WO2011064138A1 - Druckluftbetriebener unterdruckerzeuger oder unterdruckgreifer - Google Patents

Druckluftbetriebener unterdruckerzeuger oder unterdruckgreifer Download PDF

Info

Publication number
WO2011064138A1
WO2011064138A1 PCT/EP2010/067770 EP2010067770W WO2011064138A1 WO 2011064138 A1 WO2011064138 A1 WO 2011064138A1 EP 2010067770 W EP2010067770 W EP 2010067770W WO 2011064138 A1 WO2011064138 A1 WO 2011064138A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
opening
gripper according
generator
vacuum generator
Prior art date
Application number
PCT/EP2010/067770
Other languages
English (en)
French (fr)
Inventor
Walter Schaaf
Original Assignee
J. Schmalz Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J. Schmalz Gmbh filed Critical J. Schmalz Gmbh
Priority to EP10782257.9A priority Critical patent/EP2504584B1/de
Priority to CN201080053462.XA priority patent/CN102713310B/zh
Priority to KR1020127015721A priority patent/KR101603377B1/ko
Priority to US13/511,585 priority patent/US9062689B2/en
Publication of WO2011064138A1 publication Critical patent/WO2011064138A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/91Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • F04F5/22Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating of multi-stage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Definitions

  • the invention relates to a operated with Duckluft vacuum generator or vacuum gripper with the features of the preamble of
  • Multi-stage ejectors with successively connected venturi nozzles are known e.g. from WO 99/49216 and known by the companies Piab, SMC and Vtec.
  • a characteristic of the multistep principle is that the
  • General vacuum generation principles are the Venturi principle with a propellant and a receiver nozzle, the Bernoulli principle, in which "fast" air with high dynamic pressure creates a static negative pressure, and the Coanda principle, in which air follows a curved surface.
  • the invention has for its object to provide a vacuum generator or vacuum gripper, with which vacuum can be generated in an efficient manner.
  • the multistage ejector according to the invention has at least two
  • the exhaust air jet is one
  • upstream vacuum generation stage of the propellant jet of a downstream vacuum generation stage and at least two different vacuum generation principles are used.
  • Vacuum nozzle, an ejector and / or a vacuum generating stage be and according to the Venturi principle, the Bernoulli principle, the
  • a further development according to the invention provides that at least one outflow opening of a vacuum unit opens into the blowing air opening of the other vacuum unit.
  • Vacuum units are connected in series.
  • the vacuum units are combined in parallel and / or series connection.
  • one or more vacuum units can be connected downstream of the one vacuum unit, which in turn are connected in parallel.
  • Vacuum assemblies arranged in a common housing.
  • At least two different suction chambers are separated from one another or connectable to one another by one or more movable flaps.
  • flaps which are preferably designed as check valves, volume flows and thus generated negative pressures can be selectively controlled.
  • Flaps under pressure dependent and / or volume flow dependent is controllable and in particular automatically.
  • sucked workpiece can be dropped quickly.
  • one or more sensors With preference for detecting the flow and / or pressure conditions, in particular in the suction chamber, one or more sensors
  • Figure 1 shows a combination of Venturi and Coanda principle with separate vacuum chambers (venturi nozzle or more or more individual nozzles);
  • Figure 2 shows a combination of Venturi and Coanda principle with a vacuum chamber, wherein the exhaust air flow of the Venturi nozzles the
  • Blowing air flow of the Coanda nozzle is represented (Venturi nozzle circulating or several individual nozzles);
  • Figure 3 shows a combination of Venturi and Bernoulli principle
  • Figure 4 shows a multi-stage ejector with a combination of
  • Venturi nozzle with a vortex nozzle in different views can also be designed as Coanda nozzles;
  • Figure 5 shows a multi-stage ejector with a combination of
  • Figure 6 shows a combination of the Coanda and Bernoulli principle with outwardly directed exhaust air flow
  • Figure 7 shows a combination of the Coanda and Bernoulli principle with inwardly directed exhaust air flow for the extraction of air and for generating a suction
  • FIG. 8 shows a combination of the Vortex and Coanda principles.
  • venturi 10 may be formed circumferentially or as a plurality of individual nozzles.
  • the reference numeral 18 the compressed air connection of the venturi 10 and with the
  • Reference numeral 20 denotes the compressed air port of the Coanda 12.
  • the exhaust port 22 of the venturi 10 opens in the compressed air connection 20 of the Coandadüse 12.
  • the compressed air and me 26 is referred to the suction air.
  • Venturi 10 with the Coandadüse 12 according to Figure 1 with a single, common vacuum chamber 28.
  • the compressed air port 18 is integrated into a housing 30 which also defines the suction chamber 28.
  • the beginning of the suction is shown, in which a high volume flow is generated.
  • Behind the intake opening 32 of the Coanda 12 is a flap 34, in particular a
  • one vacuum unit 8 serves primarily to generate a high volume flow and the other
  • FIG. 3 shows a combination of other Unterdruckbauein units 8, namely a venturi 10 and a Bernoulli nozzle 40 with separate vacuum chambers 14 and 42, wherein the venturi 10 may be formed circumferentially or as a plurality of individual nozzles.
  • the exhaust port 22 of the Venturi 10 also opens here in the compressed air port 20 of the Bernoulli nozzle 40th
  • FIG. 4 shows a multi-stage ejector 46 with a combination of a Venturi nozzle 10 with a Vortex nozzle 48 in different views.
  • Venturi 10 may also be formed as Coandadüsen 12.
  • the venturi 10 thus opens into a central
  • Main flow passage 50 that its exhaust air stream 52 is inclined in the direction of the outlet opening 54 ( Figures 4c) and 4d)).
  • the exhaust air stream 52 opens at an angle in the central main flow channel 50, which is located between the radial and the tangential ( Figure 4a) and 4b)).
  • a vortex is caused in the central main flow channel 50 which is directed in the direction of the outlet opening 54, so that suction air 26 through the lower opening of the central
  • Main flow channel 50 is sucked. In this case, opens at the beginning of the suction, the check valve 36, since a high volume flow prevails. The generated negative pressure is still low ( Figure 4d)).
  • the non-return valve 36 closes and only suction air 26 is sucked in via the venturi nozzles 10. This will reduce the negative pressure in the
  • Vacuum chamber 28 increased.
  • 60 is a sensor, in particular
  • Vacuum sensor indicated. And with 62 a separately controllable blower is indicated, with which the negative pressure in the
  • Vacuum chamber 28 can be degraded quickly after the suction.
  • FIG. 5 shows a multi-stage ejector 46 with a combination of a Coanda nozzle 12 and a Venturi nozzle 10 for operating
  • Vacuum gripper 6 e.g. a surface suction gripper 4.
  • the compressed air 24 flows radially into the Coandadüse 12 and there is sucked suction air 26 centrally in the housing 30.
  • the exhaust port 56 of the Coandadüse 12 serves as Druck Kunststoffan-circuit 18 of the venturi 10.
  • At the beginning of the intake opens the check valve 36, as a high
  • FIG. 6 shows a combination of a Coandadüse 12 and a
  • Vacuum chambers 16 and 42 The exhaust port 56 of the Coandadüse 12 serves as a compressed air port 20 for the Bernoulli nozzle 40th
  • Vacuum gripper 6 spacers 58 may be provided so that a permanent flow of suction air 26 is maintained even when sucked workpiece 38.
  • FIG. 8 shows a combination of a vortex nozzle 48 and a Coanda nozzle 12.
  • the inflow direction of the compressed air 24 into the Vortex nozzle 48 corresponds to the embodiment of FIG. 4, so that a swirl sucking in the suction air 26 is produced in the Vortex nozzle 48.
  • This swirling exhaust air stream flows substantially radially into the Coandadüse 12 and generates a central suction air flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Druckluftbetriebenen Unterdruck-erzeuger oder Unterdruck-greif er mit wenigstens zwei Unter-druckbaueinheiten, wobei jede Unterdruckbaueinheit eine Saug-kammer, eine in die Saugkammer mündende Ansaugöffnung, eine aus der Saugkammer ausmündende Ausströmöffnung und wenigstens eine zwischen der Ansaugöffnung und der Ausströmöffnung in die Ausströmöffnung mündende Treibluftöffnung aufweist, und wobei die Unterdruckbaueinheiten nach wenigstens zwei unterschiedlichen Prinzipien (Venturi, Bernoulli, Coanda, Vortex,...) zur Unterdruck-Erzeugung arbeiten.

Description

Beschreibung
Druckluftbetriebener Unterdruckerzeuger oder Unterdruckgreifer
[0001] Die Erfindung betrifft einen mit Duckluft betriebenen Unterdruckerzeuger oder Unterdruckgreifer mit den Merkmalen des Oberbegriffs des
Anspruchs 1.
[0002] Mehrstufenejektoren mit hintereinander geschalteten Venturidüsen sind z.B. aus der WO 99/49216 und von den Firmen Piab, SMC und Vtec bekannt. Ein Kennzeichen des Mehrstufenprinzips ist, dass der
Abluftstrahl einer vorgeschalteten Stufe der Treibluftstrahl der
nachgeschalteten Stufe ist Dabei kann z.B. eine Kombination des
Coanda-Prinzip mit dem Venturi-Prinzip nützlich sein, den
Saugvolumenstrom zu erhöhen. Allgemeine Vakuumerzeugungsprinzipien sind das Venturi-Prinzip mit einer Treib- und einer Empfängerdüse, das Bernoulli-Prinzip, bei dem "schnelle" Luft mit hohem dynamischem Druck einen statischen Unterdruck erzeugt, und das Coanda-Prinzip, bei dem Luft einer gekrümmten Fläche folgt.
[0003] Der Erfindung liegt die Aufgabe zugrunde, einen Unterdruckerzeuger oder Unterdruckgreifer bereitzustellen, mit welchem auf effiziente Weise Unterdruck erzeugt werden kann.
[0004] Diese Aufgabe wird mit einem Unterdruckerzeuger oder Unterdruckgreifer gelöst, der die Merkmale des Anspruchs 1 aufweist.
[0005] Der erfindungsgemäße Mehrstufenejektor weist mindestens zwei
Vakuumerzeugungsstufen auf. Dabei ist der Abluftstrahl einer
vorgeschalteten Vakuumerzeugungsstufe der Treibluftstrahl einer nachgeschalteten Vakuumerzeugungsstufe, und es werden mindestens zwei unterschiedliche Vakuumerzeugungsprinzipien verwendet.
[0006] Hierdurch werden folgende Vorteile erzielt. Durch die Kombination eines Prinzips für hohen Volumenstrom mit einem Prinzip für hohes Vakuum kann erreicht werden, dass das anzusaugende Objekt aufgrund des hohen Volumenstroms der Ansaugvorrichtung entgegen springt und aufgrund des hohen Unterdrucks stark festgehalten wird.
[0007] Dabei kann die Unterdruckbaueinheit erfindungsgemäß eine
Unterdruck-Düse, ein Ejektor und/oder eine Unterdruck-Erzeugungsstufe sein und z.B. nach dem Venturi-Prinzip, dem Bernoulli-Prinzip, dem
Coanda-Prinzip oder dem Vortex-Prinzip arbeiten.
[0008] Eine erfindungsgemäße Weiterbildung sieht vor, dass mindestens eine Ausströmöffnung einer Unterdruckbaueinheit in die Treibluftöffnung der anderen Unterdruckbaueinheit einmündet. Die beiden
Unterdruckbaueinheiten sind hintereinander geschaltet.
[0009] Vorteilhaft sind die Unterdruckbaueinheiten in Parallelschaltung und/oder Serienschaltung kombiniert. Dabei können der einen Unterdruckbaueinheit eine oder mehrere Unterdruckbaueinheiten nachgeschaltet sein, die ihrerseits aber parallel geschaltet sind.
[0010] Vorteilhaft und zur Verringerung des Bauvolumens sind die
Unterdruckbaueinheiten in einem gemeinsamen Gehäuse angeordnet.
[001 1] Bei einer Weiterbildung der Erfindung ist vorgesehen, dass wenigstens zwei verschiedene Saugkammern durch eine oder mehrere bewegliche Klappen voneinander getrennt oder miteinander verbindbar sind. Mittels dieser Klappen, die bevorzugt als Rückschlagklappen ausgebildet sind, können Volumenströme und dadurch erzeugte Unterdrücke gezielt gesteuert werden.
[0012] Dabei kann vorgesehen sein, dass das Schließen oder Öffnen der
Klappen unterdruckabhängig und/oder volumenstromabhängig steuerbar ist und insbesondere automatisch erfolgt.
[0013] Vorteilhaft ist eine in die Saugkammer mündende Abblasvorrichtung
vorgesehen, so dass der Unterdruck schnell abgebaut und das
angesaugte Werkstück schnell abgeworfen werden kann.
[0014] Mit Vorzug sind zur Detektion der Strömungs- und/oder Druckverhältnisse, insbesondere in der Saugkammer, ein oder mehrere Sensoren
vorgesehen.
[0015] Bei einer Weiterbildung ist vorgesehen, dass die nach wenigstens zwei unterschiedlichen Prinzipien zur Unterdruck-Erzeugung arbeitenden Unterdruckbaueinheiten gleichzeitig oder sequentiell arbeiten. Dabei kann die eine Unterdruckbaueinheit zur Erzeugung eines hohen Volumenstroms und die andere Unterdruckbaueinheit zur Erzeugung eines hohen
Unterdrucks verwendet werden. [0016] Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der beigefügten Zeichnung. Dabei können die in der Zeichnung dargestellten sowie in der Beschreibung und in den Ansprüchen erwähnten Merkmale jeweils im Einzelnen als auch in beliebiger Kombination erfindungswesentlich sein.
[0017] In der Zeichnung zeigen:
[0018] Figur 1 eine Kombination des Venturi- und Coanda-Prinzips mit getrennten Vakuumkammern (Venturi-Düse umlaufend oder mehrere Einzeldüsen);
[0019] Figur 2 eine Kombination des Venturi- und Coanda-Prinzips mit einer Vakuumkammer, wobei der Abluftstrom der Venturi-Düsen den
Treibluftstrom der Coanda-Düse darstellt (Venturi-Düse umlaufend oder mehrere Einzeldüsen);
[0020] Figur 3 eine Kombination des Venturi- und Bernoulli-Prinzips mit
getrennten Vakuumkammern (Venturi-Düse umlaufend oder mehrere Einzeldüsen);
[0021] Figur 4 einen Mehrstufen-Ejektor mit einer Kombination einer
Venturi-Düse mit einer Vortex-Düse in verschiedenen Ansichten. Dabei können die Venturi-Düsen auch als Coanda-Düsen ausgebildet sein;
[0022] Figur 5 einen Mehrstufen-Ejektor mit einer Kombination einer
Coanda-Düse mit einer Venturi-Düse;
[0023] Figur 6 eine Kombination des Coanda- und Bernoulli-Prinzips mit nach außen geführtem Abluftstrom;
[0024] Figur 7 eine Kombination des Coanda- und Bernoulli-Prinzips mit nach innen geführtem Abluftstrom zum Absaugen von Luft und zum Erzeugen einer Absaugkraft; und
[0025] Figur 8 eine Kombination des Vortex- und Coanda-Prinzips.
[0026] Die Figur 1 zeigt eine Kombination zweier Unterdruckbauein-heiten 8, nämlich einer Venturidüse 10 und einer Coandadüse 12 mit getrennten Vakuumkammern 14 und 16, wobei die Venturidüse 10 umlaufend oder als mehrere Einzeldüsen ausgebildet sein kann. Mit dem Bezugszeichen 18 ist der Druckluftanschluss der Venturidüse 10 und mit dem
Bezugszeichen 20 ist der Druckluftanschluss der Coandadüse 12 bezeichnet. Dabei mündet der Abluftanschluss 22 der Venturidüse 10 in den Druckluftanschluss 20 der Coandadüse 12. Mit 24 ist die Druckluft und mir 26 die Saugluft bezeichnet.
[0027] Die Figur 2 zeigt einen Unterdruckgreifer 6 mit der Kombination der
Venturidüse 10 mit der Coandadüse 12 gemäß Figur 1 mit einer einzigen, gemeinsamen Vakuumkammer 28. Dabei ist der Druckluftanschluss 18 in ein Gehäuse 30 integriert, welches auch die Saugkammer 28 umgrenzt. In der Figur 2a) ist der Beginn des Ansaugvorganges dargestellt, bei welchem ein hoher Volumenstrom erzeugt wird. Hinter der Ansaugöffnung 32 der Coandadüse 12 ist eine Klappe 34, insbesondere eine
Rückschlagklappe 36 befestigt, die vom Saugstrom 26 in Offenstellung bewegt wird. Bei einem angesaugten Werkstück 38 sinkt allmählich der Volumenstrom, so dass sich die Klappe 34 schließt, was in der Figur 2b) dargestellt ist. Die Coandadüse 12 ist nunmehr abgeschaltet, so dass nur noch die Venturidüse 10 betrieben wird. Dadurch sinkt der Volumenstrom nochmals, wobei sich aber der Unterdruck in der Vakuumkammer 28 erhöht.
[0028] Erfindungsgemäß dient die eine Unterdruckbauein-heit 8 vornehmlich zur Erzeugung eines hohen Volumenstromes und die andere
Unterdruckbauein-heit 8 zur Erzeugung eines hohen Unterdruckes.
[0029] Die Figur 3 zeigt eine Kombination anderer Unterdruckbauein-heiten 8, nämlich eine Venturidüse 10 und eine Bernoullidüse 40 mit getrennten Vakuumkammern 14 und 42, wobei die Venturidüse 10 umlaufend oder als mehrere Einzeldüsen ausgebildet sein kann. Der Abluftanschluss 22 der Venturidüse 10 mündet auch hier in den Druckluftanschluss 20 der Bernoullidüse 40.
[0030] Die Figur 4 zeigt einen Mehrstufen-Ejektor 46 mit einer Kombination einer Venturidüse 10 mit einer Vortexdüse 48 in verschiedenen Ansichten.
Dabei können die Venturidüsen 10 auch als Coandadüsen 12 ausgebildet sein. Die Venturidüse 10 mündet derart in einen zentralen
Hauptströmungskanal 50 ein, dass deren Abluftstrom 52 in Richtung der Auslassöffnung 54 geneigt ist (Figuren 4c) und 4d)). Außerdem mündet der Abluftstrom 52 in einem Winkel in den zentralen Hauptströmungskanal 50 ein, der zwischen der Radialen und der Tangentialen liegt (Figuren 4a) und 4b)). Dadurch wird im zentralen Hauptströmungskanal 50 ein Wirbel verursacht der in Richtung der Auslassöffnung 54 gerichtet ist, so dass Saugluft 26 durch die untere Öffnung des zentralen
Hauptströmungskanals 50 angesaugt wird. Dabei öffnet zu Beginn des Ansaugvorganges die Rückschlagklappe 36, da ein hoher Volumenstrom herrscht. Der dabei erzeugte Unterdruck ist noch gering (Figur 4d)).
Sobald, wie in Figur 4e) dargestellt, der Volumenstrom abnimmt, schließt die Rückschlagklappe 36 und es wird lediglich Saugluft 26 über die Venturidüsen 10 angesaugt. Dadurch wird der Unterdruck in der
Vakuumkammer 28 erhöht. Mit 60 ist ein Sensor, insbesondere
Unterdrucksensor angedeutet. Und mit 62 ist eine separat ansteuerbare Abblasvorrichtung angedeutet, mit welcher der Unterdruck in der
Vakuumkammer 28 nach dem Saugvorgang schnell abgebaut werden kann.
[0031] Die Figur 5 zeigt einen Mehrstufenejektor 46 mit einer Kombination einer Coandadüse 12 und einer Venturidüse 10 zum Betreiben
Unterdruckgreifers 6, z.B. eines Flächensauggreifers 4. Die Druckluft 24 strömt radial in die Coandadüse 12 ein und es wird Saugluft 26 zentral in das Gehäuse 30 eingesaugt. Der Abluftanschluss 56 der Coandadüse 12 dient als Druckluftan-schluss 18 der Venturidüse 10. Zu Beginn des Ansaugvorganges öffnet die Rückschlagklappe 36, da ein hoher
Volumenstrom herrscht. Der dabei erzeugte Unterdruck ist noch gering (Figur 5a)). Sobald, wie in Figur 5b) dargestellt, der Volumenstrom abnimmt, schließt die Rückschlagklappe 36 und es wird lediglich Saugluft 26 über die Coandadüse 12 angesaugt. Dadurch wird der Unterdruck in der Vakuumkammer 28 erhöht.
[0032] Die Figur 6 zeigt eine Kombination einer Coandadüse 12 und einer
Bernoullidüse 40, ähnlich wie in der Figur 3 mit getrennten
Vakuumkammern 16 und 42. Der Abluftanschluss 56 der Coandadüse 12 dient als Druckluftanschluss 20 für die Bernoullidüse 40.
[0033] Die Figur 7 zeigt einen Unterdruckgreifer 6 mit einer Kombination einer Coandadüse 12 und einer Bernoullidüse 40 mit nach innen geführtem Abluftstrom zum Absaugen von Saugluft 26 und zum Erzeugen einer Absaugkraft für das Werkstück 38. An der Unterseite des
Unterdruckgreifers 6 können Abstandshalter 58 vorgesehen sein, so dass auch bei angesaugtem Werkstück 38 eine permanente Strömung von Saugluft 26 aufrecht erhalten bleibt.
Die Figur 8 zeigt eine Kombination einer Vortexdüse 48 und einer Coandadüse 12. Die Einströmrichtung der Druckluft 24 in die Vortexdüse 48 entspricht der Ausführungsform der Figur 4, so dass in der Vortexdüse 48 ein die Saugluft 26 ansaugender Drall entsteht. Dieser drallbehaftete Abluftstrom strömt im Wesentlichen radial in die Coandadüse 12 ein und erzeugt einen zentralen Saugluftstrom.

Claims

Ansprüche
1. Druckluftbetriebener Unterdruckerzeuger oder Unterdruck-greifer (6) mit
wenigstens zwei Unterdruckbaueinheiten (8), wobei jede Unterdruckbaueinheit (8) eine Saugkammer, eine in die Saugkammer mündende Ansaugöffnung, eine aus der Saugkammer ausmündende Ausströmöffnung und wenigstens eine in die Ausströmöffnung mündende Druckluft- oder Treibluftöffnung aufweist, dadurch gekennzeichnet, dass die Unterdruckbaueinheiten (8) nach wenigstens zwei unterschiedlichen Prinzipien zur Unterdruckerzeugung arbeiten.
2. Unterdruckerzeuger oder Unterdruckgreifer nach Anspruch 1 , dadurch
gekennzeichnet, dass die Unterdruckbaueinheit (8) eine Unterdruck-Düse, ein Ejektor und/oder eine Unterdruck-Erzeugungsstufe ist.
3. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine Ausströmöffnung einer Unterdruckbaueinheit (8) in die Druckluft- oder Treibluftöffnung der anderen Unterdruckbaueinheit (8) einmündet.
4. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Unterdruckbaueinheiten (8) in Parallelschaltung und/oder Serienschaltung kombiniert sind.
5. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Unterdruckbaueinheiten (8) in einem gemeinsamen Gehäuse (30) angeordnet sind.
6. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei verschiedene Saugkammern durch eine oder mehrere bewegliche Klappen (34) voneinander getrennt oder miteinander verbindbar sind.
7. Unterdruckerzeuger oder Unterdruckgreifer nach Anspruch 6, dadurch
gekennzeichnet, dass das Schließen oder Öffnen der Klappen (34)
unterdruckabhängig und/oder volumenstromabhängig steuerbar ist.
8. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines der Prinzipien das Venturi-Prinzip (10), das Bernoulli-Prinzip (40), das Coanda-Prinzip (12) oder das Vortex-Prinzip (48) ist.
9. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Abblasvorrichtung (62) vorgesehen ist.
10. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Detektion der Strömungsund/oder Druckverhältnisse, insbesondere in der Saugkammer (28), ein Sensor (60) vorgesehen ist.
1 1. Unterdruckerzeuger oder Unterdruckgreifer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die nach wenigstens zwei unterschiedlichen Prinzipien zur Unterdruck-Erzeugung arbeitenden
Unterdruckbaueinheiten (8) gleichzeitig oder sequentiell arbeiten.
PCT/EP2010/067770 2009-11-24 2010-11-18 Druckluftbetriebener unterdruckerzeuger oder unterdruckgreifer WO2011064138A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10782257.9A EP2504584B1 (de) 2009-11-24 2010-11-18 Druckluftbetriebener unterdruckerzeuger oder unterdruckgreifer
CN201080053462.XA CN102713310B (zh) 2009-11-24 2010-11-18 压缩空气驱动的负压发生器或负压夹具
KR1020127015721A KR101603377B1 (ko) 2009-11-24 2010-11-18 압축 공기로 동작되는 진공 발생기 또는 진공 그리퍼
US13/511,585 US9062689B2 (en) 2009-11-24 2010-11-18 Compressed-air-operated vacuum generator or vacuum gripper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047083A DE102009047083C5 (de) 2009-11-24 2009-11-24 Druckluftbetriebener Unterdruckerzeuger oder Unterdruckgreifer
DE102009047083.2 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011064138A1 true WO2011064138A1 (de) 2011-06-03

Family

ID=43607990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067770 WO2011064138A1 (de) 2009-11-24 2010-11-18 Druckluftbetriebener unterdruckerzeuger oder unterdruckgreifer

Country Status (6)

Country Link
US (1) US9062689B2 (de)
EP (1) EP2504584B1 (de)
KR (1) KR101603377B1 (de)
CN (1) CN102713310B (de)
DE (1) DE102009047083C5 (de)
WO (1) WO2011064138A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRE20110024A1 (it) * 2011-04-12 2012-10-13 Fabio Bondavalli Procedimento per la movimentazione e/o il sollevamento di oggetti
CN102797710A (zh) * 2012-01-17 2012-11-28 冯卫 气动无风叶风机
WO2013138283A1 (en) * 2012-03-15 2013-09-19 Nike International Ltd. Hollow tip welding tool
US8696043B2 (en) 2011-11-18 2014-04-15 Nike, Inc. Hybrid pickup tool
US8858744B2 (en) 2011-11-18 2014-10-14 Nike, Inc. Multi-functional manufacturing tool
US8958901B2 (en) 2011-11-18 2015-02-17 Nike, Inc. Automated manufacturing of shoe parts
US8960745B2 (en) 2011-11-18 2015-02-24 Nike, Inc Zoned activation manufacturing vacuum tool
US10667581B2 (en) 2011-11-18 2020-06-02 Nike, Inc. Automated identification and assembly of shoe parts
US11341291B2 (en) 2011-11-18 2022-05-24 Nike, Inc. Generation of tool paths for shoe assembly
US11346654B2 (en) 2011-11-18 2022-05-31 Nike, Inc. Automated 3-D modeling of shoe parts
US11389972B2 (en) 2011-11-18 2022-07-19 Nike, Inc. Manufacturing tool with selective activation of pickup zones

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150818B1 (ko) 2010-04-19 2012-06-05 주식회사 에이엠에이치시스템즈 진공장치
WO2013034635A1 (de) 2011-09-07 2013-03-14 J. Schmalz Gmbh Greif- oder spannvorrichtung sowie verfahren zur handhabung von gegenständen
DE102012215798B4 (de) 2012-09-06 2016-08-11 J. Schmalz Gmbh Flächensauggreifer
JP6575013B2 (ja) 2012-12-21 2019-09-18 ピアブ・アクチエボラグ 楕円形の末広がりセクションを有する真空エジェクタノズル
GB2509182A (en) 2012-12-21 2014-06-25 Xerex Ab Vacuum ejector with multi-nozzle drive stage and booster
GB2509184A (en) 2012-12-21 2014-06-25 Xerex Ab Multi-stage vacuum ejector with moulded nozzle having integral valve elements
GB2509183A (en) * 2012-12-21 2014-06-25 Xerex Ab Vacuum ejector with tripped diverging exit flow nozzle
US9976762B2 (en) 2013-03-14 2018-05-22 General Electric Company Synthetic jet driven cooling device with increased volumetric flow
CN103357616A (zh) * 2013-07-04 2013-10-23 上海大学 一种用于收集冷镦机高温油雾霾的方法
US9879699B2 (en) * 2014-06-09 2018-01-30 Dayco Ip Holdings, Llc Venturi devices with dual Venturi flow paths
GB201418117D0 (en) 2014-10-13 2014-11-26 Xerex Ab Handling device for foodstuff
CN104895852B (zh) * 2015-05-05 2017-01-11 江苏大学 一种旋流式射流泵
DE102015006315B4 (de) 2015-05-16 2018-05-30 Roland Ruegenberg Vorrichtung zur Entnahme von auf einer Auflagefläche verteilten Teilen mittels einer auf jeweils eines der Teile einstellbaren Luftströmung
JP6326451B2 (ja) * 2016-06-08 2018-05-16 株式会社ハーモテック 搬送装置及び吸引装置
CN106111380B (zh) * 2016-08-09 2018-11-16 裕东(中山)机械工程有限公司 一种文丘里粉泵智能空气控制方法
US10836065B2 (en) 2017-01-04 2020-11-17 Provisur Technologies, Inc. Exposed load cell in a food processing machine
US10639798B2 (en) 2017-01-04 2020-05-05 Provisur Technologies, Inc. Gripper actuating system in a food processing machine
US9950869B1 (en) 2017-01-04 2018-04-24 Provisur Technologies, Inc. Belt tensioner in a food processing machine
US10160602B2 (en) 2017-01-04 2018-12-25 Provisur Technologies, Inc. Configurable in-feed for a food processing machine
CN107021235B (zh) * 2017-04-06 2019-11-08 王子墨 一种中低空飞行器驱动装置、驱动方法及中低空飞行器
KR101940143B1 (ko) * 2017-08-08 2019-01-18 주식회사 태진엔지니어링 공기 증폭기
CA3078775A1 (en) 2017-11-01 2019-05-09 Alcon Inc. Bernoulli gripper for intraocular and contact lenses
USD934524S1 (en) 2018-05-08 2021-10-26 Nimrod Rotem Vacuum gripper
USD933927S1 (en) 2018-05-08 2021-10-19 Nemo Power Tools Ltd. Vacuum gripper
CN109097916A (zh) * 2018-10-23 2018-12-28 杰克缝纫机股份有限公司 一种移料设备及自动缝制系统
USD932726S1 (en) 2020-12-01 2021-10-05 Nemo Power Tools Ltd. Vacuum gripper
DE102021116381A1 (de) 2021-06-24 2022-12-29 Schott Ag Sauggreifvorrichtung und Verfahren zur Aufnahme und Ablage flexibler flächiger Substrate
DE102021118546A1 (de) * 2021-07-19 2023-01-19 J. Schmalz Gmbh Unterdruckerzeugungsvorrichtung und Sauggreifer
JP2023056639A (ja) * 2021-10-08 2023-04-20 Smc株式会社 リフト装置
CN114032645B (zh) * 2021-11-11 2023-01-03 浙江川田智能科技有限公司 一种机头旋转升降式的模板缝纫机及其控制方法
US20240286295A1 (en) * 2023-02-24 2024-08-29 Demitri Balabanov Grippers and ply separation methods
CN118238964B (zh) * 2024-03-25 2024-10-29 江苏科技大学 一种基于康达效应的抓吸一体式水下机械抓头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB646124A (en) * 1946-05-31 1950-11-15 John Christopher Emerson Method of producing a stream or streams of working substances having desired thermodynamic characteristics
US4245961A (en) * 1978-09-08 1981-01-20 Martin Marietta Corporation Ejector utilizing a vortex flow
WO1999049216A1 (en) 1998-03-20 1999-09-30 Piab Ab Vacuum ejector pump
GB2455351A (en) * 2007-12-07 2009-06-10 Microsaic Systems Ltd Planar air amplifier on substrate

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1333713A (en) * 1919-03-24 1920-03-16 Burdett P Hopkins Pneumatic ejector-pump
US2044088A (en) * 1933-12-11 1936-06-16 U S Submarine Motorship Dredge Hydraulic material elevator
US2965312A (en) * 1955-07-12 1960-12-20 Hale Loren Spray gun
US2938658A (en) * 1958-03-21 1960-05-31 Berry W Foster Pump
US3739576A (en) * 1969-08-11 1973-06-19 United Aircraft Corp Combustion system
US3806039A (en) * 1972-03-14 1974-04-23 Src Lab Coanda type nozzle with discontinuous slot
DE2453753C3 (de) * 1974-11-13 1982-05-27 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Bogenbremse
US4028009A (en) * 1975-09-24 1977-06-07 Nikolai Vasilievich Gudzenko Jet pump
US4046492A (en) * 1976-01-21 1977-09-06 Vortec Corporation Air flow amplifier
IL74282A0 (en) * 1985-02-08 1985-05-31 Dan Greenberg Multishaft jet suction device
FR2599093B1 (fr) * 1986-05-22 1991-08-02 Inst Francais Du Petrole Ejecteur a rotation induite
SE8801591L (sv) * 1988-04-28 1989-10-29 Uwe Eggert Straalmunstycke
DE69116339T2 (de) * 1990-10-12 1996-06-13 Yoshino Kogyosho Co., Ltd., Tokio/Tokyo Schaumdüse zum aufsetzen auf einen zerstäuber
SE469291B (sv) * 1991-10-31 1993-06-14 Piab Ab Ejektorarrangemang innefattande minst tvaa tryckluftsdrivna ejektorer samt foerfarande foer att med minst tvaa tryckluftsdrivna ejektorer aastadkomma ett oenskat undertryck paa kortast moejliga tid och med minsta energifoerbrukning
JPH10167470A (ja) * 1996-12-02 1998-06-23 Kiyoyuki Horii 非接触保持方法とその装置
JP3678950B2 (ja) * 1999-09-03 2005-08-03 Smc株式会社 真空発生用ユニット
DE10102222A1 (de) * 2000-02-23 2001-08-30 Heidelberger Druckmasch Ag Vorrichtung zum Austrag von Puder
DE10061384B4 (de) * 2000-12-09 2007-01-18 Festo Ag & Co. Strahlpumpenanordnung zur Erzeugung von Vakuum sowie Verfahren zum Betreiben einer solchen Strahlpumpenanordnung
WO2003050403A1 (en) * 2001-12-07 2003-06-19 Anderson Jack H Jet nozzle mixer
SE0201335L (sv) * 2002-05-03 2003-03-25 Piab Ab Vakuumpump och sätt att tillhandahålla undertryck
US6718752B2 (en) * 2002-05-29 2004-04-13 The Boeing Company Deployable segmented exhaust nozzle for a jet engine
JP2004193195A (ja) * 2002-12-09 2004-07-08 Shinko Electric Ind Co Ltd 搬送装置
DE102004031924B4 (de) * 2004-06-23 2006-05-04 J. Schmalz Gmbh Vorrichtung zum Erzeugen eines Unterdrucks
DE202007007721U1 (de) * 2007-05-31 2007-08-09 Jonas & Redmann Automationstechnik Gmbh Greifer, insbesondere Bernoulli-Greifer
JP4678604B2 (ja) * 2007-08-01 2011-04-27 Smc株式会社 真空発生ユニット
NO327504B1 (no) * 2007-10-26 2009-07-27 Ntnu Technology Transfer As En ejektor for fluider
EP2222414A1 (de) * 2007-12-05 2010-09-01 Innovent, An Unincorporated Division Of Standex International Corporation Verfahren und vorrichtung zum aufbringen teilchenförmiger stoffe
US8807458B2 (en) * 2009-04-29 2014-08-19 King Saud University Vortex-generating nozzle-end ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB646124A (en) * 1946-05-31 1950-11-15 John Christopher Emerson Method of producing a stream or streams of working substances having desired thermodynamic characteristics
US4245961A (en) * 1978-09-08 1981-01-20 Martin Marietta Corporation Ejector utilizing a vortex flow
WO1999049216A1 (en) 1998-03-20 1999-09-30 Piab Ab Vacuum ejector pump
GB2455351A (en) * 2007-12-07 2009-06-10 Microsaic Systems Ltd Planar air amplifier on substrate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRE20110024A1 (it) * 2011-04-12 2012-10-13 Fabio Bondavalli Procedimento per la movimentazione e/o il sollevamento di oggetti
US10667581B2 (en) 2011-11-18 2020-06-02 Nike, Inc. Automated identification and assembly of shoe parts
US8696043B2 (en) 2011-11-18 2014-04-15 Nike, Inc. Hybrid pickup tool
US11273514B2 (en) 2011-11-18 2022-03-15 Nike, Inc. Multi-functional manufacturing tool
US11341291B2 (en) 2011-11-18 2022-05-24 Nike, Inc. Generation of tool paths for shoe assembly
US11266207B2 (en) 2011-11-18 2022-03-08 Nike, Inc. Automated identification and assembly of shoe parts
US8958901B2 (en) 2011-11-18 2015-02-17 Nike, Inc. Automated manufacturing of shoe parts
US8960745B2 (en) 2011-11-18 2015-02-24 Nike, Inc Zoned activation manufacturing vacuum tool
US11879719B2 (en) 2011-11-18 2024-01-23 Nike, Inc. Automated 3-D modeling of shoe parts
US11911893B2 (en) 2011-11-18 2024-02-27 Nike, Inc. Manufacturing tool
US11763045B2 (en) 2011-11-18 2023-09-19 Nike, Inc. Generation of tool paths for shoe assembly
US8858744B2 (en) 2011-11-18 2014-10-14 Nike, Inc. Multi-functional manufacturing tool
US11346654B2 (en) 2011-11-18 2022-05-31 Nike, Inc. Automated 3-D modeling of shoe parts
US11389972B2 (en) 2011-11-18 2022-07-19 Nike, Inc. Manufacturing tool with selective activation of pickup zones
US11422526B2 (en) 2011-11-18 2022-08-23 Nike, Inc. Automated manufacturing of shoe parts
US11641911B2 (en) 2011-11-18 2023-05-09 Nike, Inc. Automated identification and assembly of shoe parts
CN102797710A (zh) * 2012-01-17 2012-11-28 冯卫 气动无风叶风机
WO2013138283A1 (en) * 2012-03-15 2013-09-19 Nike International Ltd. Hollow tip welding tool
CN104136198A (zh) * 2012-03-15 2014-11-05 耐克创新有限合伙公司 空心尖头焊接工具

Also Published As

Publication number Publication date
DE102009047083A1 (de) 2011-05-26
KR20120088847A (ko) 2012-08-08
KR101603377B1 (ko) 2016-03-14
CN102713310B (zh) 2015-08-12
CN102713310A (zh) 2012-10-03
EP2504584A1 (de) 2012-10-03
DE102009047083B4 (de) 2011-12-08
DE102009047083C5 (de) 2013-09-12
US9062689B2 (en) 2015-06-23
US20130032981A1 (en) 2013-02-07
EP2504584B1 (de) 2019-01-02

Similar Documents

Publication Publication Date Title
EP2504584B1 (de) Druckluftbetriebener unterdruckerzeuger oder unterdruckgreifer
EP3056745B1 (de) Unterdruckerzeugervorrichtung und schlauchheber mit einer unterdruckerzeugervorrichtung
EP2875718B1 (de) Handgeführtes Arbeitsgerät mit einem Blasrohr
EP1801392B1 (de) Vorrichtung zur Steigerung der Bremsleistung einer mehrzylindrigen Brennkraftmaschine eines Fahrzeugs während des Motorbremsbetriebes
DE102009047085A1 (de) Druckluftbetriebener Unterdruckerzeuger
DE102005046507A1 (de) Brennkraftmaschine mit zwei hintereinander geschalteten Abgasturboladern
DE102009047089B4 (de) Druckluftbetriebener Unterdruckerzeuger
EP1870203B1 (de) Werkzeugmaschine mit einer Absaughaube
DE102010029662A1 (de) Mit Druckluft betriebener Unterdruckerzeuger
WO2017025235A1 (de) Verdichter eines turboladers mit einem schubumluftventil sowie turbolader und kraftfahrzeug mit einem solchen verdichter
DE102012015325A1 (de) Venturidüse zur Erzeugung eines Unterdrucks
EP1571341B1 (de) Mehrstufiges Sauggebläse
EP1020388A2 (de) Luftsteuer- und/oder Luftregelungseinrichtung
DE102009047082A1 (de) Druckluftbetriebener Unterdruckerzeuger
EP4123186B1 (de) Unterdruckerzeugungsvorrichtung und sauggreifer
DE10251925A1 (de) Vorrrichtung zur Staub- und Schmutzabscheidung in strömenden Medien
DE102009046992A1 (de) Abgasturbolader sowie Brennkraftmaschine
DE102018117768B4 (de) Vorrichtung zur Steuerung des Funktionszustandes eines Sauggreifers einer Werkstück-Handlingvorrichtung sowie Werkstück-Handlingvorrichtung
DE10232519A1 (de) Abgasturbolader für eine Brennkraftmaschine
DE102007022322B4 (de) Unterdruck-Haltevorrichtung
EP2123204B1 (de) Vorrichtung zur regulierung des saugluftstroms eines saugers
EP1671601A1 (de) Vorrichtung und Verfahren zum Bilden eines Luft-Strahlmittel-Gemischs
DE102016011315B4 (de) Abscheider
EP3254807B1 (de) Vorrichtung und verfahren zum reinigen mit einer strahlvorrichtung
DE202013012745U1 (de) Handgeführtes Arbeitsgerät mit einem Blasrohr

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053462.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10782257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010782257

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015721

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13511585

Country of ref document: US