WO2011064430A2 - Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas - Google Patents

Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas Download PDF

Info

Publication number
WO2011064430A2
WO2011064430A2 PCT/ES2010/070765 ES2010070765W WO2011064430A2 WO 2011064430 A2 WO2011064430 A2 WO 2011064430A2 ES 2010070765 W ES2010070765 W ES 2010070765W WO 2011064430 A2 WO2011064430 A2 WO 2011064430A2
Authority
WO
WIPO (PCT)
Prior art keywords
aqcs
nanoparticles
conductive
metal nanoparticles
conductive inks
Prior art date
Application number
PCT/ES2010/070765
Other languages
English (en)
French (fr)
Other versions
WO2011064430A3 (es
WO2011064430A4 (es
Inventor
Manuel Arturo Lopez Quintela
Original Assignee
Universidade De Santiago De Compostela
Nanogap
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela, Nanogap filed Critical Universidade De Santiago De Compostela
Priority to US13/511,369 priority Critical patent/US9315687B2/en
Priority to KR1020127016564A priority patent/KR101826272B1/ko
Priority to EP10832691.9A priority patent/EP2505616A4/en
Priority to JP2012540465A priority patent/JP6185240B2/ja
Publication of WO2011064430A2 publication Critical patent/WO2011064430A2/es
Publication of WO2011064430A3 publication Critical patent/WO2011064430A3/es
Publication of WO2011064430A4 publication Critical patent/WO2011064430A4/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31699Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic

Definitions

  • the present invention proposal relates to a new formulation of colloidal inks, based on the use of atomic quantum clusters, (Atomic Quantum Clusters: AQCs), (synthesized according to the procedure described in patent ES2277531), in combination with nanoparticle mixtures Metallic of different sizes.
  • AQCs atomic Quantum Clusters
  • nanoparticle conductive inks must have certain characteristics that must be optimized to achieve adequate results in the different forms of printed electronics (see eg the use of Ag and Au nanoparticles in ink-ink techniques). jet "printing: J. Perelaer et al., Advanced Materials 2006, 18, 2101; Y. -Y. Noh et al, Nature Nanotechnology 2007, 2 784A, respectively).
  • the problem fundamental is to achieve high conductivities in the metal structures printed by conductive inks.
  • the process of printing with inks is associated with the drying of the ink and the sintering of the particles deposited in the substrate.
  • This process of synthesizing necessarily implies an increase in temperature or curing.
  • the problem of proper formulation of the ink is then posed to achieve optimum electrical conduction in the final printing, at temperatures sufficiently low so as not to damage the substrate.
  • thermosintering carried out at these temperatures may result in the destruction of the substrate on which the printing is intended.
  • the current challenge in the use of nanoparticles is to obtain these high performance at much lower temperatures, such as temperatures below 150 ° C and preferably below 100 ° C, in order to apply them to substrates sensitive to temperature, such as certain types of polymers (among which we can mention, for example, polycarbonate with glass transition temperatures of approx. 150 ° C and melting temperatures of approx. 230 ° C), paper, etc.
  • FIG 1 shows the experimental results of melting temperatures obtained with Ag AQCs obtained by the procedures described in patent ES2277531.
  • Figure Ib shows the image of the same sample once the grid has been subjected to a 100 ° C treatment for a few seconds. It is noted that Ag AQCs have melted. It is precisely this fact that the fusion of clusters takes place at very low temperatures, compared to that of metal nanoparticles, which will be conveniently used in the present invention to optimize the formulation of conductive inks.
  • interparticle spaces present in the printed electronic structure Another important problem that arises when a conductive ink based on particles is deposited is the interparticle spaces present in the printed electronic structure. These gaps cause a significant decrease in conductive material present in the cross section of the deposited film, thereby reducing the conductivity, or what is the same, significantly increasing its electrical resistance.
  • the minimum interparticle space (free space) that can be obtained by monodisperse spheres is 26% for an ideal arrangement compact (fcc) and 36% for a compact ideal random arrangement (rcp) (AR Kansal et al. J.Chem.Phys. 2002, 117, 8212). In practical cases (polydisperse particles and not perfectly spherical), this free space is greatly increased thus causing a very important decrease in its conductive properties.
  • the present invention relates to a new formulation of stable colloidal inks, based on mixtures of metal nanoparticles of different sizes and of SEMI-CONDUCTING melting elements with melting points less than 150 ° C, and advantageously, with lower melting points 100 ° C Said melting elements, acting as joining elements (sintering elements), allow the surprising effect of achieving METALLIC contact between the nanoparticles, achieving structures electronics with very low resistivities (close to those of the massive material) with heat treatments at very low temperatures ( ⁇ 150 ° C).
  • Said non-conductive melting elements are atomic quantum clusters, (Atomic Quantum Clusters: AQCs), synthesized according to the procedure described in patent ES2277531, and its corresponding WO 2007/017550 Al.
  • AQCs atomic Quantum Clusters
  • the formulation proposed here as an object of the invention deals with to achieve, on the one hand, a maximum decrease of that free space by combining at least two different sized nanoparticles and, in addition, a final component using a certain proportion of AQCs to achieve a greater "interparticle connection.
  • the nanoparticles are combined by combining at least two different sized nanoparticles and, in addition, a final component using a certain proportion of AQCs to achieve a greater "interparticle connection.
  • the AQCs in much smaller proportions, are used as a "flux" of low temperature that allows, 1) to occupy the gaps left by the mixture of nanoparticles by their size so small and 2) the union and sintering of the nanoparticles of the ink at very low temperatures without resorting to the fusion of the rest of nanoparticles that would require higher temperatures.
  • Two concrete examples of how to make size selection for the preparation of conductive inks based on mixtures of nanoparticles and AQCs are described below.
  • the ratio in volume (or weight, if spheres of the same material are used) to be used from large to small nanoparticles is approximately 1/3, as mentioned above, to cover the interstitial spaces left by the large particles. This significantly reduces the free volume left by large nanoparticles.
  • a third size of even smaller nanoparticles is used, so that the size ratio between the intermediate and smaller nanoparticles is approx. same as those between large and intermediate ones.
  • the ink formulation can be simplified by introducing only a bimodal distribution + AQCs.
  • the nanoparticles used are not monodispersed (understood as monodispersity when the ratio between the standard deviation of sizes (s) and the average size (x) is less than 10%) and they always have a certain degree of greater or lesser polydispersity.
  • This polydispersity (s / x> 10%) favors, on the one hand, stability by inhibiting the separation of phases by sizes and, at the same time, decreases the free volume of the interstitial voids.
  • formulations can be used in which, assuming that the large nanoparticles are again in the 100-250 nm range, the size of the smaller nanoparticles can be lowered up to 10 times the initial size. That is, the size of the small nanoparticles to be used is 10-25 nm, maintaining the ratio 1/10 between the average sizes of the small and large particles chosen. The proportion by volume between large and small nanoparticles is still approx. 1/3 The next smallest particle size to be introduced in this case, maintaining that 1/10 size ratio, would be approx. lnm so that for this example the AQCs are used as the third component of the mixture and at the same time as "fluxes". The maximum optimum proportion of AQCs to be used is approximately 1/3 with respect to the smallest nanoparticles, that is, approx. 1/10 of the large particles. Proposed invention method
  • - AQCs stable atomic quantum clusters, characterized by being composed of less than 500 metal atoms (Mn, n ⁇ 500), - AQCs characterized by being composed of less than 200 metal atoms (Mn, n ⁇ 200),
  • - AQCs characterized by being composed of 2 to 5 metal atoms, - AQCs, where metals are selected from Au, Ag, Co, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb or their bi combinations and multimetallic
  • AQCs as "melting" low temperature materials in the formulation of conductive inks formed by the combination of AQCS and at least two types of metal nanoparticles of different sizes: large nanoparticles (between 100 and 250 nm) and small particles (between 10 and 25 nanometers), always maintaining a 1/10 ratio between the average size of large and small nanoparticles.
  • the proportion by weight (for equal materials) to be used is approx. 1/3 of nanoparticles of immediately smaller size than the immediately superior. These ratios must be modified in the proportion of their densities when different materials are used for each nanoparticle size.
  • Another preferable possibility is to use the combination of the AQCs with a mixture of 3 different sizes: large nanoparticles (between 100 and 250 nm), intermediate nanoparticles (between 25 and 50 nm) and small nanoparticles (between 5 and 10 nm), keeping in In any case, always a 1/5 ratio between the upper and immediately lower particle sizes.
  • the proportion in weight (for equal materials) to be used is 1/3, changing in proportion to their densities when different materials are used for each size.
  • the metals of the nanoparticles to be used are selected from Au, Ag, Co, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb or their bi and multimetallic combinations.
  • materials such as Cu, Fe, or Ag for the larger nanoparticles, since they represent the majority of the material to be used in the formulation of the conductive inks.
  • more noble materials can be used in order to avoid oxidation processes that decrease the final conductivity of printed electronic structures.
  • the conductive inks described due to the presence of AQCs that melt at very low temperatures ( ⁇ 150 ° C), can be applied to temperature sensitive substrates, such as paper or polyamide, kepton, flexible or relatively non-flexible polymers. , polyethylene, polypropylene products, products containing acrylates, polymethylmethacrylate, copolymers of the aforementioned polymers or combinations between them and also polymeric films containing at least one within the group of polyesters, polyamides, polycarbonates, polyethylene, polypropylene, as well as their copolymers and combinations among them.
  • a process for the preparation of conductive inks characterized by the following steps is proposed: a) mixing of metal nanoparticles of various sizes.
  • Metal nanoparticles do not reach their melting point.
  • the flux semi-conductive element melts, thus allowing a metallic contact between the metal nanoparticles, resulting in high conductivities.
  • EXAMPLE Synthesis of an ink for (inkjet printing) inkjet printing containing a bimodal distribution of nanoparticles and AQCs. 50g of an ink based on bimodal mixtures of nanoparticles and AQCs were synthesized, with a final concentration of 30% Ag (by weight), for use as a conductive ink in Inkjet Printing.
  • the final ink formulation consists of a bimodal distribution of nanoparticles + AQCs, using a mixture of Ethylene Glycol (EG) / Ethanol (E) 50/50 by weight.
  • the particles used in the bimodal distribution were: 1) larger nanoparticles of Ag, with an average size of 50 nm and a size distribution represented in Figure 2; 2) smaller nanoparticles of Ag, with an average size of 5 nm and a size distribution represented in Figure 3.
  • the AQCs used were Ag clusters of size smaller than 1 nm, as seen in Figure 4.
  • Nanoparticles of Ag 2.45g.
  • the preparation of the formulation was carried out as follows: first, 25 L of a larger nanoparticle formulation dispersed in water with a concentration of 0.5 g Ag / L of H 2 was taken. The solution was centrifuged to obtain a paste of nanoparticles to which 17.5 g of EG was added and stirred until it was completely redispersed.
  • Figure 5 shows a circuit printed with the example ink made with a Fujifilm Dimatix printer on a Kapton substrate and subjected to a 100 ° C heat treatment for 30 minutes.
  • the conductivity of the circuit lines thus obtained was 1.3-2.5 Ohms.
  • Figure 4 Image by tunnel effect microscopy of Ag AQCs deposited in Au's monoatomic terraces (11) showing that the average size of the clusters is ⁇ lnm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Tintas conductoras obtenidas por combinación de AQCs y nanopartículas metálicas. Clústeres cuánticos atómicos (AQCs), que funden a temperaturas inferiores a 150ºC, se utilizan como "fundentes" de baja temperatura en la formulación de tintas conductoras. La combinación de AQCs, con mezclas bi- y tri-modales de nanopartículas de diferentes tamaños garantiza la eliminación de volúmenes libres en el sinterizado final de las nanopartículas al objeto de conseguir estructuras electrónicas con resistividades muy bajas (próximas a las del material masivo) con tratamientos térmicos a bajas temperaturas (< 150ºC).

Description

TINTAS CONDUCTORAS OBTENIDAS POR COMBINACIÓN DE AQCS Y NANOPARTÍCULAS METÁLICAS.
Sector de la técnica
La presente propuesta de invención se refiere a una nueva formulación de tintas coloidales, basada en la utilización de clústeres cuánticos atómicos, (Atomic Quantum Clusters: AQCs), (sintetizados según el procedimiento descrito en la patente ES2277531), en combinación con mezclas de nanopartículas metálicas de tamaños diferentes. Con esta formulación se logran estructuras electrónicas con resistividades muy bajas (próximas a las del material masivo) con tratamientos térmicos a bajas temperaturas (< 150°C). Las tintas conductoras sirven, entre otras aplicaciones, para su utilización en la industria electrónica impresa.
Estado de la técnica
Hoy en día el uso de nanopartículas metálicas, tales como Ag, Cu, etc., para la preparación de tintas y pastas conductoras, materiales para contactos electrónicos, etc., es uno de los campos de mayor actividad investigadora, por sus innumerables posibilidades de aplicación en el campo de la electrónica impresa, en todas sus modalidades que van desde la impresión en pantalla (screen-printing), tampografta (pad-printing) y por inyección de tinta (inkjet printing) hasta los diferentes métodos de impresión en masa (mass-printing), como el offset, el gravado y la flexografía. La posibilidad de fabricación de productos electrónicos de bajo coste sobre materiales de uso común, como el papel, el plástico y el textil, ha iniciado una nueva era en el campo de la electrónica de consumo. Dentro de todas estas tecnologías, el diseño adecuado de dispersiones coloidales estables de nanopartículas metálicas (tintas conductoras de nanopartículas) desempeña uno de los retos más importantes para la expansión de este enorme mercado potencial. Para su aplicación, las tintas conductoras de nanopartículas han de poseer ciertas características que han de ser optimizadas para lograr resultados adecuados en las diferentes modalidades de la electrónica impresa (véase por ej. el uso de nanopartículas de Ag y Au en técnicas de "ink-jet" printing: J. Perelaer et al., Advanced Materials 2006, 18, 2101; Y. -Y. Noh et al, Nature Nanotechnology 2007, 2 784A, respectivamente). Aparte de los problemas del mojado y adhesión al sustrato utilizado, para lo cual se han desarrollado diferentes estrategias en las formulaciones de las tintas, el problema fundamental reside en lograr conductividades elevadas en las estructuras metálicas impresas mediante las tintas conductoras.
Independientemente del tipo de impresión empleado y la formulación concreta de la tinta conductora, el proceso de impresión con tintas lleva asociado el secado de la tinta y la sinterización de las partículas depositadas en el sustrato. Este proceso de sintetizado conlleva necesariamente un aumento de la temperatura o curado. Se plantea entonces el problema de la formulación adecuada de la tinta para conseguir una óptima conducción eléctrica en la impresión final, a temperaturas suficientemente bajas para no dañar el sustrato.
Hasta hace poco tiempo era normal la utilización de partículas de tamaños superiores a los 200-500nm en las tintas conductoras usando dispersiones coloidales. Sin embargo, pronto se vió que la utilización de partículas con tamaños inferiores a aprox 250nm presentaba ventajas apreciables, como mejoras en la calidad de las imágenes impresas, mejor reproducibilidad, etc. Así, por ej. Fuller et al. (Fuller, S. B.; Wilhelm, E. J.; Jacobson, J. M. J. Micro electromech .Syst. 2002, 11, 54) mostraron que, usando tintas coloidales conteniendo nanopartículas de Au y Ag de 5 a 7 nm en un disolvente orgánico, se pueden obtener por impresión "ink-jet"estructuras electrónicas de elevadas prestaciones sinterizando los circuitos impresos a 300°C. Sin embargo, la sinterización llevada a cabo a estas temperaturas puede dar lugar a la destrucción del substrato sobre el cual se pretende realizar la impresión. El reto actual en el uso de nanopartículas consiste en obtener estas altas prestaciones a temperaturas mucho más bajas, como por ejemplo temperaturas menores de unos 150°C y preferentemente menores de 100°C, al objeto de poder aplicarlas en sustratos sensibles a la temperatura, como pueden ser determinados tipos de polímeros (entre los que podemos citar por ej. al policarbonato con temperaturas de transición vitrea de aprox. 150°C y temperaturas de fusión de aprox. 230°C), papel, etc.
Por su parte, en la patente ES2277531 (B2) y su solicitud internacional WO 2007/017550 se describe un procedimiento para la obtención de clústeres cuánticos atómicos, denominados AQCs, con tamaños menores a 2nm, y preferentemente menores de lnm, de diferentes metales. Asimismo, se describe cómo proceder para su separación, estabilización y funcionalización. En el fundamento del método se indica que las propiedades fisicoquímicas de los clústeres sintetizados por dicho procedimiento, son diferentes de las nanopartículas. Esto es debido a que, en los AQCs se origina una separación de los niveles energéticos al nivel de Fermi ("HOMO-LUMO gap o bandgap), lo que hace que estas partículas dejen de comportarse como metálicas, lo que se observa fácilmente por la supresión de su banda plasmónica y la aparición de diferentes bandas debidas a transiciones electrónicas entre los diferentes niveles energéticos de los clústeres, que dejan entonces de comportarse de forma "metálica" y su comportamiento pasa a ser molecular, es decir, dejan de ser partículas y pasan a ser realmente "moléculas". De esta forma, incluso las nanopartículas metálicas que se acercan a los tamaños de los clústeres cuánticos atómicos (ACQs), presentan propiedades y comportamientos completamente diferentes al de los clústeres, por lo cual se abre un área de la técnica todavía sin explorar. Aparecen así nuevas propiedades en estos clústeres que no están presentes en las nanopartículas, micropartículas o el material metálico masivo Y, es precisamente el hecho de que su comportamiento y propiedades son diferentes, debido a los importantes efectos cuánticos que caracterizan a estos clústeres de átomos, lo que hace que sus propiedades no se puedan extrapolar simplemente a partir de las de las nanopartículas metálicas y, por lo tanto, no se puedan predecir sus propiedades y prestaciones frente a aplicaciones tales como la elaboración de tintas conductoras como la planteada en la presente invención.
La figura 1 muestra los resultados experimentales de temperaturas de fusión obtenidos con AQCs de Ag obtenidos por los procedimientos descritos en la patente ES2277531. En la figura la se puede ver una imagen de TEM de clústeres de Ag de tamaño aprox. lnm depositados sobre una rejilla. En la figura Ib se muestra la imagen de la misma muestra una vez sometida la rejilla a un tratamiento de 100 °C durante algunos segundos. Se observa que los AQCs de Ag se han fundido. Es precisamente este hecho de que la fusión de clústeres tiene lugar a temperaturas muy bajas, en comparación con el de las nanopartículas metálicas el que se utilizará convenientemente en la presente invención para optimizar la formulación de tintas conductoras.
Por otra parte, otro de los importantes problemas que se presenta cuando se deposita una tinta conductora basada en partículas son los espacios interpartículas presentes en la estructura electrónica impresa. Esos huecos originan una disminución importante de material conductor presente en la sección transversal del film depositado disminuyendo de esa forma la conductividad, o lo que es lo mismo, aumentado apreciablemente su resistencia eléctrica. El espacio interpartícula mínimo (espacio libre) que se puede obtener mediante esferas monodispersas es de un 26% para un ordenamiento ideal compacto (fcc) y de un 36% para un ordenamiento ideal aleatorio compacto (rcp) (A.R. Kansal et al. J.Chem.Phys.2002, 117, 8212). En los casos prácticos (partículas polidispersas y no perfectamente esférica), este espacio libre se ve aumentado enormemente provocando así una disminución muy importante en sus propiedades conductoras.
En la presente invención, aparte del uso de los AQCs como fundentes de baja temperatura, se utilizan mezclas de nanopartículas de diferentes tamaños para eliminar los espacios huecos mencionados. Para determinar la relación de tamaños de las distintas nanopartículas empleadas se hace uso de estimaciones teóricas que predicen que para una relación de tamaños entre esferas (rg/rp, siendo rg el radio de las nanopartículas grandes y rp el correspondiente a las nanopartículas pequeñas) de aprox. 5 a 10 veces (A.R. Kansal et al. J.Chem.Phys.2002, 117, 8212) se consiguen, para el caso de empaquetamientos aleatorios, reducciones del volumen libre de aprox. el 60% del volumen libre inicial. Un aumento adicional de la relación de tamaños no reporta disminuciones apreciables adicionales de dicho volumen libre. Por otra parte, a la hora de decidir el tamaño de las nanopartículas pequeñas a introducir en la mezcla de nanopartículas hay que considerar también que un aumento de la relación de tamaños puede conducir a una separación de fases entre los dos tipos de nanopartículas (E. Liniger et al. J.Am.Cer.Soc.200S, 70,843), por lo que a la hora de seleccionar los tamaños es preciso buscar una solución de compromiso. Por su parte, teniendo en cuenta que el volumen libre que dejan las partículas de mayor tamaño es, tal como se ha mencionado anteriormente, de aprox. un 30% y que la reducción del volumen libre utilizando una relación de tamaños de partículas de rp/rg = 1/5 -1/10 es del 60%>, la relación de volúmenes ocupados por las partículas pequeñas y grandes es de aprox. Vp/Vg = 18%/70% ~ 0.3, es decir, Vp/Vg ~ 1/3. Fundamento teórico de la presente invención.
La presente invención se refiere a una nueva formulación de tintas coloidales estables, basada en mezclas de nanopartículas metálicas de tamaños diferentes y de elementos fundentes SEMI-CONDUCTORES con puntos de fusión menores de 150°C, y de forma ventajosa, con puntos de fusión menores de 100°C. Dichos elementos fundentes, actuando como elementos de unión (elementos de sinterización), permiten el efecto sorprendente de conseguir el contacto METALICO entre las nanopartículas, lográndose estructuras electrónicas con resistividades muy bajas (próximas a las del material masivo) con tratamientos térmicos a muy bajas temperaturas (< 150°C).
Dichos elementos fundentes no conductores, son clústeres cuánticos atómicos, (Atomic Quantum Clusters: AQCs), sintetizados según el procedimiento descrito en la patente ES2277531, y su correspondiente WO 2007/017550 Al .
El hecho de incluir los AQCs como elementos fundentes dentro de la formulación de la tinta no es un paso obvio en el desarrollo de una tinta conductora, puesto que, sorprendentemente, a pesar de que dichos elementos fundentes no son conductores, sino semi-conductores, el resultado es una tinta conductora con propiedades conductoras excelentes, lo cual contraviene la práctica habitual, consistente en utilizar exclusivamente partículas conductoras a la hora de elaborar una tinta con prestaciones conductoras elevadas.
Combinando este aspecto, es decir, la propiedad de las bajas temperaturas de fusión de los clústeres cuánticos atómicos y la disminución del espacio libre interparticulas que es necesario conseguir en las impresiones utilizando tintas de nanopartículas, la formulación que aquí se propone como objeto de invención trata de lograr, por una parte, una disminución máxima de ese espacio libre mediante la combinación de, al menos, nanopartículas de dos tamaños diferentes y, además, un último componente utilizando una proporción determinada de AQCs para lograr una mayor "conexión interparticulas. Las nanopartículas de mayor tamaño, en mayor proporción, constituyen el mayor porcentaje en volumen de la tinta a obtener, lo que asegura un bajo coste, así como una mayor facilidad para ajustar sus parámetros fisicoquímicos (viscosidad, tensión superficial,...) a las necesidades específicas de la tinta (tipo de impresión, sustrato,...). Las nanopartículas de tamaño intermedio, en menor proporción, sirven para ocupar la mayor parte de los huecos dejados por las esferas de mayor tamaño, aumentando de esa forma la posibilidad de una mayor compactación en la estructura final depositada. Por último, los AQCs, en proporciones mucho más pequeñas, se utilizan como un "fundente" de baja temperatura que permite, 1) ocupar los huecos dejados por la mezcla de nanopartículas por su tamaño tan pequeño y 2) la unión y sinterizado de las nanopartículas de la tinta a muy bajas temperaturas sin necesidad de acudir a la fusión del resto de nanopartículas que requeriría temperaturas más elevadas. A continuación se describen dos ejemplos concretos de cómo realizar la selección de tamaños para la preparación de las tintas conductoras basadas en mezclas de nanopartículas y AQCs.
Ejemplos de aplicación: 1. Distribución trimodal + AQCs
El tamaño óptimo para las nanopartículas de mayor tamaño a emplear en las tintas es de 100 a 250 nm. Nanopartículas de mayor tamaño presentan mayores problemas de estabilidad y un sinterizado a muy altas temperaturas debido a su menor relación superficie/volumen. Para ocupar los huecos que dejan esas nanopartículas se utilizan entonces nanopartículas más pequeñas, tal como se ha mencionado anteriormente. El tamaño elegido para éstas es tal que la relación de los tamaños de las nanopartículas es de aprox. 1/5 (rp/rg = 1/5), para lograr una mayor reducción del volumen libre sin pérdida de estabilidad coloidal. Aspecto este último que, aunque se puede compensar con aditivos, supone siempre una dificultad adicional en la formulación final de las tintas. Considerando entonces el tamaño de las nanopartículas más grandes (rg = 100-250 nm), el tamaño de las pequeñas es de rp = 25-50 nm, manteniéndose en todo caso la relación 1/5 entre los tamaños elegidos en esos intervalos. La relación en volumen (o peso, si se utilizan esferas del mismo material) a utilizar de nanopartículas grandes a pequeñas es de aproximadamente 1/3, tal como se ha mencionado anteriormente, para cubrir los espacios intersticiales dejados por las partículas grandes. De esta forma se reduce de forma apreciable el volumen libre dejado por las nanopartículas grandes. Para alcanzar una reducción práctica más importante del volumen libre se utiliza un tercer tamaño de nanopartículas todavía más pequeñas, de forma que la relación de tamaños entre las nanopartículas intermedias y más pequeñas sea aprox. igual a las que existen entre las grandes y las intermedias. Para el ejemplo que estamos considerando, se utilizan nanopartículas más pequeñas de aprox. rmp = 5-10 nm (rpm = radio de las partículas más pequeñas). De nuevo, la proporción en volumen (o peso en el caso de utilizar el mismo tipo de material) de las nanopartículas intermedias a las más pequeñas es de aprox. 1/3 (es decir, aproximadamente 1/10 del volumen de las partículas más grandes). Con la introducción de este tercer tamaño de partículas se dificulta además que la dispersión pueda separarse en fases por tamaños. Por último, se utilizan como 1) material fundente de baja temperatura y 2) de relleno de los huecos intersticiales más pequeños, los AQCs, descritos en la patente ES2277531. La proporción a utilizar en volumen (o peso en el caso de utilizar el mismo material) es, de nuevo, de aproximadamente 1/3 respecto a las partículas más pequeñas (es decir, aprox. 1/30 del volumen de las partículas más grandes). Ha de entenderse que esta proporción de AQCs es el valor óptimo máximo, pudiendo disminuirse en el caso de que interese disminuir el precio de la tinta. Se contemplan, por tanto, otras relaciones aproximadas como, por ejemplo: ¼, 1/5, 1/6. 2. Distribución bimodal + AQCs
Se puede simplificar la formulación de la tinta introduciendo únicamente una distribución bimodal + AQCs. La razón es que, en la práctica, las nanopartículas utilizadas no son monodispersas (entendiendo por monodispersidad cuando la relación entre la desviación standard de tamaños (s) y el tamaño promedio (x) es menor del 10%) y tienen siempre un cierto grado de mayor o menor polidispersidad. Esta polidispersidad (s/x > 10%) favorece, por una parte, la estabilidad inhibiendo la separación de fases por tamaños y, al mismo tiempo, disminuye el volumen libre de los huecos intersticiales. Por esta razón se pueden utilizar formulaciones en las que, suponiendo que las nanopartículas grandes se encuentran, de nuevo, en el intervalo 100-250 nm, el tamaño de las nanopartículas más pequeñas puede bajarse hasta 10 veces el tamaño inicial. Es decir, el tamaño de las nanopartículas pequeñas a utilizar es de 10-25nm, manteniendo la proporción 1/10 entre los tamaños medios de las partículas pequeñas y grandes elegidas. La proporción en volumen entre las nanopartículas grandes y pequeñas sigue siendo de aprox. 1/3. El siguiente tamaño de partícula más pequeño a introducir en este caso, manteniendo esa relación de tamaños 1/10, sería de aprox. lnm por lo que para este ejemplo los AQCs se utilizan como el tercer componente de la mezcla y a la vez como "fundentes". La proporción óptima máxima a utilizar de AQCs es de aproximadamente 1/3 respecto a las nanopartículas más pequeñas, es decir, aprox. 1/10 de las partículas grandes. Método de invención propuesto
De acuerdo con lo descrito anteriormente, se propone la combinación de elementos fundentes semiconductores, y en particular de AQCs y nanopartículas de diferentes tamaños para la optimización de formulaciones de tintas conductoras, entendiendo por AQCs:
- AQCs, clústeres cuánticos atómicos estables, caracterizados por estar compuestos por menos de 500 átomos de metal (Mn, n<500), - AQCs caracterizados por estar compuestos por menos de 200 átomos de metal (Mn, n<200),
- AQCs caracterizados por estar compuestos de entre más de 2 y menos de 27 átomos de metal (Mn, 2<n<27),
- AQCs caracterizados por estar compuestos de entre 2 a 5 átomos de metal, - AQCs, donde los metales se seleccionan de entre Au, Ag, Co, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb o sus combinaciones bi y multimetálicas
Se propone en la presente invención la utilización de los AQCs como materiales "fundentes" de baja temperatura en la formulación de tintas conductoras formadas por la combinación de los AQCS y, al menos, dos tipos de nanopartículas metálicas de tamaños diferentes: nanopartículas grandes (entre 100 y 250 nm) y partículas pequeñas (entre 10 y 25 nanómetros), manteniendo siempre una relación 1/10 entre el tamaño medio de las nanopartículas grandes y pequeñas. La proporción en peso (para materiales iguales) a utilizar es de aprox. 1/3 de nanopartículas de tamaño inmediatamente inferior respecto del inmediatamente superior. Estas relaciones deben modificarse en la proporción de sus densidades cuando se utilizan materiales diferentes para cada tamaño de nanopartícula.
Otra posibilidad preferible es utilizar la combinación de los AQCs con una mezcla de 3 tamaños diferentes: nanopartículas grandes (entre 100 y 250 nm), nanopartículas intermedias (entre 25 y 50 nm) y nanopartículas pequeñas (entre 5 y 10 nm), manteniendo en todo caso siempre una relación 1/5 entre los tamaños de partículas superior e inmediatamente inferior. De nuevo, para este caso la proporción en peso (para materiales iguales) a utilizar es de 1/3, modificándose en proporción a sus densidades cuando se utilizan materiales diferentes para cada tamaño.
Para la presente invención, los metales de las nanopartículas a utilizar se seleccionan de entre Au, Ag, Co, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb o sus combinaciones bi y multimetálicas. Aunque, por sus ventajas económicas, sea preferible utilizar materiales como Cu, Fe, o Ag para las nanopartículas más grandes, ya que suponen la mayor parte del material a utilizar en la formulación de las tintas conductoras. Para las nanopartículas más pequeñas o clústeres, debido a la menor proporción utilizada, se pueden utilizar materiales más nobles al objeto de evitar procesos de oxidación que disminuyan la conductividad final de las estructuras electrónicas impresas.
Las tintas conductoras descritas, por la presencia de los AQCs que funden a muy bajas temperaturas (< 150°C), permiten ser aplicadas a sustratos sensibles a la temperatura, como papel o polímeros del tipo poliamidas, kepton, polímeros flexibles o relativamente no flexibles, productos de polietileno, polipropileno, productos conteniendo acrilatos, polimetilmetaacrilato, copolímeros de los polímeros citados o combinaciones entre ellos y también filmes poliméricos conteniendo al menos uno dentro del grupo de poliésteres, poliamidas, policarbonatos, polietileno, polipropileno, asi como sus copolímeros y combinaciones entre ellos. Se propone a su vez un proceso para la preparación de tintas conductoras caracterizado por los siguientes pasos: a) mezcla de nanopartículas metálicas de diversos tamaños. b) adición de un elemento semi-conductor, fundente a baja temperatura, cuya temperatura de fusión es substancialmente menor que la de la mezcla inicial de nanopártículas metálicas, y en particular menor de 150°C, siendo el tamaño de dicho elemento semiconductor menor de 2nm. c) Deposición de la tinta sobre uno cualquiera de los siguientes substratos: papel, polímeros del tipo poliamidas, kepton, polímeros flexibles o relativamente no flexibles, productos de polietileno, polipropileno, productos conteniendo acrilatos, polimetilmetaacrilato, copolímeros de los polímeros citados o combinaciones entre ellos. d) Aumento de la temperatura de la tinta una vez depositada en el substrato para conseguir la sinterización de la misma, de tal forma que:
- Las nanopartículas metálicas no alcanzan su punto de fusión. - El elemento semi-conductor fundente se funde, permitiendo así un contacto metálico entre las nanopartículas metálicas, dando lugar a altas conductividades.
EJEMPLO: Síntesis de una tinta para (impresión por inyección de tinta) inkjet printing conteniendo una distribución bimodal de nanopartículas y AQCs. Se sintetizaron 50g de una tinta basada en mezclas bimodales de nanopartículas y AQCs, con una concentración final de 30%Ag (en peso), para su uso como tinta conductora en Inkjet Printing.
La formulación final de la tinta está compuesta por una distribución bimodal de nanopartículas + AQCs, utilizando una mezcla de Etilen Glicol (EG) / Etanol (E) 50/50 en peso. Las partículas utilizadas en la distribución bimodal fueron: 1) nanopartículas de Ag mayor tamaño, con un tamaño medio de 50 nm y una distribución de tamaños representada en la figura 2; 2) nanopartículas de Ag menor tamaño, con un tamaño medio de 5 nm y una distribución de tamaños representada en la figura 3. Los AQCs utilizados fueron clústeres de Ag de tamaño menor a 1 nm, tal como se observa en la figura 4. La composición final de la tinta del ejemplo, para 50g de tinta conductora al 30% en Ag, fue:
25% Nanopartículas de Ag mayor tamaño: 12, 5g.
- 4,9%o Nanopartículas de Ag de menor tamaño: 2,45g.
- 0,1% AQCs de Ag: 0,05g.
- 35% Etilen Glicol (EG): 17,5g.
- 35% Etanol (E): 17,5g.
La preparación de la formulación se llevó a cabo de la siguiente forma: en primer lugar, se tomaron 25 L de una formulación de nanopartículas de mayor tamamño dispersadas en agua con una concentración de 0,5 g Ag/L de H20. Esta disolución fue centrifugada obteniéndose una pasta de nanopartículas a la que se le añadieron 17,5 g de EG y fue agitada hasta su redispersión total.
Por otro lado, se tomaron 0,05L de una dispersión de AQCs de Ag con una concentración de 1 g de AQCs/L de H20, que fueron añadidos a la mezcla de nanopartículas en EG. Esta nueva mezcla se concentró en un rotavapor para eliminar totalmente el agua.
A continuación se añadieron a la mezcla 245g de una dispersión de nanopartículas de menor tamaño en EtOH con una concentración de 10 mg de Ag/g de EtOH. Por último, la mezcla resultante se concentró en rotavapor para eliminar EtOH hasta alcanzar un peso de EtOH de 17,5g.
En la figura 5 se puede observar un circuito impreso con la tinta del ejemplo realizado con una impresora Fujifilm Dimatix sobre un sustrato de Kapton y sometido a un tratamiento térmico de 100°C durante 30 minutos. La conductividad de las líneas del circuito así obtenido fue de 1,3-2,5 Ohmios.
DESCRIPCIÓN DE FIGURAS
Figura 1
Imágenes de microscopía de transmisión electrónica de clústeres de Ag sintetizados según la descripción de la patente ES2277531 y depositados en la rejilla del microscopio (figura la) y de la misma muestra de clústeres una vez calentada la rejilla a 100 °C durante 30 segundos (figura Ib).
Figura 2
Distribución de tamaños de las nanopartículas de Ag mayor tamaño utilizadas en la formulación de la tinta del ejemplo.
Figura 3
Distribución de tamaños de las nanopartículas de Ag menor tamaño utilizadas en la formulación de la tinta del ejemplo.
Figura 4 Imagen por microscopía de efecto túnel de AQCs de Ag depositados en terrazas monoatómicas de Au(l 1 1) mostrando que el tamaño medio de los clústeres es < lnm.
Figura 5
Circuito electrónico impreso sobre Kapton mediante la tinta del ejemplo 1, realizado con una impresora Fujifilm Dimatix, después de haber sito tratado a 100°C durante 30 minutos.

Claims

REIVINDICACIONES
1.- Tintas conductoras que comprenden la combinación de: a) nanopartículas metálicas, y b) elementos fundentes semi-conductores, con una temperatura de fusión menor que dichas nanopartículas metálicas, actuando como fundente entre las nanopartículas, permitiendo así "la unión metálica" entre las nanopartículas metálicas a temperaturas menores que la temperatura de fusión de dichas nanopartículas metálicas.
2 - Tintas conductoras, según la reivindicación 1, caracterizadas porque preferentemente los metales a utilizar en las nanopartículas se seleccionan de entre Au, Ag, Co, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb o sus combinaciones bi y multimetálicas.
3. - Tintas conductoras, según la reivindicación 2, donde por nanopartículas metálicas se entiende mezclas de nanopartículas metálicas de diferentes tamaños.
4. - Tintas conductoras, según la reivindicación 3, caracterizadas porque las mezclas de nanopartículas son distribuciones bimodales, es decir, nanopartículas metálicas de dos tamaños diferentes; y donde preferentemente los tamaños de las partículas más grandes están comprendidos entre 100 y 250nm y para las partículas más pequeñas entre 10 y 25nm, manteniéndose siempre substancialmente una relación 1/10 entre los tamaños escogidos.
5. - Tintas conductoras, según la reivindicación 3, caracterizadas porque las mezclas de nanopartículas son distribuciones trimodales, es decir, nanopartículas metálicas de tres tamaños diferentes; y donde preferentemente los tamaños de las partículas más grandes están comprendidos entre 100 y 250nm, para las partículas intermedias entre 25 y 50nm, y para las más pequeñas entre 5 y lOnm, manteniéndose siempre una relación 1/5 entre los diferentes tamaños escogidos superior e inmediatamente inferior.
6.- Tintas conductoras, según cualquiera de las reivindicaciones 4 o 5, caracterizadas porque preferentemente la proporción en volumen de las cantidades empleadas de nanopartículas es de 1/3 entre los tamaños superior e inmediatamente inferior tanto para las distribuciones bimodales como trimodales.
7. -Tintas conductoras según cualquiera de las reivindicaciones anteriores, donde el tamaño de los elementos fundentes es menor de 2nm y preferentemente menor de 1 nm.
8. - Tintas conductoras según cualquiera de las reivindicaciones anteriores, donde la temperatura de fusión de los elementos fundentes semi-conductores es menor o igual que 150°C.
9. - Tintas conductoras, según cualquiera de las reivindicaciones anteriores, donde el elemento semi-conductor fundente se compone de clústeres quánticos atómicos estables (AQCs).
10. - Tintas conductoras, según cualquiera de las reivindicaciones anteriores, donde los AQCs pertenecen a uno o varios de los grupos siguientes:
- AQCs, clústeres cuánticos atómicos estables, caracterizados por estar compuestos por menos de 500 átomos de metal (Mn, n<500),
- AQCs caracterizados por estar compuestos por menos de 200 átomos de metal (Mn, n<200),
- AQCs caracterizados por estar compuestos de entre más de 2 y menos de 27 átomos de metal (Mn, 2<n<27),
- AQCs caracterizados por estar compuestos de entre 2 a 5 átomos de metal.
11. - Tintas conductoras según cualquiera de las reivindicaciones anteriores, donde los metales para los AQCs se seleccionan de entre Au, Ag, Co, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb o sus combinaciones bi y multimetálicas.
12. - Tintas conductoras, según cualquiera de las reivindicaciones anteriores, caracterizadas porque preferentemente la proporción en volumen de las cantidades empleadas de AQCs a las nanopartículas más pequeñas es de 1/10 o inferior.
13. - Tintas conductoras, según una cualquiera de las reivindicaciones anteriores, caracterizadas porque preferentemente la proporción en volumen de las cantidades empleadas de AQCs a las nanopartículas más pequeñas es de 1/30 o inferior.
14. -Tintas conductoras según cualquiera de las reivindicaciones anteriores, obtenibles mediante un proceso de sinterización a una temperatura tal que: - únicamente los clústeres quánticos atómicos se funden, permitiendo la unión metálica entre las nanopartículas metálicas.
- las nanopartículas metálicas no alcanzan su punto de fusión.
15.- Tintas conductoras según cualquiera de las reivindicaciones anteriores, para la impresión en sustratos sensibles a la temperatura, como papel, polímeros del tipo poliamidas, kepton, polímeros flexibles o relativamente no flexibles, productos de polietileno, polipropileno, productos conteniendo acrilatos, polimetilmetaacrilato, copolímeros de los polímeros citados o combinaciones entre ellos.
16- Uso de clústeres quánticos atómicos estables (AQCs) (elementos fundentes semi- conductores con temperaturas de fusión menores de 150°C) como material fundente a baja temperatura en los procesos de sinterización de tintas conductoras con nanopartículas metálicas según cualquiera de las reivindicaciones 1 a 15, dicho material fundente actuando como vinculo o elemento de unión entre nanopartículas metálicas de diferentes tamaños, permitiendo así la conductividad eléctrica.
17.- Uso de clústeres quánticos atómicos estables (AQCs), según la reivindicación 16, en la electrónica impresa para la impresión en pantalla (screen-printing), tampografía (pad- printing) y por inyección de tinta (inkjet printing).
18.- Uso de clústeres quánticos atómicos estables (AQCs), según la reivindicación 16, para la impresión en masa (mass-printing), el offset, el grabado y la flexografía.
19.- Uso de clústeres quánticos atómicos estables (AQCs), según la reivindicación 16, para la impresión en sustratos sensibles a la temperatura, como papel, polímeros del tipo poliamidas, kepton, polímeros flexibles o relativamente no flexibles, productos de polietileno, polipropileno, productos conteniendo acrilatos, polimetilmetaacrilato, copolímeros de los polímeros citados o combinaciones entre ellos.
20.- Uso de clústeres quánticos atómicos estables (AQCs), según la reivindicación 16, para la impresión en filmes poliméricos conteniendo al menos uno dentro del grupo de poliésteres, poliamidas, policarbonatos, polietileno, polipropileno, así como sus copolímeros y combinaciones entre ellos.
21.- Proceso para la preparación de una tinta conductora según cualquiera de las reivindicaciones 1-15, que comprende las siguientes etapas: a) mezcla de nanopartículas metálicas de diversos tamaños. b) adición de un elemento semi-conductor, fundente a baja temperatura, cuya temperatura de fusión es substancialmente menor que la de la mezcla inicial de nanopartículas metálicas, y en particular menor de 150°C, siendo el tamaño de dicho elemento semiconductor menor de 2nm. c) Deposición de la tinta sobre uno cualquiera de los siguientes substratos: papel, polímeros del tipo poliamidas, kepton, polímeros flexibles o relativamente no flexibles, productos de polietileno, polipropileno, productos conteniendo acrilatos, polimetilmetaacrilato, copolímeros de los polímeros citados o combinaciones entre ellos. d) Aumento de la temperatura de la tinta una vez depositada en el substrato para conseguir la sinterización de la misma, de tal forma que:
- Las nanopartículas metálicas no alcanzan su punto de fusión.
- El elemento semi-conductor fundente se funde, permitiendo así un contacto metálico entre las nanopartículas metálicas, dando lugar a altas conductividades.
22.- Proceso para la preparación de una tinta conductora según la reivindicación 21, donde el elemento semi-conductor fundente citado en la etapa b) comprende clústeres quánticos atómicos estables (AQCs).
PCT/ES2010/070765 2009-11-25 2010-11-23 Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas WO2011064430A2 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/511,369 US9315687B2 (en) 2009-11-25 2010-11-23 Conductive inks obtained by combining AQCs and metal nanoparticles
KR1020127016564A KR101826272B1 (ko) 2009-11-25 2010-11-23 Aqc와 금속 나노입자를 결합하여 얻어지는 도전성 잉크
EP10832691.9A EP2505616A4 (en) 2009-11-25 2010-11-23 ON THE BASIS OF THE COMBINATION OF AQCS AND METAL NANOPARTICLES MANUFACTURED INK INKS
JP2012540465A JP6185240B2 (ja) 2009-11-25 2010-11-23 Aqcおよび金属ナノ粒子の組合せにより得られる導電性インク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902230A ES2360649B2 (es) 2009-11-25 2009-11-25 Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas.
ESP200902230 2009-11-25

Publications (3)

Publication Number Publication Date
WO2011064430A2 true WO2011064430A2 (es) 2011-06-03
WO2011064430A3 WO2011064430A3 (es) 2011-07-28
WO2011064430A4 WO2011064430A4 (es) 2011-09-22

Family

ID=44060839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070765 WO2011064430A2 (es) 2009-11-25 2010-11-23 Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas

Country Status (6)

Country Link
US (1) US9315687B2 (es)
EP (1) EP2505616A4 (es)
JP (2) JP6185240B2 (es)
KR (1) KR101826272B1 (es)
ES (1) ES2360649B2 (es)
WO (1) WO2011064430A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079669A1 (en) 2011-12-02 2013-06-06 Universidade De Santiago De Compostela Photoconversion of light using metal supported atomic quantum clusters

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9302322B2 (en) * 2012-12-12 2016-04-05 Nanogap Sub Nm Powder, S.A. Luminescent nanocompounds
KR101656452B1 (ko) * 2013-09-06 2016-09-09 주식회사 잉크테크 전도성 패턴 형성 방법 및 전도성 패턴
DE102013224622A1 (de) * 2013-11-29 2015-06-03 Robert Bosch Gmbh Dispersion für die Metallisierung von Kontaktierungen
EP3454998B1 (en) * 2016-05-13 2023-10-11 Mantle Inc. Additive manufacturing method for depositing a metal paste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017550A1 (es) 2005-08-03 2007-02-15 Universidade De Santiago De Compostela Clústeres cuánticos atómicos estables, su procedimiento de obtención y uso de los mismos

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187640A (ja) * 2001-12-18 2003-07-04 Bando Chem Ind Ltd 金属コロイド液及び導電性被膜
JP4261162B2 (ja) * 2002-11-19 2009-04-30 住友ゴム工業株式会社 回路の製造方法および該回路を備えた回路板
US20070267291A1 (en) 2004-03-09 2007-11-22 Hall Clive E Electrochemical Sensor Comprising Diamond Particles
WO2006057348A1 (ja) * 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. 表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉末を用いた銀ペースト
US7824466B2 (en) * 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
US20070144305A1 (en) * 2005-12-20 2007-06-28 Jablonski Gregory A Synthesis of Metallic Nanoparticle Dispersions
WO2008100568A1 (en) * 2007-02-17 2008-08-21 Nanogram Corporation Functional composites, functional inks and applications thereof
WO2009027172A1 (en) * 2007-08-31 2009-03-05 Unilever Plc Printing formulations
ES2319064B1 (es) * 2007-10-05 2010-02-15 Universidad De Santiago De Compostela Uso de clusteres cuanticos atomicos (aqcs) como antimicrobianos y biocidas.
JP2011505430A (ja) * 2007-10-09 2011-02-24 ナノマス テクノロジーズ インコーポレイテッド 導電性ナノ粒子インクおよびペーストならびにそれらを用いる適用方法
US7976733B2 (en) * 2007-11-30 2011-07-12 Xerox Corporation Air stable copper nanoparticle ink and applications therefor
US20090274834A1 (en) 2008-05-01 2009-11-05 Xerox Corporation Bimetallic nanoparticles for conductive ink applications
US8017044B2 (en) * 2008-07-08 2011-09-13 Xerox Corporation Bimodal metal nanoparticle ink and applications therefor
ES2365313B2 (es) * 2010-03-18 2012-01-19 Universidad De Santiago De Compostela PROCEDIMIENTO PARA LA PREPARACIÓN DE NANOPARTÍCULAS METÁLICAS ANISOTRÓPICAS MEDIANTE CATÁLISIS POR AQCs.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017550A1 (es) 2005-08-03 2007-02-15 Universidade De Santiago De Compostela Clústeres cuánticos atómicos estables, su procedimiento de obtención y uso de los mismos
ES2277531A1 (es) 2005-08-03 2007-07-01 Universidad De Santiago De Compostela Procedimiento para la obtencion de clusteres cuanticos atomicos.
ES2277531B2 (es) 2005-08-03 2008-07-16 Universidad De Santiago De Compostela Procedimiento para la obtencion de clusteres cuanticos atomicos.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.R. KANSAL ET AL., J. CHEM. PHYS., vol. 117, 2002, pages 8212
E. LINIGER ET AL., J. AM. CER. SOC., vol. 70, 2008, pages 843
FULLER, S. B.; WILHELM, E. J.; JACOBSON, J. M., J. MICROELECTROMECH. SYST., vol. 11, 2002, pages 54
J. PERELAER ET AL., ADVANCED MATERIALS, vol. 18, 2006, pages 2101
See also references of EP2505616A4
Y.-Y. NOH ET AL., NATURE NANOTECHNOLOGY, vol. 2, 2007, pages 784A

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079669A1 (en) 2011-12-02 2013-06-06 Universidade De Santiago De Compostela Photoconversion of light using metal supported atomic quantum clusters
KR20140107349A (ko) * 2011-12-02 2014-09-04 유니버시다데 데 산티아고 데 콤포스텔라 금속 담지된 원자 양자 클러스터를 이용한 광의 광변환
US10464047B2 (en) 2011-12-02 2019-11-05 Universidade De Santiago De Compostela Photoconversion of light using metal supported atomic quantum clusters
KR102100318B1 (ko) * 2011-12-02 2020-05-18 유니버시다데 데 산티아고 데 콤포스텔라 금속 담지된 원자 양자 클러스터를 이용한 광의 광변환

Also Published As

Publication number Publication date
WO2011064430A3 (es) 2011-07-28
ES2360649B2 (es) 2011-10-17
US9315687B2 (en) 2016-04-19
EP2505616A2 (en) 2012-10-03
KR20120113739A (ko) 2012-10-15
ES2360649A1 (es) 2011-06-07
WO2011064430A4 (es) 2011-09-22
KR101826272B1 (ko) 2018-02-06
EP2505616A4 (en) 2014-08-20
JP2016048677A (ja) 2016-04-07
JP6185240B2 (ja) 2017-08-23
JP2013512300A (ja) 2013-04-11
US20120315495A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2011064430A2 (es) Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas
Huang et al. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity
JP5908962B2 (ja) 導電性複合材料の調製方法
KR101007326B1 (ko) 주석-구리-은 합금나노입자, 이의 제조 방법 및 상기 합금나노입자를 이용한 잉크 또는 페이스트
JP5766441B2 (ja) 溶剤型および水性導電性金属インクのための添加剤および調整剤
JP2005507452A5 (es)
JP2005507452A (ja) 金属ナノ粒子を含むインクジェットインク
JP2009500802A5 (es)
TW200305619A (en) Electroconductive composition, electroconductive coating and method of producing the electroconductive coating
JP2010537429A (ja) 修飾された高アスペクト比の粒子を含む電圧で切替可能な誘電体材料
TW200812729A (en) Fine particle dispersion and method for producing fine particle dispersion
Mathias et al. Morphology control in biphasic hybrid systems of semiconducting materials
US9752040B2 (en) Nanosilver ink compositions comprising polystyrene additives
TWI540188B (zh) 噴墨記錄用導電性水性印墨及電氣電子零件的製造方法
JP7398718B2 (ja) 銅酸化物粒子組成物、導電性ペースト及び導電性インク
KR20170021223A (ko) 코어쉘형 금속 미립자의 제조방법, 코어쉘형 금속 미립자, 전도성 잉크 및 기판의 제조방법
CN105358640B (zh) 导电膜形成用组合物和导电膜的制造方法
JP6231003B2 (ja) 導電性材料およびプロセス
KR101239238B1 (ko) 주석계 나노 입자가 첨가된 은 복합 잉크의 제조 방법과 그에 의한 은 복합 잉크 및 그 소결 방법과 은 복합 잉크의 소결체
Keck et al. Low-temperature sintering of nanometal inks on polymer substrates
Magdassi et al. Conductive ink-jet inks for plastic electronics: Air stable copper nanoparticles and room temperature sintering
JP4517290B2 (ja) 金属粒子複合構造体とその製造方法およびそれを用いた異方導電膜
Mohan et al. Copper sintering for microelectronics application

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012540465

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010832691

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127016564

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13511369

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832691

Country of ref document: EP

Kind code of ref document: A2