133 for estimating a load applied to the driving wheel 70 from the sensor output signal of the sensor unit 120 is provided, and this signal processing unit 130 is not the outer ring 1 but the stationary side. Since it is disposed in the casing 33 of the reduction gear C, which is a part, the sensor output signal of the sensor unit 120 is signal-processed by the signal processing unit 130 and output to the outside as load data. For this reason, it is not necessary to transmit the minute sensor output signal to the outside as it is, and the electromagnetic shield of the signal cable 129 to be used can be completed with a simple configuration.
  • the signal processing unit 130 has a signal amplification function for amplifying the sensor output signal, a filtering function for removing a noise component from the sensor output signal, and an AD conversion function for AD converting the sensor output signal. Therefore, the sensor output signal of the sensor unit 120 is converted into a digital signal and used for load estimation, and the load data is also calculated and output as digital data. For this reason, the number of necessary electric wires is minimized, and the cost of the signal cable 129 to be used can be reduced. At the same time, the risk of breakage is reduced and reliability is improved.
  • the signal processing unit 130 is further used for correction, a correction function for correcting the sensor output signal, an average value extraction function for obtaining the average value of the sensor output signal, an amplitude value extraction function for obtaining the amplitude value of the sensor output signal, and the correction.
  • a calculation function including a correction function, a calculation parameter used for average value extraction and amplitude value extraction, and a storage function for storing a calculation parameter of an arithmetic expression used in the load estimation unit 133 using the average value and the amplitude value as variables.
  • the influence of temperature can be reduced by the amplitude value, and an increase in load calculation error due to heat generated by the electric motor B or the reduction gear C can be suppressed, and the accuracy of load estimation can be increased accordingly.
  • the signal processing unit 130 since the signal processing unit 130 has such an arithmetic processing function, it is possible to easily adjust different correction parameters and calculation parameters for each wheel bearing device.
  • means for performing a part of the function of the signal processing unit 130 may be incorporated in the motor control unit 137 for controlling the electric motor B.
  • the means for performing a part of the function of the signal processing unit 130 is, for example, one or more of the means 131, 132, 133, 134, 135 described with reference to FIG.
  • the parameter storage means 134 and the like are preferably incorporated in the motor control unit 137.
  • the third generation type wheel bearing A in which the inner member forms part of the hub is used.
  • the brake D is an electric brake that moves the brake pad 47 by the electric motor 50, environmental pollution due to oil leakage generated in the hydraulic brake is avoided. Can do. Moreover, since it is an electric brake, the moving amount of the brake pad 47 can be quickly adjusted, and the responsiveness of the rotational speed control of the left and right drive wheels 70 during turning can be improved.
  • the wheel bearing device operates the damping means 74 of the suspension 73 electrically, the responsiveness of suspension control can be improved and the vehicle posture can be stabilized.
  • the driving of the electric motor B, the operation of the brake D, and the operation of the suspension 73 are controlled from the output of the signal processing unit 130 that estimates the force in the three axial directions acting on the driving wheel 70 and the road surface.
  • the wheel bearing device of the present invention may be provided on all of the wheels of the automobile, or may be provided on only some of the wheels.
  • each sensor unit 120 is configured as follows in the wheel bearing device with an in-wheel motor built-in sensor of the first embodiment shown in FIGS. 1 to 15.
  • the sensor unit 120 is attached to the strain generating member 121 and the strain generating member 121 to detect the strain 2.
  • the strain generating member 121 has three contact fixing portions 121 a that are fixed to the outer diameter surface of the outer ring 1 through spacers 123.
  • the three contact fixing portions 121 a are arranged in a line in the longitudinal direction of the strain generating member 121.
  • one strain sensor 122A of the two strain sensors 122 is disposed between the left end contact fixing portion 121a and the center contact fixing portion 121a, and the center contact fixing portion 121a and the right end contact fixing portion 121a.
  • Another strain sensor 122B is arranged between the first and second 121a.
  • notch portions 121 b are formed at two positions corresponding to the placement portions of the strain sensors 122 ⁇ / b> A and 122 ⁇ / b> B on both side portions of the strain generating member 121.
  • the sensor unit 120 is configured so that the three contact fixing portions 121a of the strain generating member 121 are located at the same size in the axial direction of the outer ring 1 and the contact fixing portions 121a are spaced apart from each other in the circumferential direction. These contact fixing portions 121 a are respectively fixed to the outer diameter surface of the outer ring 1 by bolts 124 via spacers 123.
  • the average / amplitude extraction means 132 of the signal processing unit 130 in the first embodiment shown in FIGS. 1 to 15 calculates the sum of the output signals of the two strain sensors 122A and 122B of each sensor unit 120. Then, the sum is taken out as an average value. Further, the difference between the output signals of the two strain sensors 122A and 122B is calculated, and the difference value is extracted as an amplitude value.
  • the output signals a and b of the strain sensors 122A and 122B are shown in FIG. As shown in (C), it is affected by the rolling element 5 passing near the installation part of the sensor unit 120. Even when the bearing is stopped, the output signals a and b of the strain sensors 122A and 122B are affected by the position of the rolling element 5. That is, when the rolling element 5 passes the position closest to the strain sensors 122A and 122B in the sensor unit 120 (or when the rolling element 5 is at that position), the output signals a and b of the strain sensors 122A and 122B are maximum. As shown in FIGS.
  • the value decreases as the rolling element 5 moves away from the position (or when the rolling element 5 is located away from the position).
  • the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 120 at a predetermined arrangement pitch P. Therefore, the output signals a and b of the strain sensors 122A and 122B indicate the arrangement pitch P of the rolling elements 5.
  • a cycle as shown by a solid line in FIG. 20C, a waveform close to a periodically changing sine wave is obtained.
  • the output signals a and b of the strain sensors 122A and 122B are affected by temperature and the like.
  • the sum of the output signals a and b of the two strain sensors 122A and 122B is set as the above average value, and the above amplitude value is detected from the difference in amplitude.
  • the average value is a value obtained by canceling the fluctuation component due to the passage of the rolling elements 5.
  • the amplitude value is a value that cancels out the influence of the temperature appearing in the output signals a and b of the two strain sensors 122A and 122B. Therefore, the load acting on the wheel bearing A and the tire ground contact surface can be estimated more accurately by using the average value and the amplitude value.
  • the interval 121 a is set to be the same as the arrangement pitch P of the rolling elements 5.
  • the circumferential interval between the two strain sensors 122A and 122B respectively disposed at the intermediate positions of the adjacent contact fixing portions 121a is approximately 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5.
  • the output signals a and b of the two strain sensors 122A and 122B have a phase difference of about 180 degrees, and the average value obtained as the sum is obtained by canceling the fluctuation component due to the passage of the rolling element 5.
  • the amplitude value obtained as the difference is a value that cancels out the influence of temperature and the like.
  • the interval between the contact fixing portions 121a is set to be the same as the arrangement pitch P of the rolling elements 5, and one strain sensor 122A is provided at an intermediate position between the adjacent contact fixing portions 121a.
  • 122B are arranged so that the circumferential interval between the two strain sensors 122A, 122B is approximately 1 ⁇ 2 of the array pit P of the rolling elements 5.
  • the circumferential interval between the two distortion generating part seats 122A and 122B may be set to 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5 directly.
  • the interval between the two strain sensors 122A and 122B in the circumferential direction may be ⁇ 1/2 + n (n: integer) ⁇ times the arrangement pitch P of the rolling elements 5, or a value approximating these values. good.
  • the average value obtained as the sum of the output signals a and b of the two strain sensors 122A and 122B is a value obtained by canceling the fluctuation component due to the passage of the rolling element 5, and the amplitude value obtained as the difference is the influence of temperature or the like. Is a value that offsets.
  • FIG. 21 (A) relates to a third embodiment of the present invention
  • FIG. 21 (B) is a side view of the main part of FIG. 21 (A), as seen from the outboard side of the casing 33 of the speed reducer C. (AA line end view).
  • the cable guide notch 33b formed on the outboard side end of the casing 33 of the speed reducer C has a groove shape extending in the circumferential direction, that is, a circumferential groove.
  • the signal cable 129 drawn out from the cable insertion hole 92 of the first flange 1a is connected to the signal processing unit 130 via the groove-shaped notch 33b.
  • the notch 33b in the casing 33 is provided at a position shifted in phase with respect to the signal processing unit 130, in this example, a position shifted in phase by about 90 degrees.
  • One side surface 33ba of the groove of the notch 33b is formed in the casing 33 so as to be parallel to a direction extending in the tangential direction of the casing 33 from the circumferential position P1 facing the cable insertion hole 92.
  • the other side surface 33bb of the groove of the notch 33b is notched in the radial direction of the casing 33 in the vicinity of the position P1.
  • the groove bottom surface 33bc of the notch 33b is notched so as to be a plane perpendicular to the bearing axial direction.
  • the signal cable 129 exiting from the cable insertion hole 92 is covered with a waterproof seal member 94.
  • the waterproof seal member 94 is provided so as to fill the entire groove of the notch 33 b of the casing 33. Since the signal cable 129 is routed through the groove-shaped notch 33b of the casing 33, a longer distance is sealed than when the signal cable 129 is taken out in the radial direction as shown in FIG. The sealing performance between the cable surface of 129 and the waterproof seal member 94 can be further improved. Further, the bending radius of the signal cable 129 can be increased as compared with the case where the signal cable is taken out in the radial direction. For this reason, wiring is easy even with the signal cable 129 having a thick coating, and the protrusion of the signal cable 129 in the radial direction can be suppressed to be small. Therefore, the entire sensor unit can be made compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rolling Contact Bearings (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 駆動輪と路面の接地点に作用する力を精度良く検出でき、電気モータや車両を精度良く制御するのに効果的なインホイール型モータ内蔵センサ付き車輪用軸受装置を提供する。 駆動輪(70)のハブを回転自在に支持する車輪用軸受(A)と、電気モータ(B)と、この電気モータ(B)と車輪用軸受(A)との間に介在する減速機(C)とを備えるインホイール型モータ内蔵車輪用軸受装置において、車輪用軸受(A)の外輪(1)にセンサユニット(120)を設ける。センサユニット(120)は、歪み発生部材(121)およびこの歪み発生部材(121)に取り付けられた1つ以上の測定用のセンサからなる。歪み発生部材(121)は、外輪(1)の外径面に接触固定される2つ以上の接触固定部(121a)を有する薄板材からなる。

Description

インホイール型モータ内蔵センサ付き車輪用軸受装置 関連出願
 本出願は、2009年11月27日出願の特願2009-269690、および2010年9月30日出願の特願2010-220793の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、車輪用軸受と減速機と電気モータとを組み合わせたインホイール型モータ内蔵車輪用軸受装置において、駆動輪と路面の接地点に作用する力を検出するセンサを設けたインホイール型モータ内蔵センサ付き車輪用軸受装置に関する。
 車輪用軸受と減速機と電気モータとブレーキとを組み合わせたインホイール型モータ内蔵車輪用軸受装置を採用した電気自動車における走行安定性の制御技術として、車輪用軸受、電気モータ、減速機、ブレーキのうちの少なくとも一つの構成要素の状態から、駆動輪と路面の接地点において駆動輪に作用する、直交する3軸方向の力を測定するセンサを設けたものが提案されている(特許文献1)。
特開2008-74135号公報 特開2009-128264号公報
 特許文献1に開示のインホイール型モータ内蔵車輪用軸受装置では、車輪用軸受の静止側軌道輪に設けた荷重センサで前記3軸方向の力を検出する構成が示されているが、ここで採用される荷重センサでは感度良く3軸方向の荷重を検出することはできない。とくに、車輪用軸受が減速機を介して電気モータに結合されているインホイール型モータ内蔵車輪用軸受装置では、車輪用軸受が電気モータや減速機の発熱の影響を受けるので、荷重センサの出力信号がドリフトして検出誤差が大きくなってしまい、精度の良い荷重検出を行えないという問題がある。
 なお、車輪用軸受に設けた荷重センサとして、薄板状の歪み発生部材の上に歪みセンサを取り付けてセンサユニットとしたものが提案されているが(特許文献2)、このようなセンサユニットをインホイール型モータ内蔵車輪用軸受装置に用いた例はない。
 この発明の目的は、駆動輪と路面の接地点に作用する3軸方向の力を精度良く検出でき、電気モータや車両を精度良く制御するのに効果的なインホイール型モータ内蔵センサ付き車輪用軸受装置を提供することである。
 この発明のインホイール型モータ内蔵センサ付き車輪用軸受装置は、駆動輪のハブを回転自在に支持する車輪用軸受と、前記駆動輪の回転駆動源となる電気モータと、この電気モータと前記車輪用軸受との間に介在する減速機とを備えるインホイール型モータ内蔵車輪用軸受装置であって、歪み発生部材およびこの歪み発生部材に取り付けられた1つ以上の測定用のセンサからなるセンサユニットを、前記車輪用軸受の静止側軌道輪となる外輪に設け、前記歪み発生部材は、前記外輪の外径面に接触固定される2つ以上の接触固定部を有する薄板材からなる。
 この構成によると、歪み発生部材およびこの歪み発生部材に取り付けられた1つ以上の測定用のセンサからなるセンサユニットを、前記車輪用軸受の静止側軌道輪となる外輪に設け、前記歪み発生部材は、前記外輪の外径面に接触固定される2つ以上の接触固定部を有する薄板材からなるものとしたため、駆動輪と路面の接地点に作用する力で歪みが生じる車輪用軸受の外輪の歪みを前記センサユニットで精度良く検出できる。そのため、センサユニットで得られる複数のセンサ出力を用いて荷重を演算・推定することにより駆動輪と路面の接地点に作用する3軸方向の荷重を精度良く推定でき、電気モータや車両を精度良く制御するのに効果的となる。
 この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記外輪の外径面の上面部、下面部、右面部、および左面部に配置しても良い。
 このように4つのセンユニットを配置することで、3軸方向の荷重、すなわち、駆動輪と路面の接地点に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fxおよび軸方向荷重Fy をより高精度に推定することができる。
 この発明において、前記センサユニットは、2つの接触固定部と1つのセンサを有するものとしても良い。
 この発明において、前記センサユニットは,3つの接触固定部と2つのセンサを有するものとしても良い。
 この発明において、センサユニットの設置部周辺に樹脂モールドなどが施され、防水処理されていてもよい。
 この発明において、センサユニットを設置した前記車輪用軸受の外輪のアウトボード側外周面を保護するカバーを設置してもよい。
 この発明において、前記センサユニットのセンサ出力信号から駆動輪に加わる荷重を推定する荷重推定手段を有する信号処理ユニットを設け、この信号処理ユニットを前記車輪用軸受の外輪、または前記減速機もしくは前記電気モータのケーシングに配置しても良い。
 この構成の場合、センサユニットのセンサ出力信号が車輪用軸受装置に設置された信号処理ユニットで信号処理され荷重データとなって外部に出力されるため、微小なセンサ出力信号をそのまま外部に伝送する必要がなく、使用するケーブルの電磁シールドを簡単な構成で済ませることができる。
 この構成の場合に、前記車輪用軸受の外輪ではない静止側部位に信号処理ユニットを配置し、軸受外輪を減速機のケーシングに取り付けるためのフランジにセンサケーブルを取り出すための穴を設け、この穴を通じてセンサユニットの出力信号を信号処理ユニットまで配線してもよい。
 前記フランジにセンサケーブルを取り出すための穴を設ける場合に、前記減速機のケーシングに、前記センサーケーブルを通した溝を設けたものとしてもよい。この場合、フランジの穴から取り出されたセンサケーブルは、減速機のケーシングの溝を経由して、信号処理ユニットへ接続される。前記穴から出たセンサーケーブルは、防水シール部材で覆われるが、センサーケーブルをケーシングの溝に経由させている分、防水シール部材を溝に沿って長く形成できるので、センサーケーブルを径方向に取り出す場合よりも長い距離がシールされることになる。このため、ケーブル表面と防水シール部材とのシール性をより高めることができる。また、センサーケーブルを径方向に取り出す場合と比べて、センサーケーブルの曲げ半径を大きくとることが可能になる。このため、被覆の厚いセンサーケーブルでも配線が容易になり、径方向へのセンサーケーブルのはみ出しも小さく抑えられる。
 この発明において、前記信号処理ユニットは、少なくとも前記センサ出力信号を増幅する信号増幅機能と、前記センサ出力信号からノイズ成分を除去するフィルタリング機能と、
前記センサ出力信号をAD変換するAD変換機能とを有するものとしても良い。
 この構成の場合、センサユニットのセンサ出力信号がデジタル信号に変換されて荷重推定に用いられ、荷重データもデジタルデータとして演算出力されるため、必要な電線の本数も最小化され、使用するケーブルのコストを低減できる。同時に、断線などの発生リスクも低減され、信頼性も向上する。
 この発明において、前記信号処理ユニットは、さらに前記センサ出力信号を補正する補正機能と、前記センサ出力信号の平均値を求める平均値抽出機能と、前記センサ出力信号の振幅値を求める振幅値抽出機能と、前記補正に用いられる補正パラメータ、前記平均値抽出および振幅値抽出に用いられる計算パラメータ、および前記平均値と振幅値を変数として前記荷重推定手段で用いられる演算式の計算パラメータを記憶する記憶機能とを含む演算処理機能を有するものとしても良い。この構成の場合、センサ出力信号の平均値と振幅値から荷重を演算するので、とくに振幅値で温度の影響を軽減できて、電気モータや減速機の発熱による荷重演算誤差の増加を抑えることができ、それだけ荷重推定の精度を高めることができる。また、信号処理ユニットがこのような演算処理機能を備えることにより、車輪用軸受装置ごとに異なる補正パラメータや計算パラメータの調整を簡単に行うことができる。
 この発明において、前記信号処理ユニットの一部の機能を果たす手段を、前記電気モータを制御するモータ制御ユニットに組み込んでも良い。
 この構成の場合、例えば、電気モータの全体の制御に必要なパラメータを、信号処理ユニットに用いる各種パラメータとともに同じ記憶手段で記憶させておくことができ、車輪用軸受装置に必要な情報を集中管理しやすくなる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の概要図である。 同車輪用軸受装置の車輪用軸受および減速機の断面図である。 図2のIII - III矢視断面図である。 図3の要部を拡大して示す断面図である。 同車輪用軸受装置のブレーキの断面図である。 同車輪用軸受装置の車輪用軸受における外方部材をアウトボード側から見た正面図である。 同車輪用軸受装置におけるセンサユニットの拡大平面図である。 図7におけるVIII- VIII 矢視断面図である。 センサユニットの他の設置例を示す断面図である。 センサユニットの他の例の拡大平面図である。 センサユニットのさらに他の例の拡大断面図である。 同センサユニットのセンサ出力信号を処理する信号処理ユニットのブロック図である。 同センサユニットのセンサ出力信号の波形図である。 信号処理ユニットでの信号処理の概略説明図である。 同車輪用軸受装置の制御系のブロック図である。 この発明の第2実施形態にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の車輪用軸受における外方部材をアウトボード側から見た正面図である。 同車輪用軸受装置におけるセンサユニットの拡大平面図である。 図17におけるXVIII -XVIII 矢視断面図である。 センサユニットの他の設置例を示す断面図である。 センサユニットの出力信号に対する転動体位置の影響の説明図である。 (A)は、この発明の第3実施形態の車輪用軸受装置の減速機のケーシングを、アウトボード側から見た正面図、(B)は、図21(A)の要部の側面図である。
 図1ないし図15はこの発明の第1実施形態を示す。まず、図1と共にこの実施形態の概要について説明する。このインホイール型モータ内蔵センサ付き車輪用軸受装置は、駆動輪70のハブを回転自在に支持する車輪用軸受Aと、回転駆動源としての電気モータBと、この電気モータBの回転を減速してハブに伝達する減速機Cと、ハブに制動力を与えるブレーキDとを、駆動輪70の中心軸O上に配置したものである。ここで言う「中心軸O上に配置する」とは、必ずしも各構成要素が中心軸O上に位置するということではなく、各構成要素が中心軸Oに対して機能的に作用しているということである。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 図2に示すように、車輪用軸受Aは、内周に複列の転走面3を形成した外輪1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外輪1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受Aは、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が背面合わせとなるように形成されている。外輪1と内方部材2との間の軸受空間のアウトボード側端およびインボード側端は、シール部材7,8でそれぞれシールされている。
 外輪1は静止側軌道輪となるものであって、減速機Cのケーシング33に取り付けるフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所にねじ孔14が設けられている。外輪1は、前記ケーシング33のボルト挿通孔33aに挿通した取付ボルト15を前記ねじ孔14に螺合させることにより、前記ケーシング33に取り付けられる。
 内方部材2は回転側軌道輪となるものであって、図1の駆動輪70およびブレーキ輪46取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9は、請求の範囲で言う「ハブ」に該当する。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪10の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト16の圧入孔17が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、図1の駆動輪70およびブレーキ輪46を案内する円筒状のパイロット部13がアウトボード側に突出している。このパイロット部13の内周には、前記貫通孔11のアウトボード側端を塞ぐキャップ18が取り付けられている。
 電気モータBは、図1のように、筒状のケーシング22に固定したステータ23と出力軸24に取り付けたロータ25との間にラジアルギャップを設けたラジアルギャップ型のものである。出力軸24は、2つの軸受26でケーシング22に支持されている。電気モータBは、インバータ等を含む制御回路からなるモータ制御ユニット137により制御される。
 図2および図3に示すように、減速機Cはサイクロイド減速機として構成されている。すなわち、この減速機Cは、外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板34a,34bを、それぞれ軸受35を介して入力軸32の各偏心部32a,32bに装着し、ケーシング33のインボード側壁とアウトボード側壁の間に差し渡した複数の外ピン36で、各曲線板34a,34bの偏心運動を外周側で案内するとともに、ハブ輪9の貫通孔11にスプライン嵌合されて一体に回転する出力軸37に取り付けた複数の内ピン38を、各曲線板34a,34bの内部に設けた複数の貫通孔39に嵌挿挿入したものである。入力軸32は、電気モータBの出力軸24とスプライン結合されて一体に回転するようになっている。なお、入力軸32はケーシング33と出力軸37の内径面とに2つの軸受40で両持ち支持されている。また、曲線板34a,34bの外形となるトロコイド曲線は、サイクロイド曲線であることが好ましいが、その他のトロコイド曲線であっても良い。上記の「サイクロイド減速機」は、上記のように外形をトロコイド曲線とした減速機であるトロコイド減速機を含めて称している。
 図1に示す電気モータBの出力軸24が回転すると、これと一体回転する入力軸32に取り付けられた各曲線板34a,34bが偏心運動を行う。この各曲線板34a,34bの偏心運動が、内ピン38と貫通孔39との係合によって、車輪のハブである内方部材2に回転運動として伝達される。出力軸24の回転に対して内方部材2の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
 前記2枚の曲線板34a,34bは、互いに偏心運動が打ち消されるように180°位相をずらして入力軸32の各偏心部32a,32bに装着され、各偏心部32a,32bの両側には、各曲線板34a,34bの偏心運動による振動を打ち消すように、各偏心部32a,32bの偏心方向と逆方向へ偏心させたカウンターウエイト41が装着されている。
 図4に示すように、前記各外ピン36と内ピン38には軸受42,43が装着され、これらの軸受42,43の外輪42a,43aが、それぞれ各曲線板34a,34bの外周と各貫通孔39の内周とに転接するようになっている。したがって、外ピン36と各曲線板34a,34bの外周との接触抵抗、および内ピン38と各貫通孔39の内周との接触抵抗を低減し、各曲線板34a,34bの偏心運動をスムーズに内方部材2に回転運動として伝達することができる。
 図5に示すように、ブレーキDは、駆動輪70と共にハブフランジ9aに取り付けられたブレーキ輪46およびこのブレーキ輪46に摩擦接触可能なブレーキパッド47を有する作動部48と、ブレーキパッド47を作動させる駆動部49とを有し、この駆動部49の駆動源としてブレーキ用電気モータ50を用いた電動ブレーキとされている。ブレーキ輪46はブレーキディスクからなる。ブレーキパッド47は、ブレーキ輪46を挟み付けるように一対設けられている。片方のブレーキパッド47は、ブレーキフレーム51に固定され、もう片方のブレーキパッド47は、ブレーキフレーム51に直線的に進退自在に設置された進退部材52に取り付けられている。進退部材52の進退可能方向はブレーキ輪46に対面する方向である。進退部材52は、ブレーキフレーム51に対して回り止めされている。
 駆動部49は、上記ブレーキ用電気モータ50と、この電気モータ50の回転出力を往復直線運動に変換してブレーキパッド47に制動力として伝えるボールねじ53とを有し、電気モータ50の出力は減速伝達機構58を介してボールねじ53に伝達される。ボールねじ53は、ねじ軸54が軸受57を介してブレーキフレーム51に回転のみ自在に支持され、ナット55が上記進退部材52に固定されている。進退部材52とナット55とは、互いに一体の部材であっても良い。
 ボールねじ53は、ねじ軸54およびナット55と、これらねじ軸54の外周面およびナット55の内周面に対向して形成されたねじ溝間に介在する複数のボール56とを有する。ナット55には、ねじ軸54とナット55の間に介在するボール56を無端の経路で循環させる循環手段(図示せず)を有している。循環手段は、リターンチューブやガイドプレートを用いた外部循環形式のものであっても、エンドキャップや駒を用いた内部循環形式のものであっても良い。また、このボールねじ53は、短い距離を往復動作させるものであるため、上記循環手段を有しない形式のもの、例えばねじ軸54とナット55間の複数のボール56をリテーナ(図示せず)で保持したリテーナ式のものであっても良い。
 減速伝達機構58は、ブレーキ用電気モータ50の回転をボールねじ53のねじ軸54に減速して伝える機構であり、ギヤ列で構成されている。減速伝達機構58は、この例では、電気モータ50の出力軸に設けられたギヤ59、およびねじ軸54に設けられて上記ギヤ59に噛み合うギヤ60からなる。減速伝達機構58は、この他に、例えばウォームおよびウォームホイル(図示せず)からなるものとしても良い。
 このブレーキDは、ブレーキペダル等の操作部材61の操作に従い上記電気モータ50を制御する操作部62を有する。この操作部62には、アンチロック制御手段65が設けられている。操作部62は、上記操作部材61と、この操作部材61の動作量および動作方向を検出可能なセンサ64と、このセンサ64の検出信号に応答して電気モータ50を制御する制御装置63とでなり、この制御装置63に上記アンチロック制御手段65が設けられている。制御装置63は、モータ制御信号を生成する手段およびそのモータ制御信号によりモータ電流を制御可能なモータ駆動回路(いずれも図示せず)を有している。
 図5に示すアンチロック制御手段65は、操作部材61の操作による制動時に、図1の駆動輪70の回転に応じて電気モータ50による制動力を調整することで、駆動輪70の回転ロックを防止する手段である。アンチロック制御手段65は、上記制動時に、図1の駆動輪70の回転速度を検出し、検出速度から図1の駆動輪70の回転ロックまたはその兆候が検出されると、電気モータ50の駆動電流を低下させ、または一時的に逆回転出力を発生するなどして、制動力、つまりブレーキパッド47の締め付け力を調整する処理を行う。駆動輪70の回転速度の検出には、電気モータBに設けられる回転数センサ87の出力が利用される。
 図1に示すように、車輪用軸受Aのハブフランジ9aには、前記ブレーキ輪46と共に駆動輪70が取り付けられる。駆動輪70は、ホイール71の周囲にタイヤ72を設けたものである。ハブフランジ9aとホイール71との間にブレーキ輪46を挟み込んだ状態で、ハブフランジ9aの圧入孔17に圧入したハブボルト16をホイール71に螺着させることで、駆動輪70およびブレーキ輪46がハブフランジ9aに固定される。
 静止側軌道輪である外輪1の外径面には、4つのセンサユニット120が設けられている。図6は、外輪1をアウトボード側から見た正面図を示す。ここでは、これらのセンサユニット120が、タイヤ接地面に対して上下位置および左右位置となる外輪1における外径面の上面部、下面部、右面部、および左面部に設けられている。
 これらのセンサユニット120は、図7および図8に拡大平面図および拡大断面図で示すように、歪み発生部材121と、この歪み発生部材121に取り付けられて歪み発生部材121の歪みを検出する歪みセンサ122とでなる。歪み発生部材121は、鋼材等の弾性変形可能な金属製の厚さ3mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部121bを有する。また、歪み発生部材121は、外輪1の外径面にスペーサ123を介して接触固定される2つの接触固定部121a(図8)を両端部に有する。歪みセンサ122は、歪み発生部材121における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材121の外面側で両側辺部の切欠き部121bで挟まれる中央部位が選ばれており、歪みセンサ122は切欠き部121bの周辺の周方向の歪みを検出する。
 なお、歪み発生部材121は、静止側軌道輪である外輪1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外輪1の変形がセンサユニット120に伝わらず、歪みの測定に影響を及ぼすからである。「想定される最大の力」は、車輪用軸受Aに異常な大きさの力が作用しても、その力が除かれるとセンサ系を除く車輪用軸受としての正常な機能が復元される範囲の最大の力である。
 前記センサユニット120は、その歪み発生部材121の2つの接触固定部121aが、外輪1の軸方向に同寸法の位置で、かつ両接触固定部121aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部121aがそれぞれスペーサ123を介してボルト124により外輪1の外径面に固定される。前記各ボルト124は、それぞれ接触固定部121aに設けられた径方向に貫通するボルト挿通孔125からスペーサ123のボルト挿通孔126に挿通し、外輪1の外周部に設けられたねじ孔127に螺合させる。  
 このように、スペーサ123を介して外輪1の外径面に接触固定部121aを固定することにより、薄板状である歪み発生部材121における切欠き部121bを有する中央部位が外輪1の外径面から離れた状態となり、切欠き部121bの周辺の歪み変形が容易となる。接触固定部121aが配置される軸方向位置として、ここでは外輪1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、図2に示すように、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外輪1の外径面における前記スペーサ123が接触固定される箇所には平坦部1bが形成される。
 このほか、図9に断面図で示すように、外付部材1の外径面における前記歪み発生部材121の2つの接触固定部121aが固定される2箇所の中間部に溝1cを設けることで、前記スペーサ123を省略し、歪み発生部材121における切欠き部121bが位置する2つの接触固定部121aの中間部位を外輪1の外径面から離すようにしても良い。
 また、歪み発生部材121は、図10に示すように、平面概形が単調な帯状とし、図7の例のような切欠き部121bを形成しないものであっても良い。
 歪みセンサ122としては、種々のものを使用することができる。例えば、歪みセンサ122を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材121に対しては接着による固定が行われる。
 また、歪みセンサ122を歪み発生部材121上に厚膜抵抗体にて形成することができる。その場合のセンサユニット120の構造を図11に示す。このセンサユニット120は、歪み発生部材121のセンサ取付面121A上に絶縁層150が形成され、この絶縁層150の表面の両側に対を成す電極151,151が形成され、これら電極151,151の間で前記絶縁層150の上に歪みセンサとなる歪み測定用抵抗体152が形成され、さらに電極151,151と歪み測定用抵抗体152の上に保護膜153が形成された構造となっている。
 外輪1の外径面に取り付けられた前記センサユニット120は、図2のように保護カバー90で覆われる。なお、図6では前記保護カバー90を省略して示している。保護カバー90は、インボード側に向かって内径が拡大する筒状とされている。具体的には、保護カバー90は、インボード側が大径部でアウトボード側半部が内径側に縮小する小径部となる円筒状とされている。この保護カバー90のインボード側端はOリング91を介して外輪1のフランジ1aの外径面に取り付けられ、保護カバー90のアウトボード側端は外輪1の外径面に嵌合させられる。保護カバー90の材料としては、ステンレス鋼等の金属材料や、PA66+GF等の樹脂材料が用いられる。外輪1のフランジ1aの外径面には周方向に延びるOリング嵌着用の溝1dが設けられ、この溝1dにOリング91を嵌着させることで、Oリング91が軸方向に位置決めされると共に、保護カバー90のインボード側端と外輪1のフランジ1aの外径面との間が確実に密封される。また、センサユニット120の設置部周辺には樹脂モールドなどが施され、防水処理される。
 このように、センサユニット120は保護カバー90内における外輪1の外径面に固定されることになるので、それらの固定部が、外部環境により腐食して固定が不安定になるのを防止でき、足廻りの過酷な環境で使用される車輪用軸受装置でありながらセンサユニット120の正常動作が可能となる。
 各センサユニット120は信号ケーブル(センサーケーブル)129を介して信号処理ユニット130に接続される。信号処理ユニット130は、各センサユニット120のセンサ出力信号から駆動輪70に加わる荷重を推定する荷重推定手段133(図12)を有する信号処理装置であり、ここでは減速機Cのケーシング33のアウトボード側端の外径面に設置されている。信号処理ユニット130は、センッサユニット120と共に外輪1の外径面に設置しても良いし、電気モータBのケーシング22の外径面に設置しても良い。
 図2に示すように、外輪1のフランジ1aには、各センサユニット120の信号ケーブル129を引き出すケーブル挿通孔92が軸方向に貫通して設けられ、信号ケーブル129を引き出したあとで、ケーブル挿通孔92にはモールド樹脂などの弾性充填材93が充填される。また、前記ケーブル挿通孔92を出た信号ケーブル129は、減速機Cのケーシング33のアウトボード側端に形成したケーブル案内用の切欠き部33bを経由して信号処理ユニット130へと引き出され、信号ケーブル129の周囲は防水シール部材94によって防水処理が施される。切欠き部33bは外径面に開口する貫通孔であっても良い。これにより、外部から泥水や塩水等がケーブル挿通孔92を経て保護カバー90内に浸入するのを防止できる。このほか、センサユニット120から信号処理ユニット130までの配線を、減速機Cのケーシング33内部を通過するように構成し、信号ケーブル129が外部に出ることなく信号処理ユニット130に接続されるようにしても良い。この場合、信号ケーブル129が外部に露出せず、泥水などの浸入経路も最小限に抑えることができるので、防水性能が向上し、信頼性を高めることができる。
 図12は、信号処理ユニット130の概略構成をブロック図で示す。この信号処理ユニット130は、前処理手段131と、平均・振幅抽出手段132と、荷重推定手段133と、パラメータ記憶手段134と、I/F機能を有する通信手段135とを備える。前処理手段131は、各センサユニット120からのセンサ出力信号を増幅する機能と、これらセンサ出力信号からノイズ成分を除去するフィルタリング機能と、増幅・フィルタリングされたセンサ出力信号をAD変換するAD変換機能を持つ。これにより、センサユニット120からの微弱なセンサ出力信号が近くに設置された信号処理ユニット130でデジタル信号に変換されるので、ノイズの影響を受けにくくなり、検出精度を高めることができる。平均・振幅抽出手段132は、前処理手段131を経たセンサ出力信号から後述する平均値と振幅値とを抽出する機能と、抽出した平均値などを補正する機能を有する。荷重推定手段133は、平均・振幅抽出手段132で抽出された平均値と振幅値とを用いて駆動輪70に加わる荷重を推定する機能を有する。このように、センサユニット120のセンサ出力信号の演算をすべて信号処理ユニット130で行うようにしているので、使い勝手がよくなり、また外部配線の本数も最小化され、信頼性が向上する。
 センサユニット120は、外輪1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ122の出力信号は、センサユニット120の設置部の近傍を通過する転動体5の影響を受ける。すなわち、転動体5がセンサユニット120における歪みセンサ122に最も近い位置を通過するときにセンサ出力信号の振幅は最大値となり、その位置から転動体5が遠ざかるにつれて低下する。これにより、軸受回転時にはセンサ出力信号は、その振幅が転動体5の配列ピッチを周期として変化する図13のような正弦波に近い波形となる。そこで、前記平均・振幅抽出手段132では、荷重を求めるデータとしてセンサ出力信号の振幅値(交流成分)と振幅の平均値(直流成分)を演算して抽出する。
 平均・振幅抽出手段132で演算された平均値には、歪みセンサ122自体の温度特性や外輪1の温度歪みや、その他の原因によるドリフト量が存在する。そこで、平均・振幅抽出手段132では、センサ出力信号のドリフトを補正する。その補正のためのパラメータは前記パラメータ記憶手段134に記憶され、このパラメータ記憶手段134から読み出して前記ドリフトの補正に使用される。パラメータ記憶手段134は例えば不揮発メモリからなる。また、温度によるドリフトを補正するため、例えば図7に仮想線で示すように少なくとも1つのセンサユニット120の歪み発生部材121に温度センサ128を設け、この温度センサ128の出力信号をセンサユニット120のセンサ出力信号とともに前記前処理手段131を経て平均・振幅抽出手段132に入力し、これをドリフト補正に使用しても良い。この場合、温度センサ128に必要な情報も、前記パラメータ記憶手段134に記憶させておいても良い。平均・振幅抽出手段132で用いる演算式や補正パラメータは、予め試験やシミュレーションで求めておいて設定する。
 荷重推定手段133では、平均・振幅抽出手段132で演算・抽出された平均値および振幅値を変数とし、これらの変数にそれぞれ所定の補正係数を乗算した一次式から駆動輪70に加わる荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する。前記一次式における補正係数も前記パラメータ記憶手段134に記憶され、このパラメータ記憶手段134から読み出して使用される。この場合の補正係数も予め試験やシミュレーションで求めておいて設定する。荷重推定手段133で得られた荷重データは、通信手段135を経て、車体側に設置される上位の電気制御ユニット(ECU)85(図15)との通信(例えばCANバスなどを通じて)により電気制御ユニット85へ出力される。必要に応じて荷重データをアナログ電圧で出力するものとしても良い。前記パラメータ記憶手段134に記憶される各種パラメータは、通信手段135を通して外部から書き込むようにしても良い。図14は、センサユニット120のセンサ出力信号から各荷重Fx ,Fy ,Fz が荷重推定手段133で推定されるまでの処理の概略の流れを示す。
 駆動輪70と路面間に荷重が作用すると、車輪用軸受Aの静止側軌道輪である外輪1にも荷重が印加されて変形が生じる。ここではセンサユニット120における薄板材からなる歪み発生部材121の2つの接触固定部121aが、外輪1の外径面に接触固定されているので、外輪1の歪みが歪み発生部材121に拡大して伝達され易く、その歪みが歪みセンサ122で感度良く検出される。
 また、この実施形態では前記センサユニット120を4つ設け、各センサユニット120を、タイヤ接地面に対して上下位置および左右位置となる外輪1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受Aに作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を精度良く推定することができる。
 図15のように、前記荷重データが入力される電気制御ユニット85には、その荷重データから路面の状態や駆動輪70と路面の接地状態が異常であることを判定する異常判定手段84が設けられている。また、電気制御ユニット85の出力側には、電気モータB、ブレーキDの電気モータ50、およびサスペンション73の減衰手段74が接続されていて、電気制御ユニット85は信号処理ユニット130から送られてくる荷重データに基づき路面の状態や駆動輪70と路面の接地状態に関する情報を、電気モータB、ブレーキDの電気モータ50、およびサスペンション73の減衰手段74に出力する。
 このように、電気制御ユニット85では、信号処理ユニット130から送られてくる荷重データに基づき路面の状態や駆動輪70と路面の接地状態に関する情報を出力するようにしているので、路面の状態や接地状態をより正確に推測することができる。このようにして得られる各種情報を、電気モータBの制御や車両の姿勢制御に利用することにより安全性や経済性を向上させることができる。例えば、車両の旋回が円滑に行われるように、前記情報を電気モータBに出力して左右の駆動輪70の回転速度を制御する。制動時に駆動輪70のロックが生じないように、ブレーキDの電気モータ50に前記情報を出力して制動を制御する。旋回時に車体が左右に大きく傾いたり、加速時や制動時に車体が前後に大きく傾いたりするのを防止するために、サスペンション73の減衰手段74に前記情報を出力してサスペンション制御を行う。また、異常判定手段84は、前記3軸方向の力が許容値を超えたと判断される場合に、異常信号を出力する。この異常信号も、自動車の車両制御に使用することができる。さらに、リアルタイムで駆動輪70と路面間の作用力を出力すると、よりきめ細かな姿勢制御が可能となる。
 このように、このインホイール型モータ内蔵センサ付き車輪用軸受装置では、歪み発生部材121およびこの歪み発生部材121に取り付けられた1つの歪みセンサ122からなるセンサユニット120を、車輪用軸受Aの静止側軌道輪である外輪1の外径面に取り付け、歪み発生部材121は、外輪1の外径面に接触固定される2つの接触固定部121aを有する薄板材からなるものとしたため、駆動輪70と路面の接地点に作用する力で歪みが生じる車輪用軸受Aの外輪1の歪みをセンサユニット120で精度良く検出できる。これにより、センサユニット120で得られる複数のセンサ出力信号を用いて荷重を演算・推定することで、駆動輪70と路面の接地点に作用する3軸方向の荷重Fx ,Fy ,Fz を精度良く推定でき、電気モータBや車両を精度良く制御するのに効果的となる。
 また、この実施形態では、センサユニット120のセンサ出力信号から駆動輪70に加わる荷重を推定する荷重推定手段133を有する信号処理ユニット130を設け、この信号処理ユニット130を、外輪1ではない静止側部位である、減速機Cのケーシング33に配置しているので、センサユニット120のセンサ出力信号が信号処理ユニット130で信号処理され荷重データとなって外部に出力される。このため、微小なセンサ出力信号をそのまま外部に伝送する必要がなく、使用する信号ケーブル129の電磁シールドを簡単な構成で済ませることができる。
 また、この実施形態では、信号処理ユニット130がセンサ出力信号を増幅する信号増幅機能と、センサ出力信号からノイズ成分を除去するフィルタリング機能と、センサ出力信号をAD変換するAD変換機能とを有するものとしているので、センサユニット120のセンサ出力信号がデジタル信号に変換されて荷重推定に用いられ、荷重データもデジタルデータとして演算出力される。このため、必要な電線の本数も最小化され、使用する信号ケーブル129のコストを低減できる。同時に、断線などの発生リスクも低減され、信頼性も向上する。
 また、信号処理ユニット130は、さらにセンサ出力信号を補正する補正機能と、センサ出力信号の平均値を求める平均値抽出機能と、センサ出力信号の振幅値を求める振幅値抽出機能と、補正に用いられる補正パラメータ、平均値抽出および振幅値抽出に用いられる計算パラメータ、および平均値と振幅値を変数として荷重推定手段133で用いられる演算式の計算パラメータを記憶する記憶機能とを含む演算処理機能を有するので、とくに振幅値で温度の影響を軽減できて、電気モータBや減速機Cの発熱による荷重演算誤差の増加を抑えることができ、それだけ荷重推定の精度を高めることができる。また、信号処理ユニット130がこのような演算処理機能を備えることにより、車輪用軸受装置ごとに異なる補正パラメータや計算パラメータの調整を簡単に行うことができる。
 なお、この実施形態において、信号処理ユニット130の一部の機能を果たす手段を、電気モータBを制御するモータ制御ユニットに137に組み込んでも良い。前記の信号処理ユニット130の一部の機能を果たす手段は、例えば、図12と共に説明した各手段131,132,133,134,135のいずれか一つまたは複数である。特に、パラメータ記憶手段134等を前記モータ制御ユニットに137に組み込みことが好ましい。このように構成した場合、例えば、電気モータBの全体の制御に必要なパラメータを、信号処理ユニット130に用いる各種パラメータとともに同じパラメータ記憶手段134で記憶させておくことができ、車輪用軸受装置に必要な情報を集中管理し易くなる。
 この実施形態では、内方部材がハブの一部を構成する第3世代型の車輪用軸受Aとしたが、内方部材と車輪のハブとが互いに独立した第1または第2世代型の車輪用軸受としても良い。さらに、各世代形式のテーパころタイプである車輪用軸受としても良い。
 この車輪用軸受装置は、図5で示したように、ブレーキDが電気モータ50でブレーキパッド47を移動させる電動ブレーキであるため、油圧式のブレーキで発生する油漏れによる環境汚染を回避することができる。また、電動ブレーキであるため、ブレーキパッド47の移動量を素早く調整することができ、旋回時における左右の駆動輪70の回転速度制御の応答性を向上させられる。
 また、この車輪用軸受装置は、サスペンション73の減衰手段74を電動で作動させるため、サスペンション制御の応答性を向上させることができ、車両姿勢を安定させられる。
 以上の説明では、駆動輪70と路面に作用する3軸方向の力を推定する信号処理ユニット130の出力から、電気モータBの駆動、ブレーキDの作動、サスペンション73の作動を制御するものとしたが、ステアリング装置からの信号も含めて上記各制御を行うと、実際の走行に即した制御を行う上でさらに望ましいものとなる。また、この発明の車輪用軸受装置は、自動車の車輪の全てに設けても良く、あるいは一部の車輪だけに設けても良い。
 図16~図20(A)~(C)は、この発明の第2実施形態を示す。この実施形態では、図1~図15に示した第1実施形態のインホイール型モータ内蔵センサ付き車輪用軸受装置において、各センサユニット120を以下のように構成している。この場合、センサユニット120は、図17および図18に拡大平面図および拡大断面図で示すように、歪み発生部材121とこの歪み発生部材121に取り付けられて歪み発生部材121の歪みを検出する2つの歪みセンサ122とでなる。歪み発生部材121は、外輪1の外径面にスペーサ123を介して接触固定される3つの接触固定部121aを有する。3つの接触固定部121aは、歪み発生部材121の長手方向に向けて1列に並べて配置される。2つの歪みセンサ122のうち1つの歪みセンサ122Aは、図18において、左端の接触固定部121aと中央の接触固定部121aとの間に配置され、中央の接触固定部121aと右端の接触固定部121aとの間に他の1つの歪みセンサ122Bが配置される。図17のように、歪み発生部材121の両側辺部における前記各歪みセンサ122A,122Bの配置部に対応する2箇所の位置にそれぞれ切欠き部121bが形成されている。
 センサユニット120は、その歪み発生部材121の3つの接触固定部121aが、外輪1の軸方向に同寸法の位置で、かつ各接触固定部121aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部121aがそれぞれスペーサ123を介してボルト124により外輪1の外径面に固定される。
 このほか、図19に断面図で示すように、外輪1の外径面における前記歪み発生部材121の3つの接触固定部121aが固定される3箇所の各中間部に溝1cを設けることで、前記スペーサ123を省略し、歪み発生部材121における切欠き部121bが位置する各部位を外輪1の外径面から離すようにしても良い。センサユニット120におけるその他の構成や、センサユニット120の配置などは、図1~図15に示す第1実施形態の場合と同様である。
 この実施形態の場合、図1~図15に示す第1実施形態における信号処理ユニット130の平均・振幅抽出手段132において、各センサユニット120の2つの歪みセンサ122A,122Bの出力信号の和を演算して、その和を平均値として取り出す。また、2つの歪みセンサ122A,122Bの出力信号の差分を演算して、その差分値を振幅値として取り出す。
 ここでも、センサユニット120は、外輪1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ122A,122Bの出力信号a,bは、図20(A)~(C)のようにセンサユニット120の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪みセンサ122A,122Bの出力信号a,bは、転動体5の位置の影響を受ける。すなわち、転動体5がセンサユニット120における歪みセンサ122A,122Bに最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪みセンサ122A,122Bの出力信号a,bは最大値となり、図20(A),(B)のように転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット120の設置部の近傍を順次通過するので、歪みセンサ122A,122Bの出力信号a,bは、転動体5の配列ピッチPを周期として図20(C)に実線で示すように周期的に変化する正弦波に近い波形となる。
 また、歪みセンサ122A,122Bの出力信号a,bは、温度の影響などを受ける。この実施形態では、前記2つの歪みセンサ122A,122Bの出力信号a,bの和を上記した平均値とし、振幅の差分からを上記した振幅値を検出するものとする。これにより、平均値は転動体5の通過による変動成分をキャンセルした値となる。また、振幅値は、2つの歪みセンサ122A,122Bの各出力信号a,bに現れる温度の影響などを相殺した値となる。したがって、この平均値と振幅値を用いることにより、車輪用軸受Aやタイヤ接地面に作用する荷重をより正確に推定することができる。
 図20(A)~(C)では、静止側軌道輪である外輪1の外径面の円周方向に並ぶ3つの接触固定部121aのうち、その配列の両端に位置する2つの接触固定部121aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部121aの中間位置にそれぞれ配置される2つの歪みセンサ122A,122Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪みセンサ122A,122Bの出力信号a,bは略180度の位相差を有することになり、その和として求められる平均値は転動体5の通過による変動成分をキャンセルしたものとなる。また、その差分として求められる振幅値は温度の影響などを相殺した値となる。
 なお、図20(A)~(C)では、接触固定部121aの間隔を、転動体5の配列ピッチPと同一に設定し、隣り合う接触固定部121aの中間位置に各1つの歪みセンサ122A,122Bをそれぞれ配置することで、2つの歪みセンサ122A,122Bの間での前記円周方向の間隔を、転動体5の配列ピットPの略1/2となるようにした。これとは別に、直接、2つの歪み発生部座字122A,122Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定しても良い。この場合に、2つの歪みセンサ122A,122Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、両歪みセンサ122A,122Bの出力信号a,bの和として求められる平均値は転動体5の通過による変動成分をキャンセルした値となり、差分として求められる振幅値は温度の影響などを相殺した値となる。
 図21(A)は、この発明の第3実施形態に係り、減速機Cのケーシング33をアウトボード側から見た正面図、図21(B)は図21(A)の要部の側面図(A-A線端面図)である。同図21(A)に示すように、減速機Cのケーシング33のアウトボード側端に形成したケーブル案内用の切欠き部33bを周方向に伸びた溝形状、すなわち周方向の溝とし、外輪1のフランジ1aのケーブル挿通孔92から引き出された信号ケーブル129を、この溝形状の切欠き部33bを経由して信号処理ユニット130へと接続している。
 ケーシング33における切欠き部33bは、信号処理ユニット130に対して位相のずれた位置、この例では約90度位相のずれた位置に設けられる。切欠き部33bの溝の一側面33baは、ケーシング33のうち、ケーブル挿通孔92に対向する円周方向の位置P1から同ケーシング33の接線方向に延びる方向と平行に切欠き形成されている。切欠き部33bの溝の他側面33bbは、位置P1付近においてケーシング33の半径方向に切欠き形成されている。また、切欠き部33bの溝底面33bcは、図21(B)に示すように、軸受軸方向に垂直な平面となるように切欠き形成されている。
 ケーブル挿通孔92から出た信号ケーブル129は、防水シール部材94で覆われる。この防水シール部材94は、ケーシング33の切欠き部33bの溝全体を埋めるように設けられている。信号ケーブル129をケーシング33の溝形状の切欠き部33bに経由させている分、図2に示すように信号ケーブル129を径方向に取り出す場合よりも長い距離がシールされることになり、信号ケーブル129のケーブル表面と、防水シール部材94との間のシール性をより高めることができる。また、信号ケーブルを径方向に取り出す場合と比べて、信号ケーブル129の曲げ半径を大きくとることが可能になる。このため、被覆の厚い信号ケーブル129でも配線が容易になり、径方向への信号ケーブル129のはみ出しも小さく抑えられる。したがってセンサユニット全体のコンパクト化を図ることができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…外輪
22…電気モータのケーシング
33…減速機のケーシング
33b…切欠き部(溝)
70…駆動輪
120…センサユニット
121…歪み発生部材
121a…接触固定部
122,122A,122B…歪みセンサ
130…信号処理ユニット
133…荷重推定手段
137…モータ制御ユニット

Claims (12)

  1.  駆動輪のハブを回転自在に支持する車輪用軸受と、前記駆動輪の回転駆動源となる電気モータと、この電気モータと前記車輪用軸受との間に介在する減速機とを備えるインホイール型モータ内蔵車輪用軸受装置であって、
     歪み発生部材およびこの歪み発生部材に取り付けられた1つ以上の測定用のセンサからなるセンサユニットを、前記車輪用軸受の静止側軌道輪である外輪に設け、前記歪み発生部材は、前記外輪の外径面に接触固定される2つ以上の接触固定部を有する薄板材からなるインホイール型モータ内蔵センサ付き車輪用軸受装置。
  2.  請求項1において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記外輪の外周面の上面部、下面部、右面部、および左面部に配置したインホイール型モータ内蔵センサ付き車輪用軸受装置。
  3.  請求項1において、前記センサユニットは、2つの接触固定部と1つのセンサを有するインホイール型モータ内蔵センサ付き車輪用軸受装置。
  4.  請求項1において、前記センサユニットは,3つの接触固定部と2つのセンサを有するインホイール型モータ内蔵センサ付き車輪用軸受装置。
  5.  請求項1において、センサユニットの設置部周辺に樹脂モールドなどが施され、防水処理されたインホイール型モータ内蔵センサ付き車輪用軸受装置。
  6.  請求項1において、センサユニットを設置した前記車輪用軸受の外輪のアウトボード側外周面を保護するカバーを配置したインホイール型モータ内蔵センサ付き車輪用軸受装置。
  7.  請求項1において、前記センサユニットのセンサ出力信号から駆動輪に加わる荷重を推定する荷重推定手段を有する信号処理ユニットを設け、この信号処理ユニットを前記車輪用軸受の外輪、または前記減速機もしくは前記電気モータのケーシングに配置したインホイール型モータ内蔵センサ付き車輪用軸受装置。
  8.  請求項7において、前記車輪用軸受の外輪ではない静止側部位に信号処理ユニットを配置し、軸受外輪を減速機のケーシングに取り付けるためのフランジにセンサケーブルを取り出すための穴を設け、この穴を通じてセンサユニットの出力信号を信号処理ユニットまで配線したインホイール型モータ内蔵センサ付き車輪用軸受装置。
  9.  請求項8において、前記減速機のケーシングに、前記センサーケーブルを通した溝を設けたインホイール型モータ内蔵センサ付き車輪用軸受装置。
  10.  請求項7において、前記信号処理ユニットは、少なくとも前記センサ出力信号を増幅する信号増幅機能と、前記センサ出力信号からノイズ成分を除去するフィルタリング機能と、前記センサ出力信号をAD変換するAD変換機能とを有するインホイール型モータ内蔵センサ付き車輪用軸受装置。
  11.  請求項10において、前記信号処理ユニットは、さらに前記センサ出力信号を補正する補正機能と、前記センサ出力信号の平均値を求める平均値抽出機能と、前記センサ出力信号の振幅値を求める振幅値抽出機能と、前記補正に用いられる補正パラメータ、前記平均値抽出および振幅値抽出に用いられる計算パラメータ、および前記平均値と振幅値を変数
    として前記荷重推定手段で用いられる演算式の計算パラメータを記憶する記憶機能とを含む演算処理機能を有するインホイール型モータ内蔵センサ付き車輪用軸受装置。
  12.  請求項7において、前記信号処理ユニットの一部の機能を果たす手段を、前記電気モータを制御するモータ制御ユニットに組み込んだインホイール型モータ内蔵センサ付き車輪用軸受装置。
PCT/JP2010/070436 2009-11-27 2010-11-17 インホイール型モータ内蔵センサ付き車輪用軸受装置 WO2011065261A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010004587T DE112010004587T5 (de) 2009-11-27 2010-11-17 Radstützlagerbaugruppe mit sensor und radnabenmotorintegration
CN201080053235.7A CN102686435B (zh) 2009-11-27 2010-11-17 内置有内圈型电动机的带有传感器的车轮用轴承装置
US13/480,915 US8581457B2 (en) 2009-11-27 2012-05-25 Wheel support bearing assembly with sensor and in-wheel motor integration

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-269690 2009-11-27
JP2009269690 2009-11-27
JP2010220793A JP5517869B2 (ja) 2009-11-27 2010-09-30 インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2010-220793 2010-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/480,915 Continuation US8581457B2 (en) 2009-11-27 2012-05-25 Wheel support bearing assembly with sensor and in-wheel motor integration

Publications (1)

Publication Number Publication Date
WO2011065261A1 true WO2011065261A1 (ja) 2011-06-03

Family

ID=44066366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070436 WO2011065261A1 (ja) 2009-11-27 2010-11-17 インホイール型モータ内蔵センサ付き車輪用軸受装置

Country Status (5)

Country Link
US (1) US8581457B2 (ja)
JP (1) JP5517869B2 (ja)
CN (2) CN104385900B (ja)
DE (1) DE112010004587T5 (ja)
WO (1) WO2011065261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906643A (zh) * 2011-10-28 2014-07-02 Ntn株式会社 轮内电动机驱动装置
IT201900021570A1 (it) * 2019-11-19 2021-05-19 Dinamic Oil S P A Riduttore epicicloidale perfezionato

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033531A1 (de) * 2009-07-10 2011-01-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsvorrichtung für ein Kraftfahrzeug mit einer elektrische Maschinen aufweisenden Portalachse
EP3279021B1 (en) * 2009-10-02 2021-12-01 Volvo Lastvagnar AB A wheel hub unit
JP5517869B2 (ja) * 2009-11-27 2014-06-11 Ntn株式会社 インホイール型モータ内蔵センサ付き車輪用軸受装置
DE102010010438A1 (de) * 2010-02-26 2011-09-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrwerk für ein Kraftfahrzeug mit einer elektrichen Achse
WO2011148846A1 (ja) * 2010-05-24 2011-12-01 Ntn株式会社 センサ付車輪用軸受
JP5564352B2 (ja) 2010-07-23 2014-07-30 Ntn株式会社 インホイールモータ駆動装置
JP5731314B2 (ja) * 2011-08-03 2015-06-10 Ntn株式会社 センサ付車輪用軸受
CN103502786B (zh) 2011-05-09 2015-05-20 Ntn株式会社 带有传感器的车轮用轴承
JP6019554B2 (ja) * 2011-09-01 2016-11-02 日産自動車株式会社 車輪用軸受
JP5893486B2 (ja) * 2012-04-13 2016-03-23 Ntn株式会社 電気自動車
JP5692606B2 (ja) * 2012-05-28 2015-04-01 株式会社デンソー 回転式アクチュエータ
WO2014010103A1 (ja) * 2012-07-10 2014-01-16 日本精工株式会社 電動アクチュエータ
JP6253909B2 (ja) * 2012-10-30 2017-12-27 Ntn株式会社 車輪用軸受装置
JP2014115079A (ja) * 2012-12-06 2014-06-26 Ntn Corp センサ付車輪用軸受装置
DE102013204784B4 (de) * 2013-03-19 2018-01-11 Robert Bosch Gmbh Elektrische Fahrzeugachsenvorrichtung
KR101441813B1 (ko) * 2013-06-25 2014-09-18 현대위아 주식회사 전기자동차의 후륜 구동장치
CN203443542U (zh) * 2013-07-19 2014-02-19 鸿富锦精密工业(深圳)有限公司 量测机
GB2548505B (en) 2014-12-19 2020-09-23 Skf Ab Bearing ring
CA2974840A1 (en) * 2015-01-28 2016-08-04 Clark Anthony CAMERON A wheel assembly, a method of controlling the motion of an object and a golf club storage and transport device
CN105004293B (zh) * 2015-05-05 2017-09-29 萧山工业研究院 一种轮毂轴承套圈零件沟道轴向综合位置变差测量方法
JP7079582B2 (ja) * 2016-09-21 2022-06-02 Ntn株式会社 補助動力装置付き車輪用軸受装置およびその補助動力装置
JP6823418B2 (ja) * 2016-09-30 2021-02-03 Ntn株式会社 インホイールモータ駆動装置
DE102017209635A1 (de) * 2017-06-08 2018-12-13 Robert Bosch Gmbh Lagerplatte für einen bürstenlosen Gleichstrommotor und Herstellungsverfahren für eine Lagerplatte für einen bürstenlosen Gleichstrommotor
JP7140608B2 (ja) * 2017-10-17 2022-09-21 Ntn株式会社 車両用動力装置および発電機付き車輪用軸受装置
CN110254207A (zh) * 2018-03-12 2019-09-20 舍弗勒技术股份两合公司 轮毂驱动系统
JP7066520B2 (ja) 2018-05-21 2022-05-13 Ntn株式会社 車両用動力装置および発電機付車輪用軸受
US11235661B1 (en) * 2018-06-29 2022-02-01 Hydro-Gear Limited Partnership Electric drive assembly
DE102018213672A1 (de) * 2018-08-14 2020-02-20 Thyssenkrupp Ag Anschlusskonstruktion für eine Wälzlageranordnung
ES2790025A1 (es) * 2019-04-26 2020-10-26 Scutum Logistic S L Rueda motriz con motor electrico integrado en el eje
CN111457967A (zh) * 2020-05-22 2020-07-28 大连工业大学 一种基于光纤光栅传感一体化汽车轮毂轴承及其制作方法
CN114055995A (zh) * 2020-08-07 2022-02-18 舍弗勒技术股份两合公司 车轮转速测量组件和轮毂驱动系统
CN113460185A (zh) * 2021-08-05 2021-10-01 北京理工大学 一种轮腿式车辆触地检测装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010843A1 (ja) * 2005-07-19 2007-01-25 Ntn Corporation 電動式車輪駆動装置
JP2007331447A (ja) * 2006-06-13 2007-12-27 Ntn Corp インホイールモータの軸受装置
JP2008068725A (ja) * 2006-09-14 2008-03-27 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008074136A (ja) * 2006-09-19 2008-04-03 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008074135A (ja) * 2006-09-19 2008-04-03 Ntn Corp インホイール型モータ内蔵センサ付きアクスルユニット
JP2008081089A (ja) * 2006-09-29 2008-04-10 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008172935A (ja) * 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2009128264A (ja) * 2007-11-27 2009-06-11 Ntn Corp センサ付車輪用軸受

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769323B2 (ja) * 1988-06-29 1998-06-25 アイシン・エィ・ダブリュ株式会社 減速機付モータ駆動装置及び電動車両
US4996882A (en) * 1990-05-11 1991-03-05 Kistler-Morse Corporation Miniature strain sensor
US5287851A (en) * 1991-09-11 1994-02-22 Beran Anthony V Endotracheal tube connector with integral pneumotach transducer
US7009118B2 (en) * 2003-05-13 2006-03-07 Dynamic Datum Llc Vehicle load weighing system and load cells for such systems
JP2005231564A (ja) * 2004-02-23 2005-09-02 Ntn Corp 電動式車輪駆動装置
ATE447702T1 (de) * 2005-05-30 2009-11-15 Interfleet Technology Ab Verfahren und system zur bestimmung mehrerer lastkomponenten an einem rad
US8038562B2 (en) * 2005-08-18 2011-10-18 Ntn Corporation Power transmission device
US8132636B2 (en) * 2006-03-08 2012-03-13 Ntn Corporation In-wheel motor drive unit
WO2009069267A1 (ja) * 2007-11-27 2009-06-04 Ntn Corporation センサ付車輪用軸受
JP5142683B2 (ja) * 2007-11-27 2013-02-13 Ntn株式会社 センサ付車輪用軸受
JP2009269690A (ja) 2008-05-01 2009-11-19 Horizon International Inc 丁合機または用紙供給装置
JP5381214B2 (ja) 2009-03-24 2014-01-08 株式会社三洋物産 遊技機
JP5517869B2 (ja) * 2009-11-27 2014-06-11 Ntn株式会社 インホイール型モータ内蔵センサ付き車輪用軸受装置
JP5481236B2 (ja) * 2010-03-10 2014-04-23 Ntn株式会社 電気自動車のモータ駆動システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010843A1 (ja) * 2005-07-19 2007-01-25 Ntn Corporation 電動式車輪駆動装置
JP2007331447A (ja) * 2006-06-13 2007-12-27 Ntn Corp インホイールモータの軸受装置
JP2008068725A (ja) * 2006-09-14 2008-03-27 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008074136A (ja) * 2006-09-19 2008-04-03 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008074135A (ja) * 2006-09-19 2008-04-03 Ntn Corp インホイール型モータ内蔵センサ付きアクスルユニット
JP2008081089A (ja) * 2006-09-29 2008-04-10 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008172935A (ja) * 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2009128264A (ja) * 2007-11-27 2009-06-11 Ntn Corp センサ付車輪用軸受

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906643A (zh) * 2011-10-28 2014-07-02 Ntn株式会社 轮内电动机驱动装置
IT201900021570A1 (it) * 2019-11-19 2021-05-19 Dinamic Oil S P A Riduttore epicicloidale perfezionato
EP3825574A1 (en) * 2019-11-19 2021-05-26 Dinamic Oil S.p.A. Upgraded planetary gearbox

Also Published As

Publication number Publication date
JP5517869B2 (ja) 2014-06-11
CN104385900B (zh) 2017-04-12
CN102686435B (zh) 2015-08-12
CN102686435A (zh) 2012-09-19
US8581457B2 (en) 2013-11-12
CN104385900A (zh) 2015-03-04
JP2011133101A (ja) 2011-07-07
DE112010004587T5 (de) 2012-10-18
US20120229004A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5517869B2 (ja) インホイール型モータ内蔵センサ付き車輪用軸受装置
JP5436191B2 (ja) インホイール型モータ内蔵センサ付き車輪用軸受装置
US8307931B2 (en) Sensor-equipped axle unit having a built-in motor of in-wheel type
US7819026B2 (en) Sensor-equipped wheel support bearing assembly
JP4889324B2 (ja) センサ付車輪用軸受
US7882752B2 (en) Sensor-equipped bearing for wheel
JP4925624B2 (ja) センサ付車輪用軸受
JP5110854B2 (ja) インホイール型モータ内蔵センサ付き車輪用軸受装置
WO2007066482A1 (ja) センサ付車輪用軸受
US7878713B2 (en) Sensor-equipped bearing for wheel
JP2007292158A (ja) センサ付車輪用軸受
JP5615033B2 (ja) インホイールモータ駆動装置
JP2007057302A (ja) センサ付車輪用軸受
JP2010181154A (ja) センサ付車輪用軸受
WO2009101793A1 (ja) センサ付車輪用軸受
JP5908243B2 (ja) センサ付車輪用軸受装置
JP4879529B2 (ja) センサ付車輪用軸受
JP2010230406A (ja) センサ付車輪用軸受
JP2010090982A (ja) センサ付車輪用軸受
WO2015005282A1 (ja) センサ付車輪用軸受装置
JP2014001822A (ja) センサ付車輪用軸受装置
JP5489929B2 (ja) センサ付車輪用軸受
JP2007278407A (ja) センサ付車輪用軸受
JP2007078129A (ja) センサ付車輪用軸受
JP2008249566A (ja) センサ付車輪用軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053235.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010004587

Country of ref document: DE

Ref document number: 1120100045879

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833108

Country of ref document: EP

Kind code of ref document: A1