WO2011064940A1 - 炭素電極および多結晶シリコン棒の製造装置 - Google Patents

炭素電極および多結晶シリコン棒の製造装置 Download PDF

Info

Publication number
WO2011064940A1
WO2011064940A1 PCT/JP2010/006270 JP2010006270W WO2011064940A1 WO 2011064940 A1 WO2011064940 A1 WO 2011064940A1 JP 2010006270 W JP2010006270 W JP 2010006270W WO 2011064940 A1 WO2011064940 A1 WO 2011064940A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
rod
core wire
polycrystalline silicon
carbon
Prior art date
Application number
PCT/JP2010/006270
Other languages
English (en)
French (fr)
Inventor
祢津 茂義
伸一 黒谷
暁二 小黒
史高 久米
勝 平原
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US13/508,826 priority Critical patent/US9562289B2/en
Priority to EP10832796.6A priority patent/EP2505554B1/en
Priority to EP16187289.0A priority patent/EP3150556B1/en
Priority to CN201080049198.2A priority patent/CN102666380B/zh
Priority to AU2010324095A priority patent/AU2010324095B2/en
Priority to EP16187287.4A priority patent/EP3118158B1/en
Publication of WO2011064940A1 publication Critical patent/WO2011064940A1/ja
Priority to US14/715,952 priority patent/US20150247239A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Definitions

  • the present invention relates to a carbon electrode used for producing polycrystalline silicon and a polycrystalline silicon rod producing apparatus using the carbon electrode.
  • Siemens method is known as a method for producing polycrystalline silicon which is a raw material of single crystal silicon for semiconductor production or silicon for solar cell production.
  • the Siemens method is a method in which a source gas containing chlorosilane is brought into contact with a heated silicon core wire, and polycrystalline silicon is vapor-phase grown on the surface of the silicon core wire using a CVD (Chemical Vapor Deposition) method.
  • CVD Chemical Vapor Deposition
  • a mixed gas of, for example, trichlorosilane and hydrogen is supplied as a source gas from the gas nozzle into the reactor.
  • silicon vapor-phase grows on the silicon core wire, and a polycrystalline silicon rod having a desired diameter is formed in an inverted U shape. And after cooling the inside of the reactor, the polycrystalline silicon rod is taken out from the reactor.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-45847 (Patent Document 1) includes at least one spring element disposed between a current lead portion (metal electrode) and an electrode holder (a holder for a core wire holder), and the spring element Proposes a carrier member (core wire) fixture that allows and absorbs movement of the electrode holder relative to the current lead.
  • a current lead portion metal electrode
  • an electrode holder a holder for a core wire holder
  • the spring element Proposes a carrier member (core wire) fixture that allows and absorbs movement of the electrode holder relative to the current lead.
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-16243 (Patent Document 2) is a seed holding electrode including a carbon seed holder and a metal electrode, and the seed holder and the metal electrode are fitted with a tapered shape.
  • a seed holding electrode that has a bonded structure and is bonded by sliding a noble metal plate between them, a large amount of heat is generated due to thermal strain generated in the cooling process after the formation of polycrystalline silicon. It is proposed to prevent breakage of crystalline silicon or carbon parts used for seed holding electrodes.
  • Patent Document 3 discloses that an end portion of a silicon core wire is electrically connected to an electrode through a conductive holder that holds the silicon core wire, and at least one holder is connected to an electrode surface.
  • a carbon holder that is slidable in either the left or right direction of the straight line connecting the ends of at least the inverted U-shaped silicon core.
  • both ends of the torii type silicon core wire are fixed to a pair of metal electrodes arranged on the base plate via a pair of core wire holders. Is done.
  • both ends of an inverted U-shaped polycrystalline silicon rod hereinafter simply referred to as “U rod”
  • U rod inverted U-shaped polycrystalline silicon rod
  • expansion and contraction of the U rod in the horizontal plane direction is hindered.
  • the expansion and contraction in the horizontal plane direction is, for example, expansion and contraction in a linear direction connecting both ends of the U rod.
  • the expansion and contraction of the U rod in the horizontal plane direction is not limited to the linear direction connecting both ends of the U rod.
  • the inner side tends to expand due to radiant heat from the U rod.
  • the outer side of the U rod is cooled by the furnace wall of the reactor, the outer side tends to shrink. That is, the U rod can be expanded and contracted in all directions in the horizontal plane direction depending on the environment.
  • the fixture disclosed in Patent Document 1 has a drawback that the structure of the fixture is complicated and the movement of the electrode holder is not allowed except in the direction of expansion and contraction of the spring element.
  • the seed holding electrode disclosed in Patent Document 2 is expensive because it is used by sliding a noble metal plate, and the noble metal is easily taken into polycrystalline silicon.
  • the seed holder since it is a taper-shaped fitting, at the time of expansion, the seed holder may slide up the taper and come out of the electrode.
  • the carbon holder disclosed in Patent Document 3 the polycrystalline silicon rod can slide only in the linear direction connecting both ends of the silicon core wire. Therefore, these proposals are insufficient to suppress the occurrence of cracks and cracks in the polycrystalline silicon rod.
  • the present invention has been made in view of such problems, and its object is to suppress the occurrence of cracks and cracks in the U rod that can expand and contract in all directions during the vapor phase growth process of a polycrystalline silicon rod.
  • the purpose is to provide highly effective technology.
  • a carbon electrode according to the present invention is a carbon electrode used for manufacturing a polycrystalline silicon rod, and is a lower electrode fixed on a metal electrode which is an external electrode for energizing a silicon core wire And an upper electrode placed on the lower electrode and provided with a fixing portion of a core wire holder for holding the silicon core wire on the upper surface side, the upper electrode being an upper surface of the lower electrode It is slidable in all directions within the mounting surface that is a contact surface with the head.
  • the upper electrode has a hole that penetrates from the upper surface to the lower surface, the lower end of a rod-shaped fastening member inserted into the hole is fixed to the lower electrode, and the diameter of the hole is The diameter may be larger than the diameter of the straight body portion of the rod-shaped fastening member, and a gap may be provided between the straight body portion and the hole portion.
  • the diameter of the hole is 1 mm or more larger than the diameter of the straight body.
  • a convex portion provided above the lower electrode is inserted into a concave portion provided below the upper electrode, and the upper electrode is placed on the lower electrode,
  • An inner dimension of the concave portion is larger than an outer dimension of the convex portion, and a gap may be provided between the concave portion and the convex portion.
  • a convex portion provided at the lower portion of the upper electrode is inserted into a concave portion provided at the upper portion of the lower electrode, and the upper electrode is placed on the lower electrode.
  • the inside dimension of the said recessed part is larger than the outside dimension of the said convex part, and it can also be set as the aspect by which the gap
  • the gap between the concave portion and the convex portion is 1 mm or more.
  • the upper electrode and the lower electrode are made of graphite.
  • the coefficient of static friction at the contact surface between the upper electrode and the lower electrode is 0.3 or less.
  • the polycrystalline silicon rod manufacturing apparatus is a polycrystalline silicon rod for vapor-phase growing polycrystalline silicon on the silicon core wire by supplying power from a pair of metal electrodes to both ends of the silicon core wire assembled in a torii type.
  • both ends of the silicon core wire are respectively held by fixing portions provided on the carbon electrode, and at least one of the carbon electrodes is the carbon electrode according to the present invention described above.
  • a hole is provided in the upper electrode and fixed to the lower electrode by inserting a rod-shaped fastening member into the hole, and between the hole and the straight body portion of the fastening member.
  • the upper electrode can slide in all directions within the surface of the mounting surface which is a contact surface with the upper surface of the lower electrode.
  • FIG. 1 is a schematic view showing a configuration example of a polycrystalline silicon rod manufacturing apparatus 100 according to the present invention.
  • This manufacturing apparatus 100 is an apparatus for manufacturing a polycrystalline silicon rod by vapor-phase growing polycrystalline silicon on the surface of a silicon core wire by the Siemens method.
  • the manufacturing apparatus 100 is roughly constituted by a base plate 1 and a reaction vessel 10 and is obtained.
  • the crystalline silicon rod is composed of a straight body portion 6 that vapor-phase grows on the vertical portion 5a of the silicon core wire 5 assembled in a torii type and a bridge portion 8 that vapor-phase grows on the horizontal portion (bridge portion 5b).
  • the base plate 1 is provided with a metal electrode 2 that supplies a current to the silicon core wire 5, a gas nozzle 3 that supplies a process gas such as nitrogen gas, hydrogen gas, and trichlorosilane gas, and an exhaust port 4 that discharges exhaust gas.
  • a metal electrode 2 that supplies a current to the silicon core wire 5
  • a gas nozzle 3 that supplies a process gas such as nitrogen gas, hydrogen gas, and trichlorosilane gas
  • an exhaust port 4 that discharges exhaust gas.
  • the metal electrode 2 is connected to another metal electrode (not shown) or connected to a power source arranged outside the reaction furnace, and receives power from the outside.
  • An insulator 7 is provided on the side surface of the metal electrode 2, and penetrates the base plate 1 while being sandwiched between the insulators 7.
  • the metal electrode 2, the base plate 1, and the reaction furnace 10 are cooled using a refrigerant.
  • the core wire holder 20 and the carbon electrode 30 are both made of graphite.
  • At least one of the carbon electrodes 30 is a carbon electrode according to the present invention, which will be described later, and has a structure that can slide in all directions within a horizontal plane in the drawing.
  • FIG. 2 is a schematic view showing a configuration example of the carbon electrode 30 of the present invention.
  • the carbon electrode 30 includes a lower electrode 32 fixed on the metal electrode 2 that is an external electrode for energizing the silicon core wire 5, and an upper electrode 31 placed on the lower electrode 32. On the upper surface side of the upper electrode 31, a fixing portion for the core wire holder 20 that holds the silicon core wire 5a is provided.
  • the upper electrode 31 is provided with a hole (through hole) 35 penetrating from the upper surface 33 to the lower surface 34, and a bolt 36, which is a rod-shaped fastening member, is provided from the upper surface 33 of the upper electrode 31 through a washer 37. It is inserted into the hole 35 and fixed by being screwed with the lower electrode 32.
  • the diameter of the hole 35 is larger than the diameter of the straight body of the bolt 36 so that a gap 51 is formed between the straight body of the bolt 36 in the hole 35.
  • the washer 37 has an outer diameter approximately twice the diameter of the hole 35 and prevents the bolt 36 from entering the hole 35.
  • a gap 51 between the straight body portion of the bolt 36 in the hole 35 is a mounting surface (a lower surface in contact with the lower surface 34 of the upper electrode 31 in FIG. 2) where the upper electrode 31 is a contact surface with the upper surface of the lower electrode 32. Since sliding in all directions within the plane of the upper surface of the electrode 32 is possible, an effect of suppressing the occurrence of cracks and cracks in the U rod that can expand and contract in all directions during the vapor phase growth process is exhibited.
  • the diameter of the hole 35 is preferably formed to be 1 mm or more larger than the diameter of the straight body portion of the bolt 36. Further, the number of bolts 36 is preferably two or more.
  • FIG. 3 is a schematic view showing another configuration example of the carbon electrode 30 of the present invention.
  • the upper electrode 31 is placed on the lower electrode 32 in such a manner that the convex portion provided on the upper portion of the lower electrode 32 is inserted into the concave portion provided on the lower portion of the upper electrode 31. Has been.
  • the inner dimension of the concave portion 38 of the upper electrode 31 is larger than the outer dimension of the convex portion 39 of the lower electrode 32, and as a result, between the concave portion 38 and the convex portion 39.
  • a gap 52 is provided.
  • the gap 52 between the concave portion 38 and the convex portion 39 allows the upper electrode 31 to slide in all directions within the surface of the mounting surface that is a contact surface with the upper surface of the lower electrode 32.
  • the effect of suppressing the occurrence of cracks and cracks in the U rod that can expand and contract in all directions during the vapor phase growth process is exhibited.
  • the gap 52 between the concave portion 38 and the convex portion 39 is preferably 1 mm or more.
  • FIG. 4 is a schematic view showing a modification of the carbon electrode 30 shown in FIG. That is, in the embodiment shown in FIG. 3, the upper electrode is formed on the lower electrode 32 in such a manner that the convex portion provided on the upper portion of the lower electrode 32 is inserted into the concave portion provided on the lower portion of the upper electrode 31. 31 is placed on the lower electrode 32 by inserting a convex portion 41 provided below the upper electrode 31 into a concave portion 42 provided on the upper portion of the lower electrode 32. An electrode 31 is placed.
  • the inner dimension of the concave portion 42 of the lower electrode 32 is larger than the outer dimension of the convex portion 41 of the upper electrode 31, and as a result, the concave portion 42 and the convex portion.
  • a gap 53 is provided between the upper electrode 31 and the upper electrode 31. The gap 53 enables the upper electrode 31 to slide in all directions within the surface of the mounting surface which is a contact surface with the upper surface of the lower electrode 32. In order to ensure sliding in all directions within the mounting surface, the gap 53 between the concave portion 38 and the convex portion 39 is preferably 1 mm or more.
  • the silicon core wire 5 is connected to the metal electrode 2, the reaction vessel 10 is placed on the base plate 1, and nitrogen gas is supplied from the gas nozzle 3 to replace the air in the reaction vessel 10 with nitrogen. At this time, air and nitrogen in the reaction vessel 10 are exhausted from the exhaust port 4. After the inside of the reaction vessel 10 is replaced with a nitrogen atmosphere, hydrogen gas is supplied from the gas nozzle 3 instead of the nitrogen gas, and the inside of the reaction vessel 10 is made a hydrogen atmosphere.
  • the silicon core wire 5 is preheated to a temperature of 250 ° C. or higher so that the current can flow efficiently. Subsequently, current is supplied from the metal electrode 2 to the silicon core wire 5 to heat the silicon core wire 5 to 900 ° C. or higher. Further, trichlorosilane gas is supplied together with hydrogen gas as a source gas, and polycrystalline silicon is vapor-grown on the silicon core wire 5 in a temperature range of 900 ° C. or more and 1200 ° C. or less. Unreacted gas and by-product gas are discharged from the exhaust port 4.
  • the opposed surfaces of the pair of straight body portions 6 constituting the U rod are expanded by radiant heating with each other, and the core wire holder 20 extends in a direction in which the mutual space increases. And the upper electrode 31 moves. Further, since the outside of the U rod is cooled by the reaction vessel 10, the temperature is lower than the inside of the U rod, and the core wire holder 20 and the upper electrode 31 move in a direction in which the U rod warps outward.
  • the supply of the source gas and the current supply are stopped in this order, and the temperature in the reaction vessel 10 is subsequently lowered.
  • the core wire holder 20 and the upper electrode 31 are moved in the direction in which the distance between the bridge portions 8 is reduced in the U rod whose distance is widened during the growth.
  • the core wire holder 20 and the upper electrode 31 move toward the center of the reaction vessel 10 in the U rod whose outside temperature is low during the growth.
  • Example 1 As shown in FIG. 1, a silicon core wire 5 is assembled in a torii type in a reaction furnace 10, and both ends of the torii type silicon core wire 5 are connected to a base plate via a pair of graphite core wire holders 20 and carbon electrodes 30. It fixes to a pair of metal electrode 2 arrange
  • the upper electrode 31 is 1.5 mm in the direction in which the interval between the polycrystalline silicon rods increases. It was moving. The occurrence of cracks detected after cutting the U rod was two places.
  • Example 2 Polycrystalline silicon was vapor-grown under the same conditions as in Example 1 except that one of the carbon electrodes 30 having the upper electrode 31 and the lower electrode 32 of the type shown in FIG. 3 was used.
  • the inner diameter of the concave shape 38 is 82 mm
  • the outer diameter of the convex shape 39 is 74 mm.
  • the upper electrode 31 moved 3.0 mm in the direction in which the distance between the polycrystalline silicon rods became narrow and the U rod warped outward. The occurrence of cracks detected after cutting the U rod was two places.
  • Example 1 Polycrystalline silicon was vapor-grown under the same conditions as in Example 1 except that a carbon electrode 30 that did not move was used. The occurrence of cracks detected after cutting the U-rod was 5 locations.

Abstract

 本発明は、多結晶シリコン棒の気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果の高い技術を提供する。炭素電極30の上部電極31の上面側には、シリコン芯線5aを保持する芯線ホルダ20の固定部が設けられている。上部電極31には、上面33から下面34に貫通する孔部(貫通孔)35が設けられており、棒状の締結部材であるボルト36がワッシャ37を介して上部電極31の上面33から該孔部35に挿入され、下部電極32でネジ止めされて固定されている。孔部35内におけるボルト36の直胴部との間の間隙51は、上部電極31が下部電極32の上面との接触面である載置面(図2では上部電極31の下面34と接する下部電極32の上面)の面内での全方位の摺動を可能とするため、気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果を奏することとなる。

Description

炭素電極および多結晶シリコン棒の製造装置
 本発明は、多結晶シリコンの製造に用いられる炭素電極およびこれを用いた多結晶シリコン棒の製造装置に関する。
 半導体製造用の単結晶シリコンや太陽電池製造用のシリコンの原料となる多結晶シリコンを製造する方法として、シーメンス法が知られている。シーメンス法は、クロロシランを含む原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法を用いて気相成長させる方法である。
 シーメンス法により多結晶シリコンを気相成長する際、気相成長装置の反応炉内にシリコン芯線を鉛直方向2本、水平方向1本の鳥居型に組み立て、該鳥居型のシリコン芯線の両端を一対の芯線ホルダを介してベースプレート上に配置した一対の金属電極に固定する。
 次に、金属電極から電流を導通させてシリコン芯線を水素雰囲気中で900℃以上1200℃以下の温度範囲に加熱しながら、原料ガスとして例えばトリクロロシランと水素の混合ガスをガスノズルから反応炉内に供給すると、シリコン芯線上にシリコンが気相成長し、所望の直径の多結晶シリコン棒が逆U字状に形成される。そして反応炉内を冷却後、反応炉から多結晶シリコン棒を取り出す。
 近年、多結晶シリコン棒の大口径化に伴い、気相成長中あるいは多結晶シリコン棒の冷却中に該多結晶シリコン棒にクラックあるいは割れが発生し易くなっている。
 これは、シーメンス法により多結晶シリコン棒を育成する際、気相成長中あるいは成長終了後にシリコン棒の成長方向(半径方向)に中心と表面温度との温度差が生じ、これにより多結晶シリコン棒の熱膨張または収縮による応力が発生することによるものと考えられる。
 多結晶シリコン棒が割れて反応炉内で倒れると、反応炉の内壁並びにベースプレートあるいは金属電極を構成するメタルとの接触に起因して重金属汚染が起こるだけでなく、倒壊した多結晶シリコン棒の収穫及びベースプレートの清掃に時間がかかり操業のサイクルタイムが大幅に伸びるため、生産性が著しく落ちてしまう。
 このような多結晶シリコン棒のひびや割れの発生を防止するために、種々の提案が為されている。
 例えば特開平8-45847号公報(特許文献1)は、電流リード部(金属電極)と電極ホルダ(芯線ホルダの保持具)との間に配置される少なくとも1つのばね要素を備え、該ばね要素が電流リード部に対する電極ホルダの運動を許容しかつ該運動を吸収することを特徴とするキャリア部材(芯線)の取付具を提案する。
 特開2006-16243号公報(特許文献2)は、カーボン製のシードホルダと金属製の電極とからなるシード保持電極であって、シードホルダと金属製の電極とはテーパー形状とした嵌め合いによる接合構造とし、それらの間に貴金属の板を摺り合わせて接合することを特徴とするシード保持電極を用いることにより、多結晶シリコンの生成後の冷却過程で発生する熱歪みに起因して、多結晶シリコン、またはシード保持電極に使用するカーボン製の部品が破断することを防止することを提案する。
 特開2006-240934号公報(特許文献3)は、シリコン芯線の端部が、これを保持する導電性のホルダを介して電極と電気的に接続され、かつ、少なくとも一方のホルダが、電極面上を少なくとも逆U字型のシリコン芯線の両端を結ぶ直線方向の左右何れの方向にも摺動可能である炭素製ホルダを用いることにより、多結晶シリコンロッドのクラック発生を低減することを提案する。
特開平8-45847号公報 特開2006-16243号公報 特開2006-240934号公報
 上述したように、従来の一般的なシーメンス法による多結晶シリコンの気相成長プロセスにおいては、鳥居型のシリコン芯線の両端は一対の芯線ホルダを介してベースプレート上に配置した一対の金属電極に固定される。しかし、逆U字状の多結晶シリコン棒(以下、単に「Uロッド」ということがある。)の両端を金属電極に固定すると、Uロッドの水平面方向の伸縮が阻害されてしまう。ここで、水平面方向の伸縮とは、例えばUロッドの両端を結ぶ直線方向の伸縮である。
 なお、Uロッドの水平面方向の伸縮は、Uロッドの両端を結ぶ直線方向に限定されるものではない。例えば、Uロッドの内側に近接して他のUロッドがあれば、該Uロッドからの輻射熱により内側が伸張しやすくなる。また、Uロッドの外側が反応炉の炉壁により冷却されていれば、外側が収縮しやすくなる。つまり、Uロッドはその環境により水平面方向のあらゆる方位に伸縮しうる。
 しかしながら、特許文献1に開示の取付具は、構造が複雑である上に、ばね要素の伸縮方向以外は電極ホルダの運動が許容されないという欠点を有する。また、特許文献2に開示のシード保持電極は、貴金属の板を摺り合わせて使用するので高価である上に、該貴金属が多結晶シリコンに取り込まれやすい。またテーパー形状の嵌合であるため、膨張時にはシードホルダがテーパーを上方に摺動し、電極から抜け出てしまう可能性がある。さらに、特許文献3に開示の炭素製ホルダでは、多結晶シリコンロッドがシリコン芯線の両端を結ぶ直線方向にしか摺動できない。従って、これらの提案によっては、多結晶シリコン棒のひびや割れの発生を抑制するには不充分である。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、多結晶シリコン棒の気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果の高い技術を提供することにある。
 上記課題を解決するために、本発明に係る炭素電極は、多結晶シリコン棒の製造に用いられる炭素電極であって、シリコン芯線への通電用外部電極である金属電極上に固定される下部電極と、該下部電極上に載置された上部電極であって上面側に前記シリコン芯線を保持する芯線ホルダの固定部が設けられた上部電極とからなり、前記上部電極は、前記下部電極の上面との接触面である載置面内で全方位に摺動可能であることを特徴とする。
 上記炭素電極は、前記上部電極は上面から下面に貫通する孔部を備え、該孔部に挿入された棒状の締結部材の下端部は前記下部電極に固定されており、前記孔部の直径は前記棒状締結部材の直胴部の直径よりも大きく、前記孔部内で前記直胴部との間に間隙が設けられている態様とすることができる。
 例えば、前記孔部の直径は前記直胴部の直径よりも1mm以上大きい。
 上記炭素電極は、前記上部電極の下部に設けられた凹状部の内部に前記下部電極の上部に設けられた凸状部が挿入されて前記下部電極上に前記上部電極が載置されており、前記凹状部の内寸は前記凸状部の外寸よりも大きく、前記凹状部と凸状部との間に間隙が設けられている態様とすることもできる。
 また、上記炭素電極は、前記上部電極の下部に設けられた凸状部が前記下部電極の上部に設けられた凹状部の内部に挿入されて前記下部電極上に前記上部電極が載置されており、前記凹状部の内寸は前記凸状部の外寸よりも大きく、前記凹状部と凸状部との間に間隙が設けられている態様とすることもできる。
 例えば、前記凹状部と凸状部との間隙は1mm以上である。
 好ましくは、前記上部電極と前記下部電極はグラファイト製である。
 また、好ましくは、前記上部電極と前記下部電極の接触面における静止摩擦係数が0.3以下である。
 本発明に係る多結晶シリコン棒の製造装置は、鳥居型に組み立てたシリコン芯線の両端に一対の金属電極から電力供給して前記シリコン芯線上に多結晶シリコンを気相成長させる多結晶シリコン棒の製造装置であって、前記シリコン芯線の両端はそれぞれ炭素電極に設けられた固定部により保持され、前記炭素電極の少なくとも一方は上述の本発明に係る炭素電極である。
 本発明の炭素電極では、例えば、上部電極に孔部を設けて孔部内に棒状の締結部材を挿入する等により下部電極に固定し、かつ、孔部と締結部材の直胴部との間に間隙を設ける等により、上部電極が下部電極の上面との接触面である載置面の面内での全方位の摺動を可能とした。
 このため、多結晶シリコン棒の気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果の高い技術の提供が可能となる。
本発明の多結晶シリコン棒の製造装置の構成例を示す概略図である。 本発明の炭素電極の構成例を示す概略図である。 本発明の炭素電極の他の構成例を示す概略図である。 図3に示した炭素電極の変形例を示す概略図である。
 以下に、図面を参照して、本発明の実施の形態について説明する。
 図1は、本発明の多結晶シリコン棒の製造装置100の構成例を示す概略図である。この製造装置100は、シーメンス法によりシリコン芯線の表面に多結晶シリコンを気相成長させて多結晶シリコン棒を製造するための装置であり、ベースプレート1と反応容器10により概略構成され、得られる多結晶シリコン棒は、鳥居型に組み立てたシリコン芯線5の鉛直部分5aに気相成長する直胴部6と水平部分(ブリッジ部5b)に気相成長するブリッジ部8からなる。
 ベースプレート1には、シリコン芯線5に電流を供給する金属電極2と、窒素ガス、水素ガス、トリクロロシランガスなどのプロセスガスを供給するガスノズル3と、排気ガスを排出する排気口4が配置される。
 金属電極2は、不図示の別の金属電極に接続されるか或いは反応炉外に配置された電源に接続され、外部からの電力供給を受ける。この金属電極2の側面には絶縁物7が設けられており、この絶縁物7に挟まれた状態でベースプレート1を貫通している。
 図1に示したように、多結晶シリコンを気相成長させる際には、反応炉10内に、鉛直方向に2本(5a)と水平方向に1本(5b)の芯線を鳥居型に組み立ててシリコン芯線5とし、シリコン芯線5の鉛直方向部分5aの両端部をそれぞれ炭素電極30に保持された芯線ホルダ20により固定し、金属電極2に供給された外部電力を、炭素電極30を介してシリコン芯線へと通電させる。
 なお、金属電極2とベースプレート1と反応炉10は、冷媒を用いて冷却される。また、芯線ホルダ20と炭素電極30は共にグラファイト製である。
 炭素電極30の少なくとも一方は、後述の本発明に係る炭素電極であり、図中の水平面内で全方位に摺動可能な構造とされている。
 図2は、本発明の炭素電極30の構成例を示す概略図である。この炭素電極30は、シリコン芯線5への通電用外部電極である金属電極2の上に固定された下部電極32と、該下部電極32の上に載置された上部電極31とからなる。上部電極31の上面側には、シリコン芯線5aを保持する芯線ホルダ20の固定部が設けられている。
 また、上部電極31には、上面33から下面34に貫通する孔部(貫通孔)35が設けられており、棒状の締結部材であるボルト36がワッシャ37を介して上部電極31の上面33から該孔部35に挿入され、下部電極32でネジ止めされて固定されている。
 図2に示したように、孔部35内においてボルト36の直胴部との間に間隙51が生じるように、孔部35の直径はボルト36の直胴部の直径よりも大きく形成されている。なお、ワッシャ37は、その外径が孔部35の口径の約2倍のものが用いられ、ボルト36が孔部35内に入り込むことを防止する。
 孔部35内におけるボルト36の直胴部との間の間隙51は、上部電極31が下部電極32の上面との接触面である載置面(図2では上部電極31の下面34と接する下部電極32の上面)の面内での全方位の摺動を可能とするため、気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果を奏することとなる。
 載置面内での全方位の摺動を確実なものとするためには、孔部35の直径は、ボルト36の直胴部の直径よりも1mm以上大きく形成されることが好ましい。また、ボルト36の本数は2本以上であることが望ましい。
 図3は、本発明の炭素電極30の他の構成例を示す概略図である。この炭素電極30は、上部電極31の下部に設けられた凹状部の内部に、下部電極32の上部に設けられた凸状部が挿入されるかたちで下部電極32上に上部電極31が載置されている。
 図3に示したように、上部電極31の凹状部38の内寸は、下部電極32の凸状部39の外寸よりも大きく、その結果、凹状部38と凸状部39との間に間隙52が設けられている。
 凹状部38と凸状部39との間の間隙52は、上部電極31が下部電極32の上面との接触面である載置面の面内での全方位の摺動を可能とするため、気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果を奏することとなる。
 なお、載置面内での全方位の摺動を確実なものとするためには、凹状部38と凸状部39との間の間隙52は、1mm以上であることが好ましい。
 図4は、図3に示した炭素電極30の変形例を示す概略図である。すなわち、図3に示した態様のものでは上部電極31の下部に設けられた凹状部の内部に下部電極32の上部に設けられた凸状部が挿入されるかたちで下部電極32上に上部電極31を載置させているのに対し、上部電極31の下部に設けられた凸状部41を下部電極32の上部に設けられた凹状部42の内部に挿入するかたちで下部電極32上に上部電極31を載置させている。
 この態様においても、図4に示したように、下部電極32の凹状部42の内寸は、上部電極31の凸状部41の外寸よりも大きく、その結果、凹状部42と凸状部41との間に間隙53が設けられ、当該間隙53は、上部電極31が下部電極32の上面との接触面である載置面の面内での全方位の摺動を可能とする。なお、載置面内での全方位の摺動を確実なものとするためには、凹状部38と凸状部39との間の間隙53は、1mm以上であることが好ましい。
 図3及び図4において、凸状部と凹状部42を1組設けた態様について説明したが、複数組も受ける態様としてもよい。この場合でも、各組の凹状部と凸状部の間に間隙が形成されていれば、その間隙の範囲内で上部電極が全方位に摺動することができる。
 以下に、本発明の多結晶シリコン棒の製造装置を用いた気相成長工程について説明する。
 先ず、金属電極2にシリコン芯線5を接続し、反応容器10をベースプレート1上に密着載置し、ガスノズル3から窒素ガスを供給して反応容器10内の空気を窒素に置換する。このとき、反応容器10内の空気と窒素は、排気口4から排出される。反応容器10内を窒素雰囲気に置換終了後、窒素ガスに代えてガスノズル3から水素ガスを供給し、反応容器10内を水素雰囲気にする。
 次に、図示しないヒータを用いてシリコン芯線5を250℃以上の温度に予備加熱し、電流が効率的に流れるほどの導電性にする。続いて、金属電極2からシリコン芯線5に電流を供給し、シリコン芯線5を900℃以上に加熱する。さらに、水素ガスとともにトリクロロシランガスを原料ガスとして供給し、シリコン芯線5上に多結晶シリコンを900℃以上1200℃以下の温度範囲で気相成長させる。未反応ガスと副生成ガスは、排気口4から排出される。
 シリコン芯線5上に多結晶シリコンを気相成長させるため温度を上げると、シリコン芯線5のブリッジ部5bには膨張による伸びが発生し、その状態で多結晶シリコンの気相成長が進む。また、多結晶シリコン棒の直胴部6およびブリッジ部8の直径が大きくなるに従い、これらの部分の直径方向に温度分布が形成される。
 ここで、多結晶シリコン棒の直胴部6について、例えばUロッドを構成する1対の直胴部6の向かい合う面は互いに輻射加熱しあうため膨張し、相互の間隔が広がる方向に芯線ホルダ20と上部電極31が移動する。また、Uロッドの外側は反応容器10により冷却されるためUロッドの内側よりも温度が低くなり、Uロッドが外側に反る方向に芯線ホルダ20と上部電極31が移動する。
 多結晶シリコン棒の直胴部6及びブリッジ部8が所望の直径まで成長後、原料ガスの供給と電流供給をこの順に停止し、続いて反応容器10内の温度を低下させる。この時、成長中に間隔が広がっていたUロッドでは、ブリッジ部8の間隔が縮小する方向に芯線ホルダ20と上部電極31が移動する。また、成長中に外側の温度が低かったUロッドは、反応容器10の中心に向かって芯線ホルダ20と上部電極31が移動する。
 下部電極32上で上部電極31をスムーズに移動させるには、上部電極31と下部電極32の面接触部における摩擦が小さいものを用いる必要がある。本発明者らの試行錯誤の検討の結果、上部電極31と下部電極32の面接触部における静止摩擦係数が0.3以下の炭素電極を用いると、下部電極32上で上部電極31がスムーズに移動することが判明した。
 [実施例1]
 図1に示したように、反応炉10内にシリコン芯線5を鳥居型に組み立て、該鳥居型のシリコン芯線5の両端を共にグラファイト製の一対の芯線ホルダ20と炭素電極30とを介してベースプレート1上に配置した一対の金属電極2に固定する。炭素電極30の一方は、図2に示す型の上部電極31と下部電極32とを有する。貫通孔35の内径は10mm、ボルト36の直径は6mmである。
 シリコン芯線5上に900℃以上1100℃以下の温度範囲で直径約120mmの多結晶シリコン6及び8を気相成長させたところ、上部電極31は多結晶シリコン棒の間隔が広がる方向に1.5mm移動していた。Uロッドを刈り取りした後に検出された割れの発生は、2箇所であった。
 [実施例2]
 炭素電極30の一方として、図3に示す型の上部電極31と下部電極32とを有するものを使用した以外は、実施例1と同様の条件で多結晶シリコンを気相成長させた。凹形状38の内径は82mm、凸形状39の外径は74mmである。気相成長終了後、上部電極31は多結晶シリコン棒の間隔が狭くなるとともにUロッドが外側に反る方向に3.0mm移動していた。Uロッドを刈り取りした後に検出された割れの発生は、2箇所であった。
 [比較例1]
 炭素電極30として電極の移動しないものを使用した以外は、実施例1と同様の条件で多結晶シリコンを気相成長させた。Uロッドを刈り取りした後に検出された割れの発生は、5箇所であった。
 本発明によれば、多結晶シリコン棒の気相成長工程中にあらゆる方位に伸縮しうるUロッドのひびや割れの発生に対する抑制効果の高い技術を提供することができる。
1 ベースプレート
2 金属電極
3 ガスノズル
4 排気口
5 シリコン芯線
5a 鉛直方向部分
5b ブリッジ部
6 多結晶シリコン棒の直胴部
8 多結晶シリコン棒のブリッジ部
10 反応容器
20 芯線ホルダ
30 炭素電極
31 上部電極
32 下部電極
33 上部電極31の上面
34 上部電極31の下面
35 貫通孔
36 ボルト
37 ワッシャ
38、42 凹形状部
39、41 凸形状部
51、52、53 間隙
100 多結晶シリコン棒の製造装置

Claims (9)

  1.  多結晶シリコン棒の製造に用いられる炭素電極であって、シリコン芯線への通電用外部電極である金属電極上に固定される下部電極と、該下部電極上に載置された上部電極であって上面側に前記シリコン芯線を保持する芯線ホルダの固定部が設けられた上部電極とからなり、前記上部電極は、前記下部電極の上面との接触面である載置面内で全方位に摺動可能であることを特徴とする炭素電極。
  2.  前記上部電極は上面から下面に貫通する孔部を備え、該孔部に挿入された棒状の締結部材の下端部は前記下部電極に固定されており、前記孔部の直径は前記棒状締結部材の直胴部の直径よりも大きく、前記孔部内で前記直胴部との間に間隙が設けられていることを特徴とする請求項1に記載の炭素電極。
  3.  前記孔部の直径は前記直胴部の直径よりも1mm以上大きいことを特徴とする請求項2に記載の炭素電極。
  4.  前記上部電極の下部に設けられた凹状部の内部に前記下部電極の上部に設けられた凸状部が挿入されて前記下部電極上に前記上部電極が載置されており、前記凹状部の内寸は前記凸状部の外寸よりも大きく、前記凹状部と凸状部との間に間隙が設けられていることを特徴とする請求項1に記載の炭素電極。
  5.  前記上部電極の下部に設けられた凸状部が前記下部電極の上部に設けられた凹状部の内部に挿入されて前記下部電極上に前記上部電極が載置されており、前記凹状部の内寸は前記凸状部の外寸よりも大きく、前記凹状部と凸状部との間に間隙が設けられていることを特徴とする請求項1に記載の炭素電極。
  6.  前記凹状部と凸状部との間隙は1mm以上であることを特徴とする請求項4又は5に記載の炭素電極。
  7.  前記上部電極と前記下部電極はグラファイト製であることを特徴とする請求項1乃至5の何れか1項に記載の炭素電極。
  8.  前記上部電極と前記下部電極の接触面における静止摩擦係数が0.3以下であることを特徴とする請求項1乃至5の何れか1項に記載の炭素電極。
  9.  鳥居型に組み立てたシリコン芯線の両端に一対の金属電極から電力供給して前記シリコン芯線上に多結晶シリコンを気相成長させる多結晶シリコン棒の製造装置であって、前記シリコン芯線の両端はそれぞれ炭素電極に設けられた固定部により保持され、前記炭素電極の少なくとも一方は請求項1乃至5の何れか1項に記載の炭素電極であることを特徴とする多結晶シリコン棒の製造装置。
PCT/JP2010/006270 2009-11-26 2010-10-22 炭素電極および多結晶シリコン棒の製造装置 WO2011064940A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/508,826 US9562289B2 (en) 2009-11-26 2010-10-22 Carbon electrode with slidable contact surfaces and apparatus for manufacturing polycrystalline silicon rod
EP10832796.6A EP2505554B1 (en) 2009-11-26 2010-10-22 Carbon electrode and equipment for manufacturing polycrystalline silicon rod
EP16187289.0A EP3150556B1 (en) 2009-11-26 2010-10-22 Carbon electrode and apparatus for manufacturing polycrystalline silicon rod
CN201080049198.2A CN102666380B (zh) 2009-11-26 2010-10-22 碳电极和多晶硅棒的制造装置
AU2010324095A AU2010324095B2 (en) 2009-11-26 2010-10-22 Carbon electrode and apparatus for manufacturing polycrystalline silicon rod
EP16187287.4A EP3118158B1 (en) 2009-11-26 2010-10-22 Carbon electrode and apparatus for manufacturing polycrystalline silicon rod
US14/715,952 US20150247239A1 (en) 2009-11-26 2015-05-19 Carbon electrode and apparatus for manufacturing polycrystalline silicon rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-268429 2009-11-26
JP2009268429A JP5415914B2 (ja) 2009-11-26 2009-11-26 炭素電極および多結晶シリコン棒の製造装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/508,826 A-371-Of-International US9562289B2 (en) 2009-11-26 2010-10-22 Carbon electrode with slidable contact surfaces and apparatus for manufacturing polycrystalline silicon rod
US14/715,952 Division US20150247239A1 (en) 2009-11-26 2015-05-19 Carbon electrode and apparatus for manufacturing polycrystalline silicon rod

Publications (1)

Publication Number Publication Date
WO2011064940A1 true WO2011064940A1 (ja) 2011-06-03

Family

ID=44066056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006270 WO2011064940A1 (ja) 2009-11-26 2010-10-22 炭素電極および多結晶シリコン棒の製造装置

Country Status (6)

Country Link
US (2) US9562289B2 (ja)
EP (3) EP3150556B1 (ja)
JP (1) JP5415914B2 (ja)
CN (2) CN103936010A (ja)
AU (1) AU2010324095B2 (ja)
WO (1) WO2011064940A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018675A (ja) * 2011-07-11 2013-01-31 Shin-Etsu Chemical Co Ltd 多結晶シリコン製造装置
CN103145130A (zh) * 2011-12-07 2013-06-12 刘雅铭 一种增加多晶硅还原炉里硅芯根数的方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477145B2 (ja) * 2009-04-28 2014-04-23 三菱マテリアル株式会社 多結晶シリコン反応炉
JP5415914B2 (ja) 2009-11-26 2014-02-12 信越化学工業株式会社 炭素電極および多結晶シリコン棒の製造装置
DE102010003064A1 (de) * 2010-03-19 2011-09-22 Wacker Chemie Ag Graphitelektrode
JP5696063B2 (ja) * 2012-02-02 2015-04-08 信越化学工業株式会社 多結晶シリコン棒搬出冶具および多結晶シリコン棒の刈取方法
KR101420338B1 (ko) * 2012-03-12 2014-07-16 한국실리콘주식회사 씨브이디 반응장치용 절연 슬리브 및 그 절연 슬리브가 구비된 씨브이디 반응장치
JP5917359B2 (ja) * 2012-10-16 2016-05-11 信越化学工業株式会社 多結晶シリコン製造用原料ガスの供給方法および多結晶シリコン
JP6373724B2 (ja) * 2014-11-04 2018-08-15 株式会社トクヤマ 芯線ホルダ及びシリコンの製造方法
CN106167264B (zh) * 2016-08-31 2018-12-07 内蒙古盾安光伏科技有限公司 多晶硅还原炉的电极组件
JP7263172B2 (ja) 2019-07-25 2023-04-24 信越化学工業株式会社 多結晶シリコン製造装置
JP7345441B2 (ja) * 2020-07-02 2023-09-15 信越化学工業株式会社 多結晶シリコン製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845847A (ja) 1994-07-14 1996-02-16 Wacker Chemie Gmbh 半導体材料の蒸着用装置におけるキヤリヤ部材の取付具およびその使用方法
JP2006016243A (ja) 2004-07-01 2006-01-19 Sumitomo Titanium Corp 多結晶シリコン製造方法およびシード保持電極
JP2006240934A (ja) 2005-03-04 2006-09-14 Tokuyama Corp 多結晶シリコンの製造装置
JP2009221058A (ja) * 2008-03-17 2009-10-01 Mitsubishi Materials Corp 多結晶シリコン製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926080A1 (de) * 1979-06-28 1981-01-08 Philips Patentverwaltung Mittel zur trockenschmierung
JPH07284910A (ja) 1994-04-13 1995-10-31 Morita Mfg Co Ltd 鋳造装置
JP2004277223A (ja) * 2003-03-17 2004-10-07 Sumitomo Titanium Corp 高強度多結晶シリコン及びその製造方法
EP2108619B1 (en) * 2008-03-21 2011-06-22 Mitsubishi Materials Corporation Polycrystalline silicon reactor
JP2009226705A (ja) 2008-03-21 2009-10-08 Seiko Epson Corp 液体容器
JP5481886B2 (ja) * 2008-03-27 2014-04-23 三菱マテリアル株式会社 多結晶シリコン製造装置
CN101570890B (zh) 2009-01-06 2011-09-28 刘朝轩 可有效提高接触面积和减小电阻的孔式硅芯搭接方法
JP5415914B2 (ja) 2009-11-26 2014-02-12 信越化学工業株式会社 炭素電極および多結晶シリコン棒の製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845847A (ja) 1994-07-14 1996-02-16 Wacker Chemie Gmbh 半導体材料の蒸着用装置におけるキヤリヤ部材の取付具およびその使用方法
JP2006016243A (ja) 2004-07-01 2006-01-19 Sumitomo Titanium Corp 多結晶シリコン製造方法およびシード保持電極
JP2006240934A (ja) 2005-03-04 2006-09-14 Tokuyama Corp 多結晶シリコンの製造装置
JP2009221058A (ja) * 2008-03-17 2009-10-01 Mitsubishi Materials Corp 多結晶シリコン製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2505554A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018675A (ja) * 2011-07-11 2013-01-31 Shin-Etsu Chemical Co Ltd 多結晶シリコン製造装置
CN103145130A (zh) * 2011-12-07 2013-06-12 刘雅铭 一种增加多晶硅还原炉里硅芯根数的方法及装置

Also Published As

Publication number Publication date
CN102666380A (zh) 2012-09-12
EP3118158B1 (en) 2018-09-12
JP5415914B2 (ja) 2014-02-12
US9562289B2 (en) 2017-02-07
EP3150556B1 (en) 2018-09-26
CN103936010A (zh) 2014-07-23
US20150247239A1 (en) 2015-09-03
EP3150556A1 (en) 2017-04-05
JP2011111360A (ja) 2011-06-09
AU2010324095B2 (en) 2013-08-22
CN102666380B (zh) 2014-04-09
EP2505554A4 (en) 2015-08-26
AU2010324095A1 (en) 2012-05-31
EP3118158A1 (en) 2017-01-18
US20120222619A1 (en) 2012-09-06
EP2505554B1 (en) 2016-10-19
EP2505554A1 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5415914B2 (ja) 炭素電極および多結晶シリコン棒の製造装置
KR101600651B1 (ko) Cvd 반응기에서 전극 홀더를 위한 보호 장치
EP2489634B1 (en) Core wire holder for producing polycrystalline silicon and method for producing polycrystalline silicon
EP3071322B1 (en) Apparatus for manufacturing polysilicon
EP2708508B1 (en) Silicon core wire holder and method for manufacturing polycrystalline silicon
JP5579634B2 (ja) 多結晶シリコン製造用反応炉および多結晶シリコンの製造方法
JP5642857B2 (ja) 炭素電極および多結晶シリコン棒の製造装置
KR20170024609A (ko) 다결정 실리콘 봉 제조용의 실리콘 심선 및 다결정 실리콘 봉의 제조 장치
US11519069B2 (en) Polycrystalline silicon manufacturing apparatus
JP6513842B2 (ja) 多結晶シリコン棒製造用のシリコン芯線および多結晶シリコン棒の製造装置
AU2013251286B2 (en) Carbon electrode and apparatus for manufacturing polycrystalline silicon rod
JP7106469B2 (ja) 多結晶シリコン製造装置
JP2018065717A (ja) 多結晶シリコン反応炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049198.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832796

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010832796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010832796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010324095

Country of ref document: AU

Ref document number: 13508826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010324095

Country of ref document: AU

Date of ref document: 20101022

Kind code of ref document: A