WO2011065212A1 - 生体試料成分の分析方法 - Google Patents
生体試料成分の分析方法 Download PDFInfo
- Publication number
- WO2011065212A1 WO2011065212A1 PCT/JP2010/069793 JP2010069793W WO2011065212A1 WO 2011065212 A1 WO2011065212 A1 WO 2011065212A1 JP 2010069793 W JP2010069793 W JP 2010069793W WO 2011065212 A1 WO2011065212 A1 WO 2011065212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- internal standard
- buffer solution
- component
- biological sample
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/96—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood or serum control standard
Definitions
- the present invention relates to a method for diluting blood or the like, which is an unquantified or unenzyme-activated biological sample, with a predetermined buffer, and quantifying biological sample components and analyzing enzyme activity from the diluted sample mixed solution. .
- glycerol-3-phosphate or glycerol is used as an internal standard substance as a method for diluting a small amount of blood with a predetermined buffer and analyzing the quantification of biological sample components and enzyme activity from the diluted sample mixed solution.
- the method of using is known (for example, refer patent document 1).
- glycerol-3-phosphate is hydrolyzed by alkaline phosphatase, which is an enzyme present in the living body, so it is necessary to add EDTA, which is an enzyme inhibitor. .
- EDTA which is an enzyme inhibitor.
- phosphoric acid since the enzyme cannot be completely inhibited by the addition of this inhibitor, it was necessary to further add phosphoric acid as a product inhibitor. Addition of these two substances reduces the activity of aspartate transaminase and alanine transaminase. For this reason, the addition of pyridoxal phosphate, which is an activator for these enzymes, also has an effect on the measurement of other biological components. Since glycerol permeates into blood cells and exists in the living body, it has a problem that an accurate plasma dilution rate cannot be calculated.
- glycerol-3-phosphate is used as an internal standard substance to determine the dilution rate of the buffer solution based on the amount of blood collected in the buffer solution.
- Phosphate is hydrolyzed by the alkaline phosphatase contained in the water, and converted to glycerol. Therefore, if the storage time after adding blood is long, an accurate blood dilution rate cannot be obtained, so that the concentration of biological components in the raw plasma and the reliability of enzyme activity decrease. In addition, depending on the buffer used, the storage stability of the biological component is lowered.
- a fiber rod is used for blood collection, and the blood is filled into the fiber by capillary action and dropped into the buffer solution to disperse the blood components evenly in the buffer solution. is necessary.
- the present invention has been made to solve the above-described problems, and is a biological sample component that can be easily and accurately quantified with respect to any component of the plasma component of an unknown amount of whole blood sample collected from a finger. It aims at providing the analysis method of.
- the present invention is a method for analyzing a biological sample component in a very small amount of blood, comprising an isotonic dilution buffer containing the blood, and an internal content contained in the isotonic dilution buffer.
- a standard substance is analyzed, a dilution rate is calculated, and a biological component in plasma or serum component in the blood is analyzed.
- the internal standard substance of the buffer solution is a component that is stable for a long period of time and is not adsorbed in a container containing the buffer solution, and the internal standard substance is almost contained in the blood.
- the substance is a substance that can be analyzed easily and accurately by a biochemical automatic analyzer.
- the internal standard substance in the buffer solution is a component that does not penetrate into the blood cells, and is a substance that can accurately reflect the dilution rate of the plasma or the serum. Is preferred.
- the buffer solution preferably has a reagent composition that is isotonic with respect to the blood cell membrane and does not cause hemolysis of the blood cells even when blood is mixed.
- the buffer solution has a composition that can be stably maintained without denaturing the biological sample component in the blood.
- the internal standard substance preferably contains choline.
- the present invention has the following features. That is, according to one aspect of the present invention, a method for quantifying and enzymatic activity analysis of a component of a biological sample containing a collected blood cell of unknown concentration, the component being hardly contained in the biological sample, comprising a blood cell membrane Prepare an internal standard that does not pass through and add it to the buffer. Analyze the internal standard concentration in the buffer before adding blood, and measure the absorbance and the concentration of the internal standard in the diluted buffer after adding blood. The plasma dilution rate is determined, and the biological components and enzyme activities in the raw plasma are determined. In this case, it is preferable that the osmotic pressure of the buffer solution is adjusted so as to be approximately blood osmotic pressure.
- the internal standard substance to be added to the buffer solution is a component that is not present in the living body or is present in a very small amount. It must be stable and not adsorbed on the container. It is also necessary not to interfere with other biological components. Furthermore, it is required to be a buffer solution that can stably store biological components.
- the blood collection device does not include a fiber lot, and by using a cylindrical shape that can be sucked by capillary action, blood components can be easily dispersed in the buffer solution.
- the lumen of the blood collection device is coated with an anticoagulant such as heparin or EDTA.
- the blood cell component in the buffer solution has a check valve function, and the diluted plasma and blood cells are separated by a blood cell filter.
- This function has a function to avoid the influence of hemolysis of blood cells.
- the volume of the internal standard substance added buffer solution is made as small as possible and the space excluding the buffer solution is made as small as possible to suppress the evaporation of the buffer solution. Further, by reducing the amount of the buffer solution, the blood dilution rate is reduced, the concentration dilution of the biological component is reduced, and a more accurate measurement value is obtained.
- the osmotic pressure of the buffer is preferably in the range of 200 to 340 mOsm / L with respect to the blood cell membrane.
- the internal standard substance to be added to the buffer solution is very small in the living body, does not penetrate into blood cells, does not interfere with biological components, is stable in the buffer solution, There is a demand for non-adsorption and the availability of a detection system that can measure accurately. Further, it is required that the osmotic pressure is such that the blood cells do not hemolyze, and the buffer solution has an isotonic pressure almost equal to that of blood.
- Table 1 shows the composition of a buffer containing, as an example of a buffer, choline, which is one of internal standards that do not permeate the blood cell membrane, and glycerol, which is one of the internal standards that permeate the blood cell membrane. ing.
- HEPES is N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid.
- Table 2 shows a measurement reagent for choline, which is one of internal standard substances that do not pass through the blood cell membrane.
- TOOS is N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline sodium dihydrate
- Bis-Tris is bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane is there.
- Table 3 shows measurement reagents for glycerol, which is one of the internal standard substances that pass through the blood cell membrane.
- HEPES is N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
- GPO is glycerol triphosphate oxidase
- EDTA2Na is disodium ethylenediaminetetraacetate
- ADPS is N-ethyl-N-sulfopropyl-3 -Methoxyaniline
- GK is glycerol kinase
- POD peroxidase
- ATP2Na is adenosine 5'-triphosphate disodium trihydrate.
- A ⁇ cl according to Lambert-Beer's law.
- A absorbance
- ⁇ molar extinction coefficient
- c molar concentration of solute
- l optical path length
- Absorbance (A) and solute molar concentration (c) are in a proportional relationship, and the concentration of a solute in an unknown sample is generally calculated by using a calibration curve obtained by measuring a solution in which a known concentration of solute is dissolved.
- blood is composed of plasma, which is a liquid component, or blood cells, which are serum and a solid component. Further, blood cells are known to have a solid component such as a blood cell membrane and a liquid component inside thereof. It has been.
- the components that permeate the blood cell membrane are originally present in plasma or serum and blood fluid, and when blood is diluted with a buffer solution, it will be distributed in the buffer solution and plasma or serum and blood fluid.
- the at this time when a predetermined amount of the internal standard substance that permeates the blood cell membrane is dissolved in the buffer solution, the internal standard substance that is originally present in the buffer solution is distributed in the buffer solution and plasma or serum and blood cell liquid. It will be diluted. That is, the initial concentration (C2) of the internal standard substance that permeates the blood cell membrane in the buffer solution changes to the concentration (C3) when blood is added.
- the blood cell membrane calculated from the internal standard is The volume (V1) of the biological sample that does not penetrate the blood cell membrane can be calculated from the dilution factor (r1) of the biological sample component that does not penetrate.
- V1 V0 / (r1-1).
- the volume (V0) of the solution containing the internal standard substance is quantitative
- the blood cell membrane calculated from the internal standard substance From the dilution factor (r2) of the biological sample component that permeates, the volume (V1 + V2) of the biological sample that permeates the blood cell membrane can be calculated.
- V1 + V2 V0 / (r2-1).
- V2 / (V2 + V3) 0.65
- V3 7/13 *
- V2 7/13 * ⁇ V0 / (r2-1) -V0 / (r1-1) ⁇ Therefore, a solution containing an internal standard substance that does not pass through the blood cell membrane, a solution containing an internal standard substance that passes through the blood cell membrane, or a solution containing an internal standard substance that does not pass through the blood cell membrane and an internal standard substance that passes through the blood cell membrane.
- V1, V2, and V3 can be calculated from V0, r1, and r2.
- V1 + V2 + V3 the amount of plasma or serum (V1), the dilution of plasma or serum (r1), the amount of plasma or serum and blood cell fluid (V1 + V2), dilution factor of plasma or serum and blood cell fluid (r2), blood volume (V1 + V2 + V3), dilution factor of blood ⁇ (V0 + V1 + V2 + V3) / (V1 + V2 + V3) ⁇ , Blood cell volume (V2 + V3), blood cell dilution factor ⁇ (V2 + V3) / (V0 + V2 + V3) ⁇ , blood cell fluid volume (V2), blood cell fluid dilution factor ⁇ V2 / (V0 + V1) + V2) ⁇ , blood cell solids amount (V3), blood cell solids dilution factor ⁇ V3 / (V0 + V1 + V2 + V3) ⁇ , hematocrit value ⁇ (V2 + V3) / (V1 + V3)
- Table 5 is a table showing the relationship between the sample number and the corresponding amount and its theoretical multiple.
- the dilution factor when the dilution factor is 18 times or less, the dilution factor can be calculated with high accuracy.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本発明は、微量の血液中の生体試料成分を分析する方法であって、前記血液を入れる等張希釈緩衝液と、該等張希釈緩衝液中に含まれる内部標準物質を分析し、希釈率を算出し、前記血液中の血漿又は血清成分中の生体成分を分析することを特徴とする。
Description
本発明は、未定量や未酵素活性の生体試料である血液などを所定の緩衝液で希釈し、希釈された試料混合溶液から、生体試料成分の定量及び酵素活性を分析する方法に関するものである。
従来、微量の血液を所定の緩衝液で希釈し、希釈された試料混合溶液から、生体試料成分の定量及び酵素活性を分析する方法としては、内部標準物質としてグリセロール-3-リン酸やグリセロールを使用する方法が知られている(例えば、特許文献1参照)。
しかしながら、上記した従来の生体試料成分の分析方法では、グリセロール-3-リン酸が生体に存在する酵素であるアルカリホスファターゼにより水解されるため、酵素の阻害剤であるEDTAを添加する必要があった。また、この阻害剤の添加では完全に酵素を阻害できないため、生成物阻害剤としてリン酸を更に添加する必要があった。これら2つの物質の添加によりアスパラギン酸トランスアミナーゼやアラニントランスアミナーゼの活性が低下する。このため、これらの酵素の活性化剤であるピリドキサールリン酸を更に添加することから他の生体成分測定への影響も生じることになった。グリセロールは血球内に浸透することや生体内にも存在することから正確な血漿希釈率を算定することができない問題を抱えていた。
また、上記した従来の生体試料成分の分析方法では、緩衝液に採取した血液量による緩衝液の希釈率を求めるために内部標準物質としてグリセロール-3-リン酸が用いられているが、生体内に含まれるアルカリホスファターゼによりリン酸が水解を受け、グリセロールに変化してしまう。従って、血液を添加した後の保存時間が長いと正確な血液希釈率が得られないため、原血漿中の生体成分の濃度や酵素活性の信頼性が低下する。また、用いる緩衝液によっては生体成分の保存安定性が低下する。
血液を採取する器具にはファイバーロッドを用いて、毛細管現象で血液をファイバー内に満たし、これを緩衝液中に落とし、血液成分を緩衝液に均等に分散させるが、そのためには十分な混合が必要である。
本発明は、上記した課題を解決すべくなされたものであり、手指から採取した未知量の全血試料の血漿成分のいずれの成分に対しても簡便かつ正確に定量することのできる生体試料成分の分析方法を提供することを目的とするものである。
上記した目的を達成するため、本発明は、微量の血液中の生体試料成分を分析する方法であって、前記血液を入れる等張希釈緩衝液と、該等張希釈緩衝液中に含まれる内部標準物質を分析し、希釈率を算出し、前記血液中の血漿又は血清成分中の生体成分を分析することを特徴とする。
本発明の生体試料成分の分析方法において、前記緩衝液の内部標準物質は長期間安定であり、前記緩衝液を入れる容器に吸着しない成分であり、前記内部標準物質は前記血液中にほとんど含まれていない物質であり、生化学自動分析装置で容易且つ精度よく分析可能な物質であるのが好ましい。
また、本発明の生体試料成分の分析方法において、前記緩衝液中の内部標準物質は前記血球内に浸透しない成分であり、前記血漿や前記血清の希釈率を正確に反映可能な物質であるのが好ましい。
さらに、本発明の生体試料成分の分析方法において、前記緩衝液は血球膜に対する浸透圧が等張で、血液が混合されても前記血球の溶血が生じない試薬組成を有しているのが好ましい。
さらにまた、本発明の生体試料成分の分析方法において、前記緩衝液は前記血液中の生体試料成分を変性させることなく、安定に維持できる組成を有しているのが好ましい。
さらに、本発明の生体試料成分の分析方法において、前記内部標準物質はコリンを含んでいるのが好ましい。
本発明によれば、手指から採取した未知量の全血試料の血漿成分のいずれの成分に対しても簡便かつ正確に定量することができる。
本発明は以下の特徴を有する。すなわち、本発明の1つの特徴によれば、採取した未知濃度の血球を含む生体試料の成分を定量及び酵素活性分析する方法であって、生体試料にほとんど含まれない成分であって、血球膜を通過しない内部標準物質を用意し、これを緩衝液中に添加する。血液を添加する前の緩衝液中の内部標準物質濃度を分析し、その吸光度と血液添加後の希釈された緩衝液中の内部標準物質の濃度を測定することで、その吸光度の比率から血液中の血漿希釈率を求め、原血漿中の生体成分や酵素活性を求める。この場合、前記緩衝液の浸透圧がほぼ血液浸透圧となるように調製されるのが好ましい。
血液を緩衝液で希釈したときの、血漿成分の正確な希釈率を求めるためには、緩衝液に入れる内部標準物質は生体内に存在しないか、ごく微量に存在する成分であり、緩衝液中で安定、容器に吸着しないことが必要である。また、他の生体成分に干渉しないことが必要である。さらに生体成分を安定に保存できる緩衝液であることが求められる。
採取した血液が緩衝液に容易に混合される筒状の採取器具を用いる。血液の採取器具はファイバーロットを含まず、毛細管現象で吸引できる筒状の形状を用いることで、緩衝液中では容易に血液成分が分散することが可能となる。また、採血器具の内腔にはヘパリンやEDTAなどの抗凝固剤をコーティングして用いる。
緩衝液中の血球成分は逆止弁機能を持つ、血球フィルターにより希釈血漿と血球を分離する。この機能により血球の溶血による影響を回避する機能を有する。内部標準物質添加緩衝液を入れる容器はその体積を極力小さくし、緩衝液を除く空間を極力小さくすることで、緩衝液の蒸発を押さえる。また、緩衝液量を少なくすることで血液の希釈率を小さくし、生体成分の濃度希釈を小さくし、より精度の高い測定値が得られるようにする。緩衝液の浸透圧は好ましくは、血球膜に対する浸透圧が200~340mOsm/Lの範囲にある。
緩衝液に加える内部標準物質は、生体内に無いかごく微量であること、血球内に浸透しないこと、生体成分に干渉を与えないこと、緩衝液内で安定であること、緩衝液の容器に吸着しないこと、精度よく測定できる検出系が利用できることなどが求められる。また、血球が溶血しないような浸透圧が血液とほぼ等張圧の緩衝液であることが求められる。
表1には緩衝液の一例として、血球膜を透過しない内部標準物質の1つであるコリン及び血球膜を透過する内部標準物質の1つであるグリセロールを含有する、緩衝液の組成が示されている。
表2には、血球膜を通過しない内部標準物質の1つであるコリンの測定試薬が示されている。
以下に、コリンの測定手順を示す。
コリン測定にあたっては、上記R1およびR2を使用する。
1.4μlの混合生体試料と60μlのR1を混合し、37℃で5分間放置する。
2.596/694nm波長で吸光度を測定する。――A1(吸光度)
3.30μlのR2を混合し、37℃で5分間放置する。
4.596/694nm波長で吸光度を測定する。――A2(吸光度)
吸光度は測定値の差として表すことができる。従って、一般に吸光度はΔA=A2-A1として得られる。
1.4μlの混合生体試料と60μlのR1を混合し、37℃で5分間放置する。
2.596/694nm波長で吸光度を測定する。――A1(吸光度)
3.30μlのR2を混合し、37℃で5分間放置する。
4.596/694nm波長で吸光度を測定する。――A2(吸光度)
吸光度は測定値の差として表すことができる。従って、一般に吸光度はΔA=A2-A1として得られる。
表3には、血球膜を通過する内部標準物質の1つであるグリセロールの測定試薬が示されている。
以下に、グリセロールの測定手順を示す。
グリセロール測定にあたって、上記R1およびR2を使用する。
1.5μlの混合生体試料と80μlのを混合し、37℃で5分間放置する。
2.546/884nm波長で吸光度を測定する。――A3(吸光度)
3.40μlのR2を混合し、37℃で5分間放置する。
4.546/884nm波長で吸光度を測定する。――A4(吸光度)
吸光度は測定値の差として表すことができる。従って、一般に吸光度はΔA=A4-A3として得られる。
1.5μlの混合生体試料と80μlのを混合し、37℃で5分間放置する。
2.546/884nm波長で吸光度を測定する。――A3(吸光度)
3.40μlのR2を混合し、37℃で5分間放置する。
4.546/884nm波長で吸光度を測定する。――A4(吸光度)
吸光度は測定値の差として表すことができる。従って、一般に吸光度はΔA=A4-A3として得られる。
吸光度と濃度の関係はLambert-Beerの法則によりA=εclであることが知られている。ここで、A(吸光度)、ε(モル吸光係数)、c(溶質のモル濃度)、l(光路長)である。吸光度(A)と溶質のモル濃度(c)は比例関係にあり、既知濃度の溶質が溶けた溶液を測定し得られた検量線を用いることによって、一般に未知試料中の溶質の濃度が算出される。
図1に示すように、血液は、液体成分である血漿又は、血清と固体成分である血球によって構成されており、更に血球は血球膜などの固体成分とその内側に液体成分を有することが知られている。
また、図2に示すように、血液を所定の緩衝液で希釈した場合、本来、血漿又は血清に存在する血球膜を透過しない成分は、緩衝液及び血漿又は、血清中に分布することになり、希釈される。この際、緩衝液に血球膜を透過しない内部標準物質が規定量溶解している場合、本来緩衝液中に存在するこの内部標準物質は、緩衝液及び血漿又は、血清中に分布することになり、希釈される。つまり、緩衝液中の血球膜を透過しない内部標準物質の初期濃度(C0)は、血液が添加されることによって濃度(C1)へ変化する。このC0及びC1によって、血漿又は、血清の希釈倍数(r1)=C0/(C0-C1)が算出される。ここで、本来血漿又は、血清に存在する血球膜を透過しない成分の希釈倍数は、血漿又は、血清の希釈倍数と等しいので、r1=(V0+V1)/V1=C0/(C0-C1)によって算出される。
血球膜を透過する成分は本来血漿又は、血清及び血球内液体に存在し、血液を緩衝液で希釈する場合、緩衝液及び血漿又は、血清中及び血球内液体に分布することになり、希釈される。この際、緩衝液に血球膜を透過する内部標準物質が規定量溶解している場合、本来緩衝液中に存在するこの内部標準物質は、緩衝液及び血漿又は、血清及び血球液体中に分布することになり、希釈される。つまり、緩衝液中の血球膜を透過する内部標準物質の初期濃度(C2)は、血液が添加されることによって濃度(C3)へ変化する。このC2及びC3によって、血漿又は、血清及び血球液体の希釈倍数(r2)=(V0+V1+V2)/(V1+V2)=C2/(C2-C3)が算出される。ここで、本来血漿又は、血清及び血球液体に存在する血球膜を透過する成分の希釈倍数は、血漿又は、血清及び血球液体の希釈倍数と等しいので、r2=(V0+V1+V2)/(V1+V2)=C2/(C2-C3)によって算出される。
これらは、以下の表4に示すいずれの場合でも利用可能である。
すなわち、V1=V0/(r1-1)で算出できる。
また、生体試料を血球膜に透過する内部標準物質が含まれる溶液で希釈する際、内部標準物質が含まれる溶液の容量(V0)が定量であれば、内部標準物質から算出される血球膜を透過する生体試料成分の希釈倍数(r2)より、血球膜を透過する生体試料の容量(V1+V2)が算出できる。
すなわち、V1+V2=V0/(r2-1)で算出できる。
血球膜を透過しない内部標準物質と血球膜を透過する内部標準物質が含まれる溶液で生体試料を希釈する際、V0とr1から求められるV1とV0とr2から求められるV1+V2の両式より、V2=(V1+V2)-V1=V0/(r2-1)-V0/(r1-1)が算出できる。
血球は、65%の液体と35%の固体から成ることが知られている。
V2/(V2+V3)=0.65
V3=7/13*V2=7/13*{
V0/(r2-1)-V0/(r1-1)}
従って、血球膜を透過しない内部標準物質を含む溶液、血球膜を透過する内部標準物質を含む溶液又は、血球膜を透過しない内部標準物質と血球膜を透過する内部標準物質が含まれる溶液で生体試料を希釈する際、V0、r1、r2によってV1、V2、V3が算出可能である。
V2/(V2+V3)=0.65
V3=7/13*V2=7/13*{
V0/(r2-1)-V0/(r1-1)}
従って、血球膜を透過しない内部標準物質を含む溶液、血球膜を透過する内部標準物質を含む溶液又は、血球膜を透過しない内部標準物質と血球膜を透過する内部標準物質が含まれる溶液で生体試料を希釈する際、V0、r1、r2によってV1、V2、V3が算出可能である。
さらに、V0、r1、r2、V1、V2、V3を組み合わせることによって、血漿又は、血清の量(V1)、血漿又は、血清の希釈倍数(r1)、血漿又は、血清及び血球液体の量(V1+V2)、血漿又は、血清及び血球液体の希釈倍数(r2)、血液量(V1+V2+V3)、血液の希釈倍数{(V0+V1+V2+V3)/(V1+V2+V3)}、血球量(V2+V3)、血球の希釈倍数{(V2+V3)/(V0+V2+V3)}、血球液体の量(V2)、血球液体の希釈倍数{V2/(V0+V1+V2)}、血球固体の量(V3)、血球固体の希釈倍数{V3/(V0+V1+V2+V3)}、ヘマトクリット値{(V2+V3)/(V1+V2+V3)}、緩衝液の量(V0)、緩衝液の血漿又は、血清に対する希釈倍数{(V0+V1)/V0}、緩衝液の血漿又は、血清及び血球液体に対する希釈倍数{(V0+V1+V2)/V0}、緩衝液の血液に対する希釈倍数{(V0+V1+V2+V3)/V0}、緩衝液の血球液体に対する希釈倍数{(V0+V2)/V0}、緩衝液の血球固体に対する希釈倍数{(V0+V3)/V0}、緩衝液の血球に対する希釈倍数{(V0+V2+V3)/V0}などが算出可能である。
以下、本発明の実施例について説明する。
指示物質としてコリンに着目し、コリンの吸光度を計測することにより、血漿成分のうち血球膜を透過しない物質に対する希釈倍数を算出した例である。
小試験管9本を用意し、表1に示す緩衝液を表5に示すように正確に分注した。ついで、試験管1~9にプール血清(3,000rpmで遠心分離して得られた10人分の血清をプールして保管したもの)を表5に示すように正確に分注した。分注後、ミキサー(AUTMATIC LAB MIXER MODEL TH-2)で5分間撹拌した。表5は、サンプル番号と対応する量及び、その理論倍数との関係を示す表である。
Claims (6)
- 微量の血液中の生体試料成分を分析する方法であって、
前記血液を入れる等張希釈緩衝液と、該等張希釈緩衝液中に含まれる内部標準物質を分析し、希釈率を算出し、前記血液中の血漿又は血清成分中の生体成分を分析することを特徴とする方法。 - 前記緩衝液の内部標準物質は長期間安定であり、前記緩衝液を入れる容器に吸着しない成分であり、前記内部標準物質は前記血液中にほとんど含まれていない物質であり、生化学自動分析装置で容易且つ精度よく分析可能な物質である請求項1に記載の方法。
- 前記緩衝液中の内部標準物質は前記血球内に浸透しない成分であり、前記血漿や前記血清の希釈率を正確に反映可能な物質である請求項1又は2に記載の方法。
- 前記緩衝液は血球膜に対する浸透圧が等張で、血液が混合されても前記血球の溶血が生じない試薬組成を有している請求項1~3のいずれか1の請求項に記載の方法。
- 前記緩衝液は前記血液中の生体試料成分を変性させることなく、安定に維持できる組成を有している請求項1~4のいずれか1の請求項に記載の方法。
- 前記内部標準物質はコリンを含んでいる請求項1~5のいずれか1の請求項に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-267680 | 2009-11-25 | ||
JP2009267680A JP2011112451A (ja) | 2009-11-25 | 2009-11-25 | 生体試料成分の分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011065212A1 true WO2011065212A1 (ja) | 2011-06-03 |
Family
ID=44066315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069793 WO2011065212A1 (ja) | 2009-11-25 | 2010-11-08 | 生体試料成分の分析方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011112451A (ja) |
WO (1) | WO2011065212A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107076728A (zh) * | 2014-07-25 | 2017-08-18 | 立佳有限公司 | 稀释生物样品成分的分析方法 |
CN107864669A (zh) * | 2015-07-06 | 2018-03-30 | 富士胶片株式会社 | 血液检查试剂盒及使用血液检查试剂盒的分析方法 |
CN107923902A (zh) * | 2015-07-06 | 2018-04-17 | 富士胶片株式会社 | 血液检查试剂盒及血液分析方法 |
CN107949789A (zh) * | 2015-07-06 | 2018-04-20 | 富士胶片株式会社 | 血液分析方法及血液检查试剂盒 |
US20180128808A1 (en) * | 2015-07-06 | 2018-05-10 | Fujifilm Corporation | Blood test kit, member thereof, and method for manufacturing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017006409A1 (ja) * | 2015-07-06 | 2017-12-28 | 株式会社リージャー | 希釈血漿を検査試料として用いる測定法への正確さの伝達方法 |
WO2017006963A1 (ja) * | 2015-07-06 | 2017-01-12 | 富士フイルム株式会社 | 血液検査キット、及びそれを用いた分析方法 |
WO2017006965A1 (ja) * | 2015-07-06 | 2017-01-12 | 富士フイルム株式会社 | 血液分析方法及び血液検査キット |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003005039A1 (fr) * | 2001-07-04 | 2003-01-16 | Kyowa Medex Co., Ltd. | Procede de preparation d'une solution de quantification, procede de quantification utilisant la solution de quantification, instrument de preparation de solutions de quantification et procede d'utilisation correspondant |
JP2003161729A (ja) * | 2000-01-05 | 2003-06-06 | Leisure Inc | 生体試料調製方法、生体試料定量方法及び生体試料保存容器 |
JP2006322829A (ja) * | 2005-05-19 | 2006-11-30 | Leisure Inc | 未定量の生体試料の定量分析方法 |
JP2009109196A (ja) * | 2007-10-26 | 2009-05-21 | Panasonic Corp | 希釈倍率導出方法、定量方法、及び分析装置 |
-
2009
- 2009-11-25 JP JP2009267680A patent/JP2011112451A/ja active Pending
-
2010
- 2010-11-08 WO PCT/JP2010/069793 patent/WO2011065212A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003161729A (ja) * | 2000-01-05 | 2003-06-06 | Leisure Inc | 生体試料調製方法、生体試料定量方法及び生体試料保存容器 |
WO2003005039A1 (fr) * | 2001-07-04 | 2003-01-16 | Kyowa Medex Co., Ltd. | Procede de preparation d'une solution de quantification, procede de quantification utilisant la solution de quantification, instrument de preparation de solutions de quantification et procede d'utilisation correspondant |
JP2006322829A (ja) * | 2005-05-19 | 2006-11-30 | Leisure Inc | 未定量の生体試料の定量分析方法 |
JP2009109196A (ja) * | 2007-10-26 | 2009-05-21 | Panasonic Corp | 希釈倍率導出方法、定量方法、及び分析装置 |
Non-Patent Citations (1)
Title |
---|
MASATOSHI HORITA ET AL.: "Establishment of Mail Medical Examination System Using Immediate Plasma Separating Device by the Self-Collection Blood - The Method of Dilution Ratio Calculation by Using Internal Standard for the Sample with Different Amount of Collecting Blood", THE JAPANESE JOURNAL OF CLINICAL PATHOLOGY, vol. 56, no. 7, 25 July 2008 (2008-07-25), pages 577 - 583 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10712354B2 (en) | 2014-07-25 | 2020-07-14 | Leisure, Inc. | Method of analyzing diluted biological sample component |
CN107076728B (zh) * | 2014-07-25 | 2020-07-31 | 立佳有限公司 | 稀释生物样品成分的分析方法 |
CN109799126A (zh) * | 2014-07-25 | 2019-05-24 | 立佳有限公司 | 稀释生物样品成分的分析方法 |
US11808777B2 (en) | 2014-07-25 | 2023-11-07 | Leisure, Inc. | Method of analyzing diluted biological sample component |
TWI734053B (zh) * | 2014-07-25 | 2021-07-21 | 日商立佳有限公司 | 經稀釋之活體樣品成分之分析方法 |
EP3309548A1 (en) * | 2014-07-25 | 2018-04-18 | Leisure, Inc. | Analysis method for diluted biological sample component |
TWI713488B (zh) * | 2014-07-25 | 2020-12-21 | 日商立佳有限公司 | 經稀釋之活體樣品成分之分析方法 |
EP3173786A4 (en) * | 2014-07-25 | 2017-12-27 | Leisure, Inc. | Analysis method for diluted biological sample component |
CN107076728A (zh) * | 2014-07-25 | 2017-08-18 | 立佳有限公司 | 稀释生物样品成分的分析方法 |
CN109799127A (zh) * | 2014-07-25 | 2019-05-24 | 立佳有限公司 | 稀释生物样品成分的分析方法 |
EP3282261A1 (en) * | 2014-07-25 | 2018-02-14 | Leisure, Inc. | Analysis method for diluted biological sample component |
US11808776B2 (en) | 2014-07-25 | 2023-11-07 | Leisure, Inc. | Method of analyzing diluted biological sample component |
CN108027359A (zh) * | 2015-07-06 | 2018-05-11 | 富士胶片株式会社 | 血液检查试剂盒、其部件及它们的制造方法 |
US10634661B2 (en) | 2015-07-06 | 2020-04-28 | Fujifilm Corporation | Blood analysis method and blood test kit |
US10697870B2 (en) | 2015-07-06 | 2020-06-30 | Fujifilm Corporation | Blood test kit and analyzing method using the same |
US20180128845A1 (en) * | 2015-07-06 | 2018-05-10 | Fujifilm Corporation | Blood test kit and blood analysis method |
US20180128808A1 (en) * | 2015-07-06 | 2018-05-10 | Fujifilm Corporation | Blood test kit, member thereof, and method for manufacturing the same |
US10788478B2 (en) | 2015-07-06 | 2020-09-29 | Fujifilm Corporation | Blood test kit, member thereof, and method for manufacturing the same |
US10823745B2 (en) * | 2015-07-06 | 2020-11-03 | Fujifilm Corporation | Blood test kit and blood analysis method |
CN107949789A (zh) * | 2015-07-06 | 2018-04-20 | 富士胶片株式会社 | 血液分析方法及血液检查试剂盒 |
CN107923902A (zh) * | 2015-07-06 | 2018-04-17 | 富士胶片株式会社 | 血液检查试剂盒及血液分析方法 |
CN107864669A (zh) * | 2015-07-06 | 2018-03-30 | 富士胶片株式会社 | 血液检查试剂盒及使用血液检查试剂盒的分析方法 |
US20180143116A1 (en) * | 2015-07-06 | 2018-05-24 | Fujifilm Corporation | Blood test kit and analyzing method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2011112451A (ja) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011065212A1 (ja) | 生体試料成分の分析方法 | |
DK3050974T3 (en) | Procedure for Detecting Moisture Compromised Urine Test Strips | |
Doumas et al. | Candidate reference method for determination of total bilirubin in serum: development and validation. | |
JP6681794B2 (ja) | 希釈生体試料成分の分析方法(内部標準法) | |
CN107884401A (zh) | 消除脂血干扰的葡萄糖氧化酶测定方法 | |
EP4149680A1 (en) | Digital microfluidics analytical techniques | |
Wiener | An assessment of the effect of haematocrit on the HemoCue blood glucose analyser | |
CN112029817A (zh) | 一种肌酐检测试剂盒及其使用方法 | |
US4448889A (en) | Fluid analysis | |
Dorizzi et al. | Measurement of urine relative density using refractometer and reagent strips | |
CN114184452B (zh) | 一种用于离心式微流控盘式芯片的染料珠及其制备方法 | |
Dohnal et al. | Comparison of three methods for determination of glucose | |
JPS6118982B2 (ja) | ||
JP6635814B2 (ja) | 微量かつ未知量体液の分析方法 | |
Seiden-Long et al. | Evaluation of a third party enzymatic ammonia method for use on the Roche Cobas 6000 (c501) automated platform | |
Kösem et al. | The Effect of Additives in Urine Tubes on Biochemical Analytes | |
Liedtke et al. | Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium. | |
CN112525844B (zh) | 一种稳定的透析器清除率模拟液中尿素浓度测试方法 | |
Hørder et al. | Experiences with the Scandinavian recommended methods for determinations of enzymes in blood: A report by the Scandinavian Committee on Enzymes (SCE) | |
Smith et al. | Comparison of two-point (AutoAnalyzer II) with kinetic methods for transaminase assay | |
Miura et al. | The basic analytical performance of fully automated integrated urine analyzer UX-2000 CHM unit | |
CN101464375A (zh) | 镁(离子)诊断/测定试剂盒及镁(离子)的浓度测定方法 | |
CN101464365A (zh) | 镁(离子)诊断/测定试剂盒及镁(离子)的浓度测定方法 | |
JPS6119933B2 (ja) | ||
CN1912599A (zh) | 血清中尿酸的化学发光测定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833059 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10833059 Country of ref document: EP Kind code of ref document: A1 |